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Abstract 27	

It has been well established that the volume of several subcortical structures decreases in relation 28	

to age. Different metrics of cortical structure (e.g., volume, thickness, surface area, gyrification) 29	

have been shown to index distinct characteristics of inter-individual differences; thus, it is 30	

important to consider the relation of age to multiple structural measures. Here we compare age-31	

related differences in subcortical and ventricular volume to those differences revealed with a 32	

measure of structural complexity, quantified as fractal dimensionality. Across three large 33	

datasets, totalling nearly 900 individuals across the adult lifespan (18-94 years old), we found 34	

greater age-related differences in complexity than volume for the subcortical structures, 35	

particularly in the caudate and thalamus. The structural complexity of ventricular structures was 36	

not more strongly related to age than volume.  These results demonstrate that considering shape-37	

related characteristics improves sensitivity to detect age-related differences in subcortical 38	

structures.  39	
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1. Introduction 56	

The structure of the brain changes with age, and these changes can be measured in vivo using 57	

magnetic resonance imaging (MRI) (Creasey & Rapoport, 1985; Drayer, 1988; Kemper, 1994; 58	

Raz & Rodrigue, 2006). While age-related differences are apparent throughout the brain, 59	

differences are particularly evident in the volume of subcortical structures (Allen et al., 2005; 60	

Goodro et al., 2012; Greenberg et al., 2008; Gunning-Dixon et al., 1998; Inano et al., 2013; 61	

Jernigan et al., 2001; Long et al., 2012; Potvin et al., 2016; Raz et al., 2004, 2005; Tamnes et al., 62	

2013; Walhovd et al., 2005, 2011; Yang et al., 2016). Accompanying these changes, the 63	

ventricles also enlarge with age (Apostolova et al., 2012; Barron et al., 1976; Kaye et al., 1992; 64	

LeMay, 1984; Walhovd et al., 2011; Nestor et al., 2008). Here we investigated age-related 65	

changes in the shape of these same subcortical structures and tested if this additional information 66	

could explain variance beyond that explained by volumetric changes. 67	

 Walhovd et al. (2011) conducted a comprehensive review of the literature examining age-68	

related differences in subcortical structures. In their review, along with their own multi-sample 69	

analyses, they found strong age-related differences in the volume of the putamen, thalamus, and 70	

accumbens; other regions, including the caudate and amygdala, were relatively unaffected by 71	

aging. Walhovd et al. also found volumetric differences in the lateral ventricles and third 72	

ventricle to also be strongly related to age, but no age-related differences in the fourth ventricle. 73	

In a supplemental figure (Walhovd et al., 2011, Figure S2), the authors additionally illustrated 74	

age differences in the shape of these subcortical structures, though there was no accompanying 75	

quantitative analysis of shape. 76	

While it is known that there are age-related differences in cortical thickness and 77	

gyrification (Hogstrom et al., 2013; Fjell et al., 2009; McKay et al., 2014; Salat et al., 2004), 78	

many other morphological measures can also be examined (e.g., sulcal depth, span, and 79	

variability [Kochunov et al., 2008; Im et al., 2006; Thompson et al., 1996; Yun et al., 2013]; 80	
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curvature [Fischl et al., 1999; Pienaar et al., 2008]). Recently we demonstrated that age-related 81	

differences in the shape, i.e., structural complexity, of cortical regions were more pronounced 82	

than in cortical thickness or gyrification (Madan & Kensinger, 2016). Moreover, we found that 83	

complexity statistically accounted for all of the age-related differences associated with cortical 84	

thickness and gyrification. Although it is currently unclear what features of brain morphology are 85	

captured by this metric of complexity, the results underscore that—at least for cortical regions—86	

complexity is a particularly robust metric for assessing age-associated differences. Of course, 87	

explaining the ‘most’ age-related variability is not always desired, as this may leave less 88	

remaining variance to account for other sources of inter-individual variability (e.g., cognitive 89	

abilities); but the extant research suggests that if the goal is to estimate effects of age on brain 90	

morphology, metrics of structural complexity may be of particular utility. 91	

Here we sought to extend this research by assessing the extent by which complexity can 92	

improve the characterization of age-related differences in brain structure beyond the cortex, by 93	

examining subcortical and ventricular structures. A number of studies have demonstrated that the 94	

shape of subcortical structures can differ between patients and healthy controls. For instance, 95	

autism has been associated with differences in the shape of the amygdala (Chung et al., 2008), 96	

Alzheimer’s disease has been related to differences in several structures, particularly the 97	

hippocampus, amygdala, and lateral ventricles (Tang et al., 2014), and schizophrenic patients 98	

have shown differences in hippocampal and thalamus shape (Zhao et al., 2016; also see Smith et 99	

al., 2011, and Qiu et al., 2009). Though these studies provide evidence that shape characteristics 100	

can be a relevant measure for subcortical structures, it is possible that these systematic 101	

differences only occur in the presence of neurological or psychiatric disorders. Furthermore, 102	

increased explained variance may not always be desired, instead, we propose that the use of 103	

multiple metrics can lead to better characterization of inter-individual differences. 104	



Complexity of subcortical structures  5 

Here we used fractal dimensionality to measure the structural complexity of the 105	

investigated subcortical and ventricular structures. This approach was inspired by the innovative 106	

work of Mandelbrot (1967), where fractal geometry principles were applied to quantify the 107	

complexity of complex natural structures. While Mandelbrot initially applied fractal 108	

dimensionality to geographic data (coast lines), neuroimagers have previously considered the 109	

notion of using fractal dimensionality to quantify the complexity of the brain (e.g., Free et al., 110	

1996; Kiselev et al., 2003). More broadly, fractal dimensionality have been used in neuroscience 111	

from the scale of individual neurons to the whole brain (see Di Ieva et al., 2014, 2015, for a 112	

review).  113	

Using three large datasets, here we first replicated the age-related differences in volume 114	

of subcortical and ventricular structures, then further calculated age-related differences in their 115	

structural complexity. The present study addressed two primary questions: (1) are there 116	

systematic age-related differences in the shape of subcortical structures, as indexed by structural 117	

complexity, using the same approach as in Madan and Kensinger (2016) and (2) how do these 118	

differences compare to volumetric age-related differences in these structures. Different structural 119	

measures may also serve complimentary roles—where different measures may index distinct 120	

population-level characteristics; as such we additionally assessed the collinearity of the measures 121	

and the unique variance they can explain with respect to age-related variability. 122	

 123	

2. Procedure 124	

2.1. Datasets 125	

Three datasets were used to evaluate age-related differences in subcortical and ventricular 126	

structure. 127	

Sample 1 (OASIS) consisted of 314 healthy adults (196 females), aged 18-94, from the publicly 128	

available Open Access Series of Imaging Studies (OASIS) cross-sectional dataset (Marcus et al., 129	
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2007; http://www.oasis-brains.org). Participants were recruited from a database of individuals 130	

who had (a) previously participated in MRI studies at Washington University, (b) were part of 131	

the Washington University Comminity, or (c) were from the longitudinal pool of the Washington 132	

