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Abstract—How exactly our brain works is still an open ques-
tion, but one thing seems to be clear: biological neural systems are
computationally powerful, robust and noisy. Using the Reservoir
Computing paradigm based on Spiking Neural Networks, also
known as Liquid State Machines, we present results from a
novel approach where diverse and noisy parallel reservoirs,
totalling 3,000 modelled neurons, work together receiving the
same averaged feedback. Inspired by the ideas of action learning
and embodiment we use the safe and flexible industrial robot
BAXTER in our experiments. The robot was taught to draw
three different 2D shapes on top of a desk using a total of
four joints. Together with the parallel approach, the same basic
system was implemented in a serial way to compare it with our
new method. The results show our parallel approach enables
BAXTER to produce the trajectories to draw the learned shapes
more accurately than the traditional serial one.

Index Terms—spiking neural networks, liquid state machines,
reservoir computing, humanoid robots, BAXTER, V-REP, paral-
lel processing.

I. INTRODUCTION

The use of a robot that resembles the human body and
behaves alike - a humanoid robot - is often proposed as
one possible solution to facilitate the deployment of such
machines among us. However, humanoid systems suffer from
the Bernstein’s degree of freedom problem as their redundancy
creates multiples ways to solve a task and it is still not clearly
known how a complex redundant biological body is controlled
by the nervous system [1].

Following the neurorobotic outlook [2], a good amount of
inspiration for solving those problems comes from biology.
As natural stimuli are made of spatio-temporal patterns and
cortical neurons are naturally sensitive to those, any model
of cortical processing needs to be able to deal with this
information [3] and Spiking Neural Networks (SNN) have this
ability [4]. Despite several works published in the domain of
Artificial Neural Networks (ANN), comparatively few studies
can be found in the literature addressing humanoid robot
control based on SNN [5]–[8].

Liquid State Machines (LSM), introduced in [9], are re-
current SNN where an external output layer called readout
is the only part of the network that is subject to a learning
process. Therefore the great attractiveness is the fact that
readout learning can be as simple as a linear regression. Some

principles of LSM can be found in in vitro neural networks
according to [10] and parameters applied to the neuron model,
connection probability and short-term plasticity are derived
from studies with the rat cortex [11]. Inspired by the results
from [12], the LSM could be seen as a possible model to
implement a neural arm controller. Any dynamical system, in
addition to Turing machines, could be simulated by an LSM
with the use of appropriate feedback [13]. According to [14], it
is also possible to emulate complex, non-linear computations
with the use of a simple linear regression when Reservoir
Computing methods like an LSM are used. The use of an
LSM to control a very simple planar 2 degrees of freedom
simulated arm was already implemented in [15]. Apart from
these works, a search in the literature could not provide any
further studies with implementations of robot arm controllers
using the LSM framework.

This paper presents the experimental results of a novel
humanoid robot control framework based on parallel, di-
verse (each liquid was randomly generated) and noisy (using
random injected currents and initial membrane values), sets of
biologically inspired LSM. Some of the motivations to apply
the LSM model are related to the idea that the neuron model
and the inherent network connectivity could have an influence
in the results of the computations as suggested in [16]. Also
the concepts of movement decomposition from [12], [17],
[18] were used as inspiration for the parallel system as their
results are averaged and composed together to generate the
final movement.

The chosen task was based on the principles of action
learning and focuses on the ability to learn from a teacher
how to draw simple shapes on top of a table. This is part
of a wider approach to robot learning and development with
embodied and situated interaction [14], [19] . The trajectories
start and end with zero velocity and acceleration following a
smooth human inspired profile [20]. A total of four joints were
necessary to draw the shapes (square, triangle and circle) while
the distance and angle between the pen and the table had to
be kept constant. The performance and analysis of the learned
movements using the parallel and the serial approaches were
done using a model of the Rethink Robotics Inc. industrial
humanoid robot BAXTER inside the Versatile and Scalable
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Robot Simulation Framework (V-REP) [21]. At the end, as a
proof of concept, one of the shapes was also tested using the
real BAXTER robot.

