
THE CATEGORY OF MEREOTOPOLOGY AND ITS

ONTOLOGICAL CONSEQUENCES

SAIKEERTHI RACHAVELPULA

Abstract. We introduce the category of mereotopology Mtop as an alternative
category to that of topology Top, stating ontological consequences throughout.
We consider entities such as boundaries utilizing Brentano’s thesis and holes uti-
lizing homotopy theory. Lastly, we mention further areas of study in this category.
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1. Introduction

The category of mereotopology, though not nearly as developed as topology, has
often been of preference to those interested in formal ontology. Where ontology is
traditionally defined as the science which deals with nature and the organization
of reality, formal ontology deals with formal structures and relations in reality as
they are governed in all material domains. This contrasts material ontologies (such
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2 SAIKEERTHI RACHAVELPULA

as chemistry, biology, medicine, etc.) which study the nature and organization of
certain sub-regions of reality [4].

The basis for mereotopology is mereology which is a formal theory of parthood.
It was first introduced in Husserl’s Logical Investigations; previously, it had received
attention from those such as Plato, Aristotle, Aquinas, Leibniz, and Kant. Specif-
ically, it has proven helpful for disciplines such as natural-language analysis and
artificial intelligence where more of an ontological motivation is desired. With the
addition of topology, we derive mereotopology and become able to speak of part-
whole relations. We, thus, become able to better understand the a priori nature of
boundaries and holes, and we try to apply this to the questions philosophers and
ontologists have been asking about these entities. Is a boundary an independent
being? Do we view holes as immaterial particulars or spatiotemporal particulars?
How do we address issues of genus? In this paper, we rigorously develop Brentano’s
thesis, and we introduce homotopy from algebraic topology to further develop the
formal ontology of holes. One advantage of this is that we may bypass adopting
a predicate ‘H’ (where ‘H’ represents the attribute of having a hole), and we may
import knowledge of group theory which is already substantially developed to the
category of Mtop.

The organization of this paper is as follows: we begin by stating the [G(E)M]
axiomatic schema in mereology Mer and how it is different from ZFC. From there,
we introduce the remainder of [G(E)M]TC. We mention the rigorous formalization
of Brentano’s thesis as an important ontological work done in this category. Then, we
define a continuous mereological morphism, and we show that Hausdorff topologies
are indeed mereotopologies. Lastly, we approach the ontological problem of holes
using homotopy theory and mention limitations and areas of further investigation
in mereotopology.

2. Mereology

2.1. [G(E)M].

Definition 2.1. The theory of ground mereology (often shortened to [M]) concerns
the binary predicate P (called “parthood”: Pxy is read as “x is a part of y”) with
the following three axioms:

(P1) Pxx, (reflexivity)
(P2) Pxy ∧ Pyx → x = y, (antisymmetry)
(P3) Pxy ∧ Pyz → Pxz. (transitivity)

Remark 2.2. . Note the similarity to set theory. Set theory could be defined as the
theory surrounding one binary predicate ∈, where x ∈ X is read as “x is an ele-
ment of X,” satisfying the axioms of one’s choice, quite frequently ZFC. The major
difference with mereology is reflexivity: in set theory, X ∈ X is quite infrequently
true.

Though there are some complaints concerning the axioms of ground mereology,
these have been, for the most part, dismissed [3]. For example, a common complaint
to (P3) is the notion that “the handle is a part of the door” and ”the door is a part
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of the house,” yet “the handle is not a part of the house.” What we are dealing
with here is not parthood in the primitive sense. Instead, we have imposed another
condition on parthood. Specifically, we imposed being a“functional part.” A part
having “function” is, thus, closer to an open formula φ (Here, φ(x) is any open
formula in one variable x, φ(x, y) is the open formula in two variables x, y, and so
on. Generally, we say φ to mean that the sentence ‘φ’ is true for at least one object
x), and no such claim is made that φ is transitive.

Thus, the following may or may not hold:

(M1) (Pxy ∧ φ(x, y)) ∧ (Pyz ∧ φ(y, z))→ (Pxz ∧ φ(x, z))

Now that the parthood predicate ‘P’ is defined, we may define other mereological
relations which will be useful to us in the future as follows:

(M2) PPxy := Pxy ∧ ¬Pyx, (x is a proper part of y)
(M3) Oxy := ∃z(Pzx ∧ Pzy), (x overlaps y)
(M4) Uxy := ∃z(Pxz ∧ Pyz), (x underlaps y)
(M5) Dxy := ¬Oxy. (x is discrete from y)

Definition 2.3. The theory of extensional mereology [(E)M] extends [M] with the
supplementation axiom.