University Alzheimer Disease Research Center. Participants were screened for neurological and 133	

psychiatric issues; the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating 134	

(CDR) were administered to participants aged 60 and older. In the current sample, participants 135	

with a CDR above zero were excluded; all remaining participants scored 25 or above on the 136	

MMSE. Multiple T1 volumes were acquired using a Siemens Vision 1.5 T with a MPRAGE 137	

sequence; only the first volume was used here. Scan parameters were: TR=9.7 ms; TE=4.0 ms; 138	

flip angle=10°; voxel size=1.25×1×1 mm. 139	

Sample 2 (IXI) consisted of 427 healthy adults (260 females), aged 20-86, from the publicly 140	

available Information eXtraction from Images (IXI) dataset (http://brain-development.org/ixi-141	

dataset/). This is the same set of individuals we used previously to investigate age-related 142	

differences in the cortex (Madan & Kensinger, 2016). These individuals were scanned at one of 143	

three hospitals in the London, UK (Guy’s Hospital, Hammersmith Hospital, and Institute of 144	

Psychiatry) in 2005-2006. Details on how these individuals were recruited is unavailable, nor are 145	

details on how mental health was assessed. See Madan and Kensinger (2016) for further details. 146	

Sample 3 (BC) consisted of 176 healthy adults (89 females), aged 18-83, recruited by the 147	

Cognitive and Affective Laboratory at Boston College (BC) in 2012-2015. All participants were 148	

screened for neurological and psychiatric issues, and to have scored above 26 on the MMSE. T1 149	

volumes were acquired using a Siemens Trio 3 T with a MEMPRAGE sequence optimized for 150	

morphometry studies (van der Kouwe et al., 2008; Wonderluck et al., 2009). Scan parameters 151	

were: TR=2530 ms; TE=1.64, 3.50, 5.36, 7.22 ms; flip angle=7°; voxel size=1×1×1 mm. 152	

2.2. Segmentation and volumetric analyses 153	
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All structural MRIs were processed using FreeSurfer 5.3.0 on a machine running CentOS 6.6 154	

(Fischl, 2012; Fischl & Dale, 2000; Fischl et al., 2002). FreeSurfer’s standard pipeline was used 155	

(i.e., recon-all). FreeSurfer’s segmentation procedure produces labels for seven subcortical 156	

structures (thalamus, hippocampus, amygdala, caudate, putamen, accumbens, palladium) and 157	

four ventricular structures (lateral, inferior lateral, third, fourth) all within a common 158	

segmentation volume (Fischl et al., 2002, 2004). Figure 1 shows the subcortical structures 159	

investigated here. Volumes for subcortical and ventricular structures were obtained directly from 160	

FreeSurfer. 161	

Validation studies have shown that this automated segmentation procedure corresponds 162	

well with manual tracing (e.g., Fischl et al., 2002; Jovicich et al., 2009; Keller et al., 2012; 163	

Lehmann et al., 2010; Mulder et al., 2014; Pardoe et al., 2009; Tae et al., 2008; Wenger et al., 164	

2014). FreeSurfer has been used in a large number of studies investigating age-differences in 165	

subcortical structures (e.g., Inano et al., 2013; Jovicich et al., 2009; Long et al., 2012; Potvin et 166	

al., 2016; Tamnes et al., 2013; Walhovd et al., 2005, 2011; Wenger et al., 2014; Yang et al., 167	

2016). 168	

Intracranial volume (ICV) was also estimated using FreeSurfer (Buckner et al., 2004), 169	

which has also been shown to correspond well with manual tracing (Sargolzaei et al., 2015). 170	

 171	

 172	

 173	
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 174	
Figure 1. Coronal slices, 3D reconstruction, and 2D illustration of the seven subcortical 175	
structures examined. Coronal slices, with anterior slices on the left, are shown at 5-mm spacing 176	
from a representative participant; positions of the displayed coronal slices are marked on the 177	
inset sagittal slice. The 3D reconstruction is based on the same participant’s MRI as the coronal 178	
slices (following from Madan, 2015). The 2D illustration was adapted from Toro et al. (2014). 179	
 180	

2.3 Fractal dimensionality analyses 181	

The complexity of each structure was calculated using the calcFD toolbox (Madan & Kensinger, 182	

2016; http://cmadan.github.io/calcFD/). This toolbox calculates the ‘fractal dimensionality’ of a 183	

3D structure, and is specifically designed to use intermediate files from the standard FreeSurfer 184	

analysis pipeline, here aparc.a2009s+aseg.mgz. The toolbox has previously been used with 185	

parcellated cortical structure, as well as validated using several benchmark volumes (Madan & 186	

Kensinger, 2016).  187	

We use fractal dimensionality as a measure of the complexity of a 3D structure, i.e., a 188	

subcortical structure. Unlike volume, which corresponds to the ‘size’ of any 3D structure, fractal 189	

dimensionality measures shape information and is scale invariant (Madan & Kensinger, 2016).  190	

In fractal geometry, several approaches have been proposed to quantify the ‘dimensionality’ or 191	

complexity of a fractal; the approach here calculates the Minkowski–Bouligand or Hausdorff 192	

dimension (see Mandelbrot, 1967). This structural property can be measured by considering the 193	

3D structure within a grid space and counting the number of boxes that overlap with the edge of 194	
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the structure, referred to as the ‘box-counting algorithm’ (Caserta et al., 1995; Mandelbrot, 195	

1982). By then using another grid size (i.e., changing the box width), the relationship between 196	

the grid size and number of counted boxes can be determined. Here we used box sizes (in mm) 197	

corresponding to powers of 2, ranging from 0 to 4 (i.e., 2k [k = 0, 1, 2, 3, 4] = 1, 2, 4, 8, 16 mm). 198	

The slope of this relationship in log-log space is the fractal dimensionality of the structure. Thus, 199	

the corresponding equation is: 200	

 201	

There are two distinct fractal dimensionality values that can be calculated: If only the boxes 202	

overlapping with the edge/surface of the structure are counted, this slope represents the fractal 203	

dimensionality of the surface, denoted as FDs. If the boxes within the structure are also counted, 204	

the resulting slope represents the fractal dimensionality of the filled volume, denoted as FDf.  205	

As the relative alignment of the grid space and the structure can influence the obtained 206	

fractal dimensionality value using the box-counting algorithm, we instead used a dilation 207	

algorithm that is equivalent to using a sliding grid space and calculating the fractal 208	

dimensionality at each alignment (Madan & Kensinger, 2016), but can be calculated much faster 209	

as it is less computationally demanding. This was implemented using a 3D-convolution 210	

operation (convn in MATLAB). As an example, Figure 2 illustrates the calculation of fractal 211	

dimensionality for a complex 2D structure. 212	

 213	
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 214	
Figure 2. Illustration of how fractal dimensionality is measured from a 2D structure. 215	
Reprinted from Madan and Kensinger (2016) with permission. Copyright 2016, Elsevier. 216	
 217	