II. METHODS

The main steps in the procedure for the neurorobotics
experiment presented in this work (subsections II-A, II-B, II-C,
II-D, II-E, II-F and II-G) are summarised below1:

1) Shapes were defined in the 2D space (Z was kept
constant as it represented the table top height). Human
inspired endpoint velocity profiles were applied during
the discretization of the shapes (see II-C).

2) The trajectories were translated to joint angles using a
BAXTER robot model in V-REP (see II-F) controlled
directly from an IPython notebook [22].

3) Joint angles were converted according to a special in-
put code convention developed to increase the sys-
tem’s resolution and simplify the input/outputs to the
liquid (see II-D).

4) Training data was generated by the LSM (see II-B).
5) Readout weights for each joint (see Figure 2) were trained

to predict the next value using the data generated by the
LSM using a linear regression algorithm (see II-E).

6) Testing data was generated using the proposed frame-
work (Figure 1a) and the analysis of the results was
done by comparing against a serial (Figure 1b) approach
(see II-G).

A. Parallel and Serial Approaches

When working with a stochastic system, as in the case of the
LSM approach, each time an experiment is done a new unique
value will be generated. Considering the random process as
stationary, traditionally an averaging of the results from mul-
tiple simulations, i.e. the mean value or first moment, is used.

In [15] and [13] LSM systems with an added feedback
connecting the output to the input were employed in order
to increase their computational power. Each LSM received
individual feedback and its outputs were averaged between
trials to improve the results. This method is called here the
serial approach (Figure 1b).

The alternative framework proposed here follows a slightly
different approach. Inspired by the idea of a parallel noisy
brain model, multiple LSM, randomly created and initialized,
are used in parallel and the feedback each individual LSM
receives (Figure 1a) is the average of all the readout outputs.
This parallel approach (Figure 1a) is compared to the serial
one (Figure 1b). Both systems used during the experiments
had the same number of LSM (with 600 artificial neurons
each, totalling 3, 000 per trial) in order to allow a comparison
between them.

B. Liquid State Machine

An LSM usually is composed of Leaky Integrate-and-Fire
(LIF) spiking neurons [4] connected in a recurrent pattern

1Source code available at github.com/ricardodeazambuja/IJCNN2016
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Figure 1. Simplified diagram with the parallel (a) and serial (b) approaches.
All LSM were randomly generated and initialised for (a) and only randomly
initialized for (b).

as suggested in [9] forming what is known as Small-World
Network (SWN). The authors of [23] suggest SWN presents
an appealing way to model the brain connections based on
empirical and theoretical motivations.

Non-spiking neuron model based applications traditionally
do not alter the network after the learning process is finished.
Noise is only applied during the initialization as stated by [14].
However, stochastic processes seem to be an important part
of brain computational strategy [24] and the LSM technique
implements noise levels compatible with what was found in
in vivo recordings [3].

In order to make it possible to benchmark the performance
of the framework proposed here, the same neuron model and
LSM parameters from [15] were applied with a few modifica-
tions. The system implemented in this work does not make use
of Short-Term Plasticity (STP) or forced transmission delays.
According to [3], STP is only one of the properties generating
hidden network states. Therefore, as they slow down simula-
tions by demanding extra variables and calculations, STP and
delays were not used. The diagram of the implementation of
one individual LSM can be seen in Figure 2.

