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Abstract 

An effective and fast hybrid metaheuristic is proposed for solving the pickup and delivery problem 

with time windows. The proposed approach combines local search, large neighbourhood search and 

guided ejection search in a novel way to exploit the benefits of each method. The local search 

component uses a novel neighbourhood operator. A streamlined implementation of large 

neighbourhood search is used to achieve an effective balance between intensification and 

diversification. The adaptive ejection chain component perturbs the solution and uses increased or 

decreased computation time according to the progress of the search. While the local search and large 

neighbourhood search focus on minimising travel distance, the adaptive ejection chain seeks to reduce 

the number of routes. The proposed algorithm design results in an effective and fast solution method 

that finds a large number of new best known solutions on a well-known benchmark data set. 

Experiments are also performed to analyse the benefits of the components and heuristics and their 

combined use in order to achieve a better understanding of how to better tackle the subject problem. 

1 Introduction 

The pickup and delivery problem (PDP) is a vehicle routing problem in which customers are paired 

together and a pair must be serviced by the same vehicle [23]. In other words, a load must be collected 

from one location and delivered to another location by a single vehicle. Clearly there are also ordering 

or precedence constraints to ensure that the collection site is visited before the delivery site. If there 

are time windows during which the customers must be visited then the problem is known as PDPTW 

(pickup and delivery problem with time windows) [6]. The problem commonly arises in real-world 

logistics and solution methodologies have significant practical application. As such, a large number of 

techniques have been developed for PDPTW. These include approaches based on exact methods as 

well as heuristics. The exact based methods have advantages such as solving to provable optimality or 

providing bounds. They also tend to perform very well on smaller and medium sized instances. The 

significant disadvantage with these methods though is that they sometimes perform poorly on larger 

difficult instances. Heuristic methods on the other hand tend to scale well and are more robust for 

larger instances but are easily outperformed on smaller instances. It could also be argued that some 

heuristic methods are easier to develop and maintain and to adapt to new problem requirements. 

These could be the reasons that the majority of commercial vehicle routing software packages use 

heuristic based methods [9].  

Most of the exact methods proposed for the PDPTW are versions of branch and cut and/or branch and 

price [3,18]. Branch and price is a branch and bound approach where each node in the branch and 

bound tree is solved using column generation. For PDPTW, the nodes are linear programming, set 
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partitioning formulations of the problem and the columns (variables) represent possible routes. 

Generating the new columns, known as the pricing problem, could be solved by a variety of exact and 

heuristic methods. Most approaches use a dynamic programming method applied to a shortest path 

type formulation. Solving the pricing problem efficiently is key to a successful approach because this 

is where most of the computation time is used. Very efficient pricing problem solving can be achieved 

though through the use of heuristics and problem structure exploitation. Other significant speed ups 

and algorithm improvements can often be achieved through other ideas such as branching strategies, 

stabilisation, column management, approximations and other heuristics. 

One of the earliest applications of branch and price to PDPTW is given by Dumas et al [6] although it 

was clearly limited by the computing hardware available at the time. A branch and price method 

published later in the decade by Savelsbergh and Sol [22] was already able to solve larger instances of 

the problem in practical computation times. One of the most recent examples of branch and price 

applied to PDP is from Venkateshan and Mathur [25] and an example of a column generation based 

heuristic applied to PDPTW is given by Xu et al [26].  

An alternative exact method is branch and cut. Branch and cut differs from branch and price in that a 

different formulation is used in which all the variables are present at the start rather than being 

dynamically generated. New constraints are generated at the nodes of the branch and bound tree. 

These cuts aim to accelerate the discovery of the optimal integer solution. For PDPTW and other 

vehicle routing problems different families of cuts have been proposed. Examples of branch and cut 

methods applied to other pickup and delivery problems include [12, 21]. A recent paper by Ropke and 

Cordeau [19] presents a branch and cut and price method and test it on one of the most commonly 

used sets of benchmark instances by Li and Lim [11]. The results show that although the smaller 

instances can be solved to optimality very efficiently, the larger instances are still out of reach for 

exact methods. 

Although there are several examples of exact methods for PDP, the majority of publications are on 

heuristic methods and in particular metaheuristics. Many of these approaches use a variant of 

neighbourhood search. Due to the pairing and precedence constraints present in PDP but not present 

in other variants of vehicle routing problems, there is less choice of neighbourhood operators 

available for the problem. There are however three operators which were employed in the earlier 

metaheuristics. The first is to simply move a pickup and delivery pair from one route to another. The 

second is to swap a pair of pickups and deliveries between two routes. The third is to move the pickup 

and delivery within a route. Li and Lim [11] and Nanry and Barnes [17] both present metaheuristics 

built around these local search operators. These simpler metaheuristics were later outperformed 

though by methods based on Large Neighbourhood Search (LNS). As the name implies, LNS uses 

much larger neighbourhoods and searches them using heuristic and/or exact methods. The motivation 

is that larger neighbourhoods should provide better local optima. The disadvantage is that they can be 

slower to search due to their increased size. One of the first examples of LNS applied to PDP is from 

Bent and Van Hentenryck [2]. They explore large neighbourhoods using a branch and bound method. 

Ropke and Pisinger [20] then published an alternative LNS which uses a simpler heuristic method for 

creating and searching large neighbourhoods. Their heuristic is based on the “disrupt and repair” or 

“ruin and recreate” heuristics. Customers are iteratively removed from solution routes using heuristics 

such as similarity measures and then re-inserted using heuristics such as regret assignment or greedy 

assignment. The parameters for these heuristics are dynamically adapted based on their success rate. 

Their LNS produced many new best known solutions on the Li and Lim benchmark instances. 

