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A B S T R A C T

Hyperspectral imaging (HSI) is a novel technology for the food sector that enables rapid non-contact analysis of
food materials. HSI was applied for the first time to whole green coffee beans, at a single seed level, for
quantitative prediction of sucrose, caffeine and trigonelline content. In addition, the intra-bean distribution of
coffee constituents was analysed in Arabica and Robusta coffees on a large sample set from 12 countries, using a
total of 260 samples. Individual green coffee beans were scanned by reflectance HSI (980–2500 nm) and then the
concentration of sucrose, caffeine and trigonelline analysed with a reference method (HPLC-MS). Quantitative
prediction models were subsequently built using Partial Least Squares (PLS) regression. Large variations in
sucrose, caffeine and trigonelline were found between different species and origin, but also within beans from
the same batch. It was shown that estimation of sucrose content is possible for screening purposes (R2 = 0.65;
prediction error of ~0.7% w/w coffee, with observed range of ~6.5%), while the performance of the PLS model
was better for caffeine and trigonelline prediction (R2 = 0.85 and R2 = 0.82, respectively; prediction errors of
0.2 and 0.1%, on a range of 2.3 and 1.1% w/w coffee, respectively). The prediction error is acceptable mainly for
laboratory applications, with the potential application to breeding programmes and for screening purposes for
the food industry. The spatial distribution of coffee constituents was also successfully visualised for single beans
and this enabled mapping of the analytes across the bean structure at single pixel level.

1. Introduction

1.1. Coffee composition and quality parameters

Coffee is one of the most popular beverages worldwide, and its high
commercial value is mainly related to its flavour, which is strictly de-
pendent on the chemical composition of the green coffee beans and
their thermal treatment. The level of particular compounds, including
sucrose and alkaloids, therefore directly influence the final drinking
quality of coffee. The main coffee constituents are carbohydrates
(polysaccharides range from 34 to 44% in Arabica and 48–55% in
Robusta coffees), followed by lipids, proteins and peptides, and free
sugars. The lipid content of coffee is significantly different between
Arabica and Robusta, with 15–17% and 7–10% coffee oil for the two
species, respectively (Farah, 2012). The sucrose content is reported to
have a wide range between batches, from 3.8 to 10.7% (dry weight
basis; dwb) based on the analysis of 14 species and 6 new taxa, de-
pending on the botanical and geographical origins (Campa et al., 2004).
Green Arabica coffee beans have sucrose content ranging from 6.25 to

8.45%, whereas in Robusta it ranges from 0.9% to 4.85%, with Robusta
also containing more reducing sugars (Clarke & Vitzthum, 2008). Other
studies have reported sucrose content for Robusta coffee of 4.05–7.05%
(dwb) (Ky et al., 2001). The post-harvest processing of coffee beans can
also dramatically affect composition; for example, ranges of
2.60–3.02% and 6.60–7.02% have been reported for sucrose in dry-
processed and wet-processed green coffee (Clarke & Vitzthum, 2008).

Among the other compounds in coffee, acids and alkaloids both play
a critical role in terms of coffee quality, as they influence the flavour of
the beverage. Caffeine is a heat stable methylxanthine, with a dis-
tinctive bitter taste and a stimulating effect. Caffeine content in Arabica
coffee beans is in the range of 0.90–1.3% (Farah, 2012), while it ranges
from 1.51 to 3.33% (dwb) for Robusta (Ky et al., 2001). Trigonelline is
an alkaloid whose synthesis is carried out by enzymatic methylation of
nicotinic acid. Its importance in coffee is mainly related to its de-
gradation during roasting to give several volatile compounds; mainly
pyrroles and pyridines. Its concentration in Robusta varies from 0.75 to
1.24% (dwb) (Ky et al., 2001), which is considerably higher than
Arabica (Farah, 2012).
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Coffee composition is known to vary widely depending on the
genotype (Arabica, Coffea arabica, or Robusta, Coffea canephora), en-
vironmental factors such as the geographical origin, and post-harvest
processing (Joët et al., 2010). Remarkable differences within the same
batch might also be observed, similarly to what has been reported for
other crops; e.g. hazelnut plants, which showed significant differences
in chemical composition even within the same plant (Pannico et al.,
2017).

Trigonelline and sucrose content is dependent on the coffee geno-
type, with trigonelline content reported to range from 0.39 to 1.77%
(dwb) depending on the species (Campa et al., 2004). However, in
contrast, some studies have found that sucrose, caffeine and trigonelline
concentrations in green coffee seem not to be significantly affected by
the country of origin, nor the genetic groups (Ky et al., 2001). Differ-
ences in sucrose content are also linked to the degree of ripening, pre
and post-harvest processing (Clarke & Vitzthum, 2008), as well as post-
harvest processing (Casal, Oliveira, Alves, & Ferreira, 2000).

1.2. Destructive methods for coffee composition analysis

The analysis of coffee constituents is usually performed by wet
chemistry, particularly high-performance liquid chromatography
(HPLC), while caffeine analysis can be also carried out by spectro-
photometric measurement of the extracts. HPLC coupled with Diode-
Array Detector (DAD) has been applied for the simultaneous analysis of
trigonelline, nicotinic acid and caffeine in coffee (Casal, Oliveira, &
Ferreira, 1998). More recently, Perrone, Donangelo, and Farah (2008)
described a method which also allowed the identification and quanti-
fication of sucrose, based on HPLC-MS analysis. However, despite the
advances in analytical speed and the possibility of simultaneously
analysing sucrose, caffeine and trigonelline with a single coffee ex-
traction, the destructive nature of the testing and the considerable time
required for the grinding, extraction and analysis is impractical for
industrial settings. For this reason, the development of fast, non-de-
structive techniques for green coffee composition is of great research
and commercial interest. Moreover, the study of single beans without
grinding offers the possibility of understanding natural variability on an
individual coffee bean basis. This would offer the potential for the se-
lection of breeding lines with desired characteristics, as also suggested
for other commodities such as wheat (Caporaso, Whitworth, & Fisk,
2018).