A variant of the Leaky Integrate and Fire (LIF) neuron
model with exponential currents is used in this work (Equa-
tion 1). The basic LIF model behaves as a capacitor-resistor
circuit with an added circuitry in order to generate the spike
(action potential) and also to keep it discharged during the
refractory period [4]. It can be partially represented by the set
of differential equations as seen in the Equation 1 where cm
is the membrane capacitance (in F), τm the membrane time
constant (in s), τsyne and τsyni decay time of the excitatory
and inhibitory synaptic current respectively (in s), vrest the
membrane resting potential (in V), ioffset a fixed noisy current
and inoise a variable noisy current (in A).

dv

dt
=
ie(t) + ii(t) + ioffset + inoise

cm
+
vrest − v
τm

(1a)

die
dt

= − ie
τsyne

(1b)

dii
dt

= − ii
τsyni

(1c)
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Figure 2. Illustrative representation of one individual LSM using only its own feedback. Each joint input/output has its unique bias (b1 to b4) and gain (g1 to
g4). Readout weights sets (W1 to W600) are trained individually for each joint. As the weights are directly connected to the output of the low-pass membrane
filter, they are trained using the normalised values (see II-D and Figure 5).

All simulations employed IPython and a custom software2

entirely written in C. The parameters used for the neuron
model were: τsyni

= 6ms, τsyne
= 3ms. cm = 30nF ,

τm = 30ms. Each LSM had the ioffset randomly drawn
(see [15] for details about the distributions) during its creation,
but the values were kept constant (by the use of the same ran-
dom seed) after that. The liquid internal structure (connections)
was also kept after the initialisation. It was necessary to keep
those values otherwise each trial would have a different liquid
instead of one with added noise. The initial membrane voltage
and the current inoise were randomly drawn during learning
and testing phases where new inoise values were drawn every
time step. For all simulations, a time step of 2ms was used.

C. Definition of the 2D shapes

Three shapes were used in this work as a teaching task
for the robot: square, triangle and circle (Figure 3). The joint
angles generated by the inverse kinematics to draw a triangle
on top of the table are presented in Figure 4. The system
needs to obey not only the individual joint curves but also the
synchrony between them to accomplish its task.

Based on the human inspired model reported by [20] the ve-
locity profile was not constant all over the trajectories and the
effect can be seen by the concentration of points in Figure 3.
A time step of 2ms was adopted with the whole trajectory
taking 2s. Shapes containing sharp bends (square and triangle)
were designed using several straight trajectories where the
velocity reached zero at the corners. The idea here was to
simulate a human teacher guiding the robot’s arm.

2Available at github.com/ricardodeazambuja/LiquidStateMachine-Python
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Figure 3. Shapes used to teach the robot (green:square, blue:circle and
red:triangle). The Z axis is not presented here as it was kept constant (non
zero) for all the shapes. The increase in the concentration of points is a
consequence of the human inspired velocity profile [20]. Only one fifth of the
points are being presented to help the visualization.

D. Input and Output Code

The input code uses a simplified population code inspired
by what was presented in [15] to discretise analogue values.
In [25] a VLSI friendly implementation of an LSM based sys-
tem is presented where 77 discrete inputs are used. Therefore
this setup is appealing for future conversion of LSM to a VLSI
digital binary based system. Despite its simplicity it needs a
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Figure 4. Resultant individual Cartesian X and Y movements as well as joints
S0, S1, E1 and W1 (see Figure 7) necessary to draw the triangle (Figure 3)
on top of a table.

large number of neurons if a fine scale is used.
Inspired by electronics instrumentation signal conditioning,

analogue values suffer a translation (bias) making them start
at zero and compression/elongation through a gain that fits its
total range to one (normalisation) (see Figure 2). That way,
using only two extra variables (bias and gain) the system
normalises the inputs and uses as much of the population
code range as possible in this situation producing a higher
resolution (Figure 5).
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Figure 5. Input normalisation. The figure on the right presents the normalised
version of the joint angle values necessary to draw the triangle on top of the
table (figure on the left). The normalised values go from 0 to 149 as they are
related to the input neuron index offset.