Another paper that has achieved notable results on these benchmark instances is the Guided Ejection 

Search of Nagata and Kobayashi [15]. The algorithm only aims to optimise the single objective of 



 

 

reducing the number of vehicles used but does so very effectively. It is a relatively simple but 

effective iterative heuristic that randomly adjusts the solution using customer swaps and moves. At 

each iteration, attempts are made to insert heuristically selected customers from removed routes. They 

later adapted this method into an evolutionary approach to again further improve their results with 

respect to the full objective function [16]. There are also several publications detailing metaheuristics 

applied to specific variants of PDP. For example, PDP with transfers [13], PDP with LIFO loading 

[5], single vehicle PDP [8, 10] and dynamic PDP [7]. For further reading on PDP there are also 

several survey and overview papers [1, 3, 18, 23]. 

From the above review of related literature, it is clear that PDPTW is a well-studied variant of the 

vehicle routing problem. A variety of exact and heuristic methods have been proposed and this has 

helped to advance our knowledge into how to tackle this difficult combinatorial optimization problem. 

Nevertheless, it is also clear that large instances of PDPTW remain a difficult challenge to state-of-

the-art techniques. In this paper, an effective and efficient heuristic method is proposed which uses 

several tailored neighbourhood moves within a streamlined version of adaptive large neighbourhood 

search [20] also incorporating guided ejection search [15]. The proposed technique is not only 

competitive with state-of-the-art methods but it produces a number of new best known solutions for 

the well-known Li and Lim benchmark instances [11]. Moreover, this paper also makes a contribution 

to increase our understanding of which combination of search mechanisms can result in a highly 

effective and fast hybrid metaheuristic algorithm capable of solving large instances of the PDPTW. 

Experimental results also show that each of the components plays an essential role to make the overall 

algorithm perform very well over a wide range of problem sizes. 

In the next section we provide the problem definition for the benchmark PDPTW instances tested on. 

Section 3 introduces the algorithm and Section 4 details the computational results. Finally we present 

some conclusions and suggested future research in Section 5. 

2 Problem Definition 

A solution to the pickup and delivery routing problem with time windows or PDPTW is a set of routes 

for a fleet of vehicles. Each route is executed by one vehicle and consists of a sequence of pickups 

and deliveries at customers’ locations. Each transportation request is a pickup and delivery pair which 

must be executed in that order by the same vehicle while satisfying the vehicle capacity and the given 

time windows. The goal is to minimise the number of routes hence the number of vehicles needed and 

to minimise the total travelled distance.  

Parameters: 

M set of customers 1...m 

L set of locations 0,1…m where 0 is the depot and 1…m are the customers 

P set of pickup customers 

D set of delivery customers 

The intersection of P and D is the empty set (𝑃 ∩ 𝐷 =  ∅) and the union of P and D is M (𝑃 ∪ 𝐷 =

𝑀). Each pickup pi  P is associated with a corresponding delivery di  D. Let: 

tij the travel time between locations i and j 



 

 

dij the distance between locations i and j 

si the service duration for location i 

ei the earliest time at which the service at location i can start  

li  the latest time at which the service at location i it must start 

A service duration and service window have been included for the depot to make the model tidier but 

in the test instances the service duration for the depot is zero and the service window for the depot is 

unbounded. This is done in previously published models also, for example: [15]. 

Constraints: 

A route is a sequence of locations visited by a vehicle. A vehicle must start at a depot, visit at least 

two customers (corresponding to a pickup and a delivery) and return to the depot. A route of length n 

is therefore denoted by 〈𝑣0, 𝑣1 … 𝑣𝑛, 𝑣𝑛+1〉 where v0 and vn+1 are the depot and visits v1...vn are 

customers. If a route contains a pickup pi then it must also contain its corresponding delivery di (and 

vice-versa) and pi must precede di in the sequence. These are the pairing and precedence constraints 

respectively. Each pickup pi has a nonnegative demand qi and the corresponding delivery di has the 

demand -qi.  

The current total load 𝑐𝑣𝑖
 carried by a vehicle 𝑣 at a visit 𝑖 where 𝑖 ≥ 1 is  

𝑐𝑣𝑖
= ∑ 𝑞𝑣𝑗

𝑖
𝑗=1     (1) 

All vehicles have an identical capacity Q and at all visits in a route the total carried load must not 

exceed the vehicle capacity 

𝑐𝑣𝑖
≤ 𝑄    ∀𝑣𝑖 ∈ {1 … 𝑛}   (2) 

The begin time bv for each visit’s service in the route is calculated as 

𝑏𝑣0
=  0  

𝑏𝑣𝑖
=  max{𝑏𝑣𝑖−1

+ 𝑠𝑣𝑖−1
+ 𝑡𝑣𝑖−1𝑣𝑖

 , 𝑒𝑣𝑖
}  ∀𝑖 ∈ {1 … 𝑛}  (3) 

In a route the services must begin before or at a location’s latest service start time  

𝑏𝑣𝑖
≤ 𝑙𝑣𝑖

    ∀ 𝑣𝑖 ∈ {0 … 𝑛}   (4) 

A solution to this PDPTW described above is set of feasible routes which together service all 

customers exactly once according to the conditions established in the formulation. 

Objectives: 

The primary objective is to minimise the number of routes, hence the number of vehicles, in the 

solution. To compare solutions which have the same number of routes a secondary objective is 

commonly used. This secondary objective is to minimise the total distance of all routes where 

distance of a route of length n is 

∑ 𝑑𝑣𝑖,𝑣𝑖+1

𝑛
𝑖=0      (5) 



 

 

3 Hybrid Large Neighbourhood Search and Guided Ejection Search 

As discussed in the introduction, a number of methods have been proposed in the literature to tackle 

the PDPTW. The algorithmic design proposed here incorporates specialised neighbourhood operators 

to enhance the effectiveness of the local search, adaptive ejection search to reduce the number of 

routes and streamlined large neighbourhood search to enhance the efficiency of the search. The 

motivation behind the proposed algorithm design was to identify the essential mechanisms to reduce 

the number of routes and the total travelled distance and combine them into a streamlined yet 

effective and fast method. 

