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Shielded vortices consist of a core of potential vorticity of a given sign surrounded (or shielded) by a
layer of opposite-signed potential vorticity. Such vortices have specific properties and have been the focus
of numerous studies, first in two dimensional geometries (where potential vorticity is just the vertical
component of the vorticity vector) and in geophysical applications (mostly in layered models). The present
paper focuses on three-dimensional, spheroidal shielded vortices. In particular, we focus on vortical structures
whose overall volume-integrated potential vorticity is zero. We restrict attention to vortices of piecewise
uniform potential vorticity in the present research. We first revisit the problem within the quasi-geostrophic
model, then we extend the results to the non-hydrostatic regime. We show that the stability of the structure
depends on the ratio of potential vorticity between the inner core and the outer shield. In particular it
depends on the polarity of the core and of the wavenumber of the azimuthal mode perturbed.
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1. Introduction

Vortices not only abound in the oceans at all depths, but they are, together with jets, respon-
sible for the transport of heat and tracers in the oceans at mesoscale. Recent estimates suggest
that this part contributes up to half of the overall transport (see Zhang, Wang and Qiu 2014).
The ubiquity of vortices in the oceans has been illustrated by many studies (see Ebbesmeyer
et al. 1986, Chelton, Schlax and Samelson 2011, Chelton et al. 2007 and numerous other
studies). Reviews on oceanic vortices may be found in Robinson (1983) and Carton (2001). In
geophysical contexts, vortices may be conveniently defined as volumes of potential vorticity
(hereinafter referred to as PV), a quantity materially conserved in absence of diabatic and
viscous effects.

Three dimensional, quasi-geostrophic, vortices containing uniform PV have been the focus
of several studies, in particular when the vortices are (initially) ellipsoidal (see, for example,
Meacham 1992, Miyazaki, Ueno and Shimonishi 1999, Dritschel, Scott and Reinaud 2005).
Such vortices may be unstable when elongated in one direction but a spherical vortex (in a
reference frame stretched by N/f in the vertical direction) of uniform PV is neutrally stable.
The later result follows from Dritschel (1988). Results have been more recently extended
beyond the quasi-geostropic regime in Tsang and Dritschel (2015) to include ageostrophic
effects.

Other families of vortices include shielded vortices. These vortices consist of the core of
(potential) vorticity of given polarity surrounded by a distribution (or shield) of (potential)
vorticity of the opposite sign. Because of cancellation due to the equal and opposite vorticity
distribution in the structure, the velocity falls very rapidly away from the vortex. The vortex
can be seen as generating a rather quiet external environment. The purpose of the paper is to
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further explore the properties of such vortices in a theoretical and idealised set-up. Shielded
structures have been extensively studied within the context of two-dimensional vortex dynam-
ics (see, for example, Flierl 1988, Carton 1992, and Morel and Carton 1994, as well as more
recently with the context of surface quasi-geostrophy by Harvey, Ambaum and Carton (2011)).
The outcome is that these structures often break into secondary structures due to barotropic
instabilities associated with the shear induced by the positive and negative vorticities. The
instability can be violent and can result in the formation of a plethora of secondary structures,
rendering a complex and rich (rather than quiet) dynamics. In these two-dimensional studies,
the vortex is a circular patch of vorticity surrounded by a ring of opposite-signed vorticity.
Shielded vortices have also been studied with the context of two (or three)-layer models (see,
for example, Benilov 2004 and references therein). In a layered model, a shielded vortex is a
cylinder of potential vorticity filling the height of a layer, surrounded by a cylindrical ring
of opposite-signed PV. Again, isolated shielded vortices are in general unstable (but may be
stabilised by an external flow). Most of the studies have use smooth potential vorticity dis-
tributions where the angular velocity has a Gaussian profile. Gaussian vortices were also is in
three dimensional, quasi-geostrophic regime (see for example, Model and McWilliams 1997).
There are experimental (van Heijst and Clercx, 2009) and observational (McWilliams, 1985
among others) evidences to support this choice of profile. It should be noted that a smooth
profile is also required for Eulerian numerical simulations. These vortices appear to be unsta-
ble to small perturbations (see Sutyrin 2015 for a discussion). More recently, in the absence of
background rotation, Yim and Billiant (2016) have studied the stability of a stratified vortex
with a Gaussian angular velocity profile in cyclostrophic and hydrostatic balances for various
values of height-to-width aspect ratio of the structure. The authors have shown that the vor-
tex may be sensitive to centrifugal, shear, gravitational and baroclinic instabilities, depending
in particular on the Reynolds and Froude numbers, and the vortex aspect ratio.

There are however theoretical and numerical evidences that at very high Reynolds number,
the weak peripheral (potential) vorticity of smooth vortices can be stripped and eroded by
weak external shear and straining flows (see, for example, Mariotti, Legras and Dritschel
1994). This yields to structures whose vorticity distribution exhibits sharp edges. A vortex
with discontinuous, piecewise uniform, potential vorticity is a well-suited candidate for a
simplified, theoretical study at the limit of infinite Reynolds number. It should be noted that
such vortices are ideally suited for our Lagrangian numerical approach, based on Contour
Dynamics.

More recently, Viúdez (2015) proposed steady solutions for shielded spheroidal vortices.
The families of vortices obtained by the author have a continuous internal PV distribution.
The motivation of the author for surrounding the vortex by a shield of opposite-signed PV
is to remove a problem associated with an otherwise unbounded mass anomaly (if the mass
anomaly is integrated throughout an infinite domain).

In this paper, we revisit the idea of shielding a fully three-dimensional spheroidal vortex with
a spheroidal shell of opposite-signed PV. It is important to note that this case is different from
the two-dimensional or the layered problem in which the vortices are only shielded laterally.
For the spherical vortex, the shell is isotropic such that the core vortex is surrounded by
opposite-signed PV on the bottom and on the top as well as on its sides. This adds a baroclinic
component to the structure. In this work, we consider vortices where PV is piecewise uniform.

Miyazaki, Fujiwara and Yamamoto (2003) studied the linear stability of confocal, piecewise
uniform potential vorticity ellipsoidal vortices. We start by revisiting these results for our
specific case. We show that most of such vortices are dynamically unstable and break into
secondary structures, unless the outer shield is thick, with low PV. We also briefly extend
this investigation to cases of oblate and prolate spheroids, and to shielded cylindrical vortices.
The latter are closer in their geometry to the cases studied in layered-models.

Finally we extend the results to the non-hydrostatic regime where both the Froude and



December 19, 2016 Geophysical and Astrophysical Fluid Dynamics GGAF-2016-0014-Reinaud

Geophysical and Astrophysical Fluid Dynamics 3

Rossby numbers are finite. It should be noted that in this regime, the dynamical symme-
try between cyclonic and anti-cyclonic potential vorticity (observed in the quasi-geostrophic
regime) is broken. Hence, we distinguish shielded vortices with a cyclonic core and anti-cyclonic
shield from their counterparts with an anti-cyclonic core and cyclonic outer shield.