The pseudo-code used to convert from analogue values to
neuron indices is presented as Algorithm 1. Both bias and gain
are unique for each shape and could be seem as a form of
mapping from the desk space (where the shapes were drawn)

to the LSM space. For the injection of the input spikes, the
liquid was divided into four slices. Each slice receives spikes
from only one input (joint angles). The weights connecting the
liquid’s neurons and the input spikes are formatted to create a
redundant code with a Gaussian shape where its mean value
lays on the input neuron index (Figure 6).

Algorithm 1 Input code normalisation

procedure INPUTNORM(Jθ)
Receives joint angle Jθ . Jθ in rad
Extracts the bias . the curve starts from zero now.
Divides by the gain . gain makes the range unitary
Discretizes . closest value on the input neuron array
return index . value passed to the Gaussian input

end procedure

For the output joint values the same gain and bias calculated
for the input are used. It works as the opposite calculation of
the Algorithm 1 having as inputs the analog values from the
membrane low-pass filter (time constant 30ms) output.

1 2 3 4 ... 146 147 148 149 150

σ/3 σ/3

input layer

weights distribution

Discretization analog 
input value

Figure 6. Gaussian weighted input distribution. The maximum weight value
used was 100nA.

E. Linear regression

When the LSM framework is employed, normally a linear
regression is implemented to train the weights (W1 to W600
from Figure 2) connecting the readout to the liquid. The
Ordinary Least Squares (OLS) method solves the minimization
problem expressed by the Equation 2. The Ridge Regres-
sion [26] from Scikit-learn (0.16.1) [27] was used here with
its default settings. It solves a slightly different version of
the OLS problem as can be seen on Equation 3 (λ is the
regularization parameter). Differently from the OLS, the Ridge
Regression is still solvable even if X is not full rank.

min
w
‖y −Xw‖22 (2)

min
w

(
1

2
‖y −Xw‖22 +

λ

2
‖w‖22

)
(3)

In this work the matrix X was composed by the membrane
low-pass filtered values of the liquid spikes (τm = 30ms), y
the normalised joint angle values (before the bias and gain



being added back) necessary to generate the shape and w
represents the readout weights.

F. BAXTER Robot

BAXTER, from Rethink Robotics Inc., is a humanoid robot
designed to be safe and operate among humans. However,
in order to keep all its safety mechanisms activated, the re-
searcher must use the Joint Position Control mode3. Therefore
the experiments using the framework proposed here always
command the robot using that control mode. In total this work
used four joints: S0, S1, E1 and W1 (see Figure 7). It is
important to emphasize that although it is drawing 2D shapes,
the robot moves in the 3D space, keeping an angle of 90
degrees between the felt pen and the table, and it needs to keep
the Z axis constant (table top height). This made necessary the
use of four joints (S0, S1, E1 and W1) as can be seen in the
Figure 7. The translation from Cartesian space to joint space
was made using the available Damped Resolution Method
(damping:0.10 and max.iterations:3) for inverse kinematics in
V-REP (version 3.2.2. rev.1) after the arms were positioned in
their default untucked pose. In addition the V-REP remote API
was employed to control the simulator from IPython making
it easier to run several trials using the V-REP headless mode.
Figure 8 shows the simulation result of one trial using the
framework presented here.

Figure 7. BAXTER robot left arm with the joint names highlighted. Only the
joints S0, S1, E1 and W1 are used during the experiments presented here.

As a proof-of-concept only, the square shape using the novel
parallel framework proposed here (Figure 1a) was tested using
the real BAXTER robot (Figures 7 and 20).

G. Testing and Analysis tools

Analysis was done to verify if the novel framework pro-
posed here (Figure 1a) would perform better or worse than

3See sdk.rethinkrobotics.com/wiki/Arm Control Modes

Figure 8. V-REP setup used in this work. A simulated felt pen was employed
to draw the shapes. The shape drawn on top of the table corresponds to the
square generated by the novel system presented in this work (one trial).

a single LSM after several trials where the final results were
averaged (Figure 1b). Pilot experiments, not presented in this
paper, showed that the positive effects of multiple LSM in
parallel could be more clearly seem with at least five of
them. Therefore, five different LSM (600 neurons each) were
randomly generated to test each individual shape. Here the
term randomly is in respect to the initialization of the random
seeds used during the definition of the liquid structure’s main
parameters.