The algorithm proposed here is a combination of three separate methods: 

1) A local search which uses four tailored neighbourhood operators. 

2) A simplified version of the Adaptive Large Neighbourhood Search (ALNS) of Ropke and 

Pisinger [20]. One of the simplifications is to remove the adaptive feature so this sub-routine 

will be referred to as LNS only. 

3) A version of the Guided Ejection Search (GES) by Nagata and Kobayashi [15]. 

 

An outline of the overall algorithm approach is given in Figure 1 and each of the steps is described in 

detail in the following subsections. The overall strategy is to perform an effective large 

neighbourhood search on a solution while exploiting guided ejection chain to reduce the number of 

routes or perturbing the current solution if reducing the number of routes is not possible. This balance 

between intensification and diversification results in an effective algorithm as shown by the 

experimental results presented later in the paper.  

1. LocalSearch 
2.   
3. while (time remaining) 
4. { 
5.   try and reduce number of vehicles in best solution so far using GES 

6.   
7.   if vehicles not reduced then perturb best solution so far 

8.   
9.   LocalSearch 

10.   
11.   LNS 

12. } 

Figure 1 Overall Algorithm Outline 

3.1 Local Search 

The main purpose of the local search is to construct good-quality initial solutions quickly. To do this 

it uses four neighbourhood structures and the corresponding operators perform an exhaustive search 

until no further improvements can be made with respect to all neighbourhoods. The first three 

neighbourhood moves are used in [11, 17]. The neighbourhood moves are:  

M1: Insert an unassigned pickup and delivery (PD) pair into an existing route or create a new 

route for the PD pair 

M2: Un-assign an assigned PD pair and try and insert it into a different route or create a new route 

for the PD pair 

M3: Un-assign a PD pair (pd1) from a route (r1), un-assign a PD pair (pd2) from a route (r2) and 

then try and insert pd1 into route r2 and pd2 into route r1 



 

 

M4: Un-assign a PD pair (pd1) from a route (r1), un-assign a PD pair (pd2) from a route (r2) and 

then try and insert pd1 into route r2 and pd2 into a third route r3 

 

Note that in all of the neighbourhoods above, when trying to insert a PD pair into a route the local 

search tries every possible position for the pickup and for each feasible position for the pickup, also 

tries every possible feasible position for the drop (position refers to order position in the route). This 

means that each neighbourhood is explored exhaustively and the best of all neighbour solutions is 

selected. Hence, this is part of the intensification mechanism in the proposed approach. We are not 

aware of the move M4 being used for PDPTW previously. The rationale behind this move is to have 

another mechanism for transferring PD pairs between routes. M3 does this while maintaining the 

same number of PD pairs in each of the two routes involved. In M4 the transfer ends up with two 

routes having a different number of PD pairs after the move. 

A single neighbour operator is applied exhaustively until no more improving moves can be made 

using that operator. The next operator is then similarly applied exhaustively until no more improving 

moves are available, and then the next operator and so on. The order the operators are applied is M1 

to M4 as in the list above. When operator M4 has been exhausted then the local search returns to 

operator M1. This process is repeated until there are no available improvements using any of the 

operators. For the smaller neighbourhoods defined by operators M1 and M2, when testing a possible 

insertion, a best improvement strategy is used, meaning that the insertion is tested on all available 

routes and the best improvement move is used. For the larger operators M3 and M4, a first found 

improvement strategy is used, meaning that as soon as an improving move is found then it is accepted. 

The local search uses the hierarchical objective because it is possible to reduce the number of routes 

in the solution using operators M2 and M4.  

The intensified local search described above can be completed quickly but the solutions can often still 

be significantly improved with respect to the objectives of minimising the number of routes and 

minimising total distance. The next step in the algorithm is to focus on minimising the number of 

routes used. 

3.2 Guided Ejection Search 

Guided Ejection Search was originally proposed by Nagata and Braysy [14] for the vehicle routing 

problem with time windows (VRPTW). Nagata and Kobayashi then developed a version for PDPTW 

[15]. It only focuses on the objective of minimising the number of routes and their analysis showed 

that it was very effective on this single objective. An overview of the procedure is given in Figure 2. 

1. randomly select a route and un-assign all PD-pairs from it 

2.   

3. for a fixed number of iterations 

4. { 

5.   select an un-assigned PD-pair and try and insert it into an existing route 

6.   

7.   if PD-pair inserted 

8.   { 

9.           if no more PD-pairs to assign 

10.     go to 1. 

11.   } 

12.   else 

13.   { 

14.        try and insert the PD-pair by un-assigning one or more other pairs (the  

               ejection is heuristically selected by trying to avoid un-assigning  

               PD-pairs that were difficult to insert before) 

15.   
16.        perturb the solution by randomly moving or swapping PD-pairs between   

               routes 

17.   } 



 

 

18. } 

Figure 2 GES Outline 

The method starts by randomly selecting a route and un-assigning all the PD-pairs in it. It then 

proceeds to try and re-insert the un-assigned pairs over the remaining routes. When it cannot insert a 

pair, it un-assigns (ejects) another pair(s) to allow it to insert it. It then perturbs the partial solution 

and tries again to insert an un-assigned pair. This is repeated until either there are no un-assigned 

pairs, in which case a route has been successfully removed, or a maximum number of iterations has 

been reached. If a route is removed then the procedure is repeated by selecting another route and un-

assigning the pairs within it and then trying to insert them again over the remaining routes and so on.  

