
1

A Learning Based Framework for ImprovingQuerying on
Web Interfaces of Curated Knowledge Bases

WEI EMMA ZHANG AND QUAN Z. SHENG, Macquarie University

LINA YAO, The University of New South Wales

KERRY TAYLOR, Australian National University

ALI SHEMSHADI, The University of Adelaide

YONGRUI QIN, University of Huddersfield

Knowledge Bases (KBs) are widely used as one of the fundamental components in Semantic Web applications

as they provide facts and relationships that can be automatically understood by machines. Curated knowledge

bases usually use Resource Description Framework (RDF) as the data representation model. In order to query

the RDF-presented knowledge in curated KBs, Web interfaces are built via SPARQL Endpoints. Currently,

querying SPARQL Endpoints has the problems like network instability and latency, which affect the query

efficiency. To address these issues, we propose a client-side caching framework, SPARQL Endpoint Caching

Framework (SECF), aiming at accelerating the overall querying speed over SPARQL Endpoints. SECF identifies

the potential issued queries by leveraging the querying patterns learned from clients’ historical queries and

prefecthes/caches these queries. In particular, we develop a distance function based on graph edit distance to

measure the similarity of SPARQL queries. We propose a feature modelling method to transform SPARQL

queries to vector representation that are fed into machine learning algorithms. A time-aware smoothing-based

method, Modified Simple Exponential Smoothing (MSES), is developed for cache replacement. Extensive

experiments performed on real world queries showcase the effectiveness of our approach, which outperforms

the state-of-the-art work in terms of the overall querying speed.

Q. Z. Sheng’s work has been partially supported by Australian Research Council (ARC) Discovery Grant DP140100104 and

Future Fellowship Project FT140101247.

Author’s addresses: W. E. Zhang, Q. Z. Sheng, Department of Computing, Macquarie University; L. Yao, School of Computer

Science and Engineering, The University of New South Wales; K. Taylor, Research School of Computer Science, Australian

National University; A. Shemshadi, School of Computer Science, The University of Adelaide; Y. Qin, School of Computing

and Engineering, University of Huddersfield.



1 INTRODUCTION
Knowledge Bases (KBs) are computer systems that hold knowledge or facts in structured or

unstructured way. They are widely used as one of the fundamental components in Semantic

Web applications as they provide facts and relationships that can be automatically understood by

machines (e.g., computer programs). Knowledge bases can be generally categorized into curated
KBs and open KBs. Curated KBs are built from collaboratively and manually collected Web corpus

(i.e., Wikipedia
1
) and represent knowledge in the structured form. On the other hand, open KBs

are constructed by assertions that are automatically extracted from Web pages. The lack of well-

structured schema of open KBs makes querying open KBs very different from querying curated

KBs. Only simple queries without joins or constraints can be answered by open KBs [3, 28]. Our

work focuses on querying curated KBs because curated KBs are more widely adopted and support

complex queries. We will use KBs and curated KBs interchangeably hereafter.

Figure 1 illustrates a generic architecture for querying curated KBs. In the knowledge bases layer

(bottom), curated KBs (e.g., DBpedia
2
) usually use Resource Description Framework (RDF) as the

data representation model because RDF has been accepted as the standard model by W3C
3
. RDF

encodes a relationship (or fact) with a tri-ary tuple (i.e., triple): (subject, predicate, object), (s, p, o) for
short. Moreover, RDF allows the sharing and reuse of data across boundaries [10]. In order to allow

users perform querying over knowledge bases, a service is built upon each knowledge base. The

service is called SPARQL (SPARQL Protocol and RDF Query Language) Endpoint and is realised

by the HTTP bindings provided by KBs. SPARQL includes two parts: a standard query language

for RDF and the protocol, which uses Web Services Description Language (WSDL) to describe a

means for conveying SPARQL queries to an SPARQL query processing service and returning the

query results. SPARQL Endpoint also realises the potential of federated SPARQL through SERVICE

keyword introduced in SPARQL 1.1 specification, whereby several SPARQL Endpoints are combined

allowing complex queries to be run across a number of KBs. To the clients (i.e., query issuers), a

SPARQL Endpoint acts as a machine-friendly interface towards each knowledge base.

Web Browser API

Optimizer

Querying Layer

Knowledge Bases  
Layer

Fig. 1. Querying Curated Knowledge Bases

1
https://en.wikipedia.org/wiki/Main_Page

2
http://wiki.dbpedia.org/

3
https://www.w3.org/

https://en.wikipedia.org/wiki/Main_Page
http://wiki.dbpedia.org/
https://www.w3.org/


In the querying layer (top), a natural language question is transformed into a structured query

which is executed against a KB and the answers are returned. Currently, querying SPARQL End-

points has the problems like network instability and latency, which affect the query efficiency.

Dumping the data and setting up local SPRAQL Endpoint is a solution, but data in a local Endpoint

is not up-to-date and hosting an Endpoint requires expensive infrastructural support. Many re-

search efforts have been dedicated to circumvent this problem [16, 17, 25–27] and caching is one of

the popular directions [23]. While most research efforts focus on providing a server-side caching

mechanism, being embedded in triple stores, client-side caching has not been fully explored [17].

Server-side caching is usually embedded in the background databases. Sometimes they are part

of the query optimizer. Server-side cache is well developed but it is not customized to catch the

different querying patterns from clients. Moreover, the design and development of server-side

cache highly depend on the knowledge of background databases/servers. Therefore, it is not easy

to develop a generic approach. On the other hand, client-side caching is a technique from Web

applications, where the background databases/servers are black boxes to the Web users. Using

client-side caching avoids making repeated requests to the servers and can quickly get answers.

In addition, it is possible to collect client’s querying behaviours. In this article, clients refer to the

users who perform the querying on SPARQL Endpoints. A user can be a human or a machine.

Our approach, SPARQL Endpoint Caching Framework (SECF), adopts the client-side caching

idea and is domain-independent. In other words, our approach does not require the knowledge

on what kind of data and how they stored in the knowledge base. SECF caches the (query, result)

pairs for current processing query and its similar queries. This is motivated by the observation that

end users who consume RDF-modelled knowledge typically use programmatic query clients, e.g.,

software or services to retrieve information from SPARQL Endpoints [16]. These queries usually

have repetitive query patterns and only differ in specific elements of a triple pattern (a triple pattern

is similar to a triple, except that at least one element namely subject, predicate or object, is a

variable). Moreover, they are usually issued subsequently. To illustrate, Figure 2 gives two example

queries that are structurally similar. Query 1 retrieves start year (i.e., the year their acting careers

started) from the actors of the movie Rain Man and the year should be later than 1980. Query 2

requests similar information but for a different movie (Eyes Wide Shut). The differences between
these two queries are the movie names (the underlined terms) and the year in the Filter expression.

By considering these observations, we propose to prefetch and cache the query results of similar

queries in advance. Since the subsequent queries have high possibility to be the similar queries

that are cached, the results will be returned immediately (if cached) rather than being retrieved

from SPARQL Endpoints. Therefore, the average query response time will be reduced.

The problem then turns into how to find similar queries that are potential subsequent queries. To

this end, SECF utilizes machine learning techniques to learn from the historical queries and captures

Query 1
SELECT ?actor ?year WHERE {
:Rain_Man dbpedia-owl:starring ?actor .
?actor dbpedia-owl:activeYearsStartYear ?year .
}
FILTER(?year>1980)

Query 2:
SELECT ?actor ?year WHERE {
:Eyes_Wide_Shut dbpedia-owl:starring ?actor .

?actor dbpedia-owl:activeYearsStartYear ?year .
}
FILTER(?year > 1960)

Fig. 2. Example of Similar Queries. The queries only differ in the movie name and year.



the querying characteristics of the users. The key challenge centres on how to transform queries

into vector representation that can be used by learning algorithms. We propose Template-based
feature modelling to transform a SPARQL query into a vector using the distances between this

query and a set of “template queries". Each distance is considered as a feature value in this vector.