The papers in organised as follows. Section 2 describes the formulation of the quasi-
geostrophic model and sets the general geometry of the problem. The quasi-geostrophic linear
stability analysis for the shielded spheres is revisited in section 3. Their nonlinear evolutions
is illustrated in section 4. The results are extended to a family of oblate spheroids, and one of
prolate spheroids in section 5. Section 6 offers some comparative results for the case of shielded
cylindrical vortex. Section 7 discusses effects of periodicity when imposed on the flow. Section
8 presents the extension of the results to the non-hydrostatic regime while conclusions are
drawn in section 9.

2. Formulation

This study starts with the linear stability and nonlinear evolution of shielded vortices whose
volume-integrated potential vorticity is zero, within the QG model. The quasi-geostrophic
model (hereinafter referred to as QG) offers a framework ideally suited for the study of meso-
scale vortices, where the combined effects of both the background planetary rotation and
stable density stratification are dominant. For the present study, the model may be derived
from an asymptotic expansion of the three-dimensional Boussinesq equations with respect of
two small parameters, the Froude and Rossby numbers. The equation reads

∂2ψ

∂x2
+
∂2ψ

∂y2
+

∂

∂z

(
f2

N2

∂ψ

∂z

)
= q , (1)

where ψ is the streamfunction and q is the potential vorticity. f is the Coriolis frequency
associated with the planetary rotation while N is the buoyancy (or Brunt-Väıssälä) frequency
associated with the stratification. For the sake of simplicity, we take both f and N constant.
Then, the vertical direction z can be rescaled by the constant ratio N/f to z∗ = zN/f . The
ratio N/f is typically large (O(100) in the oceans at midlatitudes). In the reference frame
(x, y, z∗), the relation between ψ and q is isotropic, which motivates the search of isotropic
solutions such as spherical vortices. This choice is further justified by the fact that Reinaud,
Dritschel and Koudella (2003) showed that vortices in three dimensional quasi-geostrophic
turbulence have a characteristic aspect ratio near to unity (they are slightly oblate with an
typical aspect ratio of height to diameter ∼ 0.8 in the vertically stretched coordinate system).
In the rest of the paper, we use the stretched reference frame (x, y, z∗). This means that the
spherical vortices considered in (x, y, z∗) are in fact pancake vortices in the physical space
(x, y, z), as expected.

In absence of diabatic and viscous effects, the potential vorticity in (1) is materially con-
served,

Dq

Dt
= 0 , (2)

where D ·/Dt = ∂ ·/∂t+u ∂ ·/∂x+v ∂ ·/∂y is the material derivative, in which the advecting
(horizontal) velocities are

u = − ∂ψ
∂y

v =
∂ψ

∂x
. (3)

Although the vertical velocity is, strictly speaking, not zero in QG, it is too small to con-
tribute to advection at his order. QG is strictly valid if Fr2 � Ro� 1. The Froude number
Fr = |ωh|/N is the ratio of the horizontal vorticity to the buoyancy frequency N , while the
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Figure 1. Geometry of the piecewise uniform shielded spherical vortex in the space (x, y, z∗). (Colour online).

Rossby number Ro = ζ/f is the ratio of the relative vertical vorticity to the background
planetary vorticity f .

All calculations in QG regime are performed using Contour Dynamics based methods. The
nonlinear simulations are performed using the fully Lagrangian Contour Surgery where the
flow is explicitly unbounded (see Dritschel, 1993 for the original 2D method). The linear
stability is performed by analysing deformation modes along the contours. Further details
on the numerical approach may be found in Reinaud (2015) and references therein. In our
calculations, the continuous vertical direction is discretised by a set of nl layers. The vortex
boundaries are associated with potential vorticity jumps and are discretised by a set of np
nodes.

The geometry of the flow is presented in figure 1. The vortex core consists of a sphere is
radius r1, and of uniform PV q1. It is surrounded by a spherical shield for r1 < r < r2 of PV
q2. The vortex outer shell is such that the volume-integrated PV is zero:

q1r
3
1 + q2(r3

2 − r3
1) = 0 . (4)

Within the context of the Contour approach, we define two spherical surfaces. One at r = r1

with an associated PV jump of δq1, and a second spherical surface at r = r2 corresponding
to a PV jump of δq2. We then have q2 = δq2, and q1 = δq1 + δq2. Equation (4) implies
that δq1 r

3
1 = −δq2 r

3
2. In practice, we set δq1 = 4π, r1 = 1. We then vary r2, adapting δq2

accordingly.

3. Linear stability of shielded PV spheres

Miyazaki, Fujiwara and Yamamoto (2003) addressed the linear stability quasi-geostrophic
confocal spheroidal vortices decomposing of the modes of instability in spherical harmonics.
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In the special case where the vortex is spherical, the dispersion relation reads1(
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q2(q2 − q1) = 0 , (5)

for each Legendre mode Pmn (z/r)ei(mφ−ωm
n t), where Pmn (0 ≤ m ≤ n) is the associated Legendre

function and φ the (horizontal) azimuthal angle (see Miyazaki et al. 2003 for details).
This dispersion relation further simplifies in our case where the integrated PV is zero. On

denoting the rescaled growth rate by ω∗ = ω∗(n) = ωmn /(mq1), we obtain

ω2
∗ −

2

3

n− 1

2n+ 1
ω∗ +

ρ3
r

(2n+ 1)(1− ρ3
r)

(
1

3
− 1− ρ2n+1

r

(2n+ 1)(1− ρ3
r))

)
= 0 , (6)

where ρq ≡ r1/r2. Hence the growth rate of the unstable modes (imaginary part of ω∗) is
given by

γ∗(n) =

{√
S, if S ≥ 0 ,

0, if S < 0 ,
(7)

where

S =
ρ3
r

(2n+ 1)(1− ρ3
r)

(
1

3
− 1− ρ2n+1

r

(2n+ 1)(1− ρ3
r))

)
− 1

9

(
n− 1

2n+ 1

)2

. (8)

Note that when r2 → r1, i.e. ρr → 1, and the inner vortex is covered by a sheet of opposite-sign
PV, the growth rates σ have a finite limit, and

γ∗ →
√

(n− 1)(n+ 2)

3(2n+ 1)
. (9)

As mentioned by Miyazaki et al. (2003), and since the growth rate ωmn is proportional to
m, for each value of n the maximum growth rate is obtained for m = n.

These results are compared to those obtained from a general method based on the analysis
of the deformation modes of the PV jumps defining the vortex. The later method has been
used in three dimension in various contexts (see Reinaud and Dritschel 2002, Reinaud and
Dritschel 2009, Carton and Reinaud 2009, Reinaud 2015, and Reinaud and Carton 2015). For
each calculation, the core vortex is discretised by 55 layers. Each PV jump is discretised by
np = 160 nodes. The number of layers needed to discretise the outer shield depends on r2.
As for the inner PV jumps, each contour of the outer shield is also discretised by np = 160.
The choice of a constant number of nodes for each contour makes the linear stability easier,
and np = 160 guarantees an accurate representation of even the largest contours, with a
horizontal resolution consistent with the vertical resolution (np ∼ π ∗ nl, where nl is the
number of layers spanning the full structure). We study spherical shielded vortices with outer
radius r1 + dr < r2 < 2r1, with an increment of dr = 0.0025. We additionally perform the
analysis in the case q = 1 = −q2, corresponding to δq1 = 4π, δq2 = −π and r2 = 3

√
2.