2.4. Data Analysis 218	

All volume measurements were ICV-corrected prior to conducting the regression analyses. 219	

Specifically, ICV-corrected volumes were calculated as the residual after the volume data was 220	

regressed for ICV (as in Walhovd et al., 2011). Formal comparisons of procedures used to adjust 221	

for ICV suggest that results generalize across differing procedures (Greenberg et al., 2008).  222	

 Age differences in the subcortical and ventricular structures was first assessed using 223	

regression models examining the linear and quadratic relationships between age and volume (or 224	

fractal dimensionality) of the structure, with the amount of variance explained (i.e., R2) as the 225	

statistic. All of the regression models reported controlled for effects of sex (and site, in the case 226	

of the IXI dataset). 227	
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To directly assess if fractal dimensionality explained more age-related variability than 228	

volume, we formally compared model fits based on either measure, for each structure, using the 229	

Bayesian Information Criterion (BIC). This approach allows us to compare different regression 230	

models and determine which model fits the data best, or if models perform comparably. 231	

Additionally, models with more parameters are penalized for these additional degrees of 232	

freedom. As a rule of thumb, if the difference in BIC between two models is less than two, 233	

neither of the models’ fit to the data is significantly better (Burnham & Anderson, 2002, 2004). 234	

As absolute BIC values are arbitrary, we subtract the BIC value for the best model considered 235	

from all BIC values and report ΔBIC for each of the models, as is common practice. As a result, 236	

the best model considered is ΔBIC=0.00 by definition. 237	

 238	

3. Results 239	

3.1. Age-related differences in subcortical structures 240	

We used the OASIS dataset as our primary sample because Walhovd et al. (2011) previously 241	

examined age-related differences in volumetric measures in this sample (Samples 4a and 4b in 242	

their analyses). As such, the volumetric analyses here were intended to serve as a replication of 243	

their findings.  244	

The subcortical structures investigated here were the thalamus, hippocampus, amygdala, 245	

caudate, putamen, accumbens, and pallidum; a representative reconstruction of the structures 246	

from a participant’s MRI is shown in Figure 1. As shown in Table 1, linear and quadratic 247	

relationships between age and volumes of subcortical structures closely matched the amount of 248	

variance explained (i.e., R2) reported by Walhovd et al. for the same sample. Briefly, age-related 249	

differences were most pronounced in the thalamus, putamen, accumbens, and pallidum—each 250	

with R2 values near 50% or above (Figure 3A). Age explained a moderate amount of variability 251	
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in the volume of the hippocampus and amygdala, whereas caudate volume was the least related 252	

to age-related differences. The upper half of Figure 4 shows the quadratic fits for each structure. 253	

We calculated the fractal dimensionality, both FDs and FDf, of the structures for each 254	

individual to additionally measure age-related differences in their structural complexity. Fractal 255	

dimensionality of the surface (FDs) captured more variability than volume for some of the 256	

structures; for instance, 64% for the thalamus and 66% for the accumbens. There was a smaller 257	

increase in variability explained by FDs relative to volume in the amygdala (31%) and there was 258	

effectively no additional age-related differences explained in the caudate (16%). However, less 259	

variability was explained by FDs than by volume in other structures, such as the hippocampus 260	

(20%), putamen (31%), and pallidum (36%). Importantly, FDs captures shape-related, but not 261	

volumetric, characteristics of the surface structure. In contrast, FDf, while scale invariant, is 262	

influenced by a combination of shape- and volumetric-related characteristics of the structure. 263	

Age-related differences in FDf were larger than those for volume across all seven subcortical 264	

structures, as shown in Table 1 and Figure 3A; differences were also larger than for FDs for all 265	

but one structure, though that comparison was only nominally smaller [accumbens, quadratic R2: 266	

FDs = 66%; FDf = 65%]. Relative to volume, the amount of variability explained in FDf was 267	

much higher for the thalamus and caudate (74% and 40% variance explained with the quadratic 268	

model, respectively; versus 55% and 12% with volume, respectively). More moderate increases 269	

(of approximately 10% more variance explained) were found for the amygdala, putamen, and 270	

accumbens. The lower half of Figure 4 shows the quadratic fits for the structures; relationships 271	

are generally consistent as those with volume, though generally there is less unexplained 272	

variability (i.e., the residual).  273	

Figure 3B illustrates that volume and structural complexity are highly collinear. Volume 274	

and structural complexity were the most distinct for the caudate, with 59% shared variance. 275	

Apart from the caudate, the amount of shared variance ranged from 73-86%. Including both 276	



Complexity of subcortical structures  13 

volume and structural complexity within the same model marginally increased the total amount 277	

of variance explained (Figure 3B) relative to the FDf models, with increases ranging from 1-4% 278	

for six of the structures. However, the inclusion of volume led to a 12% additional variance 279	

explained for the caudate, suggesting that age-related differences in volume and complexity were 280	

distinct for this region. 281	

The two fractal dimensionality measures were slightly more collinear, with shared 282	

variances of: thalamus (77%), hippocampus (71%), amygdala (85%), caudate (76%), putamen 283	

(63%), accumbens (99%), and pallidum (72%). In almost all cases, the combined variance 284	

explained by the two fractal dimensionality measures was increased by less than 5% relative to 285	

the FDf-only regression model; the only exception to this was the caudate, where the combined 286	

model explained 56% of age-related variability. 287	

Formal model comparisons are reported in Table 2. In contrast to the analyses presented 288	

in Figures 3-4 and Table 1, where the structural measures were used as the dependant variable 289	

(DV), here we used age as the DV such that we could compare how well the various structural 290	

measures were able to explain variability in this common DV. Here we found that fractal 291	

dimensionality explained more age-related variability than volume for all of the subcortical 292	

structures.  293	

 294	

 295	
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 296	

Figure 3. Amount of variance explained (R2) by quadratic models of age in volume and 297	
structural complexity for each subcortical structure (Panel A). Panel B shows the amount 298	
of variance common to both volume and complexity (i.e., collinearity), as well as combined 299	
variance explained by including both volume and complexity. 300	
 301	
 302	

 303	
Figure 4. Scatter plots of age-related differences in volume and structural complexity for 304	
each subcortical structure along with best-fitting quadratic models.  305	
 306	
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 307	

 

Volume 

 

FDf 

 

1 

 

2 

 

3 

 

1 

 

2 

 

3 

  

OASIS 

 

IXI 

 

BC 

 

OASIS 

 

IXI 

 

BC 

    Age Age2   Age Age2   Age Age2   Age Age2   Age Age2   Age Age2 

                   Thalamus .55 .55 

 

.28 .30 

 

.28 .37 

 

.71 .74 

 

.52 .54 

 

.51 .56 

Hippocampus .26 .38 

 

.14 .20 

 

.38 .47 

 

.31 .43 

 

.10 .13 

 

.26 .32 

Amygdala .18 .21 

 

.10 .12 

 

.35 .42 

 

.28 .33 

 

.23 .24 

 

.42 .48 

Caudate .03 .12 

 

.05 .06 

 

