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Abstract 

Birds and mammals have evolved many thermal adaptations that are relevant for bioinspired design of 

temperature control systems and energy management in buildings. Similar to many buildings, 

endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature 

within set limits, modify microclimate and adjust thermal exchange with their environment. Here, we 

review the major components of animal thermoregulation in endothermic birds and mammals that are 

pertinent for building engineering, in a world where climate is changing and reduction in energy use is 

needed. In animals, adjustment of insulation together with physiological and behavioural responses to 

changing environmental conditions produce fine-tuned spatial and temporal regulation of body 

temperature, while also minimizing energy expenditure. These biological adaptations are 

characteristically flexible, allowing animals to alter their body temperature to hourly, daily or annual 

demands for energy. They provide examples of how buildings could become more thermally reactive 

to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. 

Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these 

flexible biomimetic features and assess their success in reducing energy costs while maintaining 

thermal comfort for given building types.  
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Glossary 
Adaptation: characteristic (trait) of an organism that enhances the chances of survival and/or of 

reproduction of an organism facing a change in its environment. 

Adipose tissue: animal tissue composed of lipid (fat) filled cells (lipocytes/adipocytes) that store 

energy and also provide insulation and mechanical support. 

Ectotherm: organism with body temperature that depends on external sources of heat, directly or 

indirectly from the sun. 

Endotherm: organism with body temperature that mainly depends on internal metabolic heat 

generation. 

Heterotherm: organism displaying phases of endothermy alternating with periods of lower 

ectothermic metabolism. This may be more accurately described as temporal heterothermy in 

contrast to regional heterothermy where changes in blood circulation allow different parts of 

the body to change temperature to either save or dissipate heat. 

Homeotherm: animal with relatively constant body temperature, often but not exclusively associated 

with stable relatively high body temperature. 

Metabolic rate: the amount of energy used by an animal per unit time. Basal metabolic rate (BMR) is 

the lowest metabolic rate while animal is at rest and in thermoneutrality. 

Thermal neutral zone: range of environmental temperatures over which the rate of metabolic heat 

production remains constant and is in equilibrium with heat loss to the environment. Animals 

are able to avoid changes in metabolic rate in this zone by controlling blood flow, adjusting 

insulation and by adjusting surface area through changes in posture. 

Integument: protective outer layer of animal which includes skin (epidermis) and differentiated cells 

giving rise to keratinized appendages such as claws, glands, hair or feathers, and patterned 

folds or scales. 

Pilomotion or ptilomotion: muscular control of thickness of coat to increase or decrease insulation 

Piloerection (mammals) and ptiloerection (birds) elevates hair or feather elements to modify 

heat exchange. 

Torpor: specialized form of temporal heterothermy in animals combining hypothermia (decreased 

body temperature), hypometabolism (reduced resting metabolic rate) and hypoactivity 

(restfulness). Torpor often differentiated into daily torpor bouts lasting less than 24 hours and 

hibernation with periods of torpor occurring over consecutive days to several weeks where 

animals rely on food caches or body energy stores to secure minimal energy acquisition.  
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1. Introduction 

 

Animals and buildings can be seen to share similar requirements for regulation of internal temperature 

and energy use. Many species of animals have evolved insulation, physiological mechanisms for 

control of body temperature and a range of behaviours that optimize energy use and heat exchange 

with the environment. The cost of energy and need to reduce fossil fuel burning has renewed interest 

in looking to nature for solutions to minimize energy use in buildings.  Development of thermal 

products that emerge from the hierarchal structure of animal insulation, particularly with respect to 

radiative or surface properties (1,2), or from anatomical analogies that may improve design of heat 

exchange systems (3) have been suggested for future developments. However, when attempting to 

incorporate biomimetic solutions to buildings engineers are faced with a vast number of species 

highly adapted to a range of different climates. Extracting useful and novel adaptations from nature 

requires knowledge of animal morphology, physiology and behaviour but also a way of translating the 

main characteristics of animal thermoregulation into design principles (4).  

 

The aim of this review is to synthesize current knowledge of biological adaptations involving 

regulation of body temperature and highlight principles that may be relevant for the temperature 

control of buildings, where daily and seasonal adaptations are required for maintenance of thermal 

comfort and to minimize energy use. We have concentrated on the thermal adaptations of birds and 

mammals for the main reason that many of these animals have comparable features relevant to 

temperature control and energy use in buildings (Table 1). Birds and mammals are endotherms, 

meaning body temperature is mainly controlled by internal generation of metabolic heat and through 

waste heat as energy is converted to mechanical power in the muscles. Endotherms have a complex 

temperature control system that is precisely tuned to meteorological changes, as well as controlling 

regional variations in temperature to minimise energy use.  Most birds and mammals are well 

insulated and have the ability to dynamically alter insulation according to conditions; and finally 

endotherms adjust their behaviour to control heat exchange, for example to adjust solar gain or create 

favourable microclimates. Eventually, coordinatition of these multidimensional adjustments of the 

organism in reaction to perceived environmental changes are integrated by a central place organ, the 

brain. We also refer to features of a small number of ectotherms (organisms with body temperature 

that depends on external sources of heat) to illustrate how solar gain is used for thermoregulation.  

 

In this review we firstly examine the biomaterials used for insulation in animals, particularly with 

respect to how physiological and behavioural responses act to give insulation dynamic heat transfer 

properties. We then discuss the main physiological and behaviour adaptations that allow animals to 

control body temperature and minimize energy use in hot and cold environments. In conclusion, we 
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suggest a modelling approach that may aid translation of important features of animal 

thermoregulation for future work on biomimetic temperature control and energy use in buildings. 

 

 

 Endotherm (birds and mammals) Building 

Internal heat 

production 

 Metabolic heat production 

 Waste heat from muscle activity (work) 

 Heating system 

 Heat generated by equipments/facilities 

and human occupancy 

 

Temperature 

control 

 Hypothalamus (in brain) main controller of 

regulated core body temperature, with 

temperature sensors throughout body 

resulting in physiological control of 

metabolic heat production and heat loss 

mechanisms  

 Control system: regulated temperature 

compared with setpoint (thermostat) to 

generate load error that drives control of 

heating/cooling system for thermal 

comfort 

Morphology  Insulation: distribution of fat, feather and 

fur  

 Circulation system: arrangement of blood 

vessels for heat distribution e.g. counter 

current heat exchange and surface 

capilliary network for rapid heat exchange 

with environment 

 Arrangement of thermal insulation in 

building to reduce major heat transfer 

from building e.g. glasswool, rigid foam, 

cavity wall insulation 

 Design of heating-ventilation system for 

distribution of heat or air conditioning 

system for cooling 

Behaviour  Basking, shade seeking to control solar 

gain 

 Selection of suitable microclimates to 

avoid heat loss from wind and 

precipitation 

 Huddling (grouping) behaviour to change 

temperature of local microclimate 

 Orientation of building to control solar 

gain. Shading e.g. glass colour change or 

blinds 

 Architectual design and choice of 

building location 

 Communal housing, shared heating of 

rooms, or passive warming from adjacent 

buildings 

 

Table 1. Analagous features of endothermic organisms (birds and mammals) and buildings. 
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2. Heat transfer processes in animals 

 

For an animal to maintain a constant body temperature, total heat production (Qtot) must be balanced 

by heat loss or gains through radiation (qrad), convection (qconv), conduction (qcond), evaporation (qlat) 

and through changes in heat storage (qstored) where heat fluxes are in watts (W), (5) given by:  

 

Qtot = qrad + qconv + qcond + qlat + qstored  

 

Qtot is derived from routine metabolic processes for organism maintenance (basal metabolic rate), 

activity metabolism and also waste heat generated through conversion of energy to work, if necessary 

complemented by on-demand heat production (shivering, non-shivering thermogenesis).  

