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Abstract. This paper will outline the development of a model of crack tip fields that represents an 

innovation in incorporate the influences on crack tip displacement and stress fields of the zone of 

local plasticity that envelops a growing fatigue crack.  The model uses assumed distributions of 

elastic stresses induced at the elastic-plastic boundary via wake contact and compatibility 

requirements, and defines a set of modified elastic stress intensity factors to characterise the crack 

stress or displacement tip field.  In particular, recent work will be presented that compares the 

interpretation of plasticity-induced shielding obtained from trends observed in KR and KF with 

values of so-called ‘crack closure’ obtained via traditional strain gauge determination. 

Introduction 

This paper will very briefly outline the development of a model of crack tip fields that represents an 

attempt to incorporate the influences on crack tip displacement and stress fields of the zone of local 

plasticity that envelops a growing fatigue crack.  In a fashion somewhat analogous to the original 

formulation of the elastic stress intensity factor by Irwin, the model uses assumed distributions of 

elastic stresses induced at the elastic-plastic boundary via wake contact and compatibility 

requirements, and defines a set of modified elastic stress intensity factors [1] to characterise the 

crack tip field.  These stress intensity factors (SIFs) reflect a combination of applied stress and any 

plasticity-induced elastic stresses (that characterise the so-called plasticity-induced crack tip 

shielding) and the model therefore leads to a stress intensity factor that drives crack growth (called 

KF which, in the absence of plasticity-induced shielding, is identical to KI) and a retarding stress 

intensity factor (KR) that includes influences from crack wake contact (so-called closure) as well as 

stresses induced by compatibility requirements at the elastic-plastic interface, and which have an 

effect on the elastic stress field ahead of the crack.  It also calculates a value for the T-stress. 

The original development was performed on a birefringent material (polycarbonate) using a 

stress-based approach that allowed direct comparison with full-field photoelastic fringe patterns [1], 

and this was then extended to include a displacement-based solution that allowed comparison 

between the analytical full field solution and full-field experimental data acquired from digital 

image correlation (DIC) techniques.  This allowed the model to be applied to metallic compact 

tension or other standard fracture mechanics specimens [2].  The model was referred to by its 

originators as the Christopher-James-Patterson (CJP) model of crack tip fields, recognising the 

distinct multidisciplinary contributions necessary to its development (applied mechanics, 

fatigue/fracture mechanics and experimental mechanics).  The model was further extended from 

uniaxial (KI) loading to include biaxial (KI and KII) loading [3]. 
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Recent work on the CJP model has been aimed at investigating how it might characterise the 

growth of inclined cracks subject to biaxial loading [4], comparing its ability to characterise plastic 

zone size and shape with that of the Williams and Westergaard models of elastic crack tip stresses 

[5], and with a comparison of the interpretation of plasticity-induced closure obtained from trends 

observed in KR and KF with values obtained via traditional strain gauge determination.  This paper 

will briefly review some of this work, in particular the ability of the CJP model to characterise 

plasticity-induced fatigue crack closure. 

CJP Model 

The CJP model is a novel mathematical model developed by Christopher, James and Patterson 

based on Muskhelishvili complex potentials.  The authors postulated that the plastic enclave which 

exists around the tip of a fatigue crack and along its flanks will shield the crack from the full 

influence of the applied elastic stress field and that crack tip shielding includes the effect of crack 

flank contact forces (so-called crack closure) as well as compatibility-induced interfacial shear 

stress at the elastic-plastic boundary. 

Mode I Solution.  In the original formulation of this model, crack tip stress fields were 

characterised as [1]: 
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Five coefficients (A, B, C, F and H) are therefore used to define the stress fields around the crack 

tip.  This model can be also solved in terms of displacement [2]: 
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In the mathematical analysis, the assumption D + F = 0 must be made in order to give an 

appropriate asymptotic behaviour of the stress along the crack flank.  Therefore, crack tip 

displacement fields are defined from the five coefficients: A, B, C, F and H. 

The CJP model provides three stress intensity factors to characterise the stress and displacement 

fields around the crack tip; an opening mode stress intensity factor KF, a retardation stress intensity 

factor KR, and a shear stress intensity factor KS, and it also finds a value for the T-stress.  The 



 

opening mode stress intensity factor KF is defined using the applied remote load traditionally 

characterised by KI but which is modified by force components derived from the stresses acting 

across the elastic-plastic boundary and which therefore influence the driving force for crack growth. 