The next pair selected for insertion is selected from an unassigned pairs list on a last in first out 

(LIFO) basis. LIFO was also used in [15], possibly because it improves the efficacy of the ejection 

heuristic which will be described later. When trying to insert the pair each route is tested in a random 

order and every possible position for the pair in the route is tested. If a feasible position for the pair is 

found then it is inserted. If more than one feasible position is found then the position for insertion is 

selected randomly. As with the local search, testing each possible position means trying each possible 

position for the pickup and for each possible position for the pickup also trying each possible position 

for the drop. 

If the pair cannot be inserted then an attempt is made to insert it by ejecting one or two pairs from 

another route. First an attempt is made to insert it by ejecting a single pair and if this fails then every 

set of two pairs is tested to see if their ejection would allow the insertion. A maximum of two pairs 

was used for increased speed. If more than one set of pairs can be ejected to allow the insertion of the 

pair, then the set to eject is selected heuristically. Every time an attempt is made to insert a pair, a 

counter for that pair is increased by one. The heuristic for choosing which pair to eject is the pair with 

the lowest sum of the counter values (i.e. the set that has been previously attempted to be inserted the 

least number of times). The motivation behind the heuristic is that if a pair was previously difficult to 

insert (i.e. the counter value is high) then try not to eject it because it may be difficult to insert again. 

The perturbation procedure at line 16 of Figure 2 not only creates the possibility of later being able to 

insert pairs but it also reduces the risks of cycling. The perturbation randomly selects one of two 

possible move operators (each with 0.5 probability) and then executes the move on the current partial 

solution. The first move (PairMove) randomly selects a route and a PD-pair within it, then randomly 

selects a second route and attempts to move the pair to a feasible position in the second route. If there 

is more than one feasible position in the second route then one is randomly selected. The second move 

(SwapMove) randomly selects two routes and a pair within each route. It then un-assigns the pairs and 

attempts to insert them into feasible positions in the opposite route. This time it selects the best 

possible positions (according to the secondary objective function – minimise total distance) rather 

than a random position. The perturbation finishes when 10 moves have been executed. 

The implementation in the present work is similar to the original version by Nagata and Braysy except 

for two changes. The first difference is at line 14. The original algorithm examines all sets of pairs for 

ejection up to a fixed size. The larger the fixed size, the more sets there are to examine and the longer 

the algorithm takes. The approach in this paper only examines sets of length one first. That is, it tries 

ejecting a single pair first and then if this fails in allowing the insertion, then it tries ejecting two pairs. 

Again the two pairs are selected by minimising the sum of their previous insertion attempt counters. 

The second main difference is the stopping condition. Instead of finishing after a certain number of 

iterations or a fixed time limit, the number of iterations is extended based on the progress of reducing 



 

 

the number of un-assigned pairs. Every time a new partial solution with a new smallest number of un-

assigned pairs is found then a counter is reset to zero. The counter is increased by one each time an 

attempt is made to perturb the solution by doing either PairMove or SwapMove. The procedure 

terminates if the counter reaches a predefined value (one million in our implementation). The 

motivation behind this heuristic is to terminate quickly if the progress suggests that the route will not 

be removed but to provide more time when the number of un-assigned pairs is being reduced but more 

slowly. This modified guided ejection chain mechanism maintains the intensification ability of the 

original approach but it also incorporates an adaptive ability to push the intensification or not 

according to the current solution.   

3.3 Large Neighbourhood Search 

After the modified GES, the local search is applied again followed by a large neighbourhood search. 

An overview of the LNS is shown in Figure 3. 

1. for a minimum number of iterations and maximum time limit 

2. { 

3.   select a removal heuristic 

4.   

5.   un-assign heuristically selected PD-pairs in the solution using the removal       

        heuristic 

6.   

7.   select an assignment heuristic 

8.   

9.   re-assign un-assigned PD-pairs using the assignment heuristic 

10.   
11.   accept or reject the new solution as the current solution using LAHC 

12. } 

Figure 3 LNS Outline 

The LNS can be described as a “disrupt and repair” heuristic. It repeatedly un-assigns some PD-pairs 

from a solution and then attempts to heuristically re-assign them but creating an improved solution. 

The method is based on the ALNS of Ropke and Pisinger but with several changes. One of the main 

changes was to replace a simulated annealing + noise acceptance criterion with late acceptance hill 

climbing (LAHC) [4]. The main reason for this was to have a streamlined version by simplifying 

parameter setting because LAHC has only one parameter to set. LAHC is very similar to SA in that it 

accepts non-improving solutions but it replaces the probability-based acceptance criterion by a time-

based deterministic one. At the start of the algorithm LAHC may accept many non-improving 

solutions and so provide more search diversification whereas at the end the search intensifies as less 

and less non-improving solutions are accepted. LAHC is described by Figure 4. In the figure, the 

initial solution is the solution created by the GES phase followed by the local search and the candidate 

solutions are the solutions generated by the removal and re-assignment heuristics. The LHC_LEN 

parameter was set as 2000 in all the experiments. A small amount of testing was performed in 

selecting this parameter but these initial tests suggested that this parameter did not have a large impact 

on the overall performance of the entire algorithm. It is possible that some additional performance 

gains could be achieved by tuning this parameter or more advanced sensitivity analysis (or even 

dynamically adapting it). 

    Input parameters: 

     Input solution s 

     The length of the costs array LHC_LEN  

1. Calculate initial cost function C(s) 

2.  

3. Create a new array (costs) of length LHC_LEN 

4.  

5. FOR x{0..LHC_LEN-1} SET costs[x] := C(s) 

6.  

7. SET iter := 0 



 

 

8.  