Each horizontal contour k at height zk may be deformed by M = 10 azimuthal modes

rk(φ, t) = r̄k + ηk(φ, t) , (10)

1Note that the formula written in the original paper by Miyazaki et al. (2003) contained a typographical error, confirmed
by the author (private communication).
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Figure 2. 40 largest growth rates for the instability modes σr (black dots) and the corresponding 20 largest modes γnn
(red dashed lines), the imaginary part of ωn

n(using formula derived from Miyazaki et al., 2003) of a piecewise uniform,

shielded spherical vortex vs. ρ−1
r = r2/r1 the ratio of the radii of the outer shield to the inner core vortex. To ease

readability we split the result for (a) : 1 ≤ ρ−1
r ≤ 1.18, and (b) : 1.18 ≤ ρ−1

r ≤ 1.8. Note that the modes γmn for m < n
are not shown, but are seen from σr. (Colour online).

ηk(φ) = eσt
M∑
m=1

[
am,k cos(mφ) + bm,k sin(mφ)

]
, (11)

where rk is the polar radial coordinate along the contour, r̄k is the local radius of the undis-
turbed circular contour, and ηk the perturbation. For the nc contours discretising the vortices,
the problem results in a 2Mnc eigenvalue problem. The eigenvalues are σ = σr + iσi, where
the real part σr of the eigenmodes is the growth rate, and σi its frequency. The eigenvectors
âm,k, b̂m,k allow to reconstruct the spatial structure of the deformation mode.

The 40 largest non-dimensional growth rates σr/q1 from our analysis as a function of r2/r1 =
ρ−1
r are presented in figure 2. The figure shows a very large number of unstable modes. These

modes have non-zero frequencies as well (not shown). The instabilities are favoured by small
values of r2/r1, corresponding to a thin, intense outer shell. The instability modes come
in pairs of complex conjugates. That is, if σ = σr + iσi is an eigenvalue, so is its conjugate
σ̄ = σr− iσi. Since these two modes are similar, we will not distinguish them in the discussion.
Additionally, if σ is a mode, so is −σ (any unstable mode pairs with a stable counterpart).
This means that each mode appears as a quartet, σ, −σ, σ̄, −σ̄. For comparison, we also plot
the maximum modes γmm/q1, obtained from the formula derived from Miyazaki et al. (2003).
We see that they coincide with the largest modes σr. To ease readability, we do not include
the modes γmn for m < n. Recall that such modes can be deduced from ωnn by simple scaling
as ω∗(n) = ωmn /m = ωnn/n. These modes are clearly captured by our calculation.

The spatial structure of the deformation for the first three most unstable modes for the
case |q2/q1| = 1, r1 = 1, and r2 = 3

√
2 are represented in figure 3. The contours of iso-value

of the deformation magnitude are drawn in a (φ, z) coordinate system on the surface of the
inner vortex. The deformation of the outer shell follows a similar pattern. We see that the
most unstable mode corresponds to an azimuthal wave number m = 3, while the second has
m = 4 and the third m = 2. However, the growth rates have similar order of magnitude for
the three, with σ(m = 3) ' 0.229q1, σ(m = 4) ' 0.222q1, and σ(m = 2) ' 0.172q1.

In our calculation, unstable modes disappear for r2/r1 larger than a threshold 1.7825 ≤
(ρ−1
r )m ≤ 1.785. Using n = 2 (the Legendre mode unstable for the largest range of the
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Figure 3. Reconstructed deformation mode on the boundary of the inner vortex for the first three most unstable modes
(ordered from left to right from most to least) for the piecewise uniform shielded vortex, with |q2/q1| = 1, r1 = 1, and

r2 = 3
√

2. The vertical axis of each frame corresponds to the vertical coordinate z along the inner vortex surface, and
the horizontal axis is the azimuthal angle φ around the vortex surface. The lines correspond to contours of iso-value of
deformation amplitude.

Figure 4. PV contours defining the vortex boundary. The outer shell is dark grey, and the contours associated with the
internal core are lighter grey. The view is seen orthographically at an angle of 60◦ from the vertical. Time displayed at
t = 4.5, 7, 11.5, 16. (Colour online).

parameter ρr), and solving for S = 0 in equation (8), we obtain ρr = 0.5604256605 which
corresponds to (ρ−1

r )m ' 1.7844, confirming the accuracy of our calculation.

4. Nonlinear evolution of shielded PV spheres

We next illustrate the nonlinear evolution of the piecewise uniform shielded spherical vortices.
This is done using the purely Lagrangian method of Contour Dynamics. This means that the
flow is explicitly unbounded with ψ,u → 0 when |x| → ∞. In each case, the flow is mapped
in the vertical by nl = 100 layers from the bottom to the top of the outer shield. In all cases
we set δq1 = 4π, and r1 = 1. Recall that δq2 = −δq1(r3

1/r
3
2). The PV of the inner vortex is

therefore q1 = δq1 + δq2. The time scale of the problem is set by PV. Recall that a sphere of
uniform PV q has a rotation period of T = 6π/q.

Figure 4 illustrates the time evolution of a spherical shielded vortex for r2 = 3
√

2. This case
corresponds to the case where the inner core and the shell have equal intensities q1 = −q2.
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Figure 5. Deformation of the PV jumps defining the horizontal mid-section of the shielded vortex with r2/r1 = 3
√

2,
|q2/q1| = 1 at t = 3 (dotted line) 4 (dashed line) and 5 (solid line). Top: deformation in physical space ∆r vs. the local
polar angle θ = φ− φi0 where φi0 is the polar angle of the first node for the contour i. Bottom: Amplitude of the Fourier

modes |∆̂r| vs. the azimuthal wave number m (only small m shown). (Colour online).

Its linear stability is addressed in figures 2 and 3. We do not introduce a prescribed initial
disturbance on the vortex. The instabilities are excited by the low amplitude background noise
inherent to any discretised numerical approach. The nonlinear evolution shows the complex
growth in interaction of many modes of instabilities, in particular the modes m = 3, 4, and
2 mentioned in the previous section. Possibly because of coupling between modes m = 4 and
m = 2, the structure mostly separates as two structures. This break-up is asymmetric due
to the influence of mode m = 3. The mode m = 3 is most visible at the early stages of
the evolution (see figure 4, top left at t = 4.5), which is consistent with the linear stability
results. The later, nonlinear evolution is much more complex due to the nonlinear interaction
between the numerous modes which have different symmetries. Nevertheless, it is clear that
the vortex is strongly unstable, and breaks into secondary structures. The evolution of the
instability modes can be monitored at early stages. We start by extracting the inner and outer
contours at the horizontal mid-section of the structure. We then calculate ∆r the departure
of the local radius to the mean radius along the contour. This signal is then re-sampled on
256 nodes equally spaced in polar angle θ = φ − φi0 using local quadratic interpolation. The
angle φi0 corresponds to the polar angle of the first node of the contour. The latter distribution
is analysed in Fourier space. Results at t = 2, 3 and 5 are presented in figure 5. The early
nonlinear evolution is dominated by the mode m = 2 (due to nonlinear coupling of the modes)
but modes m = 3 and m = 4 are also developing. The small amplitude mode m = 1 observable
corresponds to a shift of the structure due to nonlinear effects.