Thus, unlike the classical KI, KF includes the effect of plasticity-induced crack shielding and it is 

linear with the load as long as there is no shielding effect.  KF is defined from the asymptotic limit 

of σy as x → +0, along y = 0, i.e. towards the crack tip on the crack plane ahead of the crack tip: 
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The retardation stress intensity factor KR characterises shielding forces applied in the plane of the 

crack and which provide a retarding effect on fatigue crack growth. Thus, KR is evaluated from σx in 

the limit as x → -0, along y = 0, i.e. towards the crack tip along the crack flank: 
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It is proposed in the CJP model that a shear term arises from the requirement of compatibility of 

displacements at the elastic-plastic boundary of the plastically deformed crack wake, as plastic 

deformation is a constant volume effect, (equivalent to Poisson ratio, ν = 0.5), while elastic 

deformation occurs with Poisson ratio, ν = 0.3.  The mathematical analysis produces a ln term, 

which has the same form as the stress field terms associated with dislocations.  In this respect, it is 

interesting to note that Riemelmoser and Pippan [6] proposed a dislocation model for plasticity-

induced closure in plane strain and that their model led to a shear stress along the crack wake from 

elastic rotation of the lattice in the plastic wake.  The net stress effect is essentially the same as that 

arising from the compatibility concept that the CJP model assumes in generating the stress terms.  A 

shear stress intensity factor KS is therefore defined in the CJP model that characterises this 

compatibility-induced shear stress along the plane of the crack at the interface between the plastic 

enclave and the surrounding elastic field and is derived from the asymptotic limit of σxy as x → -0, 

along y = 0, i.e. towards the crack tip along the crack wake: 

 

   BArK xy
r

S 
 2

2lim
0


    (5) 

 

A positive sign indicates y > 0, and a negative sign that y < 0.  The T-stress, which is found as 

components Tx in the x-direction and Ty in the y-direction is given by: 

 

HT

CT

y

x




     (6) 

 

Mode I and II Solution.  Extending this model to include both Mode I and Mode II loading 

requires an additional force parameter representing an anti-symmetrical shear force on either side of 

the crack.  The Mode I CJP Model is defined as: 
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The extension to the model was obtained by making the coefficients A and B complex and 

making the assumptions A = Ar + i3Bi, B = Br + iBi, D + E = 0, to give the Mode I and Mode II 

version as [3]: 
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Reference [3] gives full details of the solution of this equation for cases of crack tip stresses and 

crack tip displacements along with the relevant expressions for the three stress intensity parameters 

and the T-stress. 

Characterising Plasticity-Induced Closure 

The original intention when this work was started was to develop a full-field model of crack tip 

stresses that could be fitted to full-field photoelastic fringe patterns, and that would then allow a 

single point wake contact stress (pressure) to be identified explicitly [7].  Accepting that the model 

was approximate in its manner of dealing with wake contact stress (single point rather than a power 

law distribution), and that the fitting between experimental data and analytical results was complex, 

requiring global optimisation via a genetic algorithm and local optimisation using the downhill 

Simplex method, the results were rather interesting and are repeated here in Fig. 1.  Fig. 1 shows the 

behaviour of the wake contact pressure (black diamonds) throughout two load cycles applied to a 

standard polycarbonate compact tension (CT) specimen tested at R = 0.1.  Polycarbonate is a useful 

model material to study plasticity-induced closure, as it is known to show this phenomenon [8] and 

is also birefringent.  It is clear that the values of the wake contact pressure extracted from this 

relatively complex approach are random and do not follow a consistent pattern.  This is in contrast 

to the values of KI and KII produced by the model which do follow a logical pattern and which 

could be interpreted as demonstrating the existence of plasticity-induced closure and crack tip 

blunting. 

 

 
Fig. 1a Wake contact pressure evaluated at 25 steps through two load cycles.  The dashed lines 

indicate the applied fatigue cycles in relation to the load step positions. 

 

These results led to a re-appraisal of whether crack wake contact (the original idea behind crack 

closure) could explain plasticity-induced shielding, or whether other influences, e.g. compatibility 

of displacements at the elastic-plastic boundary also needed to be captured.  This was motivated 

partly by knowledge of the model put forward by Riemelmoser and Pippan [6] and partly by other 

known problems in rationalising crack growth data using the supposed closure-free value of stress 

intensity ΔKeff where the opening value of the stress intensity factor Kop was evaluated using 

standard techniques [9].  The model proposed in references [1, 2] incorporates both a power law 

distribution of wake contact pressure behind the crack tip and the elastic shear stresses induced at 

0

2

4

6

8

10

0 5 10 15 20 25

Load step

P
re

s
s
u

re
 (

M
P

a
)



 

the elastic-plastic boundary through compatibility requirements.  It does not give explicit values of 

wake contact pressure but instead builds the shielding influences into the definitions of the new 

stress intensity factors defined in the model, i.e. KF and KR.  Fig. 2 shows data acquired through a 

half cycle of fatigue loading, from fitting the CJP model to full-field photoelastic fringe patterns 

obtained from a polycarbonate CT specimen using phase-stepping.  The crack was 35.0 mm long 

and was tested at R = 0.1, 0.5 Hz and Pmax = 120 N in the load cycle.  Fig. 3 gives equivalent data 

for a crack 30.3 mm long tested at R = 0.3. 