.04 .10 

 

.39 .40 

 

.26 .26 

 

.29 .31 

Putamen .51 .51 

 

.28 .28 

 

.50 .51 

 

.62 .62 

 

.32 .32 

 

.44 .46 

Accumbens .53 .54 

 

.23 .23 

 

.44 .45 

 

.61 .65 

 

.31 .31 

 

.47 .49 

Pallidum .47 .48 

 

.06 .06 

 

.33 .34 

 

.49 .49 

 

.10 .11 

 

.30 .31 

                   Ventricles 

                 

 

Lateral .53 .60 

 

.32 .38  .44 .48 

 

.51 .53 

 

.26 .28  .48 .48 

 

Inferior Lateral .39 .57 

 

.19 .28  .28 .32 

 

.30 .41 

 

.07 .09  .25 .28 

 

3rd .52 .63 

 

.30 .34  .44 .49 

 

.52 .59 

 

.28 .30  .43 .47 

 

4th .02 .08 

 

.01 .02  .00 .00 

 

.00 .08 

 

.00 .01  .01 .01 

                   Table 1. Effects of age on volume and fractal dimensionality for the structures examined. 308	
Volume measures were ICV-corrected; effects of site were regressed out for the IXI sample. 309	
Values in the Age2 columns indicate amount of explained variance (R2) for the model consisting 310	
of Age+Age2 and are printed in bold/italic+underline only if the addition of the quadratic term 311	
significantly increased the amount of explained variance. Bold: p<.01; Italic+Underline: p<.05.  312	



Complexity of subcortical structures  16 

3.2. Limitations to scale invariance of fractal dimensionality 313	

While fractal dimensionality is mathematically scale invariant, constraints of MRI data 314	

acquisition may introduce a lower limit to this theoretical property. Specifically, smaller 315	

structures are inherently more ‘rectangular’ due to voxel resolution constraints and thus will have 316	

lower structural complexity as a result. A lower limit on the scale invariance of fractal 317	

dimensionality would appear as a steep relationship with volume, indicating that the resolution of 318	

the 3D structure’s shape was insufficient to yield additional contributions from shape-related 319	

properties. 320	

Here we examined the relationship between total volume (without ICV-correction) and 321	

FDf and found some evidence of a limitation in scale invariance (Figure 5). Specifically, smaller 322	

subcortical structures (e.g., accumbens, pallidum) had steeper relationships between volume and 323	

FDf and less ‘off-axis’ variability than larger structures (e.g., thalamus, caudate). This indicates 324	

that (1) FDf for smaller structures was influenced more by volumetric characteristics than in the 325	

larger structures, and (2) FDf for smaller structures was more correlated with volume, while FDf 326	

for larger structures additionally indexed other sources of variability (i.e., shape-related 327	

characteristics). This increase in off-axis variability was not true of all larger structures, 328	

specifically the putamen, though this could be related to biological constraints in the variability 329	

in shape of the structure.  330	

These results indicate that future applications of structural complexity will be limited for 331	

structures that are inherently small (e.g., hippocampal subfields), though this limitation can be 332	

attenuated by acquiring MRI data with higher-resolution imaging protocols (i.e., decreasing the 333	

voxel size during acquisition).	As noted in the Methods section, the MRI data in the datasets 334	

analyzed here were acquired with a voxel size of 1 mm3-isotropic or slightly larger. However, 335	

when anatomical fidelity is critical, current neuroimaging protocols can acquire high-resolution 336	
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images with voxel dimensions on the scale of 0.5 mm in-plane (e.g., Hrybouski et al., 2016; La 337	

Joie et al., 2010; Palombo et al., 2013; Reagh & Yassa, 2014; Yushkevich et al. 2015). 338	

 339	

 340	
Figure 5. Scatter plot of total volume and structural complexity along with best-fitting 341	
power-function models.  342	
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3.3. Age-related differences in the ventricles 343	

We also examined age-related differences in the volume and structural complexity of the 344	

ventricles, as shown in Figure 6. The amount of variability in volume explained by age-related 345	

differences was consistent with Walhovd et al. (2011). Interestingly, variability in the fractal 346	

dimensionality (FDf) of the structures was more weakly associated with age-related differences 347	

than volume, unlike the subcortical structures (see Table 1). When formally compared (see 348	

below), volume explained more age-related variability than fractal dimensionality for all of the 349	

ventricular structures (Table 2). 350	

 351	

 352	

 353	

Figure 6. Age-related differences in volume and structural complexity of ventricular 354	
structures. (A) Bar plot of amount of variance explained (R2) by quadratic models of age. (B) 355	
Scatter plots of age-related differences in either measure.  356	
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 357	

  
Volume 

 
FDf  

  
Linear Quadratic 

 
Linear Quadratic 

       Thalamus 138.81 144.04  0.00 1.97 

Hippocampus 294.06 292.48  268.43 274.18 

Amygdala 325.39 328.65  282.02 285.23 

Caudate 378.02 374.80  230.20 234.18 

Putamen 166.08 166.43  87.17 91.08 

Accumbens 148.45 146.21  88.52 85.10 

Pallidum 185.06 188.54  178.19 177.54 

  

     

Ventricles      

 

Lateral 151.21 111.27  160.55 148.52 

 

Inferior Lateral 229.71 212.61  274.11 260.23 

 

3rd 156.98 123.98  154.28 144.76 

 

4th 380.47 385.83  386.21 387.84 

       

 

Table 2. Model fitness in comparing the effects of volume and fractal dimensionality in 358	
explaining age, for each of the structures examined, based on the OASIS dataset. Values in 359	
the Quadratic columns indicate model fitness (ΔBIC) for the regression model consisting of both 360	
linear and quadratic terms. Models with BIC values with a difference greater than two suggest 361	
that the model with the lower BIC value is a significantly better fit than the other models. Best 362	
fitting models for each structure are denoted in bold. 363	
  364	
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3.4. Replication in independent samples 365	

To assess the reproducibility of our findings of age-related differences in the structural 366	

complexity of the subcortical and ventricular structures, we conducted similar analyses in two 367	

additional samples. 368	

 In the IXI sample, we generally found less age-related differences in both volume and 369	

fractal dimensionality; however, the volumetric differences observed here were within the inter-370	

sample variability observed in Walhovd et al. (2011). Importantly, the same regions were found 371	

to show the strongest age-related differences in volume (e.g., thalamus, putamen, lateral 372	

ventricles; though not the pallidum). Fractal dimensionality (FDf) was again more closely related 373	

to age-related differences. Results in the BC sample were consistent with those observed in the 374	

OASIS and IXI samples, and magnitudes of explained variance on age-related differences in 375	

volume and fractal dimensionality were generally in-between those observed in each of the other 376	

datasets. 377	

 378	

4. Discussion 379	

When examining age-related differences in brain structure, it is important to consider the most 380	

appropriate measure. With cortical structure, it has been established that age-related differences 381	

are reflected most in cortical thickness, rather than surface area or volume (Hogstrom et al., 382	