This modelling approach drastically reduces the computation time compared to the state-of-the-art

clustering-based feature modelling presented in [7]. SECF then modifies the k-Nearest Neighbour
(k-NN) [1] model to learn from the feature vectors of training queries and to suggest similar queries

of a new issued query Q . The suggestion process runs in the background thread. The training set

will be updated periodically to reflect the changes. Thus, the training process will accordingly

perform in a periodical manner. After identifying similar queries, SECF prefetches the results of

these similar queries and caches the (query, result) pairs.

As the cache space is limited, less useful data should be removed from the cache. A cache

replacement algorithm is introduced for this purpose. However, techniques for relational databases

are page-based (e.g., LRU-k [20]), which cannot be directly applied into our client-side caching

framework because our caching is record based. Moreover, our client-side application is not based

on relational database management system (RDBMS). In this article, we use a time-aware frequency
based algorithm, which leverages the idea of a novel approach recently proposed for caching in

main memory databases in Online Transaction Processing (OLTP) systems [15]. More specifically, we

propose and developModified Simple Exponential Smoothing (MSES) to evaluate the hit frequencies

of cached queries and remove the ones with the lowest frequencies from the cache.

The contributions of this work are three folds. Firstly, we address the problem of providing a

learning-based approach for accelerating query answering process for SPARQL Endpoints and

design a caching framework. The framework can be deployed as a Web browser plugin, but

ultimately we envisage it being embedded within SPARQL Endpoints that act as clients to other

SPARQL Endpoints. Secondly, SECF suggests similar queries by leveraging machine learning

techniques. The distance measurement for SPARQL queries considers both Basic Graph Patterns

(BGPs) and the most used SPARQL operators. SECF also provides a time-aware smoothing-based

cache replacement algorithm. Thirdly, we perform extensive experiments on real world queries to

showcase the effectiveness of SECF.

The remainder of this paper is structured as follows. We give some background knowledge and

overview the related work in Section 2. Then we introduce SECF and the technical details in Section

3. The experimental results are reported in Section 4. We give some discussions in Section 5 and

finally conclude this article in Section 6.

2 BACKGROUND
In this section, we briefly introduce the SPARQL query language and then we overview the related

work.

2.1 SPARQL Preliminary
The official syntax of SPARQL1.1 considers operators OPTIONAL, UNION, FILTER, SELECT and

concatenation via a dot symbol (.) to group patterns. VALUES and BIND are to define sets of variable

bindings. We use B, I , L,V for denoting the (infinite) sets of blank nodes, IRIs, literals, and variables.

A SPARQL graph pattern expression is defined recursively as follows [22]:

(i) A valid triple pattern T ∈ (IVB) × (IV ) × (IVLB) is a graph pattern,

(ii) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 UNION P2) and (P1 OP-
TIONAL P2) are graph patterns,



(iii) If P is a graph pattern and R is a SPARQL built-in condition, then the expression (P FILTER

R) is a graph pattern.

A BGP is a graph pattern represented by the conjunction of multiple triple patterns. A SPARQL

query can be decomposed into BGPs for certain operators and the result that can be regarded as a

hierarchical tree. The decomposition is defined as follows:

Definition 2.1. (SPARQL Query Decomposition) Let Q = (SQ , PQ ) be the query where SQ is the
SELECT expression and PQ = P1 ⊕ ... ⊕ Pn is the query pattern with ⊕ ∈ {AND, UNION, OPTIONAL,
FILTER, BIND, VALUES, MINUS}. When pattern feature ⊕ ∈ {AND, UNION, OPTIONAL, MINUS},
graph pattern Pi , i ∈ [1,n] can be recursively decomposed to sub-level graph patterns until the graph
pattern is a BGP which can be further decomposed to triple patterns as Pbдp,i = T1 ⊕ ... ⊕ Tk , where
⊕ = AND. When pattern feature ⊕ ∈ {FILTER, BIND, VALUES}, graph pattern Pi cannot be decomposed
to BGPs and is represented as expressions.

2.2 Related Work
Our work mainly addresses caching problems in two research areas, namely Query Caching and

Query Suggestion. We review the recent representative works of these two areas in this section.

Query caching has the rationale that it keeps the historical data for the usage of new queries. If

new queries use the same data, results can be returned immediately, reducing the overall query

response time. Query caching was originally developed in database communities and in recent

years, has been extended to triple stores that manage SPARQL queries. Martin et al. [17] first

proposed caching for SPARQL queries, in which both the complete triple query result and the

application object are cached. However, this approach only considers repeated identical queries,

while our work takes both identical and similar queries into consideration. The latter ones have

high potential to be requested. Yang and Wu [27] developed an approach that caches intermediate

result of basic graph patterns in SPARQL queries. For a new query, the approach checks if the result

of any BGP or join of BGPs of this query is cached. The hit results are joined with the other parts of

the query to form the final query result. This approach is designed to be embedded in a triple store

and works with the query processing mechanism in the triple store. Very recently, Papailiou et al.

[21] introduced canonical labelling to identify isomorphic subgraphs in SPARQL query patterns,

which are cached for subsequent querying. This solution implements a caching layer on top of

the distributed partitions and dynamically updates the contents of the cache. Verborgh et al. [26]

proposed a Linked Data Fragments (LDF) approach, aiming at improving data availability. It can also

be regarded as a caching technique because it caches fragments of queryable data from servers that

can be accessed by clients. Each client is able to process SPARQL queries on replicated fragments

cached from servers.

Query suggestion is usually adopted in search engines to better understand users’ information

needs with the ultimate goal to improve the recall of querying. Researchers recently introduce

query suggestion to improve the SPARQL querying. Lehmann et al. [14] proposed to leverage a

supervised learning framework to suggest SPARQL queries based on examples previously selected

by users. This approach narrows the range of possible answers asked by users and requires no

knowledge of the underlying schema or the SPARQL query language. Hasan [7] used a suggestion

model to predict the performance of newly issued SPARQL queries. The model is trained with

previously issued queries and corresponding query performance, e.g., query time. For new queries,

their performances can then be predicted from the trained model. The key contribution is that the

SPARQL queries are modelled as feature vectors. However, their feature modelling method is very

time-consuming. Query relaxation is closely related to query suggestion and extends the original



query to obtain more information by removing some constraints (e.g., “ages of the students in a

class" returns more data than “ages of the female students in a class" by removing the constraint

“female"). In recent years, query expansion techniques have been used by several research efforts on

SPARQL queries. Elbassuoni et al. [2] proposed multiple types of relaxation methods to improve the

recall of entity-relationship search. Lorey et al. [16] clustered similar SPARQL queries to different

templates in order to detect recurring patterns in queries. These templates can be used to expand

queries for query processing. Fokou et al. [4] investigated query relaxation over RDF data and

focused on identifying parts of SPARQL query that are responsible for the failure of the query. A

recent work proposed by Zhang et al. [29] expands a query in order to obtain accessed triples when

executing the query. Caching these accessed triples will help facilitating subsequent queries that

might need to access them. The work expands a query Q according to the triple patterns of Q . A
new query is generated by picking and modifying one of the triple patterns of Q and keeping the

other parts in Q .

3 THE SPARQL ENDPOINT CACHING FRAMEWORK
3.1 Overview
Figure 3 illustrates the working processes of SECF. We use different color of numbering to depict

the different processes in this framework. The blue numbers are about fetching query results

directly from SPARQL Endpoint. The green ones show the process that the results are returned

from the cache. The orange numbers are for the suggestion process while the yellow numbers are

for caching suggested queries into the cache. When a new query is issued, SECF first checks if

query recording is enabled ( 1○). If yes, a background process will log all queries ( 6○). The logged

queries are used for the suggestion process, including training and suggestion ( 7○). Then it checks

if an identical query (either cached as an issued query or a suggested query) has been cached ( 2○).