Heat transfer within the body occurs by conduction, through internal tissues, skin and external 

insulation (feathers or fur) and is also enhanced by the circulation of blood through the arterial-venous 

system and transfer of heat through the respiratory system. For animals in air, heat exchange at the 

outer surface of the animal occurs largely by radiation and convection with the surrounding 

environment, while in water most heat is lost by convective heat transfer. Conduction of heat from the 

body also occurs through direct contact with solid surfaces (ground or ice) when animals are standing 

or lying or when swimming or diving in water. Latent or evaporative heat transfer occurs mainly 

through respiratory water loss, as air is expelled from the lungs and is one of the most important 

avenues of heat loss for animals living in hot climates. Latent heat loss also occurs through loss of 

water by diffusion through the skin and by sweating in mammals (6,7).  Evaporative heat loss may 

also occur when surface of animal becomes wet from saliva or urine, following immersion in water or 

through interception of precipitation. Finally, in many circumstances animals are not in steady state 

conditions and therefore the heat storage term in the above equation accounts for transient heat 

transfer, dependent on the temperature gradient between body and environment, body mass and 

specific heat capacity of tissues (8). Models of heat transfer have been widely used to estimate energy 

balance of animals and further details are provided in (8–10).  

 

3. Insulation  

 

3.1. Animal integuments: complex structures for heat and water regulation 

 

The skin and associated tissues (integument) provide multiple functions in vertebrates, principally 

providing a barrier to water diffusion and physical protection of underlying tissues. It also determines 
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thermal properties and is covered by numerous nerve endings and an extensive network of blood vessels. 

The vertebrate integument consists of epithelial cells attached to an underlying fibrous and vascular 

dermis. Localized cellular growth and differentiation give rise to appendages such as claws, glands, hair 

or feathers, and patterned folds or scales formed from keratin, a family of fibrous structural proteins. 

Keratin is a common and important structural feature formed in the epidermis (11). Amphibian skin is 

relatively permeable to water (see below) and gas exchange can take place through the skin (cutaneous 

respiration). Secretion of mucus from glands in the dermis keep skin moist and in some species 

mucosubstances and lipid compounds form an extra-epidermal layer reducing water loss. Reptilian skin 

has a thickened epidermis with relatively thin dermal layer in comparison to birds or mammals (see Fig 

1. in (11)). This provides a more effective barrier to water and gas exchange compared to most 

amphibians. Reptile skin is mechanically protected by scales or scutes and in lizards and snakes, the 

entire skin is covered by scales. However, avian and mammalian integuments have a thickened outer 

layer of the skin (stratum corneum) which can be highly keratinized to provide a strong mechanical 

barrier. Specialized epithelial cells form feather and hair follicles in these skins.  

 

Water loss through the integument occurs by passive diffusion of water across cell membranes (not 

requiring metabolic energy) and also by active secretion in mucus (in amphibians) or from sweat 

(mammals). Water loss is therefore largely determined by skin resistance to water passage. For 

comparative purposes, skin resistance to evaporative loss may be negligible (~0 s/cm) in many 

aquatic/terrestrial amphibians, 100-200+ s/cm in some frogs adapted to low moisture environments, 

very high resistances >1000 s/cm in desert reptiles, while most bird and mammals have skin resistances 

of 10-300 s/cm (11). Only mammals may lose considerable quantities of water through sweating. Sweat 

is secreted to the skin surface through pores from specialized glands, allowing cooling of the surface 

through latent heat transfer. Humans, horses and patas monkeys (Erythrocebus patas) are the only 

mammals reported to sweat profusely for thermoregulation. The compositions of their sweat fluids 

differ markedly, humans have high salt, low protein sweat, whereas horses have high protein, low salt 

sweat (12). Sweating may appear to be maladaptive for species such as horses with a thick and 

waterproof pelt that would slow down transfer of sweat from the skin to outer hair surface for 

evaporative cooling. However, horses have evolved a surface-active detergent-like protein (latherin) 

that they secrete in their sweat. Latherin reduces water surface tension at low concentrations and most 

likely acts as a wetting agent to allow evaporative cooling through an existing waterproof coat (13). 

Sweating is a unique physiological mechanism to only maximize latent heat loss, in comparison to other 

bi-directional heat transfer processes through adjustments to conduction, radiation and convection 

across the integument. Heat transfer occurs by a combination of conduction through the epidermis to 

the skin surface and latent heat transfer from passive diffusion of water and by evaporation of water on 

the skin surface. Conduction and latent heat transfer are strongly influenced by dilation and constriction 

of capillary networks through the epidermis that can bring about rapid changes in skin temperature (7). 
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3.2 Insulation types 

Thermal insulation in animals is provided by layers of lipid filled cells with low thermal conductivity 

(fat and blubber) or by a keratin matrix that traps still air (feathers and hair) (Table 1). The thermal 

characteristics of different types of insulation are derived by a combination of physical structure and 

dynamic properties controlled by an animal’s physiology and behaviour. Feathers and hair are 

hierarchical materials that derive their mechanical characteristics from the basic keratin unit (helical 

proteins), to individual element composition and their arrangement in plumage and fur (14).  

 

 

Table 2. Examples of insulation thickness (mm), thermal conductivity (W/mK), thermal resistance 

(Km2/W) and U-value (W/m2K) of animal coats compared to air, water and glass wool insulation. 

Species Thickn

ess 

mm 

Thermal 

conductivity 

W/m K 

R value 

Km²/W 

U-value 

W/m2K 

Reference 

Air (@20oC)  0.026   (10) 

Glass wool (ISG CWS36) 50-150 0.036 1.39-4.17 0.72-0.24 (15) 

Feather (Adélie penguin) 18 0.036 0.50 2.00 (16) 

Fur (polar bear) 30 0.054 0.56 1.79 (17) 

Feather (passerine) 5 0.069 0.07 14.3 (18) 

Blubber (bottlenosed dolphin) 16 0.147 0.11 9.09 (19) 

Blubber (harp seal) 36-66 0.195 0.18-0.34 5.55-2.94 (20) 

Skin (human epidermis) <1 0.209 <0.005 200 (21) 

Muscle (human)* 38 0.560 0.07 14.29 (22) 

Water @20oC  0.600   (10) 

*minimum value used 

 

3.2.1 Fat and blubber. Fat is distributed around the body and functions both as a daily or seasonal energy 

reserve. Mammals have two functionally different types of fat: white adipose tissue comprising 

specialized cells (adipocytes) that are lipid rich (23) and brown adipose tissue (BAT) that contains in 

addition to lipids a high concentration of mitochondria for the generation of metabolic heat. BAT has 

not been found in birds but some evidence suggests that they are also able to generate heat by non-

shivering thermogenesis (7). Cold adapted birds and mammals have relatively thick fat layers (thermal 

conductivity ≈ 0.200 W/mK (8)) and have plumage or fur to increase total insulation.  