2013; Fjell et al., 2009; McKay et al., 2014; Salat et al., 2004); however, we recently 383	

demonstrated that structural complexity of the cortex is more sensitive to age-related differences 384	

than thickness (Madan & Kensinger, 2016). In the present study, we found systematic age-385	

related differences in the structural complexity of subcortical regions that was not captured by 386	

volumetric measures. Additionally, we found that structural complexity was not more closely 387	

related to age-related differences across all brain structures: this measure showed a weaker 388	

association with age for the ventricular regions than did other metrics. Thus, it is clear that 389	
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considering the shape of subcortical structures provides additional information about age-related 390	

atrophy beyond ICV-corrected volume, but only when the ‘contents’ of the structure are 391	

themselves meaningful—i.e., neural tissue, rather than CSF. 392	

 Evidence of age-related differences in fractal dimensionality in subcortical structures (as 393	

well as cortical structures; Madan & Kensinger, 2016) demonstrates that current approaches of 394	

measuring age-related differences in volume (and cortical thickness) only partially characterize 395	

how the structural properties of the brain relate to age. While the neurobiological basis (i.e., 396	

cellular through systems level) of these differences is unclear, these differences are demonstrably 397	

evident at the macro-level of brain structures that is measured using structural MRIs. Further 398	

research is needed to establish how these shape-related differences manifest in more precise 399	

measures of neural structure (e.g., differences in neuronal composition or density). Indeed, the 400	

use of fractal dimensionality to measure complexity at the micro- and meso-level structures 401	

within neuroscience has already been established (Di Ieva et al., 2014, 2015) and may prove 402	

useful in examining age-related differences within these subcortical structures, such as in the 403	

composition of neurons. Nonetheless, the present results provide evidence of an additional metric 404	

for evaluating inter-individual differences in physiological brain age. 405	

 Prior work in young and older adults has demonstrated that fractal dimensionality can 406	

index inter-individual differences in brain morphology that relate to cognition and differs 407	

between healthy adults and patient populations. While the current work applies fractal 408	

dimensionality analyses to subcortical structures, others have used fractal dimensionality to 409	

characterize the structural complexity of segmented grey or white matter structure (e.g., King et 410	

al., 2009; Madan & Kensinger, 2016; Mustafa et al., 2012; Sandu et al., 2008). Using these 411	

approaches, fractal dimensionality has been related to inter-individual differences in measures of 412	

fluid intelligence (Mustafa et al., 2012; Sandu et al., 2014), IQ (Im et al., 2006), and performance 413	

on the cognitive subscale of the Alzheimer’s Disease Assessment Scale (King et al., 2010). 414	
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Fractal dimensionality has also been shown to differ between healthy adults and a number of 415	

patient populations, particularly in Alzheimer’s disease (King et al., 2009, 2010; Thompson et 416	

al., 1998) and schizophrenia (Ha et al., 2005; Narr et al., 2004; Nenadic et al., 2014; Sandu et al., 417	

2008; Yotter et al., 2011; Zhao et al., 2016). Thus, while we have demonstrated the benefits of 418	

using fractal dimensionality to index age-related differences in subcortical structure, as well as 419	

cortical structure (Madan & Kensinger, 2016), the variability of this morphological measure also 420	

is related to inter-individual differences in cognitive measures and may hold promise as a 421	

biomarker for some neurological disorders. However, it is important to consider that more inter-422	

individual variability explained by age may not always be desired, as this leaves less variance 423	

available to be related to other factors, e.g., performance on cognitive measures, so volume may 424	

still be a preferable measure depending on the research question. As such, we advocate for the 425	

use of multiple brain morphology measures when examining inter-individual differences. 426	

Though we measured structural complexity here using fractal dimensionality, this is not 427	

the only approach to quantify these shape-related properties; other related approaches such as 428	

spherical harmonics (Chung et al., 2008, 2010; Yotter et al., 2011) and Laplace-Beltrami spectra 429	

(Reuter et al., 2006; Wachinger et al., 2015) may similarly be able to capture these structural 430	

differences. Seo and Chung (2011) demonstrated that Laplace-Beltrami eigenfunctions can yield 431	

better fits to the original structure than spherical harmonics, when reconstructing cortical and 432	

subcortical surfaces. This difference was attributed to Laplace-Beltrami spectra not necessitating 433	

spherical parameterization. As of yet, no comparison has been done between Laplace-Beltrami 434	

spectra and the current approach of using fractal dimensionality. 435	

In summary, the present results reveal that metrics of fractal dimensionality can capture 436	

age-associated variance within subcortical structures that is missed when using only volumetric 437	

measures. This result represents an important extension of prior research examining cortical 438	

structure (Madan & Kensinger, 2016), revealing that fractal dimensionality is strongly associated 439	
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with age even in relatively small, subcortical structures. Moreover, these results emphasize the 440	

benefits of including metrics of fractal dimensionality in assessments of structural differences 441	

associated with aging and of assessing both subcortical and cortical structures.  442	



Complexity of subcortical structures  24 

References 443	
Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroanatomical variation 444	

due to age: The major lobes and a parcellation of the temporal region. Neurobiology of 445	
Aging, 26, 1245–1260. doi:10.1016/j.neurobiolaging.2005.05.023 446	

Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y.-Y., Toga, A. W., & 447	
Thompson, P. M. (2012). Hippocampal Atrophy and Ventricular Enlargement in Normal 448	
Aging, Mild Cognitive Impairment (MCI), and Alzheimer Disease. Alzheimer Disease & 449	
Associated Disorders, 26, 17–27. doi:10.1097/wad.0b013e3182163b62 450	

Barron, S. A., Jacobs, L., & Kinkel, W. R. (1976). Changes in size of normal lateral ventricles 451	
during aging determined by computerized tomography. Neurology, 26, 1011–1011. 452	
doi:10.1212/wnl.26.11.1011 453	

Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., & Snyder, A. Z. 454	
(2004). A unified approach for morphometric and functional data analysis in young, old, 455	
and demented adults using automated atlas-based head size normalization: Reliability and 456	
validation against manual measurement of total intracranial volume. NeuroImage, 23, 724–457	
738. doi:10.1016/j.neuroimage.2004.06.018 458	

Burnham, K. E., & Anderson, D. R. (2002). Model selection and multimodel inference (2nd ed.). 459	
New York: Springer-Verlag. 460	

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC 461	
in model selection. Sociological Methods & Research, 33, 261–304. 462	
doi:10.1177/0049124104268644 463	

Caserta, F., Eldred, W. D., Fernandez, E., Hausman, R. E., Stanford, L. R., Bulderev, S. V., … 464	
Stanley, H. E. (1995). Determination of fractal dimension of physiologically characterized 465	
neurons in two and three dimensions. Journal of Neuroscience Methods, 56, 133–144. 466	
doi:10.1016/0165-0270(94)00115-w 467	

Chung, M. K., Nacewicz, B. M., Wang, S., Dalton, K. M., Pollak, S., & Davidson, R. J. (2008). 468	
Amygdala surface modeling with weighted spherical harmonics. Lecture Notes in 469	
Computer Science, 5128, 177–184. doi:10.1007/978-3-540-79982-5_20 470	