(P4) ¬Pxy → ∃z(Pzx ∧ ¬Ozy)

This is called “strong supplementation,” and it allows us to derive another prop-
erty “weak supplementation” as follows:

(M6) PPxy → ∃z(PPzy ∧ ¬Ozx).
Analogous to extensionality in set theory, strong supplementation allows us to

identify when two objects are equal. Two objects would be equal in this strong sense
if they (1) have the same parts, and (2) are parts of the same objects. Suppose x
and y have the same parts. Now, suppose ¬Pxz ∧ Pyz. Then, by (P4), we have
∃w(Pwx∧¬Owz). Thus, by assumption of x and y having the same parts, we have
Pwy. Then, by (P3), we have Pwz, but this is a contradiction of ¬Owz. Therefore,
we cannot have both ¬Pxz∧Pyz, and thus x and y must be part of the same things.
Therefore, (P4) tells us that x = y if and only if x and y have the same parts.

Definition 2.4. The theory of closed (extensional) mereology [C(E)M] extends
[(E)M] with the following axioms:

(P5) Uxy → ∃z∀w(Owz ↔ (Owx ∨ Owy)),
(P6) Oxy → ∃z∀w(Pwz ↔ (Pwx ∧ Pwy)),
(P7) ∃z((Pzx ∧ ¬Ozy)→ ∀w(Pwz ↔ (Pwx ∧ ¬Owy))).

These three axioms give us what we call sum, product, and difference in mereology.
These objects are analogous to union, intersection, and set difference in set theory.
However, note that a sum or product only exists when there is an already existing
underlap or overlap respectively. Where ‘ι’ is a description operator for a given
language, we have the following:

(M7) x+ y := ιz∀w(Owz ↔ (Owx ∨ Owy)), (Sum)
(M8) x× y := ιz∀w(Pwz ↔ (Pwx ∧ Pwy)), (Product)
(M9) x− y := ιz∀w (Pwz ↔ (Pwx ∧ ¬Owy)) (Difference)
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Thus, we can restate (P5), (P6), and (P7) as follows:
(P5’) Uxy → ∃z(z = x+ y)
(P6’) Oxy → ∃z(z = x× y)
(P7’) ∃z(Pzx ∧ ¬Ozy)→ ∃z(z = x− y)
If we want to be able to, for example, sum arbitrarily many parts, we extend

[C(E)M] to [G(E)M] or general (extensional) mereology.

Definition 2.5. The theory of general (extensional) mereology [G(E)M] extends
[(E)M] with the fusion axiom:

(P8) ∃xφ→ ∃z∀y(Oyz ↔ ∃x(φ ∧Oyx))

Thus, we can define sums and products in [G(E)M] as follows:
(M10) σxφ := ιz∀y(Oyz ↔ ∃x(φ∧ Oyx)),
(M11) πxφ := σz∀x(φ→ Pzx).
From here, we may reformulate (P9) as follows:
(P8’) ∃xφ→ ∃z(z = σxφ).
This, then yields,
(M12) ∃xφ ∧ ∃y∀x(φ→ Pyx)→ ∃z(z = πxφ).
Thus, we have the following definitional equivalences in [G(E)M]:
(M13) x+ y = σz(Pzx∨ Pzy),
(M14) x× y = σz(Pzx∨ Pzy),
(M15) x− y = σz(Pzx ∧ ¬ Ozy),
(M16) xC = σz(¬Ozx),
(M17) U = σz(Pzz).
We may use these notions to prove the remainder principle:
(M18) Pxy ∧ x 6= y → ∃z(z = y − x).
Often the fusion axiom (which states that for any arbitrary number of parts, there

exists a sum) is contested as not representing how we define objects colloquially. It
brings into question whether there is a such a thing that consists of just my right foot
and my left elbow. These types of questions have led some to restrict summations
to those objects which are connected. However, an object such as a bikini consists of
two disconnected parts, yet it is treated as an individual in our everyday language.
The subtlety of the fusion axiom is that there are always summations of arbitrary
objects such as my right foot and my left elbow, but these summations are only
named as one if they are useful for us to speak about. For example, it is useful
for us to speak about a bikini in terms of one object consisting of two disconnected
parts. Thus, these hesitations remain at the level of language and raise no serious
ontological concern.

Furthermore, we note that there is a semantic difference between σxφ and simply
the extension of φ. That is, the sum of some flowers is a bouquet while the bouquet
itself is not a flower.

Lastly, we note here that the fusion axiom is stated as a conditional and that the
sum itself is unique (which is obvious from (E)). In mereology, empty sums do not
exist. That is, if φ is not satisfied, then σxφ is undefined. The is precisely because
empty sums are not a part of reality.

This then gives rise to the notion of a universe and a complement as follows:
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(M19) U := ιz∀x(Pxz),
(M20) xC := U − x.
Lastly, we notice that we have not assumed atomicity in this formulation as

follows:
(M21) ∀x∃yPPyx.