If not, SECF fetches ( 3○) and returns ( 3○) the results directly from the SPARQL Endpoint. These

results are cached in the cache module ( 5○). If the results are in the cache ( 8○), they are returned

immediately via the cache model ( 9○ and 10○). When query suggestion is enabled, during run-time,

suggested queries are generated for the current query in the suggestion module. The results of

these suggested queries will be retrieved (11○) from the SPARQL Endpoint in advance and cached

(12○), together with the queries in the form of (query, result) pairs (qi , ri ). The aim of prefetching and

caching similar queries in advance is to enhance the hit rate of cache (i.e., how much percentage

Query 
recording?

Query 
is cached?

Fetch 
results

Record 
historical 
queries

Query 
recording?

Fetch 
results

Cache replacement

Cache

Fetch 
results

Training 
Queries

Suggested 
queries for q

Cache Module

User

SPARQL Endpoint

results query q
Suggestion Module1

2

3

4

Y

Y

N

6

8

7

9

10

5

11

12

Fig. 3. SPARQL Endpoint Caching Framework



of queries can be answered immediately from cached results). A cache replacement algorithm is

executed when the cache is full or the number of cache queries is reached. It runs in a separate

thread so that it does not affect the query answering process.

The overall query speed depends on the hit rate of the cache. As it is observed that most

subsequent queries are similar to previous issued queries in [16], the prefetch/cache process will

increase the number of queries that are hit. If we cache the similar queries, which are potential

subsequent queries, higher hit rate can be achieved. To identify and cache similar queries, we

propose a learning based approach that consists of following three main steps:

• Step 1: Feature modelling. We propose to model SPARQL query to feature vectors that can be

fed into multiple learning algorithms. However, transforming a SPARQL query into vector

representation is a challenging problem.We first introduce the distancemeasurement between

SPARQL queries in Section 3.2 and then discuss our feature modelling approach based on

this distance in Section 3.3.

• Step 2: Training and suggestion. After obtaining the feature vectors of SPARQL queries, we

train a suggestion model using historical queries as the training set. A trained model is the

output. When a new queryQ arrives, we first transformQ to a feature vector using techniques

from Step 1. Then we feed the vector into the trained suggestion model for similar queries

recommendation. We introduce our approach in Section 3.4.

• Step 3: Cache and replacement. We prefetch the results of similar queries. As the cache is with

limited size, less useful queries (and their results) should be removed from the cache. We

introduce our cache and replacement algorithm in Section 3.5.

3.2 Query Distance Calculation
To find similar queries, we compute the distance between two given SPARQL queries by calculating

the distance between patterns of the two queries:

d(PQ , P
′

Q ) = d(Pbдp , P
′

bдp ) + d(Pf il ter , P
′

f il ter ) + d(Pbind , P
′

bind ) + d(Pvalue , P
′

value ) (1)

Where PQ contains Pbдp , Pf il ter , Pbind , Pvalue and P
′

Q contains P
′

bдp , P
′

f il ter , P
′

bind , P
′

value .d(PQ , P
′

Q ) =

0 denotes the two queries are structurally the same.

3.2.1 BGP Distance. We propose to use Graph Edit Distance (GED) [24] to measure the distance

between BGPs because a BGP can be represented as a graph. In the graph, subject and object are
nodes linked by predicate as the edge. GED between two graphs is the minimum amount of edit

operations (i.e., deletion, insertion and substitutions of nodes and edges) needed to transform one

graph to the other. However, different BGPs share the same graph, which contains two nodes and

(s, p, o) (s, ?p, o) (?s, p, o) (s, p, ?o)

(?s, ?p, o) (?s, p, ?o) (s, ?p, ?o) (?s, ?p, ?o)

Fig. 4. Mapping Triple Patterns to Graphs. Eight types of triple patterns are mapped to eight structurally
different graphs. Black nodes are conjunction nodes for clarity. s is for subject, p is for predicate, o is for object.
The question mark indicates that the corresponding component is a variable.



(s, p, ?o) (?s, p, ?o)

group

(s, p, ?o) (?s, p, ?o)

:Rain_Man dbpedia-owl:starring ?actor .
?actor dbpedia-owl:activeYearsStartYear ?year

Fig. 5. Graph Modelling for BGPs inQuery 1.

one edge. Therefore, the distance between each pair of BGPs is zero. In order to distinguish each

BGP graph, we formulate the problem of modelling BGPs to distinct graphs as follows:

Problem 3.1. (BGP Graph Modelling) Given Pbдpi = {tp1, tp2, ..., tpn} denote a BGP of a SPARQL
query, tpk , k ∈ (1,n) is a triple pattern rooted at Pbдpi . дed(дo ,дd ) represents the graph edit distance
between graph дo and graph дd . BGP graph modelling is the task that models each tpk to a graph дtpk
satisfying дed(дtpk ,дtpl ) > 0 when k , l .

To address the above problem, we propose to map all the eight types of triple patterns to eight

structurally different graphs, as shown in Figure 4. The black circles denote conjunction nodes for

clarity. They are not coloured in graph modelling. As we only consider the structures of queries,

whether the connecting node represents a join or union is not distinguished. Therefore, the different

meanings of connecting nodes are not considered in this work. Using these mappings, we model

the triple patterns of BGPs in Query 1 in Figure 2, to a graph, which is depicted in Figure 5.

There are various ways to map triple patterns to graphs. However, in our work, the way that

we choose for the mapping does not affect the final cache result very much. So we only focus on

mapping distinct triple patterns to distinct graphs. The reason is that in our work, similar queries

that can lead to a cache hit are mostly the ones that are structurally the same with the current

processing query. Specifically, the k-NN model first returns the structurally the same queries as

similar queries, then returns the ones that are structurally the same but with different filter and

bindings, and finally returns structurally similar queries. As the queries are mostly issued by

programmatic clients and are generated with query templates (as described in Section 1), most

returned queries are the ones using the same template, i.e., are structurally the same. Thus the

structurally similar queries will not affect the caching results much as they are with small numbers.

So the distances between different triple patterns that are considered in measuring structurally

similar queries give limited impact on caching performance. Therefore, the difference of various

mapping ways is not considered here.

3.2.2 Other Distances. We calculate d(Pf il ter , P
′

f il ter ), d(Pbind , P
′

bind ) and d(Pvalue , P
′

value ) only

when d(Pbдp , P
′

bдp ) = 0. We define distance between two FILTER expressions as half of their

levenshtein distance when the variables in these two expressions are identical, otherwise the

distance is a fixed value 1. Thus the distance is in the range of [0, 0.5] or equals to 1.

d(Pf il ter,i , P
′

f il ter,i ) =

{
levenshtein(E(i),E

′
(i))

2max (lenдth(E(i)),lenдth(E′
(i)))
, i f V (i) = V

′

(i)

1, else
(2)

where E(i) and E
′

(i) represent the FILTER expression for Pf il ter,i and P
′

f il ter,i . V (i) and V
′

(i) are

variables in these two FILTER patterns respectively. When there are multiple Filter expressions



that can be compared, the total difference is defined as:

d(Pf il ter , P
′

f il ter ) =

m∑
i=1

d(Pf il ter,i , P
′

f il ter,i ) (3)

Filter expressions in Query 1 and Query 2 are similar as the distance is 0.05 using Equation (3). So

d(PQ1, P
′

Q2
) = 0.05 (Equation (1)). We also have similar functions for BIND and VALUE patterns.

3.3 Feature Modelling
Using the distance function Equation (1), it is intuitive to suggest similar queries to a given query

Q by calculating the distances between Q and each historical query, then rank the distances in

descending order and find the top k similar ones. However, the calculation of distances between

Q and each historical query is time-consuming when the number of historical queries is large.

Moreover, it cannot leverage the machine learning algorithms to facilitate the suggestion process

because machine learning algorithms require the vector representation of objects [6]. Therefore,

we choose to construct feature vectors for SPARQL queries that leverages the distances and can

facilitate the similar queries suggestion. It is worth mentioning that the work in [7] proposes an

approach to transform SPARQL query to vector representation. For comparison, we firstly introduce

the approach in [7], which we refer to as cluster-based feature modelling (Section 3.3.1) and then

discuss our approach, the template-based feature modelling (Section 3.3.2).