 

White adipose tissue averages around 7% of the live body mass of free-ranging wild mammals but 
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shows considerable variation from >0.5 to 50% (24). White adipose tissue is partitioned into a few large 

and numerous small depots, especially in mammals and to a lesser extent in birds. The largest depots in 

mammals are inside the abdomen and between the skin and superficial musculature. Fat occurs under 

feather-bearing skin, but not normally beneath naked skin in birds. Only in diving species, particularly 

in penguins and some aquatic birds does it functionally resemble the specialized adipose tissue in marine 

mammals (25).  

 

The occurrence of large, naturally obese mammals living in seasonally cold regions has led to the idea 

that fat (superficial adipose tissue) is an adaptation for thermal insulation. Comparison of the ratio of 

white adipose tissue between superficial and internal depots, for example in mammalian carnivores of 

similar body shape but different body size in different climates, does not support this hypothesis (26). 

Superficial fat deposition appears to be the optimal location for storing large quantities of lipid where 

it can be mobilized rapidly. Therefore, it is the thick coat with superior thermal properties that provides 

most of the insulation for mammals in cold, not fat (Table 2). The main exception to evolution of fat as 

an insulator is found in marine mammals and diving birds where the evolution of internal insulation 

was required, as the air layer within external insulation cannot be maintained underwater (27).  

 

Marine mammals possess a specialized densely vascularized layer of fat held together by structural 

collagen fibres beneath the skin known as blubber (28). Blubber thickness may range from a few 

centimetres in small fur seals to 0.5m in the large whales. It is predominately composed of 

triacylglycerols providing thermal conductivities typically of around 0.1-0.2 W/mK (Table 2). These 

lipids have relatively low melting points and therefore the blubber layer can change phase. Blubber 

temperature changes with blood flow and water temperature, resulting in transient heat transfer due to 

heat of fusion when phase change occurs (19,28,29). Different features of blubber including adipocyte 

size, thickness and lipid content are reported to change with age in whales and dolphins (cetaceans). 

For example in bottlenosed dolphins (Tursiops truncatus) thermal insulation of young nutritionally 

dependent life stages are characterized by stable blubber quality (conductivity) and increased blubber 

quantity (thickness) with age, but in adults blubber quantity remains relatively stable while quality is 

variable between individuals (19). 

 

3.2.2. Feathers and plumage. Birds are insulated by multiple layers of downy and contour feathers that 

form the plumage. The number of individual feathers on a bird is considerable, ranging in total from 

around 1000 to 10000 for body mass of 10g  - 1kg. (30). The mean mass and total number of feathers 

show negative allometry indicating that small species have relatively more, light-weight and small 

feathers (30). Down and contour feathers differ in their structure with down trapping still air close to 

the skin surface while the contour feathers reduce wind penetration, and provide waterproofing and 

mechanical protection (31). Birds have the ability to increase or decrease plumage insulation by raising 
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or depressing both contour and down feathers (ptiloerection). Feather structure and plumage depth is 

variable across the body and both show considerable interspecific variation. As chicks grow their downy 

feathers are progressively replaced by juvenile/adult plumages that contain both downy and contour 

feathers. As a rule, insulation is directly correlated with plumage thickness but there is considerable 

interspecific variation in thermal conductivity between species, typically from around 0.069 in a small 

song bird (passerine) to 0.036 W/mK in penguins (Table 2) (18). There are also special adaptations 

depending on environment. For example, rock ptarmigan (Lagopus muta) living in the Arctic, have 

feathers with air filled vacuoles within feather barbules that may increase insulation, and optimize their 

radiative properties (32). Feathers are distributed into 7-8 distinct tracts (pterylae) with regions between 

them lacking or with only a few feathers (apteria). In most species the apteria are not obvious externally 

because of overlapping feathers. In penguins, there are only a few small apteria so that feather cover is 

almost entire (33). Multi-layer insulation is a feature of seabirds that possess a subcutaneous adipose 

tissue layer underneath a thick plumage. The penguins show the most extreme adaptation to cold 

conditions. Most of the body fat (72-82%) in emperor and king penguins is stored subcutaneously (34) 

and is distributed more uniformly under the skin, particularly around the legs, tail and lower abdomen 

than in other species of birds (35). Male emperor penguins (Aptenodytes forsteri) possess 20-30 mm of 

subcutaneous fat (mean girth/diameter around 750 mm) that disappears entirely at the end of the winter 

but almost 90% of insulation is provided by plumage (40-50 mm) alone (36). Recent examination of 

emperor penguin plumage reveals that each contour feather has an attached afterfeather, and is 

surrounded by soft downy plumules. Contrary to initial thoughts, it is the plumules – not the downy 

afterfeather - that provides most insulation, forming a dense mat beneath the contour feathers, which 

are four times as numerous as other body feathers (37).  

 

2.2.3. Hair, fur and wool. There are a number of different types of insulation in mammals but all are 

formed by the arrangement of primary hair and secondary fibres. Coat insulation in mammals is 

proportional to coat depth, with thermal conductivity averaging around 0.042 W/mK but there are 

differences in thermal conductivity of fur between species (8). Hair density varies between coats (31): 

moderately insulated coats may possess 100-200 hairs/cm2, consisting of coarse straight fibres that can 

be elevated; small mammals and arctic species may have around 4000 hairs/cm2, increasing to the 

highest recorded density of 130,000 hairs/cm2 in sea otters (38); and finally wool which consists of 

dense, matted coats of crimped hair at around, 1000 hairs/cm2. Typically hair length and density change 

with age resulting in thicker fur in adults, allowing greater resistance to wind penetration (39). In 

contrast to species that increase coat insulation with age, seals show the opposite trend as young 

transition from fur to blubber insulation, resulting in decreases in hair density and the number of under 

hairs, and with reduced length and flattening of hairs with age (40). Air filled cavities within the guard 

hairs of Arctic species such as polar bear (Ursus maritimus) and reindeer (Rangifer tarandus) may also 

provide additional insulative properties (41) but in polar bears these guard hairs represent only 10% of 
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hair fibres and their contribution to total fur insulation is exaggerated (42). 

 

Some animals living in hot climates also have thick dense coats as this protects them from absorbing 

high levels of solar radiation at the skin surface (42). There appears to be no overarching physical 

features of the fur that separate mammals adapted to extreme heat and cold, but this perhaps warrants 

further investigation. This work does however indicate that as fur insulation decreases, colour 

increasingly influences heat gain from solar radiation. In contrast to the selective advantage of hair 

covering for insulation, a recent modelling study on African elephants has suggested that the 

combination of rough/creased skin surface and sparse hair cover (≈650 hairs/m2) enhances heat transfer 

by 10% at low wind speeds. This effect decreases as wind speed increases but results suggest that 

elephant hairs function as ‘pin fins’ allowing greater dissipation of heat (43). 