2.2. Differences to ZFC. In comparison to set theory, mereology operates with
the parthood predicate ‘P.’ whereas set theory operates with the set membership
predicate ‘∈’. In set theory, a morphism (called a function) maps an element of
the domain to an element of the codomain, retaining the set membership predicate.
In short, we have f : X → Y is a set morphism if for each x ∈ X, we associate
f(x) ∈ Y . Note, it is helpful to think of parthood as analogous to ⊆ in set theory.
Note there is no analogy to ‘∈,’ in mereology.

Since we do not operate with this predicate in mereology [G(E)M], we thus have
the following definition for a morphism in this category:

Definition 2.6. A morphism in mereology is a map from the domain X to codomain
Y such that for every part PzX, we associate a part Pf(z)Y , and if Pzw with PzX
and PwX, then Pf(z)f(w).

Definition 2.7. An isomorphism in mereology is a morphism f : X → Y such
that there exists a morphism g : Y → X such that g ◦ f = h : X → X and
f ◦ g = k : Y → Y are both respectively identity maps, i.e., such that h(x) = x and
k(y) = y for all PxX and PyY .

Secondly, Russell’s paradox which posed problems for early set theory does not
occur in mereology. Russell’s paradox is as follows:

Let R = {x : x /∈ x}. Then, R ∈ R↔ R /∈ R.

Simply, because we have reflexivity in mereology, we avoid this problem all to-
gether.

Lastly, in mereology we have a top but no bottom while in standard set-theory
we have the exact opposite.

3. Mereotopology

3.1. [G(E)M]TC. Mereology by itself limits us to a theory of parts. For example,
mereology does not give us the sufficient language to speak about the distinction
between these two parts.
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It is clear that though both of these objects are parts of some whole, they are
different kinds of parts (specifically, one is a tangential part and the other in an
interior part). Thus, in order to speak more about part-whole relations, we adopt
topology. We begin to do so by adding the connection predicate ‘C,’ understood
intuitively as topological connection. We assume that ‘C’ is reflexive, symmetric,
and monotonic with respect to ‘P,’ giving us ground topology [T].

Definition 3.1. The theory of ground topology [T] defines the following axioms
in relation to the connection predicate ‘C.’ Adding this theory to [G(E)M] give us
[G(E)M]T:

(C1) Cxx,
(C2) Cxy → Cyx,
(C3) Pxy → ∀z(Czx→ Czy).

From here, we may define other relations as follows:
(MT1) ECxy := Cxy ∧ ¬Oxy, (External Connection)
(MT2) TPxy := Pxy ∧ ∃z(ECzx ∧ ECzy), (Tangential Part)
(MT3) IPxy := Pxy ∧ ¬TPxy. (Internal Part)
Now, we may define other quasi-topological operators as follows:
(MT4) ix := σz IPzx, (interior)
(MT5) ex := i(xC), (exterior)
(MT6) cx := (ex)C , (closure)
(MT7) bx := (ix+ex)C . (boundary)
Now, we introduce the language of a self-connected whole as an object which

cannot be split into two or more disconnected parts. Notice that this appears
similar to the notion of connectedness in topology.

(MT8) SCx := ∀y∀z(x = y + z → Cyz)
We can also distinguish between open and closed individuals as follows:
(MT9) Opx := x = ix (open),
(MT10) Clx := x = cx (closed).
To receive the full strength of [G(E)M]TC, we introduce closure conditions.

Definition 3.2. The theory of [G(E)M]TC extends [G(E)M]T with closure con-
ditions through the following axioms:

(C4) Clx ∧ Cly → Cl(x+ y),
(C5) ∀x(φ→ Clx)→ (z = πxφ→ Clz).

Here, we notice that (C5) is given as a conditional because we do not assume a
null object.

From here, we may also derive axioms similar to the standard Kuratowski axioms
for topological closure. The proofs of these are also identical.

(MT11) Pxcx
(MT12) c(cx) = cx
(MT13) c(x+ y) = cx + cy
(MT14) P(ix)x
(MT15) i(ix) + ix
(MT16) i(x× y) = ix× iy
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(MT17) bx = b(xC)
(MT18) b(bx) = bx
(MT19) b(x× y) + b(x+ y) = bx+ by

4. Brentano’s thesis

4.1. Boundaries. One important advancement done in mereotopology is the rigor-
ous formulation of Brentano’s thesis which will be explained here. Brentano’s Thesis
is the ontological notion that a ‘boundary’ can exist as a matter of necessity only
as part of a whole of higher ‘dimension’ of which it is the boundary. This notion is
commonly accepted as the ontological nature of a boundary, and philosophers find
benefit in formalizing it through a mereotopological approach rather than a point-
set topological one [4]. To quote Smith, “the set-theoretic conception of boundaries
[are], effectively, sets of points, each of which can exist though all around it be
annihilated” [4]. Whether this motivation is accurate, mereotopology is still the
category most ontologists (and those working in AI or cognitive linguistics) work
in, and it is beneficial to communicate this notion in this category. Here, we fol-
low Smith in choosing to rigorously formulate a simpler version of Brentano’s thesis
which does not assume the existence of higher dimensions: every boundary is such
that we can find an entity which it bounds, which it is a part of, and which has
interior parts. The motivation for such a thing is that we would like to speak of
objects such as boundaries in a more ontologically sound manner, formalizing our
psychological intuitions of these objects.