3.3.1 Cluster-based feature modelling. In cluster-based feature modelling, distances between

each pair of queries in the training set are calculated using only BGP distance. Then k-medoids
algorithm [11] is utilized to cluster the training queries by using distance scores that are calculated.

The center queries of each cluster are selected and the distance scores between each center query

and a queryQ is obtained to form a feature vector ofQ , where each score is regarded as an attribute

of the feature of Q . Thus the number of clusters equals to the number of dimensions (i.e., the

number of feature attributes) of the feature vector of Q .

3.3.2 Template-based feature modelling. The cluster-based feature modelling requires distance

calculation between all training queries. Moreover, the clustering process adds additional time

consumption. To reduce the feature modelling time, we propose to replace the center queries used

in cluster-based feature modelling with representative queries that are generated by benchmark

templates. Specifically, we generate queries from 18 out of 25 valid templates in the DBPSB bench-

mark [18] (we excluded queries which do not return any results: Query 1, 2, 3, 10, 16, 21 and 23).

We refer to these queries as template queries. By recording the distance scores between a query Q
with the 18 template queries, we obtain an 18-dimension feature vector for Q . The computation

is then drastically reduced from O(n2) in cluster-based feature modelling to O(n), where n is the

number of queries. Therefore, our approach is feasible to apply to large size of training sets.

Moreover, we adopt three dimension reduction algorithms, namely Canonical Correlation Anal-

ysis (CCA) [8], Principal Component Analysis (PCA) [9] and Non-negative Matrix Factorization

(NMF) [13] on the feature vectors. In machine learning, dimension reduction is the process of

reducing the number of random variables to describe a large set of data while still describing

the data with sufficient accuracy. It helps reducing the learning time on the feature vectors. CCA

calculates the coefficient among all features and chooses the most uncorrelated features. PCA

aims to find a linear transformation to project the original data to a lower-dimensional space

which is as informative as possible to capture as much of the variance of the original data in an

unsupervised manner. NMF finds approximate decomposition of original data matrix and thus

reduces the dimension by storing the two decomposed lower dimensional matrices.



Training Queries

q...

C1

C2

Cn

d1

d2

...

dn

d1

d2

dn

D1 D2 D(n-1)n/2...

dI : Distance between q and center query of Ci 

Ci : Cluster

Dj : Distance between training queries

(a) Cluster-based

q

d’1

d’2

...

d’18

d’1

t1

t2

t18

d’2

d’18

DR

(CCA 

PCA

NMF)

f’1

f’2

...

f’r

ti : Template query

d’i : Distance between q and ti
f’j : Feature after dimensional reduction on d’1 to d’18

(b) Template-based

Fig. 6. Feature Modelling. The cluster-based modelling (a) is based on the distances among each pair of
all the training queries. Clustering is done using these distances. di is the distance between query Q and
the center query of the cluster Ci , and it represents a feature of Q . The template-based modelling (b) uses
template queries. The distance between Q and template query ti represents a feature of Q . After dimensional
reduction (DR), the features are extracted to f

′

1
to f

′

r where r < 18.

Figure 6 illustrates the process and difference of cluster-based feature modelling and template-

based feature modelling. In Figure 6(a), the modelling is based on all training queries. {D(n−1)n/2
i=1 }

record distances between each training queries. {Cn
i=1} denote clusters. {d

n
i=1} are distances between

query Q and center queries of clusters. In Figure 6(b), t1 to t18 are template queries. d1
′
to d18

′
are

distances between query Q and 18 template queries. f1
′
to fr

′
are features that are obtained after

applying dimensional reduction algorithm (i.e., CCA, PCA or NMF), where r < 18.

3.4 Suggesting and Prefetching SimilarQueries
After the feature vectors are obtained (Step 1 in Section 3.1), we train a suggestion model with the

feature vectors of training queries and suggest similar queries to a new query (Step 2). We adopt

k-Nearest Neighbours (k-NN) [1] as prediction model becuase it is one of the two common types

of similarity searches [12]. k-NN is a non-parametric classification and regression algorithm that

predicts the performance of new data point based on its k-nearest training data points:

pnew =
1

k

k∑
i=1

(pi ), (4)

where pnew is the predicted value of the new data and pi is the performance of the i-th nearest

training data. If the new data is not in the training set, k-NN finds the point which is the closest to

the new point according to its features.

k-NN is often successful in the cases where the decision boundary is irregular, which applies

to SPARQL queries [7]. It is originally a supervised learning algorithm which requires labels (or

classes). A k-d tree is built for the training data (points) with labels. For a new point, its k nearest

neighbours in the tree are searched and its label (or class) is decided by the labels of these neighbours.

In our work, we do not have labels and the task is not to classify the data points (a point refers to a

query in this work) but to find the data points that are close to a given point. We therefore modify

k-NN algorithm to only build the k-d tree according to the Euclidean distance between feature

vectors of SPARQL queries and we omit the label part. The k-NN thus turns into an unsupervised

learning algorithm. Then we use trained k-NN model to suggest the nearest (i.e., the most similar)

queries for a new query. Given the similar queries for a query Q , we prefetch the results of these

queries directly from SPARQL Endpoints and put the (qi , ri ) pairs into the cache during the caching
process.



3.5 Caching and Replacement
As the cache has limit space, the less useful data should be removed from the cache to give space to

more useful data. In traditional page-based cache in databases, the less useful data is less frequently

accessed which will be removed to give space to more frequently accessed data. When the data

required by a new query is in the cache, the result is returned immediately. Each time the data

in cache is accessed, it is called a cache hit. Therefore, the problem of cache replacement is the

problem of identifying the more frequently accessed data.

SECF, the proposed client-side caching framework, does not require the knowledge of underlying

system of SPARQL Endpoint. Thus we cannot directly apply the cache replacement algorithms

used in page-based databases. We propose to use a time-aware frequency based algorithm, which

leverages the idea of a novel approach recently proposed for caching in main memory databases in

Online Transaction Processing (OLTP) systems [15]. Specifically, we cache the (query, result) pairs

and consider the hit frequencies of them when performing cache replacement. The recently most

hit queries in the cache are hot queries which are more useful queries. Hot queries will be kept in

the cache, whereas queries in the cache that do not belong to hot queries are considered less useful,

which will be removed from the cache.

Before we introduce the proposed cache replacement algorithm, we introduce how to measure

the hit frequencies of queries in Section 3.5.1. Then we apply the proposed frequency measurement

in developing two cache replacement strategies in Section 3.5.2.

3.5.1 Modified Simple Exponential Smoothing (MSES). We adapt the algorithm used for identify-

ing hot triples in our previous work [29]. Here we introduce this algorithm and how we adapt it to

identify hot queries.

The Exponential Smoothing (ES) is a technique to produce a smoothed data presentation, or to

make forecasts for time series data, i.e., a sequence of observations [5]. It can be applied to any

discrete set of repeated measurement and is currently widely used in smoothing or forecasting

economic data in the financial markets. Equation (5) shows the simplest form of exponential

smoothing. This equation is also regarded as Simple Exponential Smoothing (SES).

Xt = α ∗ xt + (1 − α) ∗ Xt−1, (5)

whereXt stands for smoothed observation of time t , xt is the actual observation value at time t , and
α is a smoothing constant with α ∈ (0, 1). From this equation, it is easy to observe that SES assigns

exponentially decreasing weights as the observation becomes older, which meets the requirement

of selecting the most frequently and recently issued queries. The reason behind our choice of SES

is its simplicity and effectiveness [15].

In SECF, we exploit SES to estimate hit frequencies of queries. In this case, xt represents whether
the query is hit at time t , thus it is either 1 for a cache hit; or 0 otherwise. Therefore, we can modify

Equation (5) to Modified Simple Exponential Smoothing (MSES):

Et = α + Etprev ∗ (1 − α)tprev−t (6)

where tprev represents the time when the query is last hit and Etprev denotes the previous frequency

estimation for the query at tprev . Et denotes the new frequency estimation for the query at t [15].
The accuracy of MSES can be measured by its standard error. We gave the derivation and the

standard error of Equation (6) and provided a theoretical proof that MSES achieves better hit rates

than the most used cache replacement algorithm LRU-2 in [29].