Chung, M. K., Worsley, K. J., Nacewicz, B. M., Dalton, K. M., & Davidson, R. J. (2010). 471	
General multivariate linear modeling of surface shapes using SurfStat. NeuroImage, 53, 472	
491–505. doi:10.1016/j.neuroimage.2010.06.032 473	

Creasey, H., & Rapoport, S. I. (1985). The aging human brain. Annals of Neurology, 17, 2–10. 474	
doi:10.1002/ana.410170103 475	

Di Ieva, A., Esteban, F. J., Grizzi, F., Klonowski, W., & Martin-Landrove, M. (2015). Fractals in 476	
the neurosciences, Part II: Clinical applications and future perspectives. The 477	
Neuroscientist, 21, 30–43. doi:10.1177/1073858413513928 478	

Di Ieva, A., Grizzi, F., Jelinek, H., Pellionisz, A. J., & Losa, G. A. (2014). Fractals in the 479	
neurosciences, Part I: General principles and basic neurosciences. The Neuroscientist, 20, 480	
403–417. doi:10.1177/1073858413513927 481	

Drayer, B. P. (1988). Imaging of the aging brain. Part I. Normal findings. Radiology, 166, 785–482	
796. doi:10.1148/radiology.166.3.3277247 483	



Complexity of subcortical structures  25 

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. 484	
(2002). Whole brain segmentation: Automated labelling of neuroanatomical structures in 485	
the human brain. Neuron, 33, 341–355. doi:10.1016/s0896-6273(02)00569-x 486	

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical Surface-Based Analysis. NeuroImage, 487	
9, 195–207. doi:10.1006/nimg.1998.0396 488	

Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Walhovd, K. B. 489	
(2009). High consistency of regional cortical thinning in aging across multiple samples. 490	
Cerebral Cortex, 19, 2001–2012. doi:10.1093/cercor/bhn232 491	

Free, S. L., Sisodiya, S. M., Cook, M. J., Fish, D. R., & Shorvon, S. D. (1996). Three-492	
dimensional fractal analysis of the white matter surface from magnetic resonance images 493	
of the human brain. Cerebral Cortex, 6, 830–836. doi:10.1093/cercor/6.6.830 494	

Goodro, M., Sameti, M., Patenaude, B., & Fein, G. (2012). Age effect on subcortical structures 495	
in healthy adults. Psychiatry Research: Neuroimaging, 203, 38–45. 496	
doi:10.1016/j.pscychresns.2011.09.014 497	

Greenberg, D. L., Messer, D. F., Payne, M. E., MacFall, J. R., Provenzale, J. M., Steffens, D. C., 498	
& Krishnan, R. R. (2008). Aging, gender, and the elderly adult brain: An examination of 499	
analytical strategies. Neurobiology of Aging, 29, 290–302. 500	
doi:10.1016/j.neurobiolaging.2006.09.016 501	

Gunning-Dixon, F. M., Head, D., McQuain, J., Acker, J. D., & Raz, N. (1998). Differential aging 502	
of the human striatum: A prospective MR imaging study. American Journal of 503	
Neuroradiology, 19, 1501-1507. 504	

Ha, T. H., Yoon, U., Lee, K. J., Shin, Y. W., Lee, J.-M., Kim, I. Y., … Kwon, J. S. (2005). 505	
Fractal dimension of cerebral cortical surface in schizophrenia and obsessive–compulsive 506	
disorder. Neuroscience Letters, 384, 172–176. doi:10.1016/j.neulet.2005.04.078 507	

Hogstrom, L. J., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2013). The structure of the 508	
cerebral cortex across adult life: Age-related patterns of surface area, thickness, and 509	
gyrification. Cerebral Cortex, 23, 2521–2530. doi:10.1093/cercor/bhs231 510	

Hrybouski, S., Aghamohammadi-Sereshki, A., Madan, C. R., Shafer, A. T., Baron, C. A., Seres, 511	
P., … Malykhin, N. V. (2016). Amygdala subnuclei response and connectivity during 512	
emotional processing. NeuroImage, 133, 98–110. doi:10.1016/j.neuroimage.2016.02.056 513	

Im, K., Lee, J.-M., Yoon, U., Shin, Y.-W., Hong, S. B., Kim, I. Y., … Kim, S. I. (2006). Fractal 514	
dimension in human cortical surface: Multiple regression analysis with cortical thickness, 515	
sulcal depth, and folding area. Human Brain Mapping, 27, 994–1003. 516	
doi:10.1002/hbm.20238 517	

Inano, S., Takao, H., Hayashi, N., Yoshioka, N., Mori, H., Kunimatsu, A., … Ohtomo, K. 518	
(2012). Effects of age and gender on neuroanatomical volumes. Journal of Magnetic 519	
Resonance Imaging, 37, 1072–1076. doi:10.1002/jmri.23910 520	

Jernigan, T. L., Archibald, S. L., Fennema-Notestine, C., Gamst, A. C., Stout, J. C., Bonner, J., 521	
& Hesselink, J. R. (2001). Effects of age on tissues and regions of the cerebrum and 522	
cerebellum. Neurobiology of Aging, 22, 581–594. doi:10.1016/s0197-4580(01)00217-2 523	



Complexity of subcortical structures  26 

Kaye, J. A., DeCarli, C., Luxenberg, J. S., & Rapoport, S. I. (1992). The significance of age-524	
related enlargement of the cerebral ventricles in healthy men and women measured by 525	
quantitative computed X-ray tomography. Journal of the American Geriatrics Society, 40, 526	
225–231. doi:10.1111/j.1532-5415.1992.tb02073.x 527	

Keller, S. S., Gerdes, J. S., Mohammadi, S., Kellinghaus, C., Kugel, H., Deppe, K., … Deppe, 528	
M. (2012). Volume estimation of the thalamus using FreeSurfer and stereology: 529	
Consistency between methods. Neuroinformatics, 10, 341–350. doi:10.1007/s12021-012-530	
9147-0 531	

Kemper T. L. (1994) Neuroanatomical and neuropathological changes during aging and 532	
dementia (pp. 3–67). In: Clinical neurology of aging, 2nd ed. (Eds. M. L. Albert, J. E. 533	
Knoefel). New York: Oxford University Press.  534	

King, R. D., Brown, B., Hwang, M., Jeon, T., & George, A. T. (2010). Fractal dimension 535	
analysis of the cortical ribbon in mild Alzheimer’s disease. NeuroImage, 53, 471–479. 536	
doi:10.1016/j.neuroimage.2010.06.050 537	

King, R. D., George, A. T., Jeon, T., Hynan, L. S., Youn, T. S., Kennedy, D. N., & Dickerson, B. 538	
(2009). Characterization of atrophic changes in the cerebral cortex using fractal 539	
dimensional analysis. Brain Imaging and Behavior, 3, 154–166. doi:10.1007/s11682-008-540	
9057-9 541	