In order to do this, we first define crosses ‘X.’ We define ‘Xxy’ to be read as ‘x’
crosses ‘y’.

(B1) Xxy := ¬Pxy ∧Oxy
The idea here is that x overlaps with both y and the complement of y. Thus,

there exists no entity that crosses itself, and the universe crosses every entity not
identical with the universe itself. From here, we define straddles ‘ST.’

(B2) STxy := ∀z(IPxz → Xzy)
Thus, an entity x straddles an entity y whenever every entity of which x is an

internal part of crosses y. From here we have the following:
(B3) STxy → ¬IPxy,
(B4) Pxy → IPxy ∨ STxy.
Note that every part of y is either an internal part of y or straddles y.
Several philosophers have recognized that when we intuitively think about bound-

aries, there appear to be two different types of boundaries [4]. There are what we
will call ‘tangents’ which include among their parts a ‘boundary’ of the straddled
entity, and there are ‘non-tangents’ which are not connected and include no such
‘boundary’. Then, x does not simply straddle y, but it is a ‘boundary’ of y. Earlier
we defined boundary in (MT17), but here we define the predicates ‘B’ (where ‘Bxy
is read as ‘x is the boundary of y’) and tangent ‘T’ (where Txy is read as ‘x is a
tangent of y) as follows:

(B5) Bxy := ∀z(Pzx→ STzy),
(B6) Txy := ∃z(Pzy ∧ Bzy).



8 SAIKEERTHI RACHAVELPULA

These definitions give rise to the notion that all parts of the boundary of an entity
y are not merely straddlers but tangents of y:

(B7) Bxy ↔ ∀z(Pzx→ Tzy).
Similar to our closure axioms, we have the following properties for boundary:
(B8) Bxy ∧ Byz → Bxz, (transitivity)
(B9) Pxy ∧ Byz → Bxz,
(B10) Tx(y + z)→ Txy ∨ Txz. (splitting)
Moreover, we have the following collection principle:
∀x(φx→ Bxy)→ σxB(φx)y.
Lastly, we expand on our earlier mention of the predicate ‘b’ as the predicate ‘is

a boundary’ as follows:
(B11) b(x) := ∃y(Bxy).

4.2. Brentanian formulation. Then, the first Brentanian Thesis is as follows:
b(x)→ ∃z∃t(Bxz ∧ Pxz ∧ IPtz).
However, we want our formulation to capture connectedness such that for con-

nected boundaries, there exist connected wholes of which they bound.
b(x)SC(x)→ ∃z∃t(Pxz ∧ Bxz ∧ C(z) ∧ IPtz)
Though we have not done it here, we would like to strengthen this formulation

by accounting for the intuitive notion that a boundary is somehow associated with
a thing that is bounds. That is, our formulation of boundary behaves the same
way when we consider it around the thing it bounds and that thing ’s complement
(since bx = bxC). What we would like is to have a formulation which allows for
us to capture the difference between the boundary of a stone and the boundary of
everything in the universe minus the stone. We also notice that such things are
not restricted to spacial entities. Indeed, temporal entities such as events, seasons,
or entire lives are also things of which we may want to define boundary and other
mereotopological properties.

5. Topology

Now, we may begin to show that Hausdorff spaces are indeed mereotopological
spaces. Previously, it has been shown that [G(E)M] is a ‘larger’ category than Set
[7] (Note that in order for this to have been done, it must be the case that P∅A
is never true, for any A). This means that there exists a “functor” from Set to
[G(E)M] that is injective but not surjective.

Definition 5.1. Let C1 and C2 be categories (A category C is defined as that
which consists of a class ob(C) of objects, a class hom(C) of morphisms between
these objects, and for every three objects a, b and c, a binary operation hom(a, b) ×
hom(b, c) → hom(a, c) called a composition of morphisms. Moreover, associativity
holds, and an identity exists.) A functor F from C1 and C2 is then, a mapping
which associates to each object X in C1 an object F (X) in C2 and associates each
morphism f : X → Y in C1 a morphism F (f) : F (X) → F (Y ) in C2 such that
F (idX) = idF (x) for every object X in C1 and F (g ◦ f) = F (g) ◦ F (f) for all
morphisms f : X → Y and g : Y → Z.