We next illustrate a case where |q2| > q1 with r2 = 1.1. In this case q2 ' −3q1. Note that
this case corresponds to the part of the parameter space where many modes are unstable. We
therefore expect the vortex evolution to be more complex (and to depart from equilibrium
rapidly). The flow is illustrated in figure 6. Due to the large number of competing, strongly
unstable modes are developing and interacting at the same time. The spatial structure of the
deformation is highly complex and cannot be simply linked to a single dominant mode. The
flow develops a turbulent-like behaviour very rapidly. As done in the previous case, we analyse
at early stage the deformation modes of the PV jumps at the horizontal mid-section of the
vortex. Note that the analysis can only be performed meaningfully provided the signal ∆r
vs. the local polar angle is a single-valued function. The approach is no longer valid when the
contours overturn (which occurs in this case as early as t ' 3.5). Results at t = 3 are shown in
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Figure 6. Top view of the PV contours for a piecewise uniform spherical vortex with a thin, intense, shield. Blue contours
correspond to the negative PV jumps of the initial outer shell while the red contours indicate positive PV jumps of the
inner core. The case presented corresponds to r2 = 1.1, with q2 ' −3q1 . Left: t = 3.5, right: t = 7.5. (Colour online).

Figure 7. Deformation of the PV jumps defining the horizontal mid-section of the shielded vortex with r2/r1 = 1.1,
|q2/q1| ' 3 at t = 3. Top: deformation in physical space ∆r vs. the local polar angle θ, bottom: Amplitude of the Fourier

modes |∆̂r| vs. the azimuthal wave number m (only small m shown). (Colour online).

figure 7. The results show that even at early stage, many modes of instability, with azimuthal
wave numbers up to at least 10, are developing simultaneously.

Next, we illustrate an example where r2/r1 = 1.6. In this case, |q1| > |q2| with q2 ' −q1/3
in figure 8. This corresponds to a thicker shield of weaker PV. The volume of the spherical
shield is three times the volume of the core of the vortex. Even in this case, the structure is
strongly unstable, albeit to fewer modes of instability compared to the two previous examples.
The spatial structure of the vortex is less complex as it evolves in time. Nonetheless, the
instability leads to the break-up of the vortex. The main mode of instability has a azimuthal
wave number m = 2. This is confirmed by the analysis of the contour deformation at early
times presented in figure 9, where we clearly see the dominance of the mode m = 2. The
main structure is first elongated (in a way consistent with the mode m = 2) until it breaks
into two main parts together with small filaments and PV debris (late evolution not shown).
For each main structure formed, a part of the peripheral PV reorganises itself as a pole on
the side the core. The core itself is now only shielded by a thinner layer of opposite-signed
PV, hence is globally ‘signed’ as the shield no longer compensates its core PV. Each structure
resembles a dipole which translates away form the centre of the domain. Note that a similar
late behaviour is observed for r2/r1 = 3

√
2, however the formation of the dipole-like structures
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Figure 8. Top view of the PV contours for a piecewise uniform spherical vortex with a medium-thickness, weak PV,
shield. Blue contours corresponds to the negative PV jumps of the initial outer shell while the red contours indicate
positive PV jumps of the inner core. The case presented corresponds to r2 = 1.6, with q2 ' −q1/3. Left: t = 8, right:
t = 11. (Colour online).

Figure 9. Deformation of the PV jumps defining the horizontal mid-section of the shielded vortex with r2/r1 = 1.6,
|q2/q1| =' 1/3 at t = 7.5. Top: deformation in physical space ∆r vs. the local polar angle θ, bottom: Amplitude of the

Fourier modes |∆̂r| vs. the azimuthal wave number m (only small m shown). (Colour online).

is less clear as more modes of instability are competing in the evolution of the flow. In the
former case with r2/r1 = 1.1, the structure becomes extremely complex very rapidly, limiting
the re-organisation of the structure into dipoles. Indeed instabilities with higher wave numbers
tend to generate sub-structures at finer scales.

5. Extension to spheroids

We now briefly extend our results to two classes of spheroidal vortices of aspect ratio α = h/r,
where h is the half-height of the structure and r is their mean horizontal radius. We show
that the overall behaviour observed in the previous section is generic and not specific to the
spherical geometry. We impose α = h1/r1 = h2/r2 for the sake of simplicity (i.e. the core and
the shield have the same aspect ratio). The volume on the core is therefore V1 = 4πr2

1h1/3 =
4παr3

1/3 while the outer shield has a volume V2 = 4πα(r3
2− r3

1)/3. Therefore the volume ratio
is V2/V1 = (r2/r1)3− 1 as for the spherical case. The only difference with the spherical case is
that we either squash (h/r < 1) or stretch (h/r > 1) the vertical axis of the original spherical
vortex. The growth rates for h/r = 0.5 and h/r = 2 vs. r2/r1 are presented in figure 10.
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Figure 10. 10 largest non dimensional growth rates σr/q1 for the instability modes of a piecewise uniform, shielded

spheroidal vortices vs. ρ−1
r = r2/r1 the ratio of the radii of the outer shell to the inner core vortex. Left: h/r = 0.5,

right: h/r = 2.

Figure 11. PV contours defining the vortex boundary for |q2/q1| = 1, r2 = 3
√

2r1 at t = 7.5. Left: h1/r1 = h2/r2 = 0.5,
orthographic view at 45◦ from the vertical. Right: h1/r1 = h2/r2 = 2, orthographic view at 15◦ from the vertical.

The overall situation is similar, with strong instabilities associated with small values of
r2. The smaller the aspect ratio h/r is, the wider the range r2 for instability is. The weak,
slowly decaying main modes which are still unstable at large values of r2 are non-destructive
modes with an azimuthal wave number m = 1. In the case of h/r = 2 though, there is still
a secondary unstable mode with m = 2. This mode is destructive, and is illustrated in the
appendix A for r2/r1 = 2.