9. UNTIL stopping condition 

10.  
11.    Construct a candidate solution s* from s 
12.  
13.    SET x := iter mod LHC_LEN 
14.  
15.    IF C(s*) ≤ costs[x] or C(s*) ≤ C(s) 
16.     then accept the candidate (SET s := s*) 

17.    ELSE  
18.    reject the candidate (SET s := s) 

19.   
20.    SET costs[x] := C(s) 
21.   
22.    SET iter := iter+1 
23.  
24. END UNTIL 

Figure 4 LAHC Outline 

In the LNS, two removal heuristics are used: Shaw removal [24] and random removal [20, 24]. At 

each iteration one of the removal heuristics is randomly selected and applied. The Shaw removal 

heuristic aims to select a set of pairs PD that are similar. The idea is that if the pairs are similar then 

there is more possibility of re-arranging them in a new and possibly better way. If the pairs are all 

very different then they will probably be replaced exactly where they were originally assigned. The 

pair characteristics that are used to measure their similarity are: distance from each other, arrival times 

and demand. The formula for calculating the similarity is the same as given in [20]. The second 

heuristic is to simply randomly select a set of pairs. The probability of selecting the Shaw heuristic is 

set at 0.6, else the random selection heuristic is used. This creates a slight bias towards using the 

intelligent Shaw heuristic over the un-intelligent random heuristic. The number of pairs to remove by 

each heuristic is a number randomly selected from the range 4-80. These values were selected based 

on the results and guidance from [20]. 

To re-assign the pairs the regret assignment heuristic only is used [20]. The regret heuristic tries to 

improve upon greedy assignment by incorporating look-ahead. It does so by not only considering the 

best possible route for a pair insertion but by also the second, third, fourth… kth best routes. When 

selecting which pair to insert next it selects pairs that have less possible positions for insertion that are 

low cost relative to their other possible positions. The motivation is that if that pair is not inserted now 

there may be regret later if that position is no longer available due to a previous insertion in the route. 

The parameter k is randomly selected from 2,3,4,5,#R where #R is the number of routes in the current 

solution. 

Although the GES only uses the objective of minimising the number of routes and ignores the 

objective of minimising distance, the LNS uses the full hierarchical objective. It is possible for the 

LNS to remove routes if a removal heuristic selects a set of pairs which includes all the pairs for an 

entire route and then the assignment heuristic re-assigns them over other routes. During the testing we 

did observe the LNS reducing the number of routes in a solution occasionally but as will be shown, 

the GES is far more effective for minimising the total number of routes. 

The LNS stops when a minimum number of iterations (800 in this paper) without improvement has 

been done or both of the following are satisfied: 

1) There was no improvement in the last 400 iterations 

2) And a minimum time limit has been reached, set as twice the time taken to complete the GES 

phase 



 

 

This streamlined LNS maintains the diversification and intensification ability but at the same time it 

excludes the adaptive mechanism which was shown to provide only a few extra percent benefit in 

performance [20].  

 

3.4 Restarts 

After the LNS is completed, the overall algorithm goes to step 3 in Figure 1 to try reducing the 

number of vehicles again in the best solution found so far, by using GES. After, if the number of 

vehicles was not reduced then the best solution so far is perturbed using the same perturbation 

function as in GES. The number of perturbation moves is set as the instance’s number of PD-pairs 

multiplied by 0.2. This is larger than the perturbation used within the GES phase where only ten 

moves are made. A larger perturbation is performed here to increase the search diversification 

whereas within the GES phase the perturbation is to try and allow a single PD-pair to be inserted. The 

algorithm then continues by applying the local search followed by LNS again and so on. The 

algorithm terminates when a maximum time limit is reached. Hence the heuristic approach proposed 

in this paper alternates between a random (when no route is removed) and a greedy (when a route is 

removed) perturbation to the current solution to then perform an effective LNS that balances 

intensification and diversification. All algorithm parameters are summarised in Table 1. 

GES   

Maximum total perturbs  1000000 

Perturbation   

Max perturbs within GES 10 

Max perturbs during Restarts Max[20, m * 0.2] 

Probability of selecting PairMove 0.5 

Probability of selecting SwapMove 0.5 

LNS   

Stopping conditions            Min 800 consecutive iterations 

without improvement OR (Min 

400 without improvement AND 

Min 2x CPU time used by GES) 

LAHC array length (LHC_LEN) 2000 

Min PD-Pairs removed by removal heuristic    4 

Max PD-Pairs removed by removal heuristic    80 

Probability of selecting Shaw heuristic    0.6 

Probability of selecting removal heuristic  0.4 

Table 1 Parameters summary 

4 Results 

To test the algorithm the benchmark instances of Li and Lim [11] are used1. There are approximately 

360 instances categorised into six groups of different sizes ranging from approximately 50 PD-pairs 

up to 500 PD-pairs. Each group is also subdivided into instances with clustered locations, randomly 

                                                      
1 Available at http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/ 



 

 

distributed locations and randomly clustered locations. Each sub group is then further split by 

instances with short planning horizons and instances with long planning horizons.  

Three sets of experiments were performed. The first was to investigate the benefit of the adaptive 

heuristic added to the GES. As described earlier, this heuristic terminates the GES phase more quickly 

when the progress suggests that an extra route will not be eliminated but allows more time when the 

progress suggests it is getting closer to removing a route. The second set of experiments was to 

investigate different configurations of the individual components and their combined benefit. The 

third analysis was to simply compare solutions generated with the current best knowns. 

For the first two sets of experiments, five different algorithms were applied to all the test instances. 

The algorithms tested are the full algorithm and then four other versions, each with different 

components removed. The aim was to investigate the impact of the individual components or whether 

there was not any benefit in combining components when given the same computation time, or if 

combining the algorithms produces a more effective overall algorithm. The configurations were as 

follows: 

1. LS+AGES+LNS (Algo1): The full algorithm as described and using the adaptive heuristic for 

the GES (labelled Adaptive GES). 

2. LS+GES+LNS (Algo2) : The same as 1 but without the adaptive heuristic in GES. 

3. LS+AGES (Algo3) : The same as 1 but without the LNS phase, to see if the LS alone is 

sufficient at minimising the distance objective. 