1.3. NIR and HSI for non-destructive analysis of coffee

The coffee industry requires rapid, low cost analytical techniques
which ideally are non-destructive for the quantification of chemical
properties. Near-Infrared Spectroscopy (NIRS) has these advantages,
and its potential to analyse bulk coffee properties has been reported by
several authors for caffeine (Fox, Wu, Yiran, & Force, 2013; Pizarro,
Esteban-Díez, González-Sáiz, & Forina, 2007), chlorogenic acids
(Martín, Pablos, & González, 1998) and total sugar prediction (dos
Santos Scholz et al., 2014), as well as to verify coffee roasting degree
(Alessandrini, Romani, Pinnavaia, & Dalla Rosa, 2008). In particular,
Pizarro et al. (2007) presented a prediction model based on reflectance
NIR in the region 1100–2500 nm for caffeine content prediction in
ground and roasted coffee using Partial Least Squares (PLS) regression.
Although primarily focused on the analysis of major compounds,
Fourier-Transform Infrared (FT-IR) and NIRS based coffee bean quality
evaluation has also involved classification according to several para-
meters. For example, coffee beans have been classified into different
classes of defects – namely black, dark sour and light sour – using Linear
Discriminant Analysis (LDA), based on correlations with carbohydrate,
lipid, protein and caffeine concentrations (Craig Carneireiro, 2013).
However, despite numerous NIR spectroscopy-focussed studies of coffee
properties, most utilise ground material, so information on the natural
variability among coffee beans is lost and no indication of the spatial

distribution of chemical compounds within individual beans can be
obtained.

Hyperspectral imaging (HSI) integrates NIR spectroscopy with
imaging, so that surface chemistry can be evaluated in a rapid and non-
destructive way, thus providing information on the spatial distribution
of major chemical constituents across a sample (Liu, Zeng, & Sun,
2015). HSI can analyse the spectra at a single pixel level, and can be
further advanced using the “push-broom” system for continuous on-line
scanning of samples. The application of HSI in food science, and
especially for non-processed food materials, is relatively new and its full
potential has not been fully explored (Elmasry, Kamruzzaman, Sun, &
Allen, 2012). Some NIR calibrations have been developed for single
beans, e.g. for caffeine prediction (Fox et al., 2013), but their applic-
ability is limited as the presentation of the sample does not allow the
scanning of several beans at a time.

Hyperspectral imaging has been only recently applied for coffee
quality screening purposes. Nansen, Singh, Mian, Allison, and Simmons
(2016) applied HSI to characterize commercial roasted and ground
coffee batches from the market to assess the consistency of their quality.
Calvini, Ulrici, and Amigo (2015) presented a case study of HSI on
coffee beans to demonstrate a new sparse method for pixel classification
within the hypercube. A recent paper by Cho, Bae, Cho, and Moon
(2017) reported on the use of HSI to investigate the qualitative prop-
erties of defective roasted coffee beans, which can be considered as
different degrees of roast. The authors used one batch only, which was
split into five sub-samples and treated under different time-temperature
profiles. The classification model built on the spectral region
1000–1700 nm produced accuracies of 85.7% and 86.7% for the cali-
bration and validation datasets, respectively.

Similar studies have used bulk NIR rather than HSI, focussing on
ground coffee samples or roasted coffee rather than intact green coffee
beans. Accordingly, little is known about the distribution of coffee
constituents at single coffee bean level. This can, however, be revealed
using HSI, which also offers the advantage of analysing several beans
across the same line and provides the opportunity for implementation
in the food industry or research laboratories to scan large numbers of
samples. Even where HSI has been previously applied to whole coffee
beans, the majority of these cases have been for classification without
reference measurement and not for quantification purposes. Moreover,
this analysis was typically limited to the NIR wavelength region below
1700 nm. To date, limited research has been carried out on seed con-
stituents other than moisture, fat and protein, especially for coffee,
despite the advantages offered by NIR technology. The use of HSI in this
context would enable non-destructive estimation of the distribution of
quality-related bioactive constituents of whole single seeds, which can
be used for further analyses or industrial use, in breeding programmes
or to obtain a more consistent or improved product. In addition,
building prediction models would further allow the use of HSI cali-
brations to investigate single bean quantitative variation of quality-re-
levant chemical compounds.

Therefore, the aim of this study is to explore the feasibility of HSI, in
the range 980–2500 nm, for the determination of sucrose, caffeine and
trigonelline concentration in individual green coffee beans and to pre-
dict these compounds using PLS regression. Consequently, these models
can be used to visualise the distribution of these compounds at a single
pixel level. A large dataset is used to report on the natural variability
and distribution of these compounds within and between batches.

2. Materials and methods

2.1. Coffee samples, chemicals and reagents

Green coffee samples were sourced from several producing locations
worldwide, comprising Brazil, Colombia, Costa Rica, Ethiopia,
Guatemala, Honduras, India, Kenya, Mexico, Nicaragua, Rwanda,
Uganda and Vietnam. These included batches treated using both the
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washed post-harvest system and the drying system (“natural”), as well
as a semi-washed sample from Rwanda and a Monsoon Malabar treated
batch from India. Twenty-seven batches were sampled, of which 60%
were wet processed and the remaining 40% dried-processed. Ten single
beans were randomly sampled from each coffee batch for the single
bean experiment. Sucrose, trigonelline and methanoic acid (purity>
95%) were purchased from Sigma-Aldrich (St. Louis, MO, USA),
whereas caffeine (98.5% purity) was purchased from Acros organics
(New Jersey, USA). Lead (II) acetate basic solution was purchased from
VWR International Ltd. (Lutterworth, UK) and HPLC grade methanol
was purchased from Fisher scientific (Loughborough, UK). All other
chemical and reagents used were of analytical grade.