 

3.3. Wind and waterproofing 

Heat transfer through an animal’s coat occurs by a number of processes, either by (i) conduction, 

through trapped air and along feather/hair fibres, (ii) radiation from these fibres, (iii) free convection 

and (iv) forced convection when wind penetrates the coat (10). Conduction along feather elements is 

the predominant mechanism of heat transfer accounting for around 50% of heat flow through plumage 

(44). Conversely, conduction in fur has been considered negligible as the  cross sectional area of hair 

represents approximately 0.01 % of skin surface area (45). Radiative heat transfer within bird and 

mammal coats is relatively small and represents around 4-10% of toal heat flux due to efficient 

interception of radiation within the coat matrix (44,46). Free convection through plumage represents 

<15% of total heat transfer in still air but may be around twice this in fur because of its more open 

structure (44,47). In contrast at high wind speeds, forced convection leads to penetration of air inside 

the coat, decreasing coat conductance (18).  

 

Wind penetration of the coat is influenced by wind direction relative to the coat axis and there are large 

differences in the ability of wind to penetrate the coat between species (48). Particularly wind resistant 

plumages are found in penguins where the thickened rachis (feather shaft) provides an effective barrier 

to wind, as well as providing hydrodynamic properties (36). In Arctic mammals such as reindeer, stiff 

guard hairs and dense packing of hair elements prevents wind penetration (41). In rain, penetration of 

water into the coat also increases conduction or decreases insulation by displacing trapped air and 

mechanically disrupting coat structure (49). For diving animals the pressure increase at depth 

compresses the coat air layer and may allow water to penetrate and displace this air layer (27). However, 

the coats of aquatic animals with stiffened rachis of contour feathers or primary guard hairs combined 

with densely packed coat elements are especially efficient in reducing water penetration. This is further 

aided by the micro-structural topography of the coat and surface coatings of hydrophobic molecules 

that increase water shedding (50). These lipids and waxes are produced by the uropygial (preen) gland 
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and are coated onto feathers by preening. In mammals, lipids (sebum) secreted from the sebaceous 

gland at the base of the hair follicle provides the water repellent coating (51). Penguin body feathers 

also have air-infused micro and nanoscale rough structures, giving hydrophobic and anti-adhesion 

properties that may prevent ice formation at the surface (52). 

 

Diving animals such as otters show specialized morphology of the fur to reduce penetration of water. 

The cuticle of the thin under-hairs have sharply sculpted fins with deep grooves between them that 

provide an interlocking structure (53). However, in contrast to the hydrophobic properties of many avian 

plumages, including most diving birds, the feathers of cormorants are partially wettable, allowing some 

reduction in buoyancy while retaining the insulative air layer. This is achieved by a loose outer section 

of the feather that is instantaneously wettable with an inner section that remains dry. Microscopical 

examination indicates that this is due to regular and close interlocking feather elements that are resistant 

to water pressure (54). 

 

Latent heat transfer is also an important heat transfer mechanism within animal coats. Water vapour 

transfer is influenced by feather or hair characteristics, particularly their hydrophilic properties, and 

humidity of air within the coat. Wool is highly hydrophilic and in a sheep’s fleece heat is released by 

condensation (equal to latent heat of vaporization) as water condenses on fibres and when water vapour 

is absorbed by the wool. Overall these transient heating effects are trivial (typically < 10 W/m2) because 

relative humidity changes slowly in the fleece and any increase in humidity near the skin is  balanced 

by a decrease in humidity in the outer fleece (55). Rain may increase relative humidity in the outer 

fleece resulting in transient heat production, but prolonged rain will also increase heat loss by decreased 

insulation of the fleece and by evaporation. 

 

3.4. Dynamic insulation 

Animal insulation changes with time, responding to changes in the environment and longer term 

seasonal climate patterns. Piloerection (mammals) and ptiloerection (birds) elevates hair or feather 

elements instantaneously to modify heat exchange. For example, contraction of muscles at the base of 

the hair raises the effective coat depth in horses by 16-32% or by a depth of 0.4-1.4 cm in new-born 

foals (56). In birds, ptiloerection is controlled by muscles that result in fluffing or flattening of the 

plumage in response to air temperature or wind and may be responsible for increases in depth and 

insulation of 50% or more (57). 

 

Species living in seasonal environments undergo changes to thermal insulation mainly due to seasonal 

changes in coat insulation. Unlike the rapid change in insulation occurring over a few minutes with 

pilomotion, seasonal adjustments to insulation occur over a time scale of weeks to months. Many birds 
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and mammals become obese before intense periods of fast (migration, breeding, or moulting without 

eating) or in anticipation of the harsh season (combining food shortages and air temperatures far below 

body temperature). This will increase thermal inertia and will often be beneficial during the start of 

winter. For example, increases in fat stores have been attributed to increases in whole animal insulation 

in arctic birds such as the rock ptarmigan (Lagopus muta) (58). As winter progresses however, fat will 

be metabolised and any small benefit from this insulation will be lost. In contrast, the plumage will 

continue to provide effective insulation throughout this period. 

 

Changes in coat insulation are controlled by the process of moult that brings about complete 

replacement of hair or feathers. This may occur as a gradual process over several months or occur 

relatively rapidly (33,59,60). For example, Arctic foxes (Alopex lagopus), and Arctic hares (Lepus 

arcticus) undergo seasonal moults involving both colour change for camoflauge and alterations to 

thickness and quality of insulation (61,62). The autumn moult replaces the thin summer coat by a thick, 

well-insulated coat that reduces heat loss (59). Typically, changes to the density, diameter and/or length 

of hair result in higher insulation in the winter (63). For example, in three species of subarctic mammals, 

coat thermal resistance was greater in winter by as much as 27% -87% compared to summer (64).  

 

Similarly in birds, major differences in plumage thickness and insulation occur due to seasonal moult 

prior to the cold season. For example whole body insulation of a small shorebird, the knot (Calidris 

canutus) was 35% lower in full breeding plumage compared to birds in winter plumage, due to a 37% 

reduction in feather mass (65). A multi-species comparison of mostly passerine birds shows that larger 

species have fewer and heavier feathers, and the rate of feather loss is less in autumn and winter. During 

spring and summer the rate of feather loss remains constant with a minimum number of feathers in 

summer prior to the start of moult (30). 

 

3.5. Coat colour and heat transfer 

In contrast to solid surfaces, animal coats are not simple surfaces with respect to radiative transfer. 

Coat reflectivity determines solar radiative gain, but how this contributes to overall heat transfer 

depends on how well radiation penetrates and is absorbed over a range of coat depths. These 

properties depend on the micro-optics and structure of the coat (66). Light coloured coats have a 

higher albedo but solar radiation penetrates deeper into light coats as a result of forward radiative 

scattering. Animals with dark coats receive a greater heat load at the skin surface when wind speed is 

low but at high wind speeds the heat load is less than for similar white coated animals due to a 

decrease in conductance at the outer coat surface where radiation has not penetrated further (42,67). 