Readout weights were trained for each one of the five LSM
for a total of five hundred trials (one hundred trials each
LSM). The testing phase employed all five LSM created for
each shape in a batch of ten trials for the proposed parallel
framework (with five LSM running in parallel - Figure 1a)
and ten trials for the traditional serial averaged one (where
each trial was composed of five simulations of identical LSM
with the results averaged at the end. In order to have the
same number of final shapes, each LSM was employed twice -
Figure 1b).

Having the same total number of trials for both systems and
using the same five different LSM generated makes it possible
to compare the two approaches. Instead of simulating only 2s
(1000 simulation steps), during the testing phase the system
was subjected to twice the number of steps. The use of more
simulation steps helped to verify if the systems had the ability
to keep the end position.

Testing phase results could be analysed through several
ways as the system generates the final resultant X , Y and Z
movements following a specific velocity profile and also the
individual joint curves. The experiments showed some results
where the movement had a constant value zone creating a
delay in time, and this makes it harder to apply traditional
metrics such as correlation. Instead Dynamic Time Warping
(DTW) [28] was used.



The DTW method generates a new set of pairs that applies
a correction (time warping) making it easier to compare two
signals in a similar way to the method human beings use [29].
One example of mapping can be seen in the Figure 9. A simple
version of the DTW algorithm was implemented in C with
a Python interface4 supporting multidimensional arrays and
Euclidean distance. The final cost is calculated by summing
all the distances (represented by the red lines connecting the
circle and the cardioid - left hand side on Figure 9) mapped
by the generated path (blue curve, right hand side on Figure 9)
and normalising using the maximum cost value generated for
each shape using the parallel and serial approaches. Using this
metric, the smaller the cost the better the match.
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Figure 9. Example of 2D trajectory-matching generated by the DTW method.
Although looking perfect in the figure on the left, the cardioid was modified
to have a constant value zone from time step 50 to 150. The DTW correctly
matches the values as can be seen as a straight blue line in the Accumulated
Distance plot (right).

III. RESULTS AND DISCUSSION

The main task proposed in this study as a benchmark
was the ability to teach a robot, using principles of action
learning [30] and embodiment [14], [19] and controlled by
a SNN to draw three simple shapes (Figure 3). The analyses
were made by comparing the resultant curves from the parallel
and serial methods by visual inspection as well as using the
DTW method. As the task involved the control of a pen in
the 3D Cartesian space with the added time dimension, in
order to simplify the figures, the comparisons were divided
into the analysis of: 2D Shape (III-A), Time (III-B), Space-
Time (III-C) and Z Axis (III-D).

A. Final 2D Shape Analysis

For the analysis of the resultant 2D shape, all the ten trials
were plotted together with the parallel and serial approaches
side-by-side. Figures 10, 11 and 12 show the square, circle
and triangle shapes respectively.

Starting with the square (Figure 10), the comparison
between the two methods (parallel and serial - Figure 1)
showed the second one was not able to complete the task even

4Available at github.com/ricardodeazambuja/DTW

after all the trials. As the square has four sides, it is easy to see
the serial approach could not reach much more than one half
of the total trajectory. In the case of the triangle (Figure 12),
the serial method was able to perform better on only one out
of ten trials, but failing in the final 1/6 of the trajectory. The
circle (Figure 11) was the only shape with results where the
traditional approach was able to follow the trajectory in more
than one trial. Although not a perfect fit to the dashed line (the
original shape), the resultant curves from the parallel method
presented here were able to match the original ones with just
some small errors when compared to the serial one. The only
shape with slightly worse results for the parallel case was the
circle.