2.2. Hyperspectral NIR imaging analysis

The HSI system used in this study was a line-scanning instrument,
referred to as the “push-broom” approach. It enables the scanning of
samples while they are moving under a camera that is placed in a fixed
position. Each pixel of the obtained “hypercube” (three-dimensional
hyperspectral image cube) contains a full spectrum in the range
980–2500 nm. Single green coffee beans were scanned on both sides
using an HSI system supplied by Gilden Photonics Ltd. (Glasgow, U.K.),
which includes a SWIR spectral camera (Specim Ltd., Oulu, Finland)
containing a cooled 14 bit 320 × 256 pixel mercury‑cadmium-telluride
(HgCdTe) detector and N25E spectrograph. Therefore, the total number
of spectral bands that the detector was able to acquire was 256, but the
first 16 bands were removed due to the sensor response. Ten coffee
beans were scanned within each hypercube to build calibrations. The
samples were placed on a black plastic stage whose motion was con-
trolled by a stepper motor via the software, using a speed that permits
the acquisition of appropriate image sizes in the horizontal direction.
After a first scan, beans were manually rotated and scanned on the
opposite surface. The sample scanning conditions and HSI data treat-
ment were previously reported in detail by Caporaso, Whitworth, and
Fisk (2017). In summary, the IDL 8.4 and ENVI 5.2 software (Harris,
Florida, USA) was used to process the HSI data and to export mean log
(1/R) spectra for each bean. The reflectance spectra of the sample hy-
percubes were calculated using a white (PTFE material) and a black
reference (by automatically closing the camera shutter after each
scanning) by applying the following Equation (1):
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−

−
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t
t
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w
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where R is the reflectance spectrum, I is the recorded spectral intensity
at each pixel and spectral band, W is the white reference signal, Ds and
Dw are the black references (reflectance ~0%) for the sample and white
reference, respectively, and ts and tw are the sample and white exposure
times, respectively. The inclusion of tw and ts is to account for differ-
ences in the exposure times between the white reference and sample
measurements. In our case, the exposures used for the white reference
and for the sample were different in order to provide optimal dynamic
range for the samples. The absorbance spectra, A, are then calculated
using a logarithm calculation as follows (2):

=A log
R
1

(2)

A program written in IDL was applied to perform image segmen-
tation. A region of interest (ROI) was automatically selected for each
bean. The average spectra for each coffee bean were then exported for
statistical analysis.

2.3. Caffeine, sucrose and trigonelline extraction

The reference analysis of caffeine, sucrose and trigonelline was
performed according to Perrone et al. (2008). Green coffee beans pre-
viously scanned by HSI were ground individually using a Perten 3100

electric grinder (Perten, Hägersten, Sweden). Approximately 0.1 g of
the recovered material was accurately weighed; 20 mL boiling distilled
water was added, and immediately shaken in a Stuart Orbital incubator
SI500 at 250 rpm for 15 min. After cooling the flask under running
water, 0.1 mL of a saturated lead acetate solution was added to clarify
the extract. Samples were then centrifuged for 5 min at 3000 rpm using
a Rotina 380R centrifuge (Hettich, Tuttlingen, Germany). The super-
natant, excluding the upper lipid phase, was recovered and filtered
through a 0.45 μm Millex MF-Millipore membrane. The final extract
was diluted 1:5 with distilled water for HPLC/MS analysis.

2.4. HPLC/MS analysis

The coffee extract was analysed using an Agilent 1100 HPLC cou-
pled with a Quattro Ultima MS/MS system, according to Perrone et al.
(2008), with slight modifications. Chromatography separation was
performed using a Phenomenex Kromasil 5ODS (C18) column
(250 mm× 3.2 mm i.d. × 5 μm particle size, Waters, Milford, USA).
Eluent A comprised water with 0.3% methanoic acid, while eluent B
was methanol. The HPLC program started with 25% B, increased to
65% B after the injection, and was held for 7 min. The ratio was then
altered to 25% B at 7 min and held for another 4 min to equilibrate the
column. The injection volume was 5 μL and column temperature was
40 °C. The electrospray ionization source operated in negative ion mode
during the first 4 min, while the positive ion mode was used from 0 to
7 min. The source temperature was 100 °C, and the desolvation tem-
perature was held at 400 °C. The cone gas flow was 100 L h−1 while the
desolvation flow was 500 L h−1. The capillary voltage was set at 2.0 V
for ES+, and 2.5 V for ES−, with a cone voltage of 40 V and 50 V, re-
spectively. The multiplier was set at 500 for ES+, and 650 for ES−. The
detector was operated in Selective Ion Mode using the following m/z for
the three compounds: 387 (sucrose), 195 (caffeine) and 138 (trigonel-
line). Quantification was performed using calibrations established with
pure compounds. The coffee extracts were analysed in duplicate. The
data were processed in MassLynx 4.0 (Waters, Milford, USA) and Mi-
crosoft Excel, and exported for the statistical analysis.

2.5. Recovery experiment and limits of detection and quantification

A recovery experiment was performed using a green Mexican
Arabica sample as a blank for spiking with the standard compounds.
Three different levels of spiking were applied. Triplicate analyses were
performed for each level and for the unspiked sample. The limits of
detection (LOD) and quantification (LOQ) were calculated as three
times and ten times the signal-to-noise ratio (S/N), respectively
(Perrone et al., 2008).