The polar bear remains white throughout the year but many Arctic species moult into cryptic white fur 

or feathers in winter. Any radiative advantages from a white coat are however offset by a combination 

of low winter solar radiation and thicker winter coats that prevent radiative penetration to the skin 
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surface (42,64). There has been considerable interest in the radiative properties of polar bear fur, after 

it was reported that their fur has low UV reflectance. It was suggested that their hollow hairs 

facilitated internal reflection to their dark skin, thereby providing a thermal gain (68). However, 

further evaluation of this model of fibre-optic transmission demonstrated that low UV reflectance 

could be attributed to the absorption of radiation by keratin that makes up hair (69). Nevertheless, 

polar bear fur is extremely thick and has a high density of hairs that effectively intercept most 

radiation from the skin surface (70). 

 

Colour change is common in animals for communication, camouflage, thermoregulation and protection 

from UV. In contrast to birds and mammals which moult at best twice a year, amphibians and reptiles 

have the ability to reversibly adjust skin colour over short time scales, thanks to chromatophores within 

the integument. Morphological colour change over days/months occur due to changes in the amount of 

pigment and/or number of chromatophores, whereas rapid changes over seconds to hours occur by 

pigment migration within the chromatophores (71). In some species of amphibians, colour change form 

dark to light is stimulated by increases in solar energy and anticipated changes in body temperature (72). 

The ability to change colour is linked to the organisation of chromatophores in the dermis of the dorsal 

skin. Pale colouration is due to light reflecting organelles (iridophores) comprising stacks of purine-

containing reflecting platelets (a heterocyclic aromatic organic compound). However, the melanophores 

darken the skin by rearrangement of melanin in the cytoplasm (73). Darkening melanosomes migrate 

from basal position into cellular processes of the iridophores and obscure the reflective properties of 

brightly coloured pigments they contain. When basking however, melanosomes are found in the cell 

body below the iridiphores allowing the light to be reflected by the crystals within the iridiphore, 

causing the skin to whiten. Recent studies on the bearded dragon lizard (Pogona vitticeps) showed that 

they exhibited an endogenous circadian rhythm in pigmentation that was entrained by light/dark cycle, 

decreasing reflectance in both ultraviolet visible and near infrared spectra (300-2100 nm) during the 

early part of the day to match solar input (71). 

 

The complex structural and optical properties of avian and mammalian coats in comparison to skin 

surface (above) provides a counter-intuitive selective advantage to dark coloured birds or mammals in 

hot environments where heat transfer may be also modified by wind. This combined with thick dense 

fur or feather covering leads to relatively small heat loads at the skin surface (42). To provide an extreme 

example, fur surface temperature of cape fur seal (Arctocephalus pusillus) pups reach a maximum of 

79.6oC, while skin and rectal temperature were only 42.1oC and 36.1oC, respectively (74). 

 

Studies on thermal significance of colouration have generally focussed on dark or light colouration 

which has perhaps neglected the thermal properties of animals with distinctive markings or stripes. 
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The adaptive significance of stripes in zebras may originate from social cohesion, predation evasion, 

avoidance of biting flies and/or thermoregulation (75,76). The black and white stripes have even been 

predicted to enhance heat loss through the formation of convection eddies under sun exposure, but 

this has not yet been proved by empirical measurements. 

4. Physiology 

4.1. Thermo-conformers and thermo-regulators  

Vertebrate physiology can be broadly classified by stability in body temperature and source of body 

heat (figure 1). Ectotherms are thermo-conformers, i.e. their body temperature changes with 

environmental temperature. Ectotherm implies a reduced level of thermoregulation, as metabolism is 

driven by the thermal environment, whereby animals passively acquire their heat from the 

environment (e.g. by basking). It is only when they are warm enough that they can begin to undertake 

biological functions, such as foraging or mating. Actually, ectothermy is an ancestral state, still the 

prevailing thermoregulation system in invertebrates and earliest evolved classes of vertebrates 

including fish, amphibians and reptiles (77,78).  

Endotherms are thermo-regulators: they produce heat (through their metabolism) to maintain a high 

and relatively constant (homeothermic) body temperature. Normal core temperature ranges from 34 to 

44oC in birds, depending on species. Core temperature in mammals is usually maintained around 36-

38oC but can be as low as 30 °C in the monotremes (platypus and echidnas) and as high as 40oC in 

some groups. However, many endotherms are regionally or temporally heterothermic, with variable 

endothermic heat production and body temperature (79). The major benefit of endothermy is that it 

allows the uncoupling of internal thermal needs for maximal biological performance from external 

constraints, and particularly thermal constraints. It also permits permanent maintenance of high brain 

temperature for maximal cognitive performance (and therefore, integrated control of homeostasis) 

year-round. 
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 Figure 1. Classification of body temperature regulation and source of body heat in animals. Graphs 

show the relationship between body temperature, Tb and metabolic rate, MR with air temperature, Ta 

for endo and ectothermic animals. Copyright (7).  

 

One important challenge in applying animal models to the human environment is addressing the 

concept of ‘thermal comfort’ described as “the condition of mind that expresses satisfaction with the 

thermal environment (ANSI/ASHRAE Standard 55)” (80) . This is based on thermal aspects of a 

building that determine physical and psychological perception of temperature and energy exchange 

that are influenced by metabolic rate, clothing insulation, air temperature, radiant temperature, air 
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speed and relative humidity (81,82). For ectotherms this could be equated with preferred body 

temperature, which is generally close to the “optimal” temperature for many physiological processes 

but this preferred temperature may be different for different activities. Thermo-preferences have been 

reported for endotherms, largely in the context of laboratory studies (83). Often ‘thermal comfort’ for 

endotherms is regarded as synonymous with ‘thermal neutrality’: the range of environmental 

temperatures over which metabolic rate and therefore heat production does not change (84). An 

alternative approach is to derive a thermal index, the operative environmental temperature that 

combines microclimate (temperature, radiation, wind) with properties of an organism (size, shape, 

posture). This index indicates if the organism, given its current temperature, will gain or lose heat in 

that microenvironment (85). 

 

4.2. Control theory applied to temperature regulation in animals 

 

Control theory as used in engineering provides a framework for understanding temperature regulation 

in animals (86,87). On this basis, the regulated variable is body temperature and temperature sensors 

throughout the body generate neural signals to a controller which is then compared to a reference 

signal or set-point (Fig. 2). The difference between body temperature and the set-point represents a 

load error which drive effector mechanisms for heat production or heat loss. Effector responses act in 

a direction opposite to the load error and therefore control it, typically by negative feedback. In this 

way, changes in heat production and heat loss are also proportional to the load error generated.  
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Fig 2. Animal thermoregulatory system according to control theory showing regulated body 

temperature. Core body temperature is influenced by internal disturbances (e.g. waste heat from 

exercise or digestion) while external disturbances (e.g. cold or hot exposure) act primarily on the skin 

temperature (body shell). The actual temperature signal received by the controller is determined 

mainly from temperature sensation in the core (principally in the central nervous system) but also 

from skin temperature sensors. The difference between actual temperatures integrated throughout the 

body and the set-point generate a load error driving effector mechanisms in the animal (skin blood 

flow, evaporation, behaviour, non-shivering thermogenesis (NST) and shivering) by negative 

feedback. These mechanisms control heat loss or heat production to maintain a stable core 

temperature. Redrawn from (87). 