3.5.2 Cache Replacement Algorithms. We perform cache replacement based on the estimation

score calculated by MSES. Each time a new query is executed, we examine the frequency of cache

hit of this query using MSES. If it is in the cache, we update the estimation of frequency for it.



q1 , r1

q2 , r2

q3 , r3

…

qH , rH

q1 , (r1 , e1 , tprev_1)
q2 , (r2 , e2 , tprev_2)
q3 , (r3 , e3 , tprev_3)

…

qn , (rn , en , tprev_n)

Cache 
(HashMap)

Full-records
(HashMap)

q1 , (r1 , e1 , tprev_1 , tpprev_1)
q2 , (r2 , e2 , tprev_2 , tpprev_2)
q3 , (r3 , e3 , tprev_3 , tpprev_3)

…

qm , (rm , em , tprev_m , tpprev_m)

Partial -records
(HashMap)

Fig. 7. Cache and Two Types of Records for Two Replacement Strategies. qi denotes a query; ri denotes the
results of qi ; ei is the estimation of records calculated by Equation 6; tprev_i is the last time qi was hit in the
cache; tpprev_i is the second last time qi was hit in the cache;H is the number of hot queries can be cached; n
is the total number of historical queries;m is the number of historical queries recorded in the partial records.

Otherwise, we just record the new estimation. In order to realise the replacement, we use one hash

map to store contents in the cache and the other hash map for recording information of historical

queries. Figure 7 depicts the two hash maps. Cache stores the query and its results, denoted as

(qi , ri ), where qi is the key and ri is the value. In the full-records, qi is the key and ri , ei , tprev_i is
the value. In the partial records, one more information, the second last hit time of qi is recorded
and it is denoted as tpprev_i . When the cache is not full, (qi , ri ) are cached. Accordingly, related
information is stored in the records. When the cache is full, replacement is required.

To decide which records can be kept in the cache, we develop two cache replacement strategies,

namely the Full-records replacement and the Improved replacement. The difference of these two
strategies is whether to keep the full records of the historical queries or not.

Full-records replacement. In the full-records replacement, the algorithm keeps the estimation

records for all processed queries. Specifically, it processes all the historical queries. When en-

countering a hit to a query at time t , the algorithm updates this query’s hit frequency estimation

using Equation (6). When the scan on records is completed, the algorithm ranks each query by its

estimated frequency and returns the H queries with the highest estimates as the hot set. These

top-H queries are kept in the cache, while lower ranked queries will be removed from the cache.

However, this algorithm requires storing the whole estimation records which produces large over-

head. Furthermore, it consumes a significant amount of time when calculating and comparing the

estimation values. To solve these issues, we consider improving the algorithm in two ways. One

possible solution is that we just keep a record after skipping certain ones. This is a naive sampling

approach. We vary the sampling rate but it turns out that the performance of this sampling approach

is not desirable (see Section 4.3). The other possible approach is that we maintain partial records by

only keeping those within a specified range of time.

Improved replacement. In the improved replacement, we only keep estimation records from a

certain point of time to the current time to reduce the space overhead of the records. If we only

keep very short records, the new cached query may fail to find its last estimation. In that case,

the new estimated frequency of this query may be very small and it will be incorrectly removed

from the cache. If we keep very long records, the space overhead is an issue as we discussed in

full-records cache replacement. So we propose a solution that additionally keeps the second last hit

time of a query in the records. Then we measure the maximum time gap between the last hit time

and the second last hit time for each query in the records. After that, we use current time to minus

this maximum time gap and get a previous time, which is the time that we start to keep the records.

All the records before this time will be deleted.



Table 1. Selected patterns from SELECT queries. FILTER occupies large proportion in SELECT queries

FILTER VALUE BIND

DBpedia3.9 83.97% 0.81% 0.06%

LinkedGeoData 50.72% 0.005% 0.0006%

Table 2. Analysis of clients associated with queries and clusters

AvgQ/Client AvgClusters/Client AvgQ/Cluster

DBpedia3.9 23.31 2.27 10.26

DBpedia3.9-100 447.49 3.23 138.54

LinkedGeo 612.51 5.16 118.70

LinkedGeo-100 16,441.84 67.90 245.40

4 EVALUATION
We evaluate our proposed framework in this section. We first describe the setup of our evaluation

environment (Section 4.1). Then we provide a detailed analysis of the real-world queries used in

the evaluation (Section 4.2). Finally, we report the experimental results, including the performance

comparison of cache replacement algorithms, feature modelling approaches and the performance

comparison to the state-of-the-art work (Section 4.3 to 4.5).

4.1 Setup
Datasets. We analysed the query logs from DBPedia’s SPARQL Endpoint

4
(DBpedia3.9) and

Linked Geo Data’s Endpoint
5
(LinkedGeoData) provided by USEWOD 2014 challenge. We extract

queries by decoding, identifying SPARQL queries from query strings and removing incomplete

queries and queries with syntax errors according to SPARQL1.1 specification. We focused on

SELECT queries in the experiments and retrieved 198,235 valid queries from DBpedia3.9 and

1,790,047 valid queries from LinkedGeoData. Among these queries, 83.97% DBpedia3.9 queries and

50.72% LinkedGeoData queries have FILTER operator (Table 1).

Implementation and System. We obtained BGPs by parsing the SPARQL queries using Apache

Jena-2.11.2. We implemented GED using a suboptimal solution integrated in the Graph Matching

Toolkit
6
. The modified k-NN and LRU-2 were implemented in Java. Specifically, we adopted Weka

library
7
to build the k-d tree for k-NN. We set up our own SPARQL Endpoint by installing local

Virtuoso server and loading datasets into the Virtuoso. The server has the configuration of 64-bit

Ubuntu 14.4 with 16GB RAM and 2.40GHz Intel Xeon E5-2630L v2 CPU. Our code runs on a PC

with 64-bit Windows 7, 8GB RAM and 2.40GHZ Intel i7-3630QM CPU.

4.2 Analysis of Real-world SPARQLQueries
4.2.1 Analysis of Average Queries. We used the distance measurement described in Section 3.2

to cluster the queries. Table 2 shows that the average queries for a client in DBpedia3.9 log files

is 23.31, and the average clusters a client’s queries belong to is 2.27. The average queries in each

cluster is 10.26. For LinkedGeoData queries, the average queries per client is 612.51 and each client’s

queries belong to 5.16 clusters in average. The average queries in each cluster is 118.70. Our analysis

shows that each client performed several queries which have shared clusters, indicating clients

issued similar queries.

4
http://dbpedia.org/sparql/

5
http://linkedgeodata.org/sparql

6
http://www.fhnw.ch/wirtschaft/iwi/gmt

7
https://weka.wikispaces.com/

http://www.fhnw.ch/wirtschaft/iwi/gmt
https://weka.wikispaces.com/


0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10

12
x 10

6

Unique Client ID

A
v
e

ra
g

e
 T

im
e

 G
a

p
 t

o
 N

e
x
t 

S
im

ila
r 

Q
u

e
ry

 (
s
e

c
o

n
d

s
)

(a) DBPedia3.9

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Unique Client ID

A
v
e

ra
g

e
 T

im
e

 G
a

p
 t
o

 N
e

x
t 
S

im
ila

r 
Q

u
e

ry
 (

s
e

c
o

n
d

s
)

(b) LinkedGeoData

Fig. 8. Analysis of Average Matched Time. Similar queries are usually issued within a short period of time.

We also selected 100 clients with the most queries issued and found that the average number

of queries for these top clients in DBpedia3.9 is 447.49 and the average clusters for one client is

3.23. The average queries per cluster increases to 118.70. The numbers for the top 100 clients who

issued most queries in LinkedGeoData are higher, as average queries per client is 16,441.84, and

average number of clusters per client is 67.90. In average, 245.40 queries belong to one cluster. These

findings indicate that clients performed a large number of queries which have similar structures.