2.6. Data processing and statistical analysis

Following normalisation of spectral data in IDL to calculate absor-
bance, four processing operations were performed: bad pixel correction;
background removal and objects selection; calculation of mean spectra
for each object; and export of the average spectra (Caporaso,
Whitworth, & Fisk, 2017). These were analysed to develop calibrations
using The Unscrambler X 10.3 software (CAMO, Trondheim, Norway)
for statistical analysis. Several spectral pre-processing methods were
tested, including the first and second derivative using Savitzky-Golay
smoothing (5 points smoothing window, second order polynomial),
Multiplicative Scatter Correction (MSC), Standard Normal Variate
(SNV), de-trending, etc., before applying a multivariate statistical
analysis. A PLS regression was built using the average spectrum ob-
tained from each green coffee bean and the corresponding reference
measurements of sucrose, caffeine and trigonelline. This approach was
used to build the three different prediction models on the reference data
expressed on “as is” basis. To test whether the use of dry matter basis
reference data could give a better prediction performance, a previously

N. Caporaso et al. Food Research International 106 (2018) 193–203

195



established moisture calibration (Caporaso, Whitworth, Grebby, & Fisk,
2017) was applied on the hypercubes so that the predicted moisture
content was calculated and the reference measurements were also ex-
pressed on a predicted dry matter basis. The models were validated
using the cross-validation method, randomly selecting 20 subgroups
(segments). The best PLS models were chosen according to the regres-
sion coefficients, and prediction error of the calibration (RMSEC) and
cross-validation (RMSECV) datasets. The optimal number of Latent
Variables (LV) was chosen based on plots of RMSECV against number of
LVs, to minimise the prediction error while avoiding overfitting
(Gowen, Downey, Esquerre, & O'Donnell, 2011).

3. Results and discussion

3.1. Accuracy of analytical determinations and natural variability of coffee
constituents

The statistics for the reference measurements, the results for the
recovery experiment and the limits of detection (LOD) and quantifica-
tion (LOQ) are reported in Table 1. To understand and minimise ana-
lytical errors, duplicate HPLC-MS analysis was performed on each ex-
tract, on a total of 277 coffee bean samples analysed. The LOD and LOQ
of the method were very low with respect to the concentrations of
coffee constituents found in the analytes, the LOQ being 26.3, 81.7 and
56.5 mg kg−1 of coffee for caffeine, sucrose and trigonelline, respec-
tively. The recovery experiment resulted in an excellent recovery
(≥95%) for caffeine and sucrose, and ≥80% recovery for trigonelline.
These results are in line with previous findings, also regarding the fact

that the recovery of some coffee compounds was lower at the higher
levels of spiking (Perrone et al., 2008). The results for the reference
measurements were acceptable in terms of accuracy of determination
and repeatability (average repeatability for sucrose = 3.7%, caf-
feine = 2.4%, trigonelline = 2.5%).

The ranges of sucrose, caffeine and trigonelline concentration in
single green coffee beans are reported in Table 1a. The reference
measurements are shown on an “as is” basis, which was the actual
analysis performed, as well as on a predicted dry weight basis. All the
compounds analysed showed a broad range of concentrations. For ex-
ample, the maximum sucrose level was over ten times higher than the
lowest and in the case of caffeine and trigonelline, the maximum con-
centrations were three or four times higher than the minimum. As ex-
pected, the concentrations of sucrose and trigonelline were significantly
higher in Arabica than Robusta coffee beans, while caffeine con-
centration was higher in Robusta than Arabica coffee. The average
sucrose content was 46.7 ± 7.5 mg g−1 for Arabica and
33.6 ± 9.1 mg g−1 for Robusta, while caffeine content was
15.7 ± 2.3 and 19.9 ± 4.9 mg g−1 (“as is”), respectively. A statisti-
cally significant difference was observed for all the compounds between
Arabica and Robusta (p < 0.001), but a region of overlap was ob-
served in the middle region for all three compounds (please refer to
Supplementary Figure 1 for further details).

Previous studies investigating the natural variability of sucrose,
caffeine and trigonelline in green coffee reported similar average values
as the present experiment (Campa et al., 2004; Casal et al., 1998;
Dessalegn, Labuscagne, Osthoff, & Herselman, 2007; Ky et al., 2001).
However, the reported standard deviation and the range is usually more
narrow, e.g. Dessalegn et al. (2007) studied 42 accessions of Ethiopian
Arabica coffees, and reported a standard deviation of 0.82%, 0.1% and
0.13% for sucrose, caffeine and trigonelline, respectively.

The work presented herein also gives information on the variability
at a single coffee bean level. A smaller variation would be expected for
batch measurements compared to single coffee beans and due to the
small sample range. For example, the average batch values of our
samples compare favourably with previous works reporting on Arabica
coffees (Ky et al., 2001). The variation of sucrose content in green
coffee beans is attributed to several factors, including the post-harvest
processing and the coffee species, as well as agronomic factors. Robusta
coffee showed a higher caffeine content than Arabica beans, although
some overlap was observed, especially around 20–25 mg g−1 (dwb).
For trigonelline, an opposite trend was found, with Robusta lower in
trigonelline than Arabica, i.e. 7.3 ± 1.7 vs 8.6 ± 1.8 mg g−1 (“as
is”), respectively. These results are in agreement with the literature, and
demonstrate similar overlapping between these species (Campa et al.,
2004).

The results of the recovery and repeatability experiment, carried out
to verify the performance of the LC/MS method set-up to extract and
quantify the coffee constituents in single green coffee beans, is reported
in Table 1b. The recovery ranged from 112% for samples spiked with
10 mg g−1 caffeine, to 71% for trigonelline at 20 mg g−1 spiking.