Kiselev, V. G., Hahn, K. R., & Auer, D. P. (2003). Is the brain cortex a fractal? NeuroImage, 20, 542	
1765–1774. doi:10.1016/s1053-8119(03)00380-x 543	

La Joie, R., Fouquet, M., Mézenge, F., Landeau, B., Villain, N., Mevel, K., … Chételat, G. 544	
(2010). Differential effect of age on hippocampal subfields assessed using a new high-545	
resolution 3T MR sequence. NeuroImage, 53, 506–514. 546	
doi:10.1016/j.neuroimage.2010.06.024 547	

Lehmann, M., Douiri, A., Kim, L. G., Modat, M., Chan, D., Ourselin, S., … Fox, N. C. (2010). 548	
Atrophy patterns in Alzheimer’s disease and semantic dementia: A comparison of 549	
FreeSurfer and manual volumetric measurements. NeuroImage, 49, 2264–2274. 550	
doi:10.1016/j.neuroimage.2009.10.056 551	

LeMay, M. (1984). Radiologic changes of the aging brain and skull. American Journal of 552	
Roentgenology, 143, 383–389. doi:10.2214/ajr.143.2.383 553	

Long, X., Liao, W., Jiang, C., Liang, D., Qiu, B., & Zhang, L. (2012). Healthy aging. Academic 554	
Radiology, 19, 785–793. doi:10.1016/j.acra.2012.03.006 555	

Madan, C. R. (2015). Creating 3D visualizations of MRI data: A brief guide. F1000Research, 4, 556	
466. doi:10.12688/f1000research.6838.1 557	

Madan, C. R., & Kensinger, E. A. (2016). Cortical complexity as a measure of age-related brain 558	
atrophy. NeuroImage. doi:	10.1016/j.neuroimage.2016.04.029 559	

Mandelbrot, B. B. (1967). How long is the coast of Britain? Statistical self-similarity and 560	
fractional dimension. Science, 156, 636–638. doi:10.1126/science.156.3775.636 561	

Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. 562	
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007). 563	

Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in young, 564	



Complexity of subcortical structures  27 

middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 565	
19, 1498–1507. doi:10.1162/jocn.2007.19.9.1498 566	

McKay, D. R., Knowles, E. E. M., Winkler, A. A. M., Sprooten, E., Kochunov, P., Olvera, R. L., 567	
… Glahn, D. C. (2014). Influence of age, sex and genetic factors on the human brain. 568	
Brain Imaging and Behavior, 8, 143–152. doi:10.1007/s11682-013-9277-5 569	

Mulder, E. R., de Jong, R. A., Knol, D. L., van Schijndel, R. A., Cover, K. S., Visser, P. J., … 570	
Vrenken, H. (2014). Hippocampal volume change measurement: Quantitative assessment 571	
of the reproducibility of expert manual outlining and the automated methods FreeSurfer 572	
and FIRST. NeuroImage, 92, 169–181. doi:10.1016/j.neuroimage.2014.01.058 573	

Mustafa, N., Ahearn, T. S., Waiter, G. D., Murray, A. D., Whalley, L. J., & Staff, R. T. (2012). 574	
Brain structural complexity and life course cognitive change. NeuroImage, 61, 694–701. 575	
doi:10.1016/j.neuroimage.2012.03.088 576	

Narr, K. L., Bilder, R. M., Kim, S., Thompson, P. M., Szeszko, P., Robinson, D., … Toga, A. W. 577	
(2004). Abnormal gyral complexity in first-episode schizophrenia. Biological Psychiatry, 578	
55, 859–867. doi:10.1016/j.biopsych.2003.12.027 579	

Nenadic, I., Yotter, R. A., Sauer, H., & Gaser, C. (2014). Cortical surface complexity in frontal 580	
and temporal areas varies across subgroups of schizophrenia. Human Brain Mapping, 35, 581	
1691–1699. doi:10.1002/hbm.22283 582	

Palombo, D. J., Amaral, R. S. C., Olsen, R. K., Muller, D. J., Todd, R. M., Anderson, A. K., & 583	
Levine, B. (2013). KIBRA polymorphism is associated with individual differences in 584	
Hippocampal subregions: Evidence from anatomical segmentation using high-resolution 585	
MRI. Journal of Neuroscience, 33, 13088–13093. doi:10.1523/jneurosci.1406-13.2013 586	

Pardoe, H. R., Kucharsky Hiess, R., & Kuzniecky, R. (2016). Motion and morphometry in 587	
clinical and nonclinical populations. NeuroImage, 135, 177–185. 588	
doi:10.1016/j.neuroimage.2016.05.005 589	

Pienaar, R., Fischl, B., Caviness, V., Makris, N., & Grant, P. E. (2008). A methodology for 590	
analyzing Curvature in the developing brain from preterm to adult. International Journal of 591	
Imaging Systems and Technology, 18, 42–68. doi:10.1002/ima.20138 592	

Potvin, O., Mouiha, A., Dieumegarde, L., & Duchesne, S. (2016). Normative data for subcortical 593	
regional volumes over the lifetime of the adult human brain. NeuroImage, 137, 9–20. 594	
doi:10.1016/j.neuroimage.2016.05.016 595	

Qiu, A., Zhong, J., Graham, S., Chia, M. Y., & Sim, K. (2009). Combined analyses of thalamic 596	
volume, shape and white matter integrity in first-episode schizophrenia. NeuroImage, 47, 597	
1163–1171. doi:10.1016/j.neuroimage.2009.04.027 598	

Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates 599	
and modifiers. Neuroscience & Biobehavioral Reviews, 30, 730–748. 600	
doi:10.1016/j.neubiorev.2006.07.001 601	

Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, 602	
C., Gerstorf, D., & Acker, J. D (2005). Regional brain changes in aging healthy adults: 603	
General trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689. 604	
doi:10.1093/cercor/bhi044 605	



Complexity of subcortical structures  28 

Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging 606	
of the medial temporal lobe: A study of a five-year change. Neurology, 62, 433–438. 607	
doi:10.1212/01.wnl.0000106466.09835.46 608	

Reagh, Z. M., & Yassa, M. A. (2014). Object and spatial mnemonic interference differentially 609	
engage lateral and medial entorhinal cortex in humans. Proceedings of the National 610	
Academy of Science USA, 111, E4264–E4273. doi:10.1073/pnas.1411250111 611	

Reuter, M., Wolter, F.-E., & Peinecke, N. (2006). Laplace–Beltrami spectra as “Shape-DNA” of 612	
surfaces and solids. Computer-Aided Design, 38, 342–366. doi:10.1016/j.cad.2005.10.011 613	

Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S. R., … Fischl, B. (2004). 614	
Thinning of the cerebral cortex in aging. Cerebral Cortex, 14, 721–730. 615	
doi:10.1093/cercor/bhh032 616	

Sandu, A.-L., Rasmussen, I.-A., Lundervold, A., Kreuder, F., Neckelmann, G., Hugdahl, K., & 617	
Specht, K. (2008). Fractal dimension analysis of MR images reveals grey matter structure 618	
irregularities in schizophrenia. Computerized Medical Imaging and Graphics, 32, 150–619	
158. doi:10.1016/j.compmedimag.2007.10.005 620	