 

Fig. 2 Values of the stress intensity factors defined in the CJP model through a single half-cycle 

of loading at R = 0.1.  The values of KI obtained from the standard wide range solution 

for a CT specimen are also shown. 

 

 

Fig. 3 Values of the stress intensity factors defined in the CJP model through a single half-cycle 

of loading at R = 0.3.  The values of KI obtained from the standard wide range solution 

for a CT specimen are also shown. 
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The KF and KR data at R = 0.1 are interpreted as showing that crack tip shielding is occurring 

during the lower part of the fatigue cycle, as it is clear that the value of KF remains constant, within 

the limits of experimental error, up to a value of the nominal KI of about 0.5 MPa√m.  The same 

observation is true for the value of KR which is slightly negative up a similar value of KI.  Standard 

wisdom states that a negative SIF has no physical meaning, but in terms of modelling closure and 

crack retardation arising from plasticity-induced shielding, negative SIF values are well-established, 

e.g. [10].  It therefore seems that in this polycarbonate material at R = 0.1 plasticity-induced 

shielding is present over perhaps the bottom 30% of the fatigue cycle in nominal SIF terms.  

Consideration of the trends in KF and KR at R = 0.1 gives an interpretation that shielding is present 

up to the point in the load cycle where the value of KF starts to increase monotonically and KR 

becomes positive.  The other interesting point is that the increase in KF changes slope in the upper 

part of the fatigue cycle, and the increase in KR also levels out (above a value of KI ≈ 1.35 MPa√m).  

This is interpreted as reflecting the influence of crack tip blunting in the upper part of the fatigue 

cycle.  Note that using the standard definition of SIF, KC < 3 MPa√m in this polycarbonate material 

and the peak value of nominal SIF applied in this fatigue loading is 2.05 MPa√m which would be 

expected to lead to significant craze-induced blunting of the crack tip [11]. 

In contrast, at R = 0.3 the value of KF increases monotonically from the start of the fatigue cycle 

and the value of KR is ≥ 0 from the start of the fatigue cycle.  This would be expected from the 

proportion of the cycle that experiences plasticity-induced shielding at R = 0.1. 

Similar data have been obtained using the displacement solution of the CJP model and DIC 

techniques on 25 x 24 x 1 mm Grade 5 titanium CT specimens [5] (see Fig. 4). 

 

 

Fig. 4 Values of KF through a loading half-cycle as a function of the applied nominal KI 

from two titanium compact tension specimens.  Data for CT1 was obtained at R = 0.6 

and a = 9.20 mm, and for CT2 R = 0.1 and a = 9.40 mm. 

 

Some additional work, using 2 mm thick compact tension specimens machined from 2024-T6 

aluminium alloy, has considered the relationship between the opening load determined from back-

face strain gauge measurements using the offset compliance technique and the trends in KF and KR.  

In this case CJP SIF data were acquired using DIC techniques at R = 0.05, 0.3 and 0.5.  Fig. 5 
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shows typical offset compliance data recorded during a single fatigue cycle at R = 0.05 and the trace 

clearly shows an amplified change in slope of the curve at an approximate value of applied load of 

180 N in a fatigue cycle where Pmax = 746 N, i.e. a ratio of Kop/Kmax ≈ 0.25. 

 

Fig. 5 Plot of offset compliance of a crack 44.2 mm long obtained using a back-face strain 

gauge on a 2 mm thick 2024-T6 aluminium CT specimen tested at R = 0.05.  The 

opening point can be deduced to occur at ≈ 0.25 Kmax. 

 

 

Fig. 6 presents the data obtained for the average value of KF (i.e. the average of the loading and 

unloading values at equivalent load steps) through a complete loading cycle using DIC and the CJP 

model.  It is clear that there is a good correlation between the load at which a change in slope occurs 

here (180 N) and the offset compliance data. 

 

Fig. 6 Average value of KF measured during a single loading-unloading cycle for a crack 

30.0 mm long tested at R = 0.05 with Kmax = 10.8 MPa√m. 
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Conclusions 

This short paper has presented a summary of ideas underlying the innovative CJP model, the 

equations describing it in terms of crack tip stress or displacement fields, and some of the work 

aimed at identifying the potential value of KF and KR in characterising the presence of plasticity-

induced shielding.  The work presented in this paper demonstrates that the model offers potential 

advantages in characterising the influences of such shielding on the elastic stress field that drives 

crack growth.  Work reported in reference [5] also shows that the CJP model better characterises the 

plastic zone size and shape in both plane stress and plane strain conditions than either of the two 

commonly used descriptions of the elastic stress field at a crack tip, i.e. the Williams and 

Westergaard models. 
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