The presence of correlations among the three analysed coffee con-
stituents was investigated, and a correlation was found among the
compounds when expressing the data on an “as is” basis (please refer to
Supplementary Figure 2). The correlation is statistically significant
(p < 0.01) in every case, with a positive Pearson correlation observed
for sucrose and trigonelline (i.e. 0.395). In contrast, negative correla-
tions were observed for sucrose vs. caffeine has r = −0.445, and caf-
feine vs. trigonelline (−0.185). Previous research reported a negative
correlation between caffeine and trigonelline in roasted coffee beans
(Casal et al., 2000), however it was for bulk coffee and not investigating
these compounds on single beans. In addition, trigonelline content
dramatically changes due to roasting, as a function of the intensity of
the roasting degree, thus a comparison cannot be made. The correlation
among the three constituents analysed might be also influenced by the
presence of different levels of moisture which can naturally fluctuate

Table 1
Reference measurements on single green coffee beans: a) descriptive statistics, expressed
on “as is” basis and on dry weight basis (n= 277); b) recovery and repeatability of pure
reference compounds; c) the limit of detection (LOD) and limit of quantification (LOQ)
obtained by LC/MS analysis.

a Compound Mean
(mg g−1)

SD
(mg g−1)

Min
(mg g−1)

Max
(mg g−1)

“As is” Sucrose 43.3 10.2 5.3 70.8
Caffeine 18.1 4.7 9.2 31.9
Trigonelline 8.3 2.0 3.9 15.0

dwb Sucrose 47.8 11.5 5.8 80.0
Caffeine 19.9 5.1 10.2 34.8
Trigonelline 9.1 2.2 4.3 17.0

b Compound Spike level
(mg g−1)

Recovery
(%)

Repeatability
(%)

Sucrose 10 80.6 ± 1.6 5.8
40 111.6 ± 0.2 1.8
80 94.4 ± 0.2 3.6

Caffeine 10 112.0 ± 5.3 4.7
20 104.0 ± 2.8 1.7
30 91.8 ± 1.9 0.9

Trigonelline 5 84.9 ± 0.3 1.0
10 84.0 ± 0.3 1.7
20 71.0 ± 0.5 4.7

c Compound LOD
(mg g−1)

LOQ
(mg g−1)

Sucrose 7.9 × 10−3 26.3 × 10−3

Caffeine 24.5 × 10−3 81.7 × 10−3

Trigonelline 17.0 × 10−3 56.5 × 10−3

*Values for a) are expressed as mg g−1 of ground coffee material. Values for the recovery
are the mean of triplicate analysis, followed by the standard deviation (SD). The recovery
experiment was performed on a batch of ground Arabica green coffee beans from Mexico.
Repeatability is expressed as relative SD. The LOD and LOQ were calculated according to
Perrone et al. (2008).
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between the green coffee beans, especially when considering single
coffee beans instead of batches. When concentrations were expressed
on a dry matter basis, a slight negative but significant correlation was
found between caffeine and trigonelline (r = −0.194), and a stronger
negative correlation was observed between sucrose and caffeine
(r = −0.424), while a weak significant positive correlation was ob-
served between sucrose and trigonelline (r = 0.419, n= 277) (please
refer to Supplementary Figure 2). These results are in accordance with

Leroy et al. (2011), who described the absence of any significant cor-
relation among these two coffee constituents on a wide range of coffee
genotypes, over several years.

3.2. PLS regression for coffee constituents prediction based on HSI

Trigonelline, sucrose and caffeine show characteristic absorption
features in the NIR region (Fig. 1). While sucrose has significantly
higher log(1/R) values, trigonelline and caffeine showed similar ab-
sorption bands. Caffeine main absorption peaks were at 1668, 2250 and
2425 nm. Trigonelline had similar absorption peaks at 1668 and
2269 nm. Sucrose had a characteristic absorption in the region
1460–1700 nm, and a second major peak observed around 2070 nm.
The reflectance spectra of whole coffee beans show strong absorption
features around 1430 nm, followed by two peaks at 1730 and 1760 nm,
and another major peak at 1930 nm. Although the spectra are noisier in
the upper wavelength region, another major absorption peak was ob-
served around 2250 nm.

The peak around 1430 nm is related to the CeH stretch and CeH
deformation vibration, whereas the region around 1800–1900 nm in-
dicates the vibration of the second overtone of the carbonyl group, and
the peak observed at 2250 relates to the –OH vibration. The absorptions
at 1730 and 1760 nm are related to lipids, as they are attributed to the
–CH3 and –CH2 overtone, respectively (Huck, Guggenbichler, & Bonn,
2005).

Table 2 reports the performance of PLS regression models for the
prediction of sucrose, caffeine and trigonelline in single green coffee
beans using several pre-processing techniques. Two separate models
were built: one on “as is” basis and a second built on a predicted dry
weight basis. Generally, the two approaches resulted in a similar pre-
diction performance, with slightly higher errors for the dry matter basis
groups. The best caffeine and trigonelline models produced R2 values of
Rc

2 = 0.85 and 0.82, respectively. The RMSECV value for caffeine was
1.9 mg g−1, and 1.0 mg g−1 for trigonelline. The sucrose model per-
formed considerably worse, with Rc

2and Rcv
2 in the region of 0.65 and

0.5, respectively, and RMSECV of 7.25 mg g−1 on an “as is” basis.
On the whole, the model built on the second derivative of the

spectra was deemed to be the best sucrose model because it uses the

Fig. 1. Average spectra obtained by HSI on samples of pure reference caffeine, sucrose and trigonelline, and example of a ground green coffee bean, showing also the absorbance images
obtained from the hypercube at one spectral band ~1400 nm (right).

Table 2
Performance of the PLS regression models for sucrose, caffeine and trigonelline, for HSI
quantification on single green coffee beans, with coffee constituents expressed on (a) “as
is” basis or (b) dry matter basis.