The average number of queries for one cluster shows that queries have high similarity.

4.2.2 Analysis of Subsequent Queries. To estimate how likely it is that queries are similar to

previous queries and therefore could benefit from the prefetched results, we evaluated the time

difference between one query and the next matched query (i.e., the next query belonging to the

same cluster) for each client. DBpedia3.9 log files have a total of 8,500 distinct client IDs and

LinkedGeoData has 2,921 distinct client IDs. We assigned distinct IDs starting from 1 for clients of

both datasets. Figure 8 shows the average time gap between two matches for both datasets. Blue

crosses indicate the average time gap (to next matched query) for each client ID. From Figure 8(a),

we can see most of the time gap are close to zero, positioning blue cross on the X-axis, which means

that the client issues similar-structured queries subsequently. A small number of blue crosses are

away from the X-axis, which means that these clients seldom issue similar-structured queries.

Similar observations are found in Figure 8(b). It demonstrates the fact that most clients issue similar

queries subsequently. Moreover, on average, the similar queries are issued by the same client with

previous queries within a very close time period. This further confirms that our approach can

benefit the clients’ subsequent queries in terms of querying answering speed.

4.3 Performance of Cache Replacement Algorithm
We firstly evaluated our cache replacement algorithm MSES, because it would be used in the

following experiments. To evaluate the performance of MSES, we implemented various algorithms

including the full-record MSES, improved MSES, the sampling MSES, and LRU-2. LRU-2 is a

commonly used page replacement algorithm which we implemented based on record rather than

page. All of LinkedGeoData valid queries obtained were processed in this experiment because the

size of this query set is much larger than DBpedia3.9 query set. Thus we can observe the difference

between Improved MSES and MSES algorithms.



0 2 4 6 8 10 12 14 16 18

x 10
5

0

10

20

30

40

50

60

70

Queries Processed

H
it
 R

a
te

 (
%

)

 

 
0.05

0.7

0.03

0.01

(a) Different alpha

0 2 4 6 8 10 12 14 16 18

x 10
5

0

10

20

30

40

50

60

70

Queries Processed

H
it
 R

a
te

 (
%

)
 

 
MSES

Sampling MSES

Improved MSES

LRU−2

(b) Different cache replacement

10 20 40 50
0

100

200

300

400

500

600

700

800

900

Percentage of Hot Queries (%)

M
a
x
im

u
m

 R
e
c
o
rd

s
 S

iz
e
 (

K
B

)

 

 
MSES

Improved MSES

Hot Size

(c) Space overhead of MSES

Fig. 9. Cache Replacement Performance (LinkedGeoData). Different values of α have different impact on
the hit rates (a). Different cache replacement algorithms affect the hit rates largely (b). The improved MSES
reduces the space overhead largely compared to the MSES (c).

Impact of α . As the Exponential Smoothing has only one parameter α , the choice for α would

affect the hit rate performance. However, as per our experiments on different values for α , the hit
rates differ only slightly and a value of 0.05 shows better performance, as shown in Figure 9(a).

Impact of Cache Replacement Algorithms. Figure 9(b) shows the hit rates achieved by the four

algorithms we implemented. It should be noted that in the experiment, the caching size was set to

20% of the total historical queries and α was set to 0.05 for MSES and its variants. We chose 20% as

the caching size because it is neither too large (e.g., > 50%) to narrow the performance differences

among algorithms, nor too small (e.g., < 10%) leading to inaccurate performance evaluation due to

insufficient processed data. From the figure, we can see that MSES and Improved MSES have the

same hit rate until they have processed about 1.5 million RDF triples, after which MSES has a higher

hit rate than Improved MSES. This is because MSES maintains the estimations for all processed

records while the Improved MSES only keeps part of the estimations. The changing point denotes

that from which, the Improved MSES maintains partial volume of estimation records. From the

figure, we can also see that Sampling MSES does not perform well. This figure only shows the hit

rate of sampling MSES with the sampling rate of 50%, which is expected to have a high hit rate.

The LRU-2 algorithm has the lowest hit rate of all the algorithms. The hit rates of all algorithms

start from 0 and reach their first peak at certain points, then fluctuate. The direction to the first

peak shows the warm-up stage and the rest of the lines are the warmed stage. This illustrates that

we exploit an incremental approach, which includes a warm-up stage to calculate the hit rate.

Space Usage for Records. Figure 9(c) gives the measurement of space usage by recording the

estimations. As discussed before, MSES performs better than the Improved MSES. However, it

consumes more storage space to maintain the estimation records for all processed triples. It also

takes longer time to check the cache. Figure 9(c) shows the maximum space consumption for each

algorithm. Note that we used all valid LinkedGeoData queries in this experiment. The columns are

classified into four groups which represent the percentage of hot queries to all processed queries.

In each group, the left column represents the maximum space used by MSES, including the hot

queries and the estimation records. The middle column represents the space usage of the Improved

MSES that also includes the hot queries and the estimation records. The right column represents

the size of the hot queries. From this figure, we can see that the Improved MSES consumes less

space.



2 3 4 5 6 7 8 9
50

55

60

65

70

75

80

85

90

95

Dimension

A
v
e

ra
g

e
 D

is
ta

n
c
e

 t
o

 T
e

s
t 
Q

u
e

ry

 

 

PCA

CCA

NMF

(a) Distances for C10 (DBpedia3.9)

Dimension

2 4 6 8 10 12 14

A
v
e

ra
g

e
 D

is
ta

n
c
e

 t
o

 T
e

s
t 

Q
u

e
ry

40

45

50

55

60

65

70

75

80

PCA

CCA

NMF

(b) Distances for C15 (LinkedGeoData)

Fig. 10. Performance Comparison among Using CCA, PCA and NMF to Reduce Dimension (Cluster-based)

4.4 Comparison of Feature Modelling Approaches
In the experiments of this section, we compared our feature modelling approach (i.e., template-

based feature modelling) with the state-of-the-art approach (i.e., cluster-based feature modelling),

and evaluated the performance under the scenarios of applying and without applying sugges-

tion/prefetching. We applied the dimensional reduction algorithms on both template-based feature

modelling and cluster-based feature modelling methods.

Because the time consumption of cluster-based approach is tremendous, we did not use all valid

queries as the training set. We randomly chose 21,600 training queries and 5,400 testing queries

from the two query sets separately. The cache replacement algorithm used in all testing cases is

Improved MSES and α = 0.05. Because the larger size of cache, the higher hit rate it would achieve,

we only show experimental results when the number of queries in cache is set to 1,000.

4.4.1 Performance of Cluster-Based Feature Modelling. In order to compare to template-based

feature modelling approach, we applied dimensional reduction algorithms on cluster-based feature

modelling approach. We generated new feature files with different lower dimensions for DBpedia3.9

and LinkedGeoData queries using CCA, PCA and NMF discussed in Section 3.3.2. The files are from

Dimension 1 (D1) to D9 for DBpedia3.9 with 10 clusters (C10) and D1 to D14 for LinkedGeoData

with 15 clusters (C15). We then trained k-NNmodel with these files respectively and got k suggested

queries for a randomly chosen query Q . We computed the average distance between suggested

queries with Q and computed the distances obtained when using CCA, PCA and NMF. The lower

the average distance is, the better the suggestion is. As large amount of the queries from these two

SPARQL Endpoints are similarly-structured or repeated (see Section 4.2), we set a large number of

queries to suggest to avoid the distance to be zero. Thus we chose k=500 in k-NN in this experiment.

As shown in Figure 10, NMF always performs the best for both DBpedia3.9 and LinkedGeoData

queries. It gets optimal result when the number of dimensions is 3. PCA performs better than

CCA when dimension is low and worse than CCA when dimension becomes high. For DBpedia3.9

queries, the intersection is D=5, while for LinkedGeoData, the intersection is D=11. We used NMF

for our dimension reduction in the comparisons thereafter.