We next illustrate the nonlinear evolution of the spheroidal shielded vortices when they
are unstable. In the first example, we set r2 = 3

√
2r1 such that q1 = −q2. We consider two

cases, one with h/r = 0.5, and one with h/r = 2. Results are presented in figure 11. The
main influence of the aspect ratio is seen to be the preferred (or most amplified) mode. The
dominant mode for h/r = 0.5 is m = 3. The vortex eventually breaks asymmetrically into
three compound structures. Again, the asymmetry is the result of the influence of other modes.
For h/r = 2, the structure breaks into two main structures due to the preponderance of the
mode m = 2. Again in this case, for each secondary structure created, the centre of PV of
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Figure 12. 10 largest growth rates for the instability modes of a piecewise uniform, laterally shielded cylindrical vortex
(with h1/R1 = 1) vs. R2/R1 the ratio of the horizontal radii of the outer shell to the inner core vortex.

the positively signed-PV and negatively signed PV are offset, creating a dipolar effect which
allows the structures to move away from the centre of the domain (and away from each other).

6. Case of laterally shielded PV cylinders

We next confirm that the cylindrical shielded vortices have similar properties. This is of
course expected from the known results in two-dimensional and shallow water models. The
instability of such configurations is, for example, addressed in Flierl (1988) in shallow water,
and by Carton and Legras (1994) in two dimensions. In order to remain close to the spherical
vortices, we consider a cylindrical inner core of aspect ratio h1/R1 = 1, where h1 is the half
height of the cylinder and R1 is its horizontal radius of the inner core. The outer shield has
the same height h2 = h1 and has a radius R2. Again we impose that the volume-integrated
PV is zero by

q1R
2
1 + q2(R2

2 −R2
1) = 0 . (12)

In this case, this means that the surface integrated PV at each vertical level is zero. As before
the vortices are defined by two PV jumps δq1 and δq2 such that q2 = δq2, and q1 = δq1 + δq2.
We set δq1 = 4π, h1 = R1 = 1, and vary R2. The result of the linear stability analysis are
presented in figure 12. Overall the instability diagram exhibits the same generic pattern. For
small values of R2 (i.e. thin, intense outer shield), the structure is strongly unstable (many
modes of instability with large growth rates) and the vortices become less unstable (fewer
modes with smaller growth rates) as the shield is made thicker and its PV decreased.

An illustration of the flow evolution for q2 = −q1, (R2 =
√

2R1) is proposed in figure 13.
The core and the outer shield deform. The deformation is dominated by an azimuthal mode
m = 2. This is confirmed quantitively by the analysis of the deformation modes which develop
in the nonlinear simulation presented in figure 14. The structure eventually breaks into two
parts which move apart from one another, showing a behaviour similar to pairs of vortex
dipoles. This is very similar to what is observed in two-dimensions.
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Figure 13. Top view of the PV contours for a piecewise uniform cylindrical vortex with a medium-thickness, weak PV,
shield. Blue contours corresponds to the negative PV jumps of the initial outer shell while the red contours indicate
positive PV jumps of the inner core. The case presented corresponds to R2/R1 =

√
2, with |q2/q1| = 1. Left: t = 20,

right: t = 25. (Colour online).

Figure 14. Deformation of the PV jumps defining the horizontal mid-section of the shielded cylindrical vortex with
R2/R1 =

√
2, |q2/q1| = 1 at t = 18.5. Top: deformation in physical space ∆r vs. the local polar angle θ, bottom:

Amplitude of the Fourier modes |∆̂r| vs. the azimuthal wave number m (only small m shown). (Colour online).

7. Periodicity

The final part of the present research consists in a brief exploration of the effects of finite
Rossby and Froude numbers on the evolution of the flow. For this, we use the numerical
method developed by Dritschel and Viùdez (2003). The method is semi-Lagrangian and relies
on the (spectral) inversion of the dynamical fields on a periodic grid. Before turning our
attention to this problem, we illustrate the effects of periodicity in the quasi-geostrophic
regime. In this regime, we can compare the results from our purely Lagrangian approach
where the flow is explicitly unbounded, to the results obtained using the Contour-Advective
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Figure 15. Deformation of the horizontal mid-section contours for CASL simulations for a spherical shielded vortex with
r2/r1 = 3

√
2 and |q2/q1| = 1 for r1 = 1 and t = 5 (top left), r1 = 0.75 and t− 5 (top right), r1 = 0.5 and t = 4.5 (bottom

left). For r1 = 0.5, at t = 5 the contour deformation is already no longer a single-valued function of θ. Bottom right:
r1 = 0.75 at t = 5, with azimuthal mode m = 2 forced initially, see details in the text. (Colour online).

Semi-Lagrangian algorithm (CASL) (see Dritschel and Ambaum (1997) for details) which
imposes periodic boundary conditions.

To this purpose, we use a generic example of a spherical shielded vortex with r2/r1 = 3
√

2
and |q2/q1| = 1, as used in figures 4 and 5. We perform CASL simulations with a triply periodic
inversion (coarse) grid with 2563 nodes in a physical domain D of size (2π)3. The effects of
the periodic images of the shielded vortex increases as the the size of the structure increases
in the computational box. On the other hand, for a fixed grid resolution, the accuracy of the
description of the vortex decreases as the size of the vortex is decreased (fewer grid points map
the vortex). A compromise between accuracy and adverse effects of periodicity has to be made.
We illustrate the results from four calculations in figures 15 and 16 for three different vortex
sizes. Figure 15 shows the deformation modes on the horizontal mid-section contours at early
times. Figure 16 illustrates the overall shape of the structures. They correspond to r1 = 1,
r1 = 0.75, and r1 = 0.5. Recall that this equilibrium is unstable to modes m = 3, m = 4 and
m = 2. In the unbounded calculation (see section 4), the nonlinear deformation of the contour
at early stage was dominated by m = 2. In the periodic calculation we do not introduce an
initial perturbation on the vortex. The modes of instability are seeded by numerical noise and
the geometry of the flow. We see from both figures 15 and 16 that the periodic conditions
are naturally forcing the mode m = 4. Since m = 4 is, in the linear theory, the second most
unstable mode, it dominates the early evolution of the flow. This is true for all three initial
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Figure 16. Top view on the vortices for CASL simulations for a spherical shielded vortex with r2/r1 = 3
√

2 and |q2/q1| = 1
for r1 = 1 (top left), r1 = 0.75 (top right), r1 = 0.5 (bottom left). Bottom right: r1 = 0.75 at t = 5, with azimuthal
mode m = 2 forced initially, see details in the text. (Colour online).

values of the radius r1 used. The main difference between the three cases, is that the smaller
the core is, the faster the deformation grows. The slowing down of the development of the
modes when increasing the size of the vortex is related to a confinement effect associated with
the surrounding periodic images. However, qualitatively, the three results are similar, at least
at the stage of the destabilisation of the vortex, which is our main focus. We can however
control the early evolution by introducing an initial perturbation to the flow. The bottom
right frame of figures 15 and 16 illustrates a case (for r1 = 0.75) where the horizontal contours
are initially deformed to be elliptical. The elliptical contours have with an aspect ratio of the
semi-axis lengths of 1.02, with a phase of π/2 between the deformation of the inner and outer
contours. This is, at leading order, equivalent to forcing the azimuthal mode m = 2. The flow
then amplifies the perturbation provided as expected and the mode m = 2 dominates the flow
evolution. This shows that the underlying dynamics of the flow is not altered by the periodic
conditions. In absence of explicit deformation of the initial vortex, periodicity favours the mode
m = 4 simply because it is seen as a perturbation with m = 4 by the vortex. As a comprise
between accuracy of the vortex description and effects of periodicity we use r1 = 0.75 for our
calculations at finite Froude and Rossby number. First, we do not introduce any additional
perturbation to the initial conditions (unforced dynamics) to minimise the initial disturbances
on the system. In a second part, we introduce an explicit, small yet finite amplitude, initial
disturbance to promote the development of one of the unstable modes available (recall that
more than one mode is linearly unstable in the QG regime).