Sandu, A.-L., Staff, R. T., McNeil, C. J., Mustafa, N., Ahearn, T., Whalley, L. J., & Murray, A. 621	
D. (2014). Structural brain complexity and cognitive decline in late life: A longitudinal 622	
study in the Aberdeen 1936 Birth Cohort. NeuroImage, 100, 558–563. 623	
doi:10.1016/j.neuroimage.2014.06.054 624	

Sargolzaei, S., Sargolzaei, A., Cabrerizo, M., Chen, G., Goryawala, M., Pinzon-Ardila, A., … 625	
Adjouadi, M. (2015). Estimating intracranial volume in brain research: An evaluation of 626	
methods. Neuroinformatics, 13, 427–441. doi:10.1007/s12021-015-9266-5 627	

Seo, S., & Chung, M. K. (2011). Laplace-Beltrami eigenfunction expansion of cortical 628	
manifolds. IEEE International Symposium on Biomedical Imaging, 2011, 372-375. 629	
doi:10.1109/isbi.2011.5872426 630	

Smith, M. J., Wang, L., Cronenwett, W., Goldman, M. B., Mamah, D., Barch, D. M., & 631	
Csernansky, J. G. (2011). Alcohol use disorders contribute to hippocampal and subcortical 632	
shape differences in schizophrenia. Schizophrenia Research, 131, 174–183. 633	
doi:10.1016/j.schres.2011.05.014 634	

Tae, W. S., Kim, S. S., Lee, K. U., Nam, E.-C., & Kim, K. W. (2008). Validation of hippocampal 635	
volumes measured using a manual method and two automated methods (FreeSurfer and 636	
IBASPM) in chronic major depressive disorder. Neuroradiology, 50, 569–581. 637	
doi:10.1007/s00234-008-0383-9 638	

Tamnes, C. K., Walhovd, K. B., Dale, A. M., Østby, Y., Grydeland, H., Richardson, G., … Fjell, 639	
A. M. (2013). Brain development and aging: Overlapping and unique patterns of change. 640	
NeuroImage, 68, 63–74. doi:10.1016/j.neuroimage.2012.11.039 641	

Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. 642	
Nature Reviews Neuroscience, 16, 213–225. doi:10.1038/nrn3916 643	

Thompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., & Toga, A. W. (1996). Three-644	
dimensional statistical analysis of sulcal variability in the human brain. Journal of 645	
Neuroscience, 16, 4261-4274. 646	



Complexity of subcortical structures  29 

Thompson, P., Moussai, J., Zohoori, A., Khan, A. A., Mega, M. S., Cummings, J. L., & Toga, A. 647	
W. (1998). Cortical variability and asymmetry in normal aging and Alzheimer’s disease. 648	
Cerebral Cortex, 8, 492–509. doi:10.1093/cercor/8.6.492 649	

Toro, R., Poline, J.-B., Huguet, G., Loth, E., Frouin, V., Banaschewski, T., … Bourgeron, T. 650	
(2014). Genomic architecture of human neuroanatomical diversity. Molecular Psychiatry, 651	
20, 1011–1016. doi:10.1038/mp.2014.99 652	

van der Kouwe, A. J. W., Benner, T., Salat, D. H., & Fischl, B. (2008). Brain morphometry with 653	
multiecho MPRAGE. NeuroImage, 40, 559–569. doi:10.1016/j.neuroimage.2007.12.025 654	

Wachinger, C., Golland, P., Kremen, W., Fischl, B., & Reuter, M. (2015). BrainPrint: A 655	
discriminative characterization of brain morphology. NeuroImage, 109, 232–248. 656	
doi:10.1016/j.neuroimage.2015.01.032 657	

Walhovd, K. B., Fjell, A. M., Reinvang, I., Lundervold, A., Dale, A. M., Eilertsen, D. E., … 658	
Fischl, B. (2005). Effects of age on volumes of cortex, white matter and subcortical 659	
structures. Neurobiology of Aging, 26, 1261–1270. 660	
doi:10.1016/j.neurobiolaging.2005.05.020 661	

Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Fjell, A. M. 662	
(2011). Consistent neuroanatomical age-related volume differences across multiple 663	
samples. Neurobiology of Aging, 32, 916–932. doi:10.1016/j.neurobiolaging.2009.05.013 664	

Wenger, E., Mårtensson, J., Noack, H., Bodammer, N. C., Kühn, S., Schaefer, S., … Lövdén, M. 665	
(2014). Comparing manual and automatic segmentation of hippocampal volumes: 666	
Reliability and validity issues in younger and older brains. Human Brain Mapping, 35, 667	
4236–4248. doi:10.1002/hbm.22473 668	

Wonderlick, J. S., Ziegler, D. A., Hosseini-Varnamkhasti, P., Locascio, J., J. Bakkour, A., van 669	
der Kouwe, A., … Dickerson, B. C. (2009). Reliability of MRI-derived cortical and 670	
subcortical morphometric measures: Effects of pulse sequence, voxel geometry, and 671	
parallel imaging. NeuroImage, 44, 1324–1333. doi:10.1016/j.neuroimage.2008.10.037 672	

Yang, Z., Wen, W., Jiang, J., Crawford, J. D., Reppermund, S., Levitan, C., … Sachdev, P. S. 673	
(2016). Age-associated differences on structural brain MRI in nondemented individuals 674	
from 71 to 103 years. Neurobiology of Aging, 40, 86–97. 675	
doi:10.1016/j.neurobiolaging.2016.01.006 676	

Yotter, R. A., Nenadic, I., Ziegler, G., Thompson, P. M., & Gaser, C. (2011). Local cortical 677	
surface complexity maps from spherical harmonic reconstructions. NeuroImage, 56, 961–678	
973. doi:10.1016/j.neuroimage.2011.02.007 679	

Yun, H. J., Im, K., Jin-Ju Yang, Yoon, U., & Lee, J.-M. (2013). Automated sulcal depth 680	
measurement on cortical surface reflecting geometrical properties of sulci. PLOS ONE, 8, 681	
e55977. doi:10.1371/journal.pone.0055977 682	

Yushkevich, P. A., Pluta, J. B., Wang, H., Xie, L., Ding, S.-L., Gertje, E. C., … Wolk, D. A. 683	
(2015). Automated volumetry and regional thickness analysis of hippocampal subfields 684	
and medial temporal cortical structures in mild cognitive impairment. Human Brain 685	
Mapping, 36, 258–287. doi:10.1002/hbm.22627 686	



Complexity of subcortical structures  30 

Zhao, G., Denisova, K., Sehatpour, P., Long, J., Gui, W., Qiao, J., … Wang, Z. (2016). Fractal 687	
dimension analysis of subcortical gray matter structures in Schizophrenia. PLOS ONE, 11, 688	
e0155415. doi:10.1371/journal.pone.0155415 689	