Compound Treatment LV Calibration Cross-validation

R2 RMSEC R2 RMSECV

a. Reference data on “as is” basis
Sucrose log(1/R) 20 0.651 5.931 0.506 7.071

SNV + 1st derivative 16 0.652 5.894 0.476 7.254
2nd der 12 0.647 5.912 0.462 7.250

Caffeine log(1/R) 13 0.666 2.647 0.628 2.799
SNV+ 1st der 16 0.851 1.635 0.793 1.929
2nd der 10 0.782 2.068 0.724 2.333

Trigonelline log(1/R) 23 0.761 0.958 0.665 1.135
SNV+ 1st der 25 0.820 0.809 0.713 1.022
2nd der 17 0.823 0.794 0.703 1.034

b. Reference data on dry weight basis
Sucrose log(1/R) 20 0.653 6.489 0.509 7.751

SNV + 1st der 16 0.564 7.485 0.482 8.181
2nd der 15 0.701 6.119 0.526 7.722

Caffeine log(1/R) 20 0.799 2.107 0.729 2.451
SNV+ 1st der 16 0.851 1.843 0.792 2.177
2nd der 11 0.797 2.159 0.726 2.513

Trigonelline log(1/R) 25 0.795 0.979 0.689 1.208
SNV+ 1st der 25 0.833 0.860 0.733 1.090
2nd der 19 0.842 0.843 0.709 1.146

LV = Latent Variable, or Principal Component. RMSEC = root mean square error of ca-
libration. RMSECV = root mean square error of cross-validation. The errors are expressed
as mg g−1 coffee beans. Bold indicates the prediction models with the best performance;
preference was given to models with spectral pre-treatments applied and use of fewer LVs
without significant reduction in prediction performance.
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fewest latent variables (LVs) with little effect on the overall perfor-
mance, and utilises a spectral pre-treatment method. These factors
make this model the most robust by avoiding overfitting, while also
helping to reduce the effect of scattering relative to the untreated log(1/
R) model.

According to Shenk and Westerhaus (1996), calibrations with R2

values between 0.50 and 0.69 can be used to separate into low, medium
and high values, while R2 of 0.70–0.89 can be considered as good en-
ough for quantification purposes. Based on the obtained RMSECV va-
lues, the models can therefore be considered as good for caffeine and
trigonelline, but poor for sucrose quantification, although this model
could still be used for screening purposes. As a proportion of the range,
the cross-validation error was 11.1, 8.5 and 9.2% for sucrose, caffeine
and trigonelline (“as is”), respectively. When expressing the values on a
dry matter basis, this proportion was 10.4, 8.8 and 8.6%, respectively.

The quality of the calibrations presented can be evaluated using the
Ratio of Performance Deviation (RPD), which is calculated as the ratio
between the standard deviation and the standard error of cross-vali-
dation (Fearn, 2002; Williams & Sobering, 1993). RPD is dimensionless
and higher values correspond to better analytical performance. In the
present experiment, the lowest performance was obtained for sucrose,
with RPD of 1.4 (“as is” basis) and 1.5 (dwb). For caffeine and trigo-
nelline, the RPD values were very similar between the “as is” basis and
dry matter basis; caffeine had RPD = 2.7 and trigonelline RPD = 2.0.
For trigonelline, despite the significantly lower prediction error (i.e.
almost half the RMSECV of caffeine), the higher RPD value was ex-
plained by the more limited range observed for trigonelline content.
Despite the low prediction ability of such calibration, previous litera-
ture for other products still suggested the application of PLS calibra-
tions with RPD values of 1.3–1.6 for in-line analysis, as it might be

Fig. 2. Predicted versus measured values of (a) sucrose, (b) caffeine and (c) trigonelline in single green coffee beans for the best PLSR models, expressing the compound concentration as
mg g−1 coffee (“as is” basis) (left). Loading weights for the same constituents, showing the models built on the reference measurements on “as is” basis or on a predicted dry weight basis
(right).
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useful for breeding programmes to select particularly higher or lower
values in a population (De Marchi, Riovanto, Penasa, & Cassandro,
2012).

Fig. 2 shows the predicted versus measured plots of the best PLS
models for sucrose, caffeine and trigonelline prediction in single green
coffee beans, and also reports the loading weights of the first two
Principal Components for the three compounds.

Previous studies reported that the second derivative pre-treatment
was less effective than the first derivative in terms of PLS regression
models for chemical components such as caffeine, theobromine and
theophylline (Huck et al., 2005). The PLS regression model based on
NIRS reported by these authors for caffeine had Rc

2 value of 0.86 and
Rcv

2 = 0.82. However, the authors predicted caffeine content on liquid
coffee extracts having caffeine concentrations from 0.1 to 4.1%, thereby
enhancing the capability of NIRS by removing the influence of other
non-extractable compounds. Despite this, the prediction error was 3.4
and 4.0 mg g−1 for the calibration and validation datasets, respec-
tively.

As previously described, the application of HSI for quantitative
prediction of chemical composition is currently very limited for coffee.
Nonetheless, a recent paper by Zhang, Jiang, Liu, and He (2017) re-
ported on the application of HSI on roasted coffee beans to investigate
their caffeine content. The authors worked in the NIR region
874–1734 nm, but instead of using single coffee beans the reference
caffeine analysis was carried out on a small batch of 20 coffee beans,
ground and analysed by a spectrophotometric method. Despite 10 times
lower caffeine concentrations between their study and ours (ranges
4–11 mg g−1, 12–15 mg g−1 and 10–23.5 mg g−1 were reported in the
previous study), the authors claim a good prediction performance for
caffeine, i.e. Rc

2 = 0.897 and Rcv
2 = 0.834, and prediction errors of

RMSEC = 111.3 and RMSECV = 142.1 μg g−1.
Generally, larger prediction errors typically expected for calibra-

tions obtained by HSI compared to traditional NIRS instruments – and
especially for ground material and liquid coffee extract or coffee brew –
are attributed to the following factors: the sample is less homogenous
than ground coffee; the sample presentation is less uniform and the
illumination conditions are different; the sample size is typically
smaller for HSI, which influences both the spectral acquisition and the
reference analysis. These conditions therefore tend to result in poorer
prediction models.