December 19, 2016 Geophysical and Astrophysical Fluid Dynamics GGAF-2016-0014-Reinaud

16 J.N. Reinaud

Figure 17. Non hydrostatic shielded vortex with r2/r1 = 3
√

2 and |q1/q2| = 1. The vortex core is a cyclone, while the
outer shield has anti-cyclonic PV. Frmax (black), Romin (blue) and Romax (red). Left: Roq = 0.125. Middle panel:
Roq = 0.2 (dashed), 0.25 (solid), 0.3 (dotted). Right Roq = 0.375. (Colour online).

8. Shielded vortices at finite Rossby and Froude numbers

8.1. Unforced dynamics

We next illustrate the effect of finite Rossby and Froude numbers on the evolution of the flow.
For the sake of simplicity, we focus on one geometry for the shielded vortex while varying the
Rossby number. We set r1 = 0.75, r2 = 3

√
2r1, such that |q1/q2| = 1. Contrarily to the quasi-

geostrophic case, at finite Rossby number, there is a natural dynamical asymmetry between
the cyclonic and anti-cyclonic motions.

Following the study in the QG regime, f and N are assumed constant, and the vertical
direction is stretched by the ratio N/f . In our study, we set f/N = 0.1 for convenience.
It should be noted that Dritschel and McKiver (2015) showed that f/N has only a weak
influence on the basic properties of geophysical turbulence. We therefore expect that our
specific choice of f/N allows to capture the generic properties of the shielded vortex in the non-
hydrostatic regime. The numerical method uses as prognostic variables Ertel’s PV anomaly q
and ageostrophic vorticity Ah which is the horizontal component of the vector

A ≡ ω
f

+
∇b

f2
,

where ω = (ξ, η, ζ) is the relative vorticity and b is the buoyancy anomaly. The PV is materially
conserved and is followed in a Lagrangian way, while Ah is represented on a Eulerian grid.
These two fields can be inverted to obtain a vector potential ψ from which both u and b
derive. Details of the governing equations, not reproduced here, can be found in Dritschel and
Viùdez (2003). As mentioned in the previous section, the inversion procedure is performed
in spectral space. We used an inversion (coarse) grid of dimension 1283 mapping the triply
periodic computational box D of physical dimension (2π)3. The time scale T of the problem
is set by N−1. We use N = 2π.

Simulations are performed at a given PV-based Rossby number Roq ≡ q1/f . The inequality
Roq > 0 means that the vortex core is a cyclone while the outer shield is anti-cyclonic. The
alternative inequality Roq < 0 corresponds to the reverse situation with an anti-cyclonic core
and cyclonic outer shield. To control numerical stability, a bi-harmornic diffusion is applied
to Ah, where the maximum damping rate (on the highest wavenumber in spectral space) is
set to 1 + Ro4

q per inertial period (see McKiver and Dritschel 2008). The spectral fields are
also de-aliased by the 2/3-rule for the computation of nonlinear terms.

We define the maximum Froude number Frmax, and minimum (resp. maximum) Rossby
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Figure 18. Non hydrostatic shielded vortex with r2/r1 = 3
√

2 and |q1/q2| = 1. The vortex core is a anti-cyclone, while
the outer shield has cyclonic PV. Frmax (black), Romin (blue) and Romax (red). Left: Roq = −0.125. Middle panel:
Roq = −0.2 (dashed), −0.25 (solid), −0.3 (dotted). Right Roq = −0.375. (Colour online).

Figure 19. Non hydrostatic shielded vortex with r2/r1 = 3
√

2 and |q1/q2| = 1. Deformation of the horizontal mid-section
contours at tqg = 5. Inner core (red), outer shield (black). Top panels: deformation (departure of the local radius from

the mean radius) in physical space ∆r vs. θ. Bottom panels: Amplitude of the Fourier modes |∆̂r| vs. the azimuthal
wave number m (only small m shown). Left Roq = 0.125, right Roq = 0.2 (dashed), 0.25 (solid), 0.3 (dotted). (Colour
online).

numbers Romin (resp. Romax)

Frmax(t) ≡ maxx∈D
|ωh(x, t)|

N
, (13)

Romin(t) ≡ minx∈D
ζ(x, t)

f
, Romax(t) ≡ maxx∈D

ζ(x, t)

f
. (14)

where ωh is the horizontal part of ω
The time evolution of these quantities is presented in figure 17 for Roq > 0, and in figure

18 for Roq < 0. To compare cases with different values of |Roq| we use an equivalent QG-time
tqg = tq1/N = tRoq(f/N). Both cases indicate that the peak vertical vorticity is found in the
outer shield as |Romin| > Romax when Roq > 0 (resp. Romax > |Romin| when Roq < 0). The
results also show that (in general) the peak horizontal vorticity tend to decrease with time
(although the time evolution is not monotonous), while the peak vertical vorticity in the core
(associated Romax for Roq > 0, |Romin| for Roq < 0) tend to overall increase in magnitude.

We next turn our attention to the deformation of the horizontal mid-section contours at early
times. Overall, all cases exhibit a main deformation for the mode m = 4, similarly to what was
observed in the (periodic) QG limit. At early stage (tqg = 5), the case |Roq| ' 0.25 exhibits
the largest contour deformations. There is no significant difference between the magnitude of
the deformation of the inner and the outer contours. However, for fixed |Roq|, the deformation
for the anti-cyclonic PV shield (Roq > 0) is slightly larger than in the cyclonic shield case
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Figure 20. Non hydrostatic shielded vortex with r2/r1 = 3
√

2 and |q1/q2| = 1. Deformation of the horizontal mid-section
contours at tqg = 5. Inner core (red), outer shield (black). Top panels: deformation (departure of the local radius from

the mean radius) in physical space ∆r vs. θ. Bottom panels: Amplitude of the Fourier modes |∆̂r| vs. the azimuthal
wave number m (only small m shown). Left Roq = −0.125, middle Roq = −0.2 (dashed), −0.25 (solid), −0.3 (dotted),
and right Roq = −0.375. (Colour online).

Figure 21. Vertical velocity rms wrms vs. time tqg for Roq > 0 (red) and Roq < 0 (black). |Roq | = 0.125 (lower solid
lines), 0.2 (dashed lines), 0.25 (dot-dashed lines), 0.3 (dotted lines), and 0.375 (upper solid lines). (Colour online).