Endotherms generally have relatively stable internal or core temperature in comparison with variable 

skin temperature (88). The regulated body temperature is therefore an internal temperature but it may 

also be an integrated temperature from different body regions. The function of the controller is to link 

afferent signals from temperature sensors with efferent drives to multiple effector mechanisms 

through the central nervous system (CNS). The preoptic anterior hypothalamus (POAH) of the brain 

appears to function as the main controller, in addition to some other CNS regions. Temperature 

sensors are not restricted to the CNS. They are found in the intestine, abdomen, skeleteal muscles and 

trunk (87). However, all thermoregulatory effector mechanisms may be activated or inhibited by skin 

temperature changes. Cold and warm thermoreceptors are found in the skin corresponding to 

sensation of cooling or heating. These have different dynamic properties: cold receptors respond to 

rapid drops in skin temperature with short lasting rise in activity, while warm receptors overshoot 

during warming and demonstrate transient inhibition while cooling quickly (86). 

Sensation of temperature is dependent on both the absolute level of skin temperature but also on the 

extent and rate of change of temperature. For animals with fur and feather insulation behavioural 

changes may be determined by the rate of change in skin temperature of bare skin areas. For skin 

temperature to active/inactive effector mechanisms, skin temperature must exceed an effector specific 

threshold. These thresholds are strongly defined by the extent of external insulation, such that for well 

insulated animals a drop in skin temperature of 1oC may initiate shivering while for a bare skinned 

animal such as a pig, shivering still does not occur when absolute skin temperature is as low as 10oC 

(89,90). Temperature changes of localised and small skin regions can activate effector mechanisms. 

For example in humans, changes in face temperature produce a three fold difference in sweating rate 

compared to a similar sized region of thigh (91). Small changes of body core temperature can 

however produce large effector responses that are independent of skin temperature. For most free 

living animals core and skin temperature interact to influence effector mechanisms such as heat 

production, evaporative water loss and behavioural thermoregulation (Fig. 2). 
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4.3. Heat exchangers and heat sinks 

Heat produced within the body is distributed by blood flow and through conduction from core to shell. 

In the cold, there is minimal flow of blood to the skin surface. Vertebrates have direct connections 

between arteries and veins controlled by valves (known as arteriovenous anastomoses, AVAs) that 

prevent blood from flowing to the fine blood vessels (capillaries) close to the skin surface (7). In 

contrast, in the heat or when animals are active, peripheral blood vessels (arterioles) dilate, AVAs 

allowing blood flow to the periphery. This system is particularly important in marine mammals where 

the heat exchange shunt vessels are located beneath the blubber layer, allowing blood to bypass 

insulation when heat dissipation is required, or to restrict blood flow to the surface for heat 

conservation (28). Heat distribution within the body is also facilitated by counter current heat 

exchangers that are found in the body extremities such as limbs, ears, or tails and beaks in birds that 

are particularly well developed in cold adapted species (92). In this case, warm arterial blood runs 

parallel to venous returning blood to the core. This system may function together with vasomotor 

control resulting in regional heterothermy of the body. Species such as antelope and deer have 

effective heat exchange systems to regulate brain temperature when excessive heat is produced during 

exercise (7). However, more recent measurements on free-living animals have questioned the 

accepted view that brain cooling is a response to high body temperature, at least under moderate heat 

loads (93). 

Vertebrates have the ability to precisely regulate skin surface temperature by vasoconstriction and 

dilation of peripheral blood vessels. However, certain regions of the body have particularly well 

developed capillary networks, often on bare skin. These act as highly efficient ‘thermal windows’: 

when ‘open’ (vasodilated) they are used to dissipate excessive heat and when ‘closed’ 

(vasoconstricted) minimize heat loss. Their main function maximizes dissipation of excessive heat. 

e.g. the large external ears (pinnae) of elephants (94). However, these are not necessary confined to 

particular appendages but may also occur as isolated ‘hot spots’ across the body (e.g. seals) that 

increase heat loss by convection or evaporation from a wet pelage (95). Heat exchangers may 

potentially function to maximize solar heat gain. However, the extent to which ‘thermal windows’ are 

used by endotherms for heat gain is less well known than for ectotherms where rewarming by basking 

is common (96).  

Animals thermoregulate principally by passive latent heat loss through skin and by respiratory latent 

heat loss from lungs, which may be facilitated by panting (mammals) or vibration of the throat (gular 

flutter) in birds. Evaporative water loss at high temperatures occurs from sweating or may be 

enhanced by wetting of fur/feathers from bathing etc. In cold climates, water can only be replenished 

by drinking cold water or ingesting snow which costs energy along with latent heat loss from the 

respiratory tract. For example, in reindeer latent heat and water loss is minimized by counter current 
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heat exchange in the nasal cavity (92). The cavity contains an elaborate system of scrolled structures 

(conchae), which have a highly vascularized mucosal layer. Inhaled air becomes warmed and 

saturated en route to the lungs. This process cools the mucosa and when air is returned from the lungs 

the warm humid air flows down a temperature gradient, allowing cooling and water condensation 

resulting in expiration of cold and dry air. This system is also seen in seals, with previous studies on 

grey seals (Halichoerus grypus) showing that more than 60% of heat and 80% of water added to 

inspired air is recovered at -20oC, saving 10-30% of total water flux for the animal (97,98). 

 

4.4. Thermal flexibility: the best of endo and ectothermy 

Most environments do not remain constant over time and therefore animals must cope with a range of 

conditions that vary across days, months and years. Thermal acclimation in endotherms are responses 

to compensate for changes in resource availability and the thermal environment. Many of these may 

be gradual daily, monthly or annual adjustments to behaviour, morphology, physiology or 

biochemistry (7). 

Endotherms respond to changes in the thermal environment in multiple ways, involving initial 

behavioural (e.g. posture, activity or migration) and physical adjustments to alter their energy balance 

(insulation and energy storage). However, many vertebrates also respond to seasonal changes in 

climate or food availability by decreasing their metabolic rate (energy use) and down regulating body 

temperature. Metabolic rate and body temperature are controlled by endogenous signals entrained to 

the photoperiod (day length) and fine-tuned according to climatic conditions (99,100). Most 

endotherms show daily changes in body temperature entrained to the light-dark cycle with diurnally 

active species generally having lower body temperature at night and for nocturnal species lower body 

temperature during the day.  