4. LS+LNS (Algo4) : The same as 1 but without the AGES phase which aims at minimising 

total routes. LS and LNS are both also able to minimise total routes on their own but this test 

was to investigate whether they are sufficient on their own if given the extra time not used by 

the removed AGES phase. 

5. AGES+LNS (Algo5) : The same as 1 but with the LS phase removed. Previous papers 

indicated that LNS is much more effective than LS so there may be no benefit in including the 

LS phase, and instead just giving more time to the LNS phase. 

Note that GES will exit sooner than AGES and so LNS in Algo2 will also have less time than LNS in 

Algo1 per iteration. However because all algorithms are being run for the same fixed time Algo2 will 

complete more iterations than Algo1 and so the overall CPU time distributed between the different 

phases will be similar overall. 

On the ‘100’ group of instances, 5 minutes of computation time was allowed. On the ‘200’ and ‘400’ 

groups, 15 minutes. On the ‘600’ group, 30 minutes and on the ‘800’ and ‘1000’ groups, 60 minutes. 

These values were chosen based on similar run times in other papers [20] [15]. All runs were 

performed on an Intel Xeon CPU E5-1620 @ 3.5 GHz utilising a single core per run. 32GB RAM was 

available (although testing showed the algorithm requires a maximum of 70MB on the largest 

instances). The code was written in C#.  

 

Table 2 lists the total number of vehicles used and the total distance for all the solutions for each group 

of instances, for each algorithm. These results are further broken down in Table 3 in which we rank 

the algorithms by how they performed against each other. For each group of instances, we record the 

total number of times that each algorithm found the best solution, the second best solution, the third 

best, fourth best and fifth best out of the five algorithms. Kendall’s non-parametric test is applied to 

the rankings to determine if the pairwise comparisons between two algorithms is statistically 



 

 

significant. The mean values and P-values used in the statistical test are given in Table 4. Pairwise 

comparisons are made to see if the differences are statistically significant at the 0.05 level. 

    LS+AGES+LNS LS+GES+LNS LS+AGES LS+LNS AGES+LNS 

Inst. 

t 

(m) Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. 

100 5 402 58163.22 402 58162.29 402 59145.32 404 58175.81 402 58604.47 

200 15 601 186158.57 601 185610.99 600 197910.36 619 176257.69 601 187890.12 

400 15 1142 447627.39 1145 441007.53 1140 485337.69 1183 408446.49 1144 452306.60 

600 30 1643 935948.36 1653 915686.48 1644 998440.66 1710 824991.45 1643 947724.82 

800 60 2146 1551495.35 2153 1550252.37 2146 1664710.86 2223 1383687.84 2136 1545456.09 

1000 60 2634 2310830.27 2645 2282149.28 2636 2443110.48 2733 2047589.35 2605 2259241.06 

Table 2 Algorithm comparisons on all instances 

Size Rank LS+AGES+LNS LS+GES+LNS LS+AGES LS+LNS AGES+LNS 

100 

First 53 54 41 52 39 

Second 1 2 0 0 0 

Third 2 0 1 1 1 

Fourth 0 0 4 1 7 

Fifth 0 0 10 2 9 

200 

First 36 38 17 25 17 

Second 12 10 0 10 4 

Third 7 11 6 5 6 

Fourth 4 1 15 2 22 

Fifth 1 0 22 18 11 

400 

First 25 28 10 18 14 

Second 14 20 2 5 6 

Third 18 7 5 2 17 

Fourth 3 5 30 0 16 

Fifth 0 0 13 35 7 

600 

First 27 23 6 9 19 

Second 18 18 6 7 7 

Third 14 11 8 4 15 

Fourth 1 8 33 1 11 

Fifth 0 0 7 39 8 

800 

First 24 18 8 17 16 

Second 22 19 3 1 12 

Third 12 15 7 3 14 

Fourth 1 7 35 2 8 

Fifth 1 1 7 37 10 

1000 

First 25 15 4 12 21 

Second 17 21 4 3 11 

Third 14 11 10 2 14 

Fourth 2 8 32 2 7 

Fifth 0 3 8 39 5 

All 
First 190 176 86 133 126 

Second 84 90 15 26 40 



 

 

Third 67 55 37 17 67 

Fourth 11 29 149 8 71 

Fifth 2 4 67 170 50 
Table 3 Algorithm rankings 

Test P-value Mean Ranks 

Algo1 Algo2 Algo3 Algo4 Algo5 

All <.01 2.25 2.38 3.69 3.65 3.03 

100 <.01 2.72 2.68 3.38 2.80 3.41 

200 <.01 2.3 2.21 3.84 3.23 3.42 

400 <.01 2.26 2.11 3.76 3.78 3.10 

600 <.01 2.04 2.31 3.68 4.11 2.87 

800 <.01 2.11 2.46 3.69 3.88 2.87 

1000 <.01 2.09 2.57 3.76 4.07 2.51 
Table 4 Algorithm mean rankings and p-values 

 

For the pairwise comparisons we define A<B as meaning A has lower rank than B but the pairwise 

comparison is not significant. We define A<<B as meaning A has lower rank than B and the pairwise 

comparison is statistically significant. The rankings are as follows: 

 

Over all instances we may rank the five algorithms as Algo1 < Algo2 << Algo5 << Algo4 < Algo3. 

On the ‘100’ instances the rank result is Algo2 < Algo1 < Algo4 < Algo3 < Algo5. 

On the ‘200’ instances the rank result is Algo2 < Algo1 << Algo4 < Algo5 < Algo3. 

On the ‘400’ instances the rank result is Algo2 < Algo1 << Algo5 < Algo3 < Algo4. 

On the ‘600’ instances the rank result is Algo1 < Algo2 < Algo5 << Algo3 < Algo4. (Algo1 << 

Algo5). 