4.4.2 Performance of Template-Based Feature Modelling. In template-based feature modelling,

we also leveraged dimensional reduction algorithms. The performance of different algorithms is

shown in Figure 11. It is shown that NMF still outperforms other algorithms in extracting the most

representative features.



Dimension

2 3 4 5 6 7 8 9

A
v
e

ra
g

e
 D

is
ta

n
c
e

 t
o

 T
e

s
t 

Q
u

e
ry

50

55

60

65

70

75

80

85

90

PCA

CCA

NMF

(a) Distances (DBpedia3.9)

Dimension

2 4 6 8 10 12 14

A
v
e

ra
g

e
 D

is
ta

n
c
e

 t
o

 T
e

s
t 

Q
u

e
ry

40

45

50

55

60

65

70

75

80

PCA

CCA

NMF

(b) Distances (LinkedGeoData)

Fig. 11. Performance Comparison among Using CCA, PCA and NMF to Reduce Dimension (Template-based)

Table 3. Time comparison on feature modelling approaches

Datasets Cluster-based modelling (sec.) Template-based Modelling (sec.)

Training Time

DBPedia3.9 33,446 1,109

LinkedGeoData 23,405 758

Average Query Time

DBPedia3.9 355 251

LinkedGeoData 234 158

Table 3 gives the impact of two feature modelling algorithms on time consumption. The training

time is recorded for 21,600 training queries. Cluster-based approach requires 33,446 seconds, which

is more than 9 hours for DBPedia3.9 queries, and 23,405 seconds (i.e., more than 6 hours) for

LinkedGeoData queries. Template-based approach largely reduces the time to 1,109 seconds and

758 seconds, respectively. In terms of the average query time, our template-based approach also

outperforms the cluster-based approach.

4.5 Performance Comparison with the State-Of-The-Art Work
We also compared our work with the Adaptive SPARQL Query Cache (ASQC) introduced in [17],

as it is the first and complete work to cache SPARQL query in a client-side manner.

4.5.1 System Performance Comparison. In this experiment, we compared the average hit rate,

average query time and space usage between our work SECF and ASQC. We also gave performance

when no cache was used. To compare our approach with ASQC, we modified the code of ASQC
8
to

access our datasets. We performed the experiment on DBpedia3.9 dataset. We used Cluster-Based

Feature Modelling and Improved MSES with α=0.05. Table 4 presents the results. The first three
columns of Table 4 show the performance comparison. Compared to the hit rate of ASQC (72.63%),

SECF (78.59%) increases the performance by 5.96%. ASQC takes 264 ms in average for one query

and SECF takes 247 ms. So SECF reduces the query time by 6.44%. When no cache is applied, the

average query time increases to 625 ms. We did not include prefetching time as it is in a separate

thread. The improvements showcase the effectiveness of our learning based approach and provide

a research direction for improving SPARQL query performance using machine learning techniques.

Space consumption evaluates how much memory the cache uses. In SECF, the total usage (before

slash) for caching 1,000 queries includes cached queries and answers as well as the estimation

records for cache replacement (after slash). We used the same implementation for ASQC in order

to compare. The results indicate that the most space is consumed by cached (query, result) pairs.

8
http://wiki.aksw.org/Projects/QueryCache



Table 4. Performance comparison

ASQC SECF No Cache

Hit 72.63% 78.59% NA

AvgTime 264ms 247ms 625ms

Space 7.15MB 7.15MB/0.45KB NA

AvgFreeMem 217.87MB 206.35MB 224.30MB

AvgIO 11.49 21.43 7.72

AvgCPU 9.37ms 10.60ms 10.09ms

4.5.2 Server Overhead Comparison. In order to evaluate the impact of cache on the Endpoint

server, we monitored the memory and CPU usage as well as I/O on the server. We captured the

usage every 20 seconds until the querying ends. The last three columns of Table 4 show the server

performance of ASQC, SECF and no cache applied. AvgFreeMem refers to the average free memory

usage, AvgIO refers to the average I/O usage and AvgCPU is for the average CPU time, including

system CPU and user CPU time. We only present the result on querying DBpedia3.9 dataset due

to limited space. From the result, we found out that SECF and ASQC cause higher computation

overhead (I/O and CPU) and memory usage on server compared to querying without cache and

ASQC performs slightly better than SECF with more free memory (217.87MB vs 206.35MB), less I/O

(11.49 vs 21.43) and less CPU time (9.37ms vs 10.60ms). It is because that SECF requires prefetching

results for similar queries from server which leads to additional overhead.

5 DISCUSSION
In this section, we discuss some issues from our experience in this work and identify future research

directions.

Partial Caching vs Query Caching. Some works focus on caching part of queries (i.e, subgraph)

[21, 27] and identifying the hit subgraph (i.e., containment checking) [25]. These methods not

only cache the exactly matched queries, but also the queries which share the same subgraph

with the cached ones. Using such subgraph caching broadens the cached items and improves

the cache hit rate. However, parsing and identifying query subgraphs is a very time-consuming

task that counteracts the speed improvement achieved by caching. In some occasions it cannot

accelerate the querying speed. In our current work, we have not considered partial caching of

queries. Investigating efficient solutions by integrating partial queries into our framework will be

part of our future work.

Dynamic Learning. In the training process, the larger the size of the training queries, the better

performance we can get. The reason is that more query variety can be captured and the model will

be less sensitive to unforeseen queries. However, in practice, unseen queries can be issued very

frequently and quickly. In this case, no matter how large the current training set is, it is inefficient

to cover as much as possible query varieties. There are two solutions for this issue. One solution is

to periodically train on historical queries. We adopt this idea in our work. Similar to the suggestion

process which is in a background thread, the periodical training, especially the building of the k-NN
model, also runs in the background. Therefore, although it is time-consuming to train large query

sets, periodical training will not affect the querying process. One benefit to use periodical training

is that we can leverage the well developed learning algorithms. Moreover, our approach has already

achieved great improvements in reducing the training time (Section 4.4). The other solution is

incremental learning (or referred to online learning), which holds a new input batch in addition to



the existing learning model to reflect recently executed queries. We leave the investigation of these

techniques as our future work.

Space Overhead. From evaluation (Section 4.5.2), we observe that the memory space used by

SECF is mostly consumed by cached (query, result) pairs. This is because SECF caches the pairs in

text directly. The size of the cached texts can be reduced by leveraging encoding techniques. Many

existing triple stores (i.e., systems that holds RDF data) [19, 31] encode the RDF triples to numerical

values in order to reduce the space overhead. By developing their own indexing algorithms, the

access and retrieval of the triples become efficient. We could adapt the ideas to encode SPARQL

queries or part of queries, e.g., BGPs and develop tailored indexing algorithms. We also can adapt

compression techniques for data stream (e.g., [30]) to compress (query, result) pairs in our work.

We will investigate these techniques in the future.

Sever Overhead. We observe from the comparison to the state-of-the-art work, ASQC, that SECF

introduces slightly larger overhead to server side (Section 4.5.2). This is due to the fact that the

prefetching process continuously requests data directly from the SPARQL Endpoint server. One

possible improvement for this issue is to find the common results of multiple similar queries, so that

less data requests will be issued. Containment checking can be considered to solve this problem

[25], however, it is time-consuming. A supplementary solution is to add estimation of the results

of these queries and prune the ones that would return empty results. In this way, less queries are

issued directly to the server side.