Despite these considerations, the performance of the HSI models
compares favourably with the existing literature on NIR spectroscopy.
For instance, Pizarro et al. (2007) reported an R2 above 0.99 for caf-
feine calibration in roast and ground coffee. Fox et al. (2013)

investigated the use of FT-NIRS (~830–2500 nm) for caffeine quanti-
fication in whole and ground coffee, also testing single coffee beans,
taking 25 beans from five batches. The prediction performances re-
ported were generally better than our calibration model, but the au-
thors also included a decaffeinated batch in their samples, which could
have greatly influenced the model. In addition, it should be noted that
their instrument has different sample presentation and illumination, but
there are limitations related to the capability to implement it on an
industrial scale for rapid and on-line measurement of single coffee
beans. It was shown that caffeine prediction in roasted single coffee
beans has worse performance compared to ground coffee or unground
bulk coffee. The R2 reported for single beans without considering dec-
affeinated samples (i.e. using 4 batches of roasted coffee) was 0.93,
with a cross-validation R2 of 0.86. The RMSEC and RMSECV were 1.2
and 1.6 mg g−1, respectively (Fox et al., 2013). However, despite the
slightly worse calibration performance there are two main advantages
to using HSI. Firstly, traditional NIR instruments do not provide any
spatial information, and secondly, even if it is technically possibly to
create calibrations on single coffee beans, applying such calibration on
a considerable number of beans would be time-consuming. On the
whole, it is difficult to directly compare the performance of HSI-based
calibrations and NIR calibrations or other techniques, and it is not only
the analytical accuracy that should be considered, but also the practical
advantages offered by each technique.

As part of the current study, prediction models were additionally
built on the datasets for Arabica-alone and Robusta-alone. No differ-
ence in prediction capability was observed between the coffee species
(data not shown), but the separate models had worse performance
compared to the general model shown in Table 2, with particularly low
RMSECV compared to the RMSEC. In some cases, this effect is likely to
be caused by the limited number of samples when only Robusta samples
are used. The only exception observed was for caffeine prediction, for
which the model built on the Robusta dataset (n = 140) resulted in a
far better performance than the Arabica model (n = 410), but still did
not reach the level of performance of the general model. This result is
useful as a prediction model for both Arabica and Robusta species as it
would allow the prediction of the coffee constituents studied, without
the need to discriminate the coffee species and apply separate calibra-
tions for screening the raw material. With regards to species dis-
crimination, Caporaso, Whitworth, Grebby, et al. (2017) demonstrated
100% discrimination ability between Arabica and Robusta coffees, both
as green and roasted coffee beans, using HSI and Linear Discriminant
Analysis (LDA). Moreover, unsupervised methods have also been pre-
viously applied using HSI for coffee species classification (Calvini et al.,

Table 3
Wavelength selection for HSI prediction of sucrose, caffeine and trigonelline, expressed on (a) “as is” basis, or (b) dry matter basis.

Pre-treatment Band number LV Calibration Cross-validation RPD

R2 RMSECV R2 RMSECV

a)
Sucrose 2nd der. 7 3 0.416 7.604 0.402 7.708 1.32

5 3 0.414 7.617 0.406 7.689 1.33
Caffeine SNV+ 1st der. 7 5 0.702 2.314 0.694 2.349 2.00

5 4 0.693 2.346 0.688 2.372 1.98
Trigonelline SNV+ 1st der. 9 5 0.402 1.475 0.392 1.490 1.34

5 4 0.399 1.478 0.391 1.490 1.34

b)
Sucrose 2nd der. 10 4 0.443 7.820 0.422 7.971 1.44

5 2 0.405 8.085 0.393 8.176 1.41
Caffeine SNV+ 1st der. 9 9 0.813 2.018 0.801 2.082 2.45

5 4 0.762 2.276 0.755 2.308 2.21
Trigonelline SNV+ 1st der. 10 7 0.277 1.790 0.256 1.817 1.21

5 4 0.280 1.719 0.270 1.735 1.27

LV = latent variable. RPD = ratio to performance deviation (ratio between standard deviation of the reference measurements over the RMSECV). The errors are expressed as mg g−1

coffee beans.
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2015). More limited research has been applied using HSI for quantita-
tive prediction of food chemical composition. In this case, the predic-
tion performance strongly depends on the compound investigated.

In spite of the slightly lower prediction performance frequently
obtained by HSI compared to NIRS, and the expected lower prediction
error when analysing single seeds, the HSI calibrations herein reported
offer the advantage of screening single coffee beans without any pre-
paration step, and detecting beans with extreme values in a rapid way.

Table 3 reports the performance of PLS regression models built on a
reduced number of spectral variables, which were selected according to
the regression coefficients of the full spectra models. The selection of a
few important bands enables the compositional prediction using mul-
tispectral imaging systems, which have lower instrumentation costs and
might permit faster data processing due to the reduced computation

capacity. The multi-band models utilised between 5 and 10 wave-
lengths and 3–9 latent variables (LV). The model performance did not
decrease appreciably in reducing the number of bands from 7 to 10 to 5
bands, with both giving similar prediction error. Using 5 spectral bands,
the best performance was observed for caffeine, which showed cali-
bration and cross-validation R2 = 0.69 and cross-validation error
2.35 mg g−1 (as is), with even better performance for the dmb model,
resulting in cross-validation R2 = 0.76. The model using 9 wavebands
had cross-validation R2 = 0.80 and RMSECV below 2.1 mg g−1. This
error was even lower than the one obtained using the full spectra,
which is probably due to the reduction of some unimportant bands and
an added emphasis on the more diagnostic absorbance features of caf-
feine at specific wavelengths. In contrast, a dramatic decrease in the
model performance was obtained for trigonelline prediction, especially

Fig. 3. Regression coefficients for the PLSR models built on
single green coffee beans, for the prediction of the three
coffee constituents. Pre-treatments applied: sucrose, 2nd
derivative; caffeine and trigonelline, SNV + 1st derivative.
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when the compound content was expressed on dry matter basis. These
results indicate that the band reduction causes worst prediction per-
formance for sucrose and trigonelline, but still acceptable prediction
ability for caffeine, suggesting its use for screening purposes.