On the ‘800’ instances the rank result is Algo1 < Algo2 < Algo5 << Algo3 < Algo4. 

On the ‘1000’ instances the rank result is Algo1 < Algo2 < Algo5 << Algo3 < Algo4. 

 

Looking at Table 2 adaptive GES produces solutions with less routes than the GES (apart from the 100 

and 200 instances where they are the same). When we compare the rankings pairwise GES is better on 

the smaller instances but AGES is better on the larger instances and over all instances. However the 

mean rankings are too similar to say the difference is statistically significant.  

 

Investigating the benefit of including the (A)GES phase, it is clear that it is very effective. Algo4 (no 

GES) is always worse than Algo1 and Algo2 (the full algorithms with AGES or GES) and the 

pairwise comparisons are statistically significant. Similarly it is clear than the LNS is an important 

component of the algorithm. When the LNS phase is removed (Algo3), the full algorithms (Algo1 and 

Algo2) are significantly better. It is clear than giving extra time and more iterations to LS and GES is 

not as effective as including the LNS albeit with less time for each phase and less iterations. Algo5 is 

also statistically better than Algo3 showing that using LNS instead of LS is more effective. Finally we 

can conclude that over all instances, including the LS phase is more effective than not including it 

(Algo5) but on the largest instances 800, and 1000, the superiority is still visible in the mean rankings 

but is not large enough to be statistically significant. These results show that combining the three 

components in this configuration, local search with specialised moves, streamlined large 

neighbourhood search and adaptive guided ejection search, is more effective than using just two of the 

components. Using all three components means there is less time available for each method but it still 



 

 

more effective than just using two of the components even if there is more time available for each 

individual phase. 

 

Next we compare the results against the best known results in peer-reviewed publications and the 

current best knowns that have been verified on the SINTEF website but have not been published in 

peer-reviewed outlets and for which no information is available about computation times and methods 

used. For comparing against published methods ( 

  LNS GES LS+AGES+LNS 

Instances Veh. Dist. t (s) Veh. Dist. t (s) Veh. Dist. t (s) 

100 402 56060 - - -   402 58163.22 300 

200 606 180419 - 601 - 3000 601 186158.57 900 

400 1157 420396 - 1139 - 3000 1142 447627.39 900 

600 1664 860898 - 1636 - 3000 1643 935948.36 1800 

800 2181 1423063 - 2135 - 3000 2146 1551495.35 3600 

1000 2646 2122922 - 2613 - 3000 2634 2310830.27 3600 

Table 5Table 2), we use the results of the Adaptive LNS method of [20] and the GES method of [15]. 

These are the current best known published results. Comparing against these results is not simple 

though. For the best results of [20] we do not know the computation times. For their best results the 

authors “report the best solutions obtained in several experiments with our ALNS heuristic and with 

various parameter settings”. We do not know how many experiments were run but we have an 

indication of computation times which are from 66 seconds per run on the smallest instances to 5370 

seconds per run on the largest instances. We also know that the heuristic was run at least “5 or 10 

times on each instance” (not including the different parameter setting testing) and that a 1.5 GHz 

Pentium IV processor was used. Again, comparing against Nagata and Kobayashi is difficult because 

their algorithm only minimises the number of vehicles used and we know from our results that using 

less vehicles often increases the total distance. They used an Opteron 2.6 GHz processor. Due to the 

unknown computation times, the differences in computing power and the difficulty in comparing 

summed values for a problem with hierarchical objectives we cannot have strong conclusions. The 

GES method produces solutions with less vehicles in total but the algorithm uses all its time 

minimising this objective where as our method only uses a large proportion of its time also 

minimising distance. The ALNS uses both objectives but produces solutions with more vehicles in 

total. Comparing total distances is not helpful because often solutions with less vehicles have longer 

distance. To assist future researchers and facilitate future comparisons we have included in this paper 

in Table 12 Results for a Single Run of Algo1Table 12 our results for a single run for a fixed run time 

for a single configuration (Algo1). 

  LNS GES LS+AGES+LNS 

Instances Veh. Dist. t (s) Veh. Dist. t (s) Veh. Dist. t (s) 

100 402 56060 - - -   402 58163.22 300 

200 606 180419 - 601 - 3000 601 186158.57 900 

400 1157 420396 - 1139 - 3000 1142 447627.39 900 

600 1664 860898 - 1636 - 3000 1643 935948.36 1800 

800 2181 1423063 - 2135 - 3000 2146 1551495.35 3600 

1000 2646 2122922 - 2613 - 3000 2634 2310830.27 3600 
Table 5 Comparing against other methods 



 

 

For the next comparison we compare against best knowns from published and unpublished methods. 

Tables 5-9 list the solutions found after applying the LS+AGES+LNS algorithm on all instances. The 

algorithm was allowed one hour computation but the best reported may be the best from several tests 

with different random seeds. Each table lists the solutions for each set of instances grouped by the 

number of locations. The tables also list the previous best known solutions for each instance, and the 

date it was found. The information is taken from SINTEF’s website which is regularly updated2. 

Solutions in italics are equal to previous best knowns and solutions in bold italics are new best 

knowns.  

The results show that the algorithm was able to find a large number of new best known solutions. On 

the 100 site instances the algorithm equalled the best knowns on all instances. On the 200 site 

instances 35 best knowns were equalled and seven new best knowns were found (out of 60). Of the 

seven new best knowns 3 were improvements in terms of the number of vehicles. For example on the 

instance LR2_2_6 the new best known has a solution of three vehicles whereas the previous had four 

vehicles. This was an impressive result because the previous best known had stood for 15 years. On 

the 400 site instances there are 19 equal best knowns and 22 new best knowns (out of 60). On the 600 

site instances there are six equal best knowns and 33 new best knowns (out of 60). On the 800 site 

instances there are five equal best knowns and 45 new best knowns (out of 60). On the 1000 site 

instances there are four equal best knowns and 35 new best knowns (out of 58). For many of the new 

best knowns the primary objective of reducing the number of vehicles is improved. This is 

particularly noticeable on the larger instances where the number of vehicles is reduced by more than 

one vehicle. For example on instance LRC1_10_5 the previous best known required 76 vehicles 

whereas the new best known has only 72 vehicles. This demonstrates the benefit of using the AGES 

within the algorithm specifically for reducing the number of vehicles. 