(Roq < 0).
The root mean square of the vertical velocity wrms(t) in the horizontal mid-section of the

computational domain is plotted vs tqg in figure 21. The vertical velocities increase with |Roq|
which is consistent with the Rossby and Froude scaling of the non-hydrostatic equations.
Scaling analysis shows that the scale of vertical velocity W relates to the horizontal veloc-
ity scale U through W ∼ Ro−1Fr2HU/L, where L (resp. H) is a characteristic horizontal
(resp. vertical) length scales. In our case, we see that Ro ∼ Fr, hence Ro−1Fr2 ∼ Ro. It is
also shown that wrms is larger for Roq > 0. The vertical velocity can be seen as a indicator of
inertia-gravity wave activity (although of part of w is due to balanced motion). It is also seen
that cases with Roq > 0 produces on average higher vertical velocities, although the velocity
remains very small in amplitude.

Figures 22-27 illustrate the time evolution of the shielded vortex for Roq =
−0.125, 0.125, −0.25, 0.25, −0.375, 0.375. The figures show a top view of the vortex, a hori-
zontal cross-section (passing thought the centre of the vortex) of the vertical vorticity ζ and
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vertical velocity w. The frames confirm that, at early stages, the instability grows faster for
Roq > 0 as the deformation is more pronounced at tqg = 5. This is in particular visible on ζ,
see middle panels of figures 22-27. The right panels of figures 22-27 show that at early stages,
the vertical velocity w exhibit a clear wave pattern, with waves emitted by the destabilising
vortex. Spontaneous emission of inertia-gravity waves by balanced (PV-controlled) motion is
a well-known phenomena (see in particular Viúdez and Dristchel 2006, Viúdez 2006, Viúdez
2007, Pallàs-Sanz and Viùdez 2008) and can be due of the unsteady advection of PV.

At later stages of the flow evolution (in particular, for Roq = 0.25) w has a spatial pattern
mostly consisting of large scale features. These are likely to be associated with a balanced
motion. The late evolution is highly nonlinear and therefore different in all cases run, despite
the similarity of the initial conditions. This is expected in a turbulent-like evolution. However,
a general pattern emerges. Mode m = 4 dominates during the early stages, then the later
evolution of the flow consists in the formation of two structures where the vorticity field
has re-organised itself into dipolar structures. This is overall very similar to the QG regime
discussed in the previous sections. Overall the finite Rossby and Froude numbers, at least in
the range of values examined, have not affected the underlying QG dynamics significantly.

8.2. Forced dynamics

We next introduce an initial, small yet finite amplitude perturbation to the vortex by deform-
ing the contours according to

R′i(z) = Ri
[
1 + ε cos(kfθ + θ0

i )
]
,

where R2
i = r2

i − z2, is the local horizontal radius of the spherical PV jump i = 1, 2, θ
is the local azimuthal angle, θ0

i is a phase, and kf is the wavenumber of the monochromatic
perturbation. The phase θ0

i is given by the linear stability analysis of the QG case. In practice,
only θ0

2 − θ0
1 matters and is equal to ±π/2, the sign depending on the sign to Roq. We set

ε = 0.005. i.e. 5% of the unperturbed radius. This amplitude is large enough to guarantee
that the prescribed mode dominates the dynamics. We investigate the nonlinear evolution for
kf = 2, 3, and 4, for for values of the Rossby number Roq = ±0.125, ±0.25 and ±0.375. For
each choice of Roq we therefore run 3 simulations, one for each value of kf .

Figure 28 shows the amplitude of the Fourier modes for the deformation of the central inner
contour at tqg = 2. Results, not shown, for the outer contour are similar. We see that, at
early stage, the mode kf = 3 is the most amplified, followed by kf = 4, then kf = 2. This
is consistent with the linear stability analysis in the QG regime. We also see that, overall,
at the same rescaled time tqg, the amplitude of the mode is only weakly dependent on |Roq|
for given kf . It seems however, that kf = 2, and 3 is marginally favoured for Roq < 0 while
kf = 4 is favoured by Roq > 0. It should be noted however that the differences are very small.
Nevertheless, if there is a weak dependence of the stability properties of the non-hydrostatic
shielded vortex, it is mode-dependent.

The vertical velocity rms, wrms, is plotted vs. time in figure 29. Recall that the results are
plotted against a rescaled time scale tqg which compensates for the value of Roq. Hence, recall
that the structure destabilises faster (in buoyancy period) for higher values of |Roq|. It is seen
again that the vertical velocities remain very small in the early stages of the destabilisation of
the vortex, and only increase (while remaining small) at the late stage of the evolution flow,
when the flow is governed by the complex interaction of smaller scale vortices and PV debris.
Again, larger values of the Rossby number generate more vertical motion, as expected. The
most noticeable differences between the cases Roq < 0 and Roq > 0 do not appear during
the early stage (nearly linear regime). Differences are more pronounced at later stage of the
nonlinear evolution.

Figures 30-31 provide a horizontal cross-section of the vertical component of the relative
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Figure 22. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2, Roq = −0.125 at, from top to
bottom t = 5, 10, and 20. Left panel: Top view on the contours defining the vortex. Middle panel: vertical vorticity ζ
in the horizontal mid-section of the vortex. Right panel: Vertical velocity w in the horizontal mid-section of the vortex.
(Colour online).

vorticity ζ in the mid-section in the structure for the two cases Roq = ±0.375. We can see
that the details of the time evolution differ in the two cases illustrated. This is particularly
true for the cases forced with the monochromatic mode kf = 2, and kf = 3. For kf = 2 and
Roq < 0, the positive PV from the shield tends to reorganise itself rapidly into two vortices at
the edges of the now deformed inner core. It does this faster than the negative vorticity of the
shield does for Roq > 0, forcing the inner core differently. For Roq < 0, the inner (negative)
PV remains near the centre as a (deformed) monopole. Then, at later stage the two positive
poles stemming for the shield become satellites of the central (negative PV) pole. On the
other hand, for Roq > 0, and kf = 2, some of the peripheral PV of the central (positive) core
reorganises as two secondary poles located nearby the (negative) PV poles stemming from the
shield. These structures form dipoles which move away from the centre, elongating the central
part of the inner core. For kf = 3, the shield first reorganises as three satellite poles located
aound the core. For Roq > 0, more of the central, inner core PV seems to pulled away by the
satellite poles generated by the destabilisation of the shield than in the counter situation with
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Figure 23. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2, Roq = 0.125 at, from top to
bottom t = 5, 10, and 20. Left panel: Top view on the contours defining the vortex. Middle panel: vertical vorticity ζ
in the horizontal mid-section of the vortex. Right panel: Vertical velocity w in the horizontal mid-section of the vortex.
(Colour online).

Roq < 0.
For reference, the nonlinear evolution of the forced shielded vortices within the quasi-

geostrophic regime is proposed in the appendix B.