0.10 0.05 0.00 0.05 0.10
x (m)

0.10

0.05

0.00

0.05

0.10

y
 (

m
)

(a)

0.10 0.05 0.00 0.05 0.10
x (m)

0.10

0.05

0.00

0.05

0.10

y
 (

m
)

(b)

Figure 10. Results of the ten trials (square). The dashed line represents the
original shape (Figure 3). Using the framework presented here (a) and the
serial averaged method (b).
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Figure 11. Results of the ten trials (circle). The dashed line represents the
original shape (Figure 3). Using the framework presented here (a) and the
serial averaged method (b).
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Figure 12. Results of the ten trials (triangle). The dashed line represents the
original shape (Figure 3). Using the framework presented here (a) and the
serial averaged method (b).



B. Time Series Analysis

The teacher signal used in this work contained more than
spatial information, as it also had time information in the
form of a velocity profile (II-C, Figure 4). Consequently using
only the analysis of the final 2D shape it is not possible to
verify the behaviour in relation to time. Through a visual
inspection of the Figures 13, 14 and 15 it is possible to realize
that the solution proposed in this paper was able to follow
more closely the original X and Y time series. However,
in some of the trials phase delays occurred mostly within
the parallel approach (Figures 13a, 14a and 15a). The serial
approach (Figures 13b, 14b and 15b) clearly could not take
advantage of the diversity of the LSM as most of the curves
had a very erratic shape.
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Figure 13. Visualization of the X and Y resultant curves (square) in time
(all ten trials). The dashed line represents the original shape (Figure 3). Using
the framework presented here (Figure 13a) and the serial averaged method
(Figure 13b).
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Figure 14. Visualization of the X and Y resultant curves (circle) in time (all
ten trials). The dashed line represents the original shape (Figure 3). Using the
framework presented here (a) and the serial averaged method (b).

C. Space-Time Analysis

During the time series analysis (III-B) phase delays, dis-
turbances and constant value zones were observed in some
of the signals generated. The DTW algorithm was applied
generating a final metric closer to what a visual inspection
can detect. The results from the comparisons using the final
cost generated by the DTW can be seen in the Figures 16, 17
and 18 for the square, circle and triangle respectively. In only
one situation (Figure 16, trial number 2) the serial method had
approximately the same cost as the parallel one. This happened
because the parallel method can get stuck in a constant value
(see Figure 13a) and the simulation finished before it could get
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Figure 15. Visualization of the X and Y resultant curves (triangle) in time
(all ten trials). The dashed line represents the original shape (Figure 3). Using
the framework presented here (a) and the serial averaged method (b).

unstuck. Besides this special case, the parallel approach cost
was always smaller than the serial one and the DTW method
confirms what the visual inspection tells us.
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Figure 16. Resultant curves (square) for all trials - top figure. The DTW
generated cost is presented at the bottom figure. The serial (dashed line, small
squares - red) and parallel (dotted line, small circles - blue) approaches had
a normalised mean cost value of 0.56 and 0.20 respectively.
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Figure 17. Resultant curves (circle) for all trials - top figure. The DTW
generated cost is presented at the bottom figure. The serial (dashed line, small
squares - red) and parallel (dotted line, small circles - blue) approaches had
a normalised mean cost value of 0.50 and 0.08 respectively.

D. Final Z Axis Analysis

During the simulations done in V-REP the table did not
exert any kind of reaction against the pen. Therefore values
where the Z height is below the table surface were generated.



Figure 18. Resultant curves (triangle) for all trials - top figure. The DTW
generated cost is presented at the bottom figure. The serial (dashed line, small
squares - red) and parallel (dotted line, small circles - blue) approaches had
a normalised mean cost value of 0.58 and 0.05 respectively.