THE CATEGORY OF MEREOTOPOLOGY AND ITS ONTOLOGICAL CONSEQUENCES 9

Thus, functors allow us to compare categories. Here, we show that Hausdorff
topological space indeed satisfies the necessary axioms of a mereotopological space.
To do this, we show the existence of a functor from the category of Hausdorff topo-
logical spaces to mereotopological spaces by associating each object and morphism
that satisfies the axioms of Hausdorff topologies with an object and morphism that
satisfies the axioms of mereotopologies respectively. First, however, we begin by
introducing the category topology Top.

Definition 5.2. A topology on a set X is a collection τ of subsets of X, called open
subsets of X satisfying the following properties:

(T1) ∅ and X are contained in τ ,
(T2) The union of elements of any subcollection of τ is in τ ,
(T3) The intersection of elements of any finite subcollection of τ is in τ .

Definition 5.3. A topological space (X, τ) is a set X together with a collection of
open subsets τ that satisfies the above axioms.

We also consider the definitions of connectedness in topology.

Definition 5.4. A topological space X is said to connected if there does not exist
a separation of X (where separation of X is a pair of U, V of disjoint non-empty
open subsets of X whose union is X).

Definition 5.5. For a topological space X, define an equivalence relation ∼ on X
where x ∼ y if there exists a connected subspace of X containing both x and y.
These equivalence classes are then called components of X.

Next, we prove that this is an equivalence relation on X.

Theorem 5.6. The relation ∼ is an equivalence relation.

Proof. Reflexivity is obvious since for any point x, there does not exist a separation
of x. Thus, x ∼ x. For symmetry, take two points x and y. If x ∼ y, then there does
not exist a separation of the component they are contained in. Thus, it must be
that y ∼ x. Lastly for transitivity, let A be a connected subspace containing x and
y (x ∼ y). Now, let B be a connected subspace containing y and z (y ∼ z.) Thus,
A∪B must be connected since they share a common point (To prove that since two
sets share a common point that then they must be connected, suppose sets U, V
share a common point a. Then U ∩ V 6= ∅. Thus, there does not exist a separation
of U, V . Thus, there does not exist a set W = {U, V } that is disconnected. Thus,
U, V are connected.) Thus, x ∼ z. �

Definition 5.7. For a topological space X and subspaces A,B ⊆ X, we say A is
disconnected from B if there exist open sets U, V such that A ⊆ U , B ⊆ V , and
U ∩ V = ∅. If A and B are not disconnected, then we say A and B are connected,
and write tc(A,B). As an exception, we say that the empty set is connected to
every set.

Quickly, comparing this to our definition of ‘C.’ Both are reflexive and symmet-
ric, confirming our natural intuitions towards what it means for two objects to be
connected. However, monotonicity is slightly different than transitivity.
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Remark 5.8. We may ‘specify’ a mereotopological space by specifying all parts that
exist, the P predicate, and the C predicate. Therefore, if the underlying universe is
a set, this is specified via some subset of the power set, P, and C. If the parts are
implicit in the definition of the P predicate, then a mereotopological space may be
stated via the universe, U , the parthood predicate, and the connection predicate;
therefore, a mereotopological space could be written as a triple M = (U ,P,C),
where (U , P ) defines a mereological space.

Just as in topology, it is also useful to us to define what it means for a given
morphism to be continuous. In topology the definition of a continuous function is
as follows:

Definition 5.9. Let X and Y be topological spaces, and let f : X → Y be a
function. If for each open subset V of Y , the set f−1(V ) is an open subset of X,
then we call f a continuous function

Definition 5.10. Let X and Y be topological spaces, and let f : X → Y be a
bijection. If f and f−1 are both continuous functions, then f is a homeomorphism.

In mereotopology, the objects we work with are parts and wholes rather than open
sets as in a topology. Thus, it is helpful for us to have a definition of continuity
that deals directly with these objects. We make use of the ‘C’ predicate to define
continuity for the category of mereotopology.

Definition 5.11. Let X and Y be mereotopological spaces, and let f : X → Y be
a mereotopological morphism (preserving parthood). Then, for all PxaX and PxbX
where Cxaxb, we have that Cf(xa)f(xb). Then, we call f a continuous morphism.

Now, we show that a Hausdorff topological space satisfies the axioms of a mereotopo-
logical space.

Theorem 5.12. If X is a Hausdorff topological space, then M = (X,⊆, tc) is a
mereotopological space.

Proof. First, we show that (X,⊆) is a mereological space (A space satisfying the
axioms of [M]). Note reflexivity, antisymmetry, and transitivity are trivial.

Next, we show supplementation: suppose A 6⊆ B. Then there exists z ∈ A such
that z 6∈ B. Let D = {z} ⊆ A. Then, D ⊆ X, and D ∩B = ∅, as desired.

Now, we translate the overlap and underlap predicates. We know that A and B
overlap if and only if they intersect. Then, we define the sum to be the union. Sim-
ilarly, A and B always underlap (noting two subsets always both contain the empty
set, i.e., we have a bottom element). We define the product to be the intersection.
The difference, then, is exactly the set difference. Thus, this set exists in Mtop, so
we have now confirmed (P5), (P6), and (P7).