3.3. Application of the calibrations and visualisation of “chemical images”

The best prediction models for the three compounds analysed were
selected and the beta-regression coefficients (shown in Fig. 3 for each of
the coffee constituent predicted) were applied to the treated hypercubes
after applying image segmentation and spectral pre-processing, so that
a “chemical image” was generated to reveal the distribution of com-
pounds at a single pixel level.

The application of the best PLS calibrations for sucrose, caffeine and
trigonelline are shown in Fig. 4, using a batch of Robusta coffee from

Vietnam and an Arabica coffee sample from Kenya. Each sample was
scanned twice to acquire both sides of the coffee bean (“up” and
“down”), and they are shown separately. The numbers indicated in bold
represent the HSI prediction for each bean, while the other number for
each bean indicates the content measured by the reference HPLC-MS
analysis, expressed as mg g−1 ground coffee. Very few differences were
observed depending on the coffee bean position. Some minor effects
observed within single coffee beans can be attributed to both actual
chemical differences across the sample, but also to topographical dif-
ferences, e.g. the midline crease that corresponds to the mesenteric
root. This portion of the bean was excluded from the calibration stage
as the absorbance values might have influenced the computation of a
representative average spectrum for each bean.

Once the calibration is applied, obvious differences in the sucrose
and caffeine content are visible between Arabica and Robusta coffee

Fig. 4. Application of the calibrations to visualise (a) sucrose,
(b) caffeine and (c) trigonelline in a batch of Robusta and
Arabica green coffee beans, at a single pixel. Numbers in the
figure indicate the concentration of each compound, expressed
as mg g−1 coffee. Numbers in bold indicate the predicted com-
pound concentration, followed by the reference measurement
for each coffee bean.
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beans. Arabica coffee beans had significantly lower caffeine content,
with a more uniform distribution compared to the Robusta beans. For
Robusta, variability was observed within and between coffee beans
(please refer to Supplementary Figure 3 for further information), which
is possibly due to differences in the total caffeine as affected by the
maturity degree at collection or uneven post-harvest processing and
drying. When visualising the predicted trigonelline content, little dif-
ference between the species was apparent. Robusta samples generally
had lower predicted trigonelline levels, with a few samples showing
higher content. Arabica samples show interesting differences within the
same coffee beans, without a clear general pattern. This effect might be
due to physiological reasons, possibly related to the migration during
the post-harvest process over the external layers of the beans, or to the
cell compartmentalisation. There is also the possibility that some of the
observed variability across a single coffee bean might be due to noise in
the spectra. Either way, further research is needed to verify whether
genuine differences do exist. This would primarily be dependent on the
availability of analytical techniques that would enable the acquisition
of reference data for specific locations on individual beans.

HSI calibrations built on single objects can be applied on an in-
dividual pixel basis, or to average spectra for single objects so that the
mean predicted values are obtained, as previously reported for wheat
kernels (Caporaso, Whitworth, & Fisk, 2017). In this way, HSI is able to
provide information on a single coffee bean basis and therefore an on-
line system for rapid scanning could potentially be developed based on
the proposed approach. Accordingly, it is possible to visualise target
chemical compounds on a single bean basis and obtain the distribution
within single beans, once a calibration is applied to individual pixels.
Such detailed information is not limited just to the food and beverage
sector, but could be also useful for studies in the botanical, plant phy-
siology and plant genetic fields.

4. Conclusions

Hyperspectral imaging was applied to single green coffee beans for
the purpose of exploring the potential to quantify chemical constituents
non-destructively without any sample pre-treatment, and reveal the
concentrations on a single coffee bean basis. HSI was shown to be ef-
fective for the non-destructive and rapid analysis of sucrose, caffeine
and trigonelline in green coffee beans, which are compounds that affect
the final flavour of coffee. The devised method allows the rapid pre-
diction of coffee constituents not just for batch measurements, which
could be performed with traditional NIR spectroscopy, but simulta-
neously on multiple individual coffee beans. The RMSECV for sucrose,
caffeine and trigonelline was 7.3 mg g−1, 1.9 mg g−1 and 1.0 mg g−1

(“as is”), respectively, and therefore acceptable for both screening
(sucrose) and quantification (caffeine and trigonelline).

This is the first reported application of HSI for the prediction of
sucrose, caffeine and trigonelline on a single coffee bean basis.
Additionally, this research provides information on single green coffee
bean variability and is the largest study on HSI calibration for this
commodity. Despite lower prediction accuracy compared to traditional
analytical techniques, the advantages offered by hyperspectral chemical
imaging are of particular interest for practical applications, such as the
screening of single coffee beans, both at the research level and for in-
dustry. As demonstrated here for the first time, HSI is a useful tool for
exploring the natural variability of sucrose, caffeine and trigonelline at
a single coffee bean level. Moreover, with additional development, HSI
could be applied for the screening of single beans to be further analysed
using other techniques, such as in breeding programmes to select coffee
beans with particular characteristics. Furthermore, the spatial dis-
tribution of the compounds was revealed across individual beans,
which may be of interest to roasters, breeders or biologists.

While HSI is used here in conjunction with the classical PLS re-
gression approach, future research will focus on exploring advanced
HSI data analysis techniques, including non-linear prediction models.

However, given the increased complexity of such techniques, it is likely
that methods for reducing data redundancy would need to be applied
before they can be implemented efficiently and effectively for HSI
analysis of food commodities.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.foodres.2017.12.031.
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