6 CONCLUSION
In this article, we introduce a client-side caching framework, SECF, to improve the overall querying

performance on the SPARQL Endpoints that are built upon curated knowledge bases. SECF utilises

machine learning techniques to learn clients’ query patterns and suggests similar queries, whose

results are prefetched and cached in order to reduce the overall querying time. Our proposed

template-based feature modelling method greatly outperforms the state-of-the-art method, cluster-

based feature modelling method in terms of training and suggestion time. The suggestion process

achieves the improvement on the overall cache hit rate and is further improved by introducing

dimensional reduction algorithms, especially NMF. The proposed cache replacement algorithm,

MSES, outperforms the most used cache replacement algorithm LRU-2 in terms of hit rate. Improved

MSES further reduces the space overhead by considering a part of estimation records without

losing cache hit rate. Compared to the state-of-the-art client-side caching framework ASQC,

SECF outperforms ASQC in terms of the average query time, but attracts some overhead on the

server. Based on our experience from this work, we also identify a number of interesting research

dimensions to further improve our approach: i) we will investigate more efficient solutions by

integrating partial queries into our framework; ii) we will examine if incremental learning would

be beneficial to our framework; iii) we will also adapt compression techniques for data stream to

compress (query, result) pairs in our work.

REFERENCES
[1] Naomi S Altman. 1992. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American

Statistician 46, 3 (1992), 175–185.

[2] Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. Query Relaxation for Entity-Relationship Search. In

Proceedings of the 8th Extended Semantic Web Conference (ESWC’11). 62–76.
[3] Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open Question Answering over Curated and Extracted Knowledge

Bases. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’14). 1156–1165.



[4] Géraud Fokou, Stéphane Jean, Allel Hadjali, and Mickaël Baron. Cooperative Techniques for SPARQL Query Relaxation

in RDF Databases. In Proceedings of the 12th Extended Semantic Web Conference (ESWC’15). 237–252.
[5] Everette S Gardner. 2006. Exponential Smoothing: The State of The Art–Part II. Int. J. Forecast. 22, 4 (2006), 637–666.
[6] Jiawei Han, Jian Pei, and Micheline Kamber. 2011. Data Mining: Concepts and Techniques. Elsevier.
[7] Rakebul Hasan. Predicting SPARQL Query Performance and Explaining Linked Data. In Proceedings of the 11th

Extended Semantic Web Conference (ESWC’14). 795–805.
[8] Harold Hotelling. 1936. Relations between two sets of variates. Biometrika (1936), 321–377.
[9] Ian Jolliffe. 2002. Principal Component Analysis. Wiley Online Library.

[10] Elem Guzel Kalayci, Tahir Emre Kalayci, and Derya Birant. 2015. An ant colony optimisation approach for optimising

SPARQL queries by reordering triple patterns. Inf. Syst. 50 (2015), 51–68.
[11] Leonard Kaufman and Peter Rousseeuw. 1987. Clustering by Means of Medoids. North-Holland.
[12] Dashiell Kolbe, Qiang Zhu, and Sakti Pramanik. 2010. Efficient k-Nearest Neighbor Searching in Nonordered Discrete

data Spaces. ACM Trans. Inf. Syst. 28, 2 (2010).
[13] Daniel D Lee and H Sebastian Seung. 1999. Learning the parts of objects by non-negative matrix factorization. Nature

401, 6755 (1999), 788–791.

[14] Jens Lehmann and Lorenz Bühmann. AutoSPARQL: Let Users Query Your Knowledge Base. In Proceedings of the 8th
Extended Semantic Web Conference (ESWC’11). 63–79.

[15] Justin J. Levandoski, Per-Åke Larson, and Radu Stoica. Identifying Hot and Cold Data in Main-Memory Databases. In

Proceedings of 29th International Conference on Data Engineering (ICDE’13). 26–37.
[16] Johannes Lorey and Felix Naumann. Detecting SPARQL Query Templates for Data Prefetching. In Proceedings of the

10th Extended Semantic Web Conference (ESWC’13). 124–139.
[17] Michael Martin, Jörg Unbehauen, and Sören Auer. Improving the Performance of Semantic Web Applications with

SPARQL Query Caching. In Proceedings of the 7th Extended Semantic Web Conference (ESWC’10). 304–318.
[18] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. Usage-Centric Benchmarking of RDF

Triple Stores. In Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12).
[19] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X Engine for Scalable Management of RDF Data. VLDB J.

19, 1 (2010), 91–113.

[20] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K Page Replacement Algorithm For Database

Disk Buffering. In Proceedings of the International Conference on Management of Data (SIGMOD’93). 297–306.
[21] Nikolaos Papailiou, Dimitrios Tsoumakos, Panagiotis Karras, and Nectarios Koziris. Graph-Aware, Workload-Adaptive

SPARQLQuery Caching. In Proceedings of the International Conference onManagement of Data (SIGMOD’15). 1777–1792.
[22] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and Complexity of SPARQL. ACM Trans. Database

Syst. 34, 3 (2009).
[23] Qun Ren, Margaret H. Dunham, and Vijay Kumar. 2003. Semantic Caching and Query Processing. IEEE Trans. Knowl.

Data Eng. 15, 1 (2003), 192–210.
[24] Alberto Sanfeliu and King-Sun Fu. 1983. A Distance Measure between Attributed Relational Graphs for Pattern

Recognition. IEEE Trans. Syst., Man, Cybern., Syst 13, 3 (1983), 353–362.
[25] Yanfeng Shu, Michael Compton, Heiko Müller, and Kerry Taylor. Towards Content-Aware SPARQL Query Caching for

Semantic Web Applications. In Proceedings of the 14th International Conference on Web Information Systems Engineering
(WISE’13). 320–329.

[26] Ruben Verborgh, Olaf Hartig, Ben De Meester, Gerald Haesendonck, Laurens De Vocht, Miel Vander Sande, Richard

Cyganiak, Pieter Colpaert, Erik Mannens, and Rik Van de Walle. Querying Datasets on the Web with High Availability.

In Proceedings of the 13th International Semantic Web Conference (ISWC’14). 180–196.
[27] Mengdong Yang and GangWu. Caching Intermediate Result of SPARQL Queries. In Proceedings of the 20th International

World Wide Web Conference (WWW’11). 159–160.
[28] Pengcheng Yin, Nan Duan, Ben Kao, Jun-Wei Bao, and Ming Zhou. Answering Questions with Complex Semantic

Constraints on Open Knowledge Bases. In Proceedings of the 24th ACM International Conference on Information and
Knowledge Management (CIKM’15). 1301–1310.

[29] Wei Emma Zhang, Quan Z. Sheng, Kerry Taylor, and Yongrui Qin. Identifying and Caching Hot Triples for Efficient RDF

Query Processing. In Proceedings of the 20th International Conference on Database Systems for Advanced Applications
(DASFAA’15). 259–274.

[30] Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun Nie, Hongfei Yan, and Ji-Rong Wen.

2015. A General SIMD-Based Approach to Accelerating Compression Algorithms. ACM Trans. Inf. Syst. 33, 3 (2015),
15:1–15:28.

[31] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Özsu, and Dongyan Zhao. 2011. gStore: Answering SPARQL Queries via

Subgraph Matching. PVLDB 4, 8 (2011), 482–493.


	Abstract
	1 Introduction
	2 Background
	2.1 SPARQL Preliminary
	2.2 Related Work

	3 The SPARQL Endpoint Caching Framework
	3.1 Overview
	3.2 Query Distance Calculation
	3.2.1 BGP Distance
	3.2.2 Other Distances

	3.3 Feature Modelling
	3.3.1 Cluster-based feature modelling
	3.3.2 Template-based feature modelling

	3.4 Suggesting and Prefetching Similar Queries
	3.5 Caching and Replacement
	3.5.1 Modified Simple Exponential Smoothing (MSES)
	3.5.2 Cache Replacement Algorithms


	4 Evaluation
	4.1 Setup
	4.2 Analysis of Real-world SPARQL Queries
	4.2.1 Analysis of Average Queries
	4.2.2 Analysis of Subsequent Queries

	4.3 Performance of Cache Replacement Algorithm
	4.4 Comparison of Feature Modelling Approaches
	4.4.1 Performance of Cluster-Based Feature Modelling
	4.4.2 Performance of Template-Based Feature Modelling

	4.5 Performance Comparison with the State-Of-The-Art Work
	4.5.1 System Performance Comparison
	4.5.2 Server Overhead Comparison


	5 Discussion
	6 Conclusion
	References