We now show (P9), recalling that (P8) is an immediate consequence thereof.
Formally speaking, (P9) fails to be true in the category of Set. However, ZFC has
the axiom schema of restricted comprehension: in our current example, we simply
restrict the comprehension to X, which is always a set. Thus, we don’t run into
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the problems à la Russell’s paradox. Thus, (P9) holds true, and thus (X,⊆) is a
mereological space.

Second, we check that topologies satisfy the additional axioms of [G(E)M]TC.
We show that tc satisfies the axioms of C. Note that if A ⊆ B, then every

open set containing B contains A, so A ⊆ U ∩ V . Thus, if A 6= ∅, we have
A ⊆ B =⇒ tc(A,B). Therefore, tc(A,A). The definition of tc is symmetric. For
(C3), suppose A ⊆ B. Let D be such that tc(D,A). Let U, V be a pair of open sets
such that D ⊆ U and B ⊆ V . Then note A ⊆ V , so we have U ∩ V 6= ∅ by the
assumption that tc(D,A). Therefore, tc(D,B).

Now we need to translate these other predicates into set theoretical formula-
tions. We have (IPxy ↔ Pxy ∧ ¬TPxy ↔ Pxy ∧ ∀z(¬ECzx ∨ ¬ECzy) ↔
Pxy ∧ ∀z((¬Czx ∨ Ozx) ∨ (¬Czy ∨ Ozy).) So A is an interior part of B if and
only if A ⊆ B, and other set D either intersects B, is connected to B, or is con-
nected to A. Being connected to A is harder, so we are left with this.

Thus, suppose D ∩ Y = ∅. Then if IP (AB), tc(D,A) must be false. Thus, there
must exist a pair of open sets U, V such that A ⊆ U , D ⊆ V , and U ∩ V = ∅

Note we assume that A = iA when A is open and A = cA when A is closed. In
order to check (C4) and (C5), we must show a set A is open iff A = iA is open and
a set A is closed iff A = cA is mereotopologically closed.

Ideally, we would like to prove this for general topologies. However, consider the
following space where an open set is not mereotopologically open:

Let X be a space such that there is a point, x, contained in every non-empty
closed set. Let A be any open set that is not the entire space. Note the only open
set that contains x is the entire space, X. Therefore, every subset is connected to
A. Suppose B ⊆ A is an interior part. Then B is non-empty, and every subset is
also connected to B. But then {x} is connected to B, and {x} fails to intersect A.
Therefore, B cannot be an interior part. Therefore, A has no interior parts.

The proof for Hausdorff spaces follows since we can separate two points. We would
be able to separate {x} from points of A and ultimately, avoid the contradiction
above.

A similar circumstance occurs when trying to show that a set A is closed iff
A = cA is mereotopologically closed. Indeed, the same argument applies, but with
complements of open sets instead of open sets.

Now, we check (C4) and (C5). Note that (C4) and (C5) can only be proved when
the space is Hausdorff. For two topological spaces A and B, we have the following
Kuratowski axiom:

cl(A ∪B) = cl(A) ∪ cl(B).

Since we defined sum to be union, we have (C4).
For (C5), we would like to show that the arbitrary intersection of closed sets is

closed. Let X be an open set in the topology τ , and let Y = (
⋃
X∈τ

X)C . Notice

that (
⋃
X∈τ

X) is open by the definition of a topology. Thus, Y is closed since it

is the complement of something open. Also, by De Morgan’s law we have that
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Y =
⋂
X∈τ

XC . Since X is an open set, XC is a closed set, and thus, the intersection

of closed sets is a closed set. This translates to mereotopology with set defined as
part, union defined as sum, and intersection defined as product. Closed and open
sets are then translated to parts equal to their closures and parts equal to their
interiors, respectively.

Lastly, we show that if a function is topologically continuous, then it is mereoto-
pogically continuous. Since above we showed that tc in topology is analogous to
C in mereotopology, it suffices to prove that the continuous image of a connected
space is connected.

We argue by contradiction. Let f : X → Y be a continuous function, and
let X be connected. Assume that f(X) is not connected. Therefore, there exist
open sets U, V in Y such that f(X) ⊂ U ∪ V, (f(X) ∩ U) ∩ (f(X) ∩ V ) = ∅, and
f(X) ∩ U 6= ∅ 6= f(X) ∩ V . Now, since f is continuous on X, there are open
sets U ′ and V ′ in Y such that X ∩ U ′ = f−1(U) and X ∩ V ′ = f−1(V ). If xinX,
then f(x) ∈ f(X) so that f(x) ∈ U or f(x) ∈ V . Thus, x ∈ U ′ or x ∈ V ′, i.e.,
X ⊂ U ′ ∪ V ′. Also, if x ∈ V ′ ∩ U ′ ∩ X, then f(x) ∈ U ∩ V ∈ f(X) = ∅. Thus,
there is no such possible x. Note also that U ′ ∩ X = f−1(U) = f−1(U ∩ f(X)).
However, since U ∩ f(X) 6= ∅ and f is onto f(X), it must be that U ′ ∩ X 6= ∅.
Similarly, V ′ ∩ X 6= ∅. Thus, X is disconnected. However, this contradicts our
initial assumption. Therefore, it must be that if f(X) is connected.