9. Conclusion

This paper has addressed the linear stability and the nonlinear evolution of piecewise uniform
potential vorticity, shielded, spherical vortices. This study has focused on the situation where
the overall volume-integrated PV is zero. This study has shown that such quasi-geostrophic
vortices are unstable when the PV ratio |q2/q1| > 0.2136 (equivalent to the radius ratio
r2/r1 < 1.7844). Shielded vortices with larger radius ratio are linearly stable. The instabilities
lead to the destruction of the structure, and the resulting secondary vortices do not resemble
shielded vortices.
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Figure 24. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2, Roq = −0.25 at, from top to
bottom t = 5, 10, and 20. Left panel: Top view on the contours defining the vortex. Middle panel: vertical vorticity ζ
in the horizontal mid-section of the vortex. Right panel: Vertical velocity w in the horizontal mid-section of the vortex.
(Colour online).

It has been confirmed that the instabilities also affect spheroidal vortices as well as laterally
shielded cylindrical vortices (as expected). For spheroidal vortices, the aspect ratio has a strong
impact on the nature of the deformation. This results from differences in the amplification
rate of the various unstable wave numbers.

We have investigated the evolution non-hydrostatic spherical shielded vortices in the case
the magnitude of the PV anomaly in the core is the same as in the shield.

Overall, the non-hydrostatic stability properties of the vortex appear similar to the QG
one, at least at the early linear stages. The nonlinear regime is, on the other hand, affected
by the polarity of the shielded vortex. The formation of the first secondary structures stem-
ming from the destabilisation of the shield influences the way the whole structure evolves at
later stages. This stage depends also on the mode amplified, which sets the number of sec-
ondary satellite cores generated around the inner core, as well as their topology. This, in turn,
influences in a non trivial way, the further evolution of the inner core. In other words, the non-
linear interaction shows the interplay between the basic balanced dynamics of the underlying



December 19, 2016 Geophysical and Astrophysical Fluid Dynamics GGAF-2016-0014-Reinaud

Geophysical and Astrophysical Fluid Dynamics 23

Figure 25. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2, Roq = 0.25 at, from top to
bottom t = 5, 10, and 20. Left panel: Top view on the contours defining the vortex. Middle panel: vertical vorticity ζ
in the horizontal mid-section of the vortex. Right panel: Vertical velocity w in the horizontal mid-section of the vortex.
(Colour online).

PV-controlled destabilisation (which is close to the QG dynamics) and dissymmetrization of
behaviour (cyclonic/anti-cyclonic PV) associated with the ageostrophic part of the dynamics.

Further investigation of vortices in the non-hydrostatic regime is necessary. For example,
Sutyrin and Radko (2016) recently showed that Gaussian vortices (which have vertical vor-
ticity of both sign) can be stabilised by adapting the stratification and enforcing that the PV
is single-signed.
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Figure 26. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2, Roq = −0.375 at, from top to
bottom t = 5, 10, and 20. Left panel: Top view on the contours defining the vortex. Middle panel: vertical vorticity ζ
in the horizontal mid-section of the vortex. Right panel: Vertical velocity w in the horizontal mid-section of the vortex.
(Colour online).
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Figure 27. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2, Roq = 0.375 at, from top to
bottom t = 5, 10, and 20. Left panel: Top view on the contours defining the vortex. Middle panel: vertical vorticity ζ
in the horizontal mid-section of the vortex. Right panel: Vertical velocity w in the horizontal mid-section of the vortex.
(Colour online).
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Figure 28. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2: Fourier modes of the deformation
of the central inner contour at tqg = 2 for kf = 2 (left), kf = 3 (centre), and kf = 4 (right), and Roq < 0 (top), Roq > 0
(bottom). |Roq | = 0.125 (blue), 0.25 (black), and 0.375 (red). (Colour online).

Figure 29. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2: Root mean square of the vertical
velocity wrms over the three-periodic domain vs. tqg for kf = 2 (left panel), 3 (central panel), and 4 (right panel). Red
curves correspond to Roq < 0 while black curves are for Roq > 0. and |Roq | = 0.125 (dotted line), 0.25 (dashed line),
0.375 (solid line). (Colour online).
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Figure 30. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2: Horizontal mid cross-section of
the vertical component of relative vorticity ζ for Roq = −0.375, and kf = 2(top row), 3 (middle row), 4 (bottom row).
Times displayed are tqg = 2 (left column), 5 (central column), and 10 (right column). (Colour online).
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Figure 31. Non-hydrostatic spherical shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2: Horizontal mid cross-section of
the vertical component of relative vorticity ζ for Roq = 0.375, and kf = 2(top row), 3 (middle row), 4 (bottom row).
Times displayed are tqg = 2 (left column), 5 (central column), and 10 (right column). (Colour online).

Appendix A: Quasi-geostrophic shielded spheroid with h/r = 2

We briefly illustrate the stability and the nonlinear evolution of the spheroid with h/r = 2,
for r2/r1 = 2. The most unstable mode is a mode m = 1 and is non-destructive. However, the
second mode is. The spatial structure for the mode is given in figure A1, and are referred to
M2I for isolated vortices (see Dritschel, Scott and Reinaud 2005, figure 3, top left).

We perform a Contour surgery simulation of the vortex. As mentioned, the first mode is a
mode m = 1 and is non destructive. The second is and breaks the vortex in the vertical, see,
figure A1(right).

Appendix B: Forced quasi-geostrophic shielded vortices

For illustration purposes, we provide in this appendix time snapshots of the evolution of
the forced shielded vortex in the quasi-geostrophic regime. The simulations are run with the
three-periodic quasi-geostrophic CASL algorithm, and the initial conditions are the same PV
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Figure A1. Left: Reconstructed deformation mode on the boundary of the inner vortex for secondary unstable modes
(ordered from left to right from most to least) for the piecewise uniform shielded vortex, with q1/q2 = −7, r2/r1 = 2,
and h/r = 2 The vertical axis of each frame corresponds to the vertical coordinate along the inner vortex surface, and
the horizontal axis is the azimuthal angle around the vortex surface. The lines correspond to contours of iso-value of
deformation amplitude. Right: snapshot of the vortex at t = 100. The vortices are viewed orthographicaly at an angle of
75◦ from the vertical.

contours as the ones used for the non-hydrostatic simulations.
Figure B1 shows the time evolution of the shielded vortex for the three simulations with kf =

2, 3, and 4 respectively. Qualitatively the evolution of the flow is similar to the non-hydrostatic
case. Satellite multipoles are formed, and their number depends on the wavenumber of the
perturbation. A central structure remains and is strongly affected by the shear and straining
field associated with the satellite vortices.
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Figure B1. Top view on the PV contours defining the quasi-geostrophic shielded vortex with |q2/q1| = 1 and r2/r1 = 3
√

2,
and for kf = 2 (top row), 3 (middle row), and 4 (bottom row). The time displayed are tqg = 2, 5, 10 as in figures 30-31.
(Colour online).