In order to draw the shapes the BAXTER robot should keep
the Z height approximately constant. The Figures 19a and
19b present the results obtained during the testing phase of
the square shape for the Z axis. The maximum delta (absolute
distance from the original Z value) for the parallel method was
1.12mm for the square, 2.10mm for the circle and 0.71mm
for the triangle while, the serial averaged one had respectively
7.92mm, 5.09mm and 6.35mm. These numbers show the
novel approach was on average more than six times better
controlling the Z axis when compared with the serial.
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Figure 19. Visualization of the Z curves (square) in time (all ten trials). The
dashed line represents the original curve (Zoriginal = 739.93mm) and the
dotted ones the maximum/minimum values. Using the framework presented
here (a) - Zmax = 740.74mm and Zmin = 738.81mm and the serial
averaged method (b) - Zmax = 740.64mm and Zmin = 732.01mm.

E. Real BAXTER robot experiment

As stated at the beginning of this paper, a proof-of-concept
experiment was done using the real BAXTER robot. It con-
sisted of drawing a square (Figure 3) making use of its left
arm and the framework presented here, but in an open loop
configuration as the joint values were recorded from the robot
simulations using V-REP. In Figure 20 it is possible to see the
sequences of steps until the complete square is drawn. Not
surprisingly the final drawing did not have as much noise as
the one from Figure 10a because the robot arm together with
its actuators functioned as a low-pass filter. Although simple,
this experiment was very useful to test the tools developed to

communicate from the SNN to BAXTER using UDP packets
as well as the arm’s calibration and table levelling. The Z axis
spike (pen lifts up off the table) seen on Figure 19a could also
be seen in the trial presented here, but not in all trials with
the real robot as a result of the morphological filter formed
by the whole physical set-up.

IV. CONCLUSIONS AND FUTURE WORK

A new simple, yet powerful, idea of using parallel Liquid
State Machines sharing the averaged outputs as their feedback
was presented in this work. The task used as benchmark was
based on the ideas of action learning where an external teacher
showed the humanoid BAXTER robot how to draw simple
shapes on top of a table. Results presented in this paper show
a clear improvement in the task when the parallel method
(Figure 1a) was used.

A similar idea of multiple liquids (or columns) to improve
performance was already presented in [9], but only one readout
was used for all columns, there were no feedback connections
from the output of the system to the input and the results came
from serial averaging many trials instead of the parallel system
proposed here.

Several directions for future work are being considered.
Firstly, the use of the real Baxter robot to generate the
trajectories under human instruction could be investigated,
as the robot can be safely guided in a gravity compensated
mode. Additionally the possibility of closing the feedback loop
using the real robot will be verified since in this situation
it will be possible to experience delays and other external
disturbances that were not present during the simulations.
As Plymouth University is part of the BABEL project (a
project on robot control and learning via the SpiNNaker neur-
omorphic system - see babel-project.org), the neuromorphic
system SpiNNaker [31] will be employed for the Spiking
Neural Networks in order to be able to increase considerably
the number of neurons simulated as well as the speed and
robustness.
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Eds., Zürich, 2014.

[15] P. Joshi and W. Maass, “Movement generation with circuits of spiking
neurons,” Neural Computation, vol. 17, no. 8, pp. 1715–1738, 2005.

[16] S. V. Adams and C. M. Harris, “A Computational Model of Innate
Directional Selectivity Refined by Visual Experience,” Scientific Reports,
vol. 5, p. 12553, Jul. 2015.

[17] A. P. Georgopoulos, R. E. Kettner, and A. B. Schwartz, “Neuronal
Population Coding of Movement Direction,” Science, vol. 233, pp. 1416
–1419, 1986.

[18] T. E. Milner, “A model for the generation of movements requiring
endpoint precision,” Neuroscience, vol. 49, no. 2, pp. 487–496, 1992.

[19] A. Cangelosi and M. Schlesinger, Developmental Robotics: From Babies
to Robots. MIT Press, Jan. 2015.

[20] T. Flash and N. Hogan, “The coordination of arm movements: an exper-
imentally confirmed mathematical model,” The journal of Neuroscience,
vol. 5, no. 7, pp. 1688–1703, 1985.

[21] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 1321–
1326.
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