�

Remark 5.13. I had originally thought that a set was open if and only if it was
mereotopologically open for any topological space (X, τ). However, I have not been
able to finish the proof of this. So far, I have only been able to prove this to be
true assuming Hausdorff which was found necessary for the above proof. Although
I suspect a similar result may be true for general spaces, I have yet to determine a
modified statement that holds for general spaces. Then a functor may be defined
from the category Top to Mtop that can confirm my suspicion that Mtop is a
broader category than Top.

6. Holes

6.1. Homotopy. In order to formalize a conception of circles and holes in Mtop,
we introduce homotopies from algebraic topology.

Definition 6.1. A path is a continuous function f : I → A. A loop, then, is a path
where f(0) = f(1).

Definition 6.2. The unit interval I is the closed interval [0,1].

Definition 6.3. If f and g are continuous maps of the space X into the space Y ,
we say that f is homotopic to g if there is a continuous map H : X × I → Y such
that

H(x, 0) = f(x) and H(x, 1) = g(x)

for each x. Then, the map H is called a homotopy between f and g.
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Definition 6.4. Two maps f, g : X → Y are homotopic if there exists a homotopy
between the two maps. We formally denote this by f ' g. Then, two paths f ′, g′

are path homotopic if f ′ ' g′ and f ′(0) = g′(0) and f ′(1) = g′(1).

Definition 6.5. Two topological spaces X,Y are homotopy equivalent if there exist
two maps f : X → Y and g : Y → X such that f ◦ g ' idX and g ◦ f ' idY . Then,
we write X ' Y.

Proposition 6.6. Homotopy is an equivalence relation.

Proof. Here, we want to show that ' is reflexive, symmetric, and transitive.
For reflexivity, we need to show that f ' f . Here, we use the constant homotopy

defined by h(x, t) = f(x) for all t.
For symmetry, we need to show that if h : f ' g, then g ' f . Define H(x, t) =

h(x, 1− t). This defines a homotopy from g to f .
To prove transitivity, let f ' g with h : X → Y as a homotopy. Now, assume

g ' e where h′ : g → e is the homotopy between the two. Now, define a function H.

H(x, t) =

{
h(x, 2t) t ≤ 1

2
h′(x, 2t− 1) t > 1

2

Since h(x, 1) = g(x) = h′(x, 0), H is well-defined. Thus, f ' e.
Thus, ' is an equivalence relation. �

Definition 6.7. A space X is contractible if it is homotopy equivalent to a single
point. That is, X ' {∗}.

Now, consider R2 \ {(0, 0)}. We will prove that this is homotopy equivalent to
the circle S1.

Example 6.8. Let X = S1, Y = R2 \ {(0, 0)}, and i : S1 → R2 \ {(0, 0)} be the
standard inclusion.

r : R2 \ {(0, 0)} → S1, x→ x

|x|
Then, r ◦ i = idS1 . Thus, we take the constant homotopy. Now, i◦r : R2 \{(0, 0)}

is the map f given by f(x) = x
|x| .

H : (R2 \ {(0, 0)})× I → R2 \ {(0, 0)}, (x, t)→ x

t+ (1− t)|x|
Note, this is well defined, as it is impossible for x

t+(1−t)|x| = 0. Now, H is a

homotopy from i◦r to idR2\{(0,0)}. Thus, i is a homotopy equivalence with homotopy

inverse r. Therefore, S1 ' R2 \ {(0, 0)}.

The equivalence relation ' allows us to treat a class of homotopic paths similarly
as one equivalence class. As these paths behave similarly, we may uncover universal
traits of equivalent paths without identifying those traits in each path individually.
Ontologically, this is a very important. What this means for the circle (our primitive
object possessing a hole) is that we treat it similarly to a single point removed from
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R2. The use of words such as missing and removed, in this language, suggest that
the hole in a circle is an immaterial particular. Specifically, it is an immaterial
particular which can be thought of as a point. Thus, this does not exactly formulate
the notion that a hole may have parts.

Remark 6.9. In its defense, the word ‘hole’ is often used in topology as a pictorial
learning tool employed to understand the abstract concepts of algebraic topology.
In this way, it is not exactly concerned with the ontology of objects such as holes,
and it makes no such claim that it is. However, mereotopology possesses more
philosophical and ontological motivations, and by slightly altering the crude notion
of a hole in topology to this category, there is the opportunity to formally approach
this object with more ontological intent.