There are generally four recognisable temperature control patterns in endotherms with progressively 

greater decreases in body temperature between activity and rest: strict homeothermy, daily 

heterothermy, daily torpor and hibernation. Many species, including humans show small decreases in 

body temperature related to rest/sleep-activity patterns. This confers only small energy savings when 

animals are inactive. However, some species use shallow heterothermia to cope with cold winter 

conditions. Large endotherms use hypometabolism as an over-wintering strategy and peripheral 

cooling may be the mechanism by which down regulation of resting metabolic rate occurs. For 

example, in red deer (Cervus elaphus) heart rate (as a measure of metabolic rate) has been shown to 

be endogenously down regulated in winter. Rumen temperature (as measure of core temperature) on 

average decreased by 0.5oC in winter and was correlated with seasonal and periodic variation in heart 

rate, supporting the hypothesis that lowered body temperature controlled by peripheral cooling is also 

an important mechanism by which large mammals achieve hypometabolism during food shortage 
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(101). It appears that a reduction in basal metabolic rate and the set point of core body temperature are 

both required to achieve an overall decrease in thermoregulatory costs in cold temperatures (99).  

 

Pronounced patterns of heterothermy in endotherms are characterized traditionally as two different 

types of hypometabolic states associated with low body temperature: daily torpor lasting less than 24 

hours and followed by foraging activity, and hibernation with periods of torpor occurring over 

consecutive days to several weeks where animals do not usually forage but rely on food caches or 

body energy stores. Heterothermic birds and mammals are small (< 1 kg; apart from bears) and 

hibernators are larger and found at higher latitudes (or altitude) compared to most daily heterotherms. 

Basically, it seems that heterotherms are endotherms that evolved in environments where energetic 

constraints are too strong to be compensated by usual adaptations: they are too small to store 

internally the sufficient amount of energy, and their small size (high surface/volume ratio) means that 

they passively lose considerable amounts of heat. Heterothermic bouts are on average >25 times 

longer, and minimum body temperatures ~13oC lower in hibernators (102). However, in energy 

saving terms the minimum torpor metabolic rate of ~35% of basal metabolic rate (BMR) in daily 

heterotherms compares with only 6% of BMR in hibernators, indicating the much greater energetic 

efficiency of hibernation over daily torpor. Daily heterotherms use circadian system to control timing 

of torpor which allows foraging to continue following torpor bouts. In contrast, hibernators are 

‘uncoupled’ from circadian control to facilitate long duration periods of low metabolism; but they 

maintain a circa-annual clock, that is necessary to time the termination of the hibernation period, and 

emergence from the winter burrow (or den), in absence of direct cues about the exterior 

environmental conditions. Interstingly, in the transition between summer and winter, hibernators have 

a period when they are daily heterotherms: they use torpor facultatively, flexibly, on a daily basis, 

depending on current needs /environmental constraints. It also seems that there is a need for a period 

of acclimation of the organism, when torpor is progressively used for longer periods of time, and 

increasingly lower body temperature (103). 

Hibernation is an obvious seasonal adaptation of small mammals and birds to cold (or dry) climates, 

with predictable, long periods of low temperatures and/or drought. It is characterized by prolonged 

periods of inactivity and down regulation of metabolism and body temperature. Therefore, suitable 

animal models for seasonal cold temperate climates may be better found amongst species that remain 

active during winter and are able to maintain energy use and control body temperature within set 

limits. Studies of species that are adapted to cold winter conditions may reveal obvious annual 

patterns in body temperature and energy use that provide a basis for seasonal adaptive control of 

temperature and energy use by buildings. New technology that records body temperature and energy 

expenditure has provided an annual picture of the dynamics of thermoregulation (104). In cold 
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environments small diurnally active birds exhibiting rest-phase hypothermia during winter indicate an 

energy saving strategy for animals that are inactive at night (105). Nocturnal body temperature 

reaches a minimum in mid-winter corresponding to the period of reduced day length. However, body 

temperature also varied according to air temperature suggesting that environmental stochasticity fine 

tunes energy use. Daily heterothermia and torpor are physiological mechanisms that provide 

considerable energy savings for animals in cold climates. This combination of thermal adaptations 

may therefore be a useful model to explore energy savings for cold seasonal climates. 

Applicable animal models that may provide insights into thermal aspects of building design for warm 

climates may come from large desert dwelling mammals that tolerate extreme heat during the day and 

cool conditions at night. The key adaptive feature of these species is a thermoregulatory system based 

on dry (non-evaporative) heat exchange facilitated by daily heterothermia. The most striking pattern 

of this is seen amongst camels. For example in the Arabian camel (Camelus dromedaries) during 

dehydration and heat stress, the amplitude of the daily body temperature rhythm in rectal temperature 

exceeded 6°C (6). More recent studies have shown that after a prolonged period of dehydration when 

exposed to air temperatures of 38–46°C in the day and 20–25°C at night, the amplitude of the core 

body temperature rhythm averaged 3.8oC (average minimum 35.4oC in morning and maximum 39.2oC 

in the evening) (106). By allowing body temperature to rise during the day the gradient in temperature 

between body and environment is minimized reducing thermal gain. The ‘stored’ heat offsets 

nocturnal heat loss, resulting in a minimum body temperature in the early morning. Camels also show 

morphological adaptations to cope with high solar gains. They possess thick fur on their dorsal 

surface and most adipose stores are distributed, particularly in the dorsal hump (24). Fur is less thick 

on flanks and legs which may enhance heat loss from these regions. The overall body shape may also 

be adaption that minimizes solar gain. Small nocturnal heterotherms living in the tropics may also be 

useful models for understanding how patterns of heterothermia result in reduced energy costs during 

the dry season. There is considerable variation in patterns of heterothermia between and within 

species. For example, in grey mouse lemurs (Microcebus murinus), energy savings (decreased 

metabolic rate) resulting from torpor are proportional to torpor depth (minimum temperature) and 

torpor duration. These increase with decreasing air temperature, indicating that colder conditions can 

increase energy savings in these facultative thermoconformers (107).  

 

5. Behaviour 

 

5.1. Behavioural thermoregulation 

Behavioural and ecological factors allow endotherms to adapt to different climates and these are 

actually more important than an animal’s metabolic characteristics (108). For species that are unable 
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to avoid unfavourable thermal conditions by migration, there is a great diversity of behavioural 

adaptations for thermoregulation that reduce energy costs (see detailed review in (83)). These may be 

best described broadly as ‘individual’ or ‘group’ strategies. Individually, animals may change their 

posture to reduce their surface to volume ratio and increase effective insulative layer by adopting 

hunched or ‘ball-like’ postures such as that seen in small birds or rodents. Similarly, animals may 

bask to allow passive warming or change posture or position to facilitate convective cooling from 

wind or seek water to cool by evaporation. Group behaviours such as huddling and/or nest sharing are 

principally used to reduce heat loss and decrease individual costs of heat production (109). These 

behaviours function by reducing exposed surface area to the environment, modifying microclimate 

and sharing metabolic heat. Examples are common amongst cold adapted species, the huddling 

behaviour of emperor penguins during the Antarctic winter is particularly effective in providing 

shelter from extreme winds, modifying microclimate of the huddle and minimising exposed surface 

area. In contrast, huddling is highly beneficial for young birds and mammals before insulation has 

developed, allowing them to minimize surface area and increase temperature of the sheltered and well 

insulated nest environment behaviours. 