6.2. Products in Mereotopology. Before, we may consider the mereotopological
alternative formulation of a hole, we must define the product in mereotopology. We
do this through a category theoretic approach with the product being defined.

Definition 6.10. Given two objects X1 and X2, we say that (Z, π1, π2) is the
product of X1 and X2 if, for all objects Y with maps f1 : Y → X1 and f2 : Y → X2,
there exists a unique map f : Y → Z such that the following diagram commutes:

Y

X1 Z X2.

f2f1
f

π1 π2

The maps π1 and π2 are called the projection maps, i.e., π1 is called projection
onto X1. Frequently, these maps are canonical or in some way assumed, and then,
we say that Z is the product of X1 and X2, and write Z = X1×X2. Then, the map
π1 is called projection onto the first factor, and map π2 is called projection onto the
second factor. Note that the product is unique.

What we want to show here is that there exists a unique object X × Y which
allows the above diagram to commute and preserves the the below property.

(Pzx ∧ Pwy)→ P(z, w)(x, y) where (z, w) = {z, z, w}.
Though I have not worked out the formal details of existence and uniqueness,

there is no obvious contradiction in assuming its existence and uniqueness. From
here, we are able to essentially import the definition of homotopy in topology to
mereotopology.

6.3. Homotopy in Mereotopology. From our earlier discussion of boundaries,
what we may want to consider is the notion of the boundary of a hole. It seems
intuitive that such a thing exists though we argue for it here. Consider S1 again,
and recall that the boundary of an object is equal to the overlap of the closure of the
object and the closure of its complement. Thus, part of the boundary of S1 is equal
to the boundary of the hole. We expect, given that the missing substance of S1, the
hole is a part of the circle’s complement. Thus, the hole in S1 has a boundary that
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agrees with boundary laws which, from Brentano’s thesis, implies the existence of
an entity with interior proper parts. Thus, this hole is seen as having proper parts.

An ontological advantage of working in mereotopology comes from not committing
ourselves to atomization (despite that we don’t assume atomization, something may
still be equivalent to an ‘atom’). Thus, this hole is not formalized in the language
of ‘a missing point’ in this case. We are able to formalize the intuitive notion that
this hole may have parts. To do so, we slightly alter the notion of homotopy for the
category of mereotopology (though this is entirely reliant on the notion of a product
existing).

First, we must define I in mereotopology, as not all mereotopological objects have
points.

Definition 6.11. Define I as a closure of a self connected whole such that if an
interior proper part is removed, it becomes disconnected.

Now the same definition for homotopy applies where 0, 1 are analogous to the
boundary parts of the mereotopological interval I.

Definition 6.12. If f and g are continuous maps of the space X into the space Y ,
we say that f is homotopic to g is there is a continuous map H : X × I → Y such
that

H(x, 0) = f(x) and H(x, 1) = g(x)

for each x. Then, the map H is called a homotopy between f and g.

In this way, we may define a circle and its hole in mereotopology. With homotopy
theory, we are able to bypass the formation of a new predicate ‘H’ (where Hx is read
as ‘x is holed’) which some have chosen to do in mereotopology [9]. Now, we may
distinguish the exact property for S1 to have a hole: the notion that it is homotopy
equivalent to a self-connected whole with an interior proper part removed. Indeed,
there remains the challenge of formalizing the notion that the hole in S1 may be a
spatiotemporal particular.

7. Conclusion

The main mathematical result contained in this paper was in showing that Haus-
dorff spaces indeed satisfy the necessary axioms of mereotopological spaces.

From working in an alternate category that is primarily motivated by ontology, we
are able to view controversial metaphysical questions such as the nature of bound-
aries and holes from a slightly different perspective. From here, we can perhaps
ponder even broader metaphysical questions. For example, there is the Kantian in-
clination to believe that all boundaries are fiat (those boundaries such as geographic
ones between countries whose existence is much more contingent on humans) as op-
posed to being bonafide (existing independent of humans such as bodies of water or
mountains) [4]. However, by reasoning formally, some have been able to recognize
that most boundaries are a combination of the two.

Concerning our discussion on holes, we were only truly able to speak on the hole
in a circle (we did not consider embeddings). However, not all holes are the same.
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If extended using notions of the fundamental group which have not been developed
here, it seems we will be able to distinguish between T and T#T (the double torus).
This has already been done in topology, but once again, a different mereotopological
perspective may be beneficial.

Lastly, it is clear that there remain areas of mereotopological study. Perhaps, we
ought to further consider the boundary of other metaphysically contested entities
such as shadows or thoughts. We continue to employ mathematics to formalize our
intuitions and rid logical contradictions. In this way, mathematics functions as a
tool that synthesizes clarity. As Heidegger describes in The Question Concerning
Technology, the purpose of technology (which includes mathematics) is to be the
instrument which reveals truths and knowledge to ourselves [8].
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