 

5.2. Nest building 

Animals have the ability to construct structures that enhance thermal and ventilation properties of 

their nests. The most well-known nests in bioinspiration studies are termite mounds, that appear to 

promote cooling and gas exchange by some combination of enhanced convection due to heat derived 

from metabolism (termites and fungal colonies) and ventilation driven by vertical wind speed profiles 

(Bernoulli’s principle) (94). Magnetic/compass termites (Amitermes meridionalis) endemic to 

northern Australia build wedge shape mounds many metres in height. They are composed of a hard 

outer shell (with connections between chambers) that is aligned with the north-south axis. This has 

been interpreted to provide a thermal function allowing early morning sun to warm the nest while the 

narrow width minimizes solar gain when the sun is overhead. Such explanations have however been 

questioned and there may be multiple environmental factors influencing mound shape and structure 

(111–113) . Indeed, recent measurements of air flow within mounds of the species (Odontotermes 

obesus) in S. Asia show that “a simple combination of geometry, heterogeneous thermal mass and 

porosity allows the mounds to use diurnal temperature oscillations for ventilation” (113). The outer 

structure of the mound containing ‘flutlike conduits’ rapidly heat up during the day relative to the 

internal ‘chimneys’ forcing air to move down the chimneys in a closed convection cell. The direction 

of flow is reversed at night as the exterior of the mound cools and these cyclic flows allow CO2 to be 

flushed out and replenishment of air to the termite colony. Construction is also widespread amongst 

many ectotherms to maintain humidity within nests and cocoons. Silk produced by the hornet (Vespa 

orientalis) and several similar species also has thermoelectric properties (114). Measurements 
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undertaken on strips of hornet silk showed rises in electric charge when temperature increased from 

20-33oC and at >90% relative humidity (115). In the warm daytime hours, hornet silk transports 

water, raising relative humidity, thus providing evaporation needed for nest thermoregulation and at 

night electric current and heat flows along the silk. 

Amongst vertebrates, a variety of nests and dens are constructed underground to avoid either 

excessive heat or cold (as well as hiding from predators). These provide favourable microclimates and 

are insulated by collected material (116) or from snow (62,117). Maximising insulation has the 

potential to compromise ventilation. The paired and elevated entrances to burrows constructed by 

prairie dogs (Cynomys sp.) in arid zones of North America facilitates wind induced ventilation (118). 

Measurement of air flow and temperature within the burrow systems of small rodents shows that even 

at low wind speeds, the unpredictable penetration of eddies into a burrow through its openings can 

maintain CO2 concentration within physiologically appropriate limits (119).  

Avian nest construction is highly specialized, providing enhanced insulation in cold environments and 

protection from wind and rain. Successful nests are often associated with choice of suitable 

microclimates with regard to orientation to sun and shelter from wind and precipitation (120). Nesting 

materials are varied but in general feather down provides the best insulator while some grasses are 

relatively poor insulators (121). In general, the insulation properties of nests are poorer in warmer low 

latitudes and this may involve changes in morphology (wall thickness) and composition (dry grasses) 

(122). Many nests incorporate a variety of materials including mud, plant stems and branches to 

provide additional structural support. However, there are direct thermal benefits from choice of nest 

material. For example, in Australia, the malleefowl (Leipoa ocellata) constructs a large nest mound 

containing buried plant material that maintains incubation temperature from the heat of decomposing 

vegetation (123). Many birds also occupy man-made structures including customised nest boxes or 

buildings that provide favourable microclimates for nesting or roosting (124). 

 

6. Conclusion: translating animal models to buildings 

 

Translation from biology to engineering may be aided by heat transfer modelling that incorporates 

aspects of animal insulation, physiology and behaviour into heat transfer models for buildings (cf. 

suggestions of principles to be transferred in Table 1). Concentrating on function rather than 

biological characteristics per se may be most effective for biomimetics (125). Suitable models for 

seasonal cold temperate climates may be based on groups of organisms that remain active during 

winter and are able to control body temperature within set limits. These would incorporate temporal 
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changes in insulation and body temperature that provide a basis for seasonal adaptive control of 

temperature and energy use. Similarly, a range of strategies used by animals to manage solar heat gain 

through surface reflectivity and insulation combined with daily temperature changes driven by 

thermal inertia may provide solutions for buildings in hot climates. A number of incremental 

modelling steps could involve the following: 

(1) Building a heat transfer model: the aim of the first modeling stage would be to develop a transient 

heat transfer model of a simple building type that is heated internally and exchanges heat with the 

environment. Characteristics of the building would be based on typical specifications for resistances 

and capacitances of materials and 24-hour simulation of solar radiation and environmental 

temperature. At this stage, the model could include temperature control features by incorporating 

daily requirements for building temperature analogous to circadian rhythms of body temperature in 

animals. Outputs from such a model would include internal temperature of the building and the total 

energy required to heat the building within set thermal comfort limits. (2) Simulating animal features: 

this modeling step would begin to incorporate a number of features considered to be analogous to 

animal thermoregulation. These could include for example (i) ‘insulated core’: an insulated zone 

within the building, (ii) ‘spatial heterothermy’: regional differences in temperature and heating 

between zones, (iii) ‘core to shell blood flow’: transfer of heat between zones depending on 

temperature within a zone and (iv) ‘pilomotion/ventilation’: to represent the bypass of an animal’s 

external insulation to exchange heat rapidly with the exterior. At this stage the model would 

incorporate bioinspired features of insulation and physiological control of blood circulation and heat 

distribution. Each of these adaptations could be simulated to examaine their individual or combined 

contribution to energy use and thermal comfort. (3) Incorporating annual and geographical variation 

in climate: the models could be tested over a year using environmental data recorded in different 

geographical regions for the building type. At this stage it may be appropriate to incorporate 

behavioural aspects such as basking/shade seeking to change solar gain based on thermal comfort 

within the building. (4) Sensitivity analysis: this step would test the sensitivity of model outputs 

(temperature, thermal confort index and energy use) to changes in inertia, thermal resistances and 

other thermal characteristics of the given building type. (5) Design: The final stage of the exercise 

would be to determine how the most effective biomimetic features could be realised in terms of 

choice of structural materials or incorporation of control systems for heat management to the given 

building. 

 

In summary, thermal adaptations that allow animals to cope with hot or cold climates are 

characterized by (i) structurally complex insulation that dynamically responds to changes in 

environmental conditions; (ii) sophisticated neural control and sensing systems; (iii) dynamic control 
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of blood flow and circulation; (iv) flexible patterns of temperature control and heat production; and 

(v) highly responsive patterns of behaviour to avoid extra energy costs. Rather than seeking a 

particular species that best fits the building design, the alternative approach for bioinspiration would 

be to bring together the most efficient combination of biomaterials, physiological and behavioural 

mechanisms to explore optimal models for temperature control and energy management.  
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