5 Conclusion 

This paper proposes an effective and fast hybrid metaheuristic algorithm to tackle the pickup and 

delivery problem with time windows (PDPTW). The approach performs a large neighbourhood search 

(LNS) that incorporates mechanisms for intensification and diversification. The approach also 

incorporates mechanisms to perturb the current solution. Such perturbation can be greedy by 

removing a full route from the solution through guided ejection search, or random when such removal 

is not successful. Then, alternating the LNS with guided ejection search and local search has resulted 

in a relatively simple but demonstrably effective framework. The guided ejection search is 

specifically designed for minimising the number of routes within solutions. An adaptive heuristic is 

developed for the guided ejection search phase which provides more time to the heuristic when its 

progress suggests it is close to removing a route. The local search and large neighbourhood search are 

more focused on minimising travel distances. The aim is to combine these strengths into an overall 

robust and successful method. A new search neighbourhood operator was added to the local search 

method and the LNS was streamlined and simplified without loss of efficacy.  

The results show that when any one of the components is removed the results are significantly worse. 

In other words, two components given more time is not as effective as the three components but with 

less time for each component. The adaptive heuristic for the GES phase is particularly effective on the 

larger instances. Including the local search phase benefits the smaller instances and including the LNS 

                                                      
2 Retrieved from http://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/ on 25-Feb-2016 



 

 

phase is better for all instance sizes. When tested on a large and well used benchmark data set, the 

algorithm is able to find 142 (out of 354 instances) new best known solutions, confirming its efficacy. 

The many new best-known solutions obtained with the LS+AGES+LNS heuristic algorithm proposed 

here have been already verified and hence published in the SINTEF’s website. 

Although a large amount of research, development and testing was required to develop this algorithm, 

there are still possibilities for further research. The Li and Lim benchmark instances are a very useful 

resource that have stimulated and enabled innovative research within a competitive and verifiable 

environment. Although that research forms the basis for many commercial vehicle routing problem 

solvers [9] it could be argued that more realistic benchmark instances could lead to even more 

effective methods for real-world problems. Data sets that contain requirements such as driver breaks 

rules, maximum driving hours, working time constraints, soft time windows etc. could have 

significant practical benefit. We believe that the algorithm presented could be adapted to handle these 

requirements but there would undoubtedly be new research required for such new challenges within 

benchmark data sets.  

Appendix 

 
Best known LS+AGES+LNS    

 

Best known LS+AGES+LNS  

Instance Veh Distance Date Veh Distance   Instance Veh Distance Date Veh Distance 

lc101 10 828.94 23-Jun-05 10 828.94   lr201 4 1253.23 28-Feb-03 4 1253.23 

lc102 10 828.94 23-Jun-05 10 828.94   lr202 3 1197.67 23-Jun-05 3 1197.67 

lc103 9 1035.35 27-Jun-03 9 1035.35   lr203 3 949.40 23-Jun-05 3 949.40 

lc104 9 860.01 11-Apr-03 9 860.01   lr204 2 849.05 23-Jun-05 2 849.05 

lc105 10 828.94 23-Jun-05 10 828.94   lr205 3 1054.02 23-Jun-05 3 1054.02 

lc106 10 828.94 2001 10 828.94   lr206 3 931.63 23-Jun-05 3 931.63 

lc107 10 828.94 23-Jun-05 10 828.94   lr207 2 903.06 2001 2 903.06 

lc108 10 826.44 2001 10 826.44   lr208 2 734.85 2001 2 734.85 

lc109 9 1000.60 27-Jun-03 9 1000.60   lr209 3 930.59 09-Mar-03 3 930.59 

lc201 3 591.56 23-Jun-05 3 591.56   lr210 3 964.22 23-Jun-05 3 964.22 

lc202 3 591.56 2001 3 591.56   lr211 2 911.52 15-May-03 2 911.52 

lc203 3 591.17 11-Mar-03 3 591.17   lrc101 14 1708.80 23-Jun-05 14 1708.80 

lc204 3 590.60 08-Mar-03 3 590.60   lrc102 12 1558.07 19-Feb-03 12 1558.07 

lc205 3 588.88 2001 3 588.88   lrc103 11 1258.74 23-Jun-05 11 1258.74 

lc206 3 588.49 23-Jun-05 3 588.49   lrc104 10 1128.40 23-Jun-05 10 1128.40 

lc207 3 588.29 23-Jun-05 3 588.29   lrc105 13 1637.62 23-Jun-05 13 1637.62 

lc208 3 588.32 23-Jun-05 3 588.32   lrc106 11 1424.73 28-Feb-03 11 1424.73 

lr101 19 1650.80 2001 19 1650.80   lrc107 11 1230.14 18-Feb-03 11 1230.14 

lr102 17 1487.57 23-Jun-05 17 1487.57   lrc108 10 1147.43 28-Feb-03 10 1147.43 

lr103 13 1292.68 23-Jun-05 13 1292.68   lrc201 4 1406.94 28-Feb-03 4 1406.94 

lr104 9 1013.39 2001 9 1013.39   lrc202 3 1374.27 23-Jun-05 3 1374.27 

lr105 14 1377.11 23-Jun-05 14 1377.11   lrc203 3 1089.07 23-Jun-05 3 1089.07 

lr106 12 1252.62 23-Jun-05 12 1252.62   lrc204 3 818.66 23-Mar-03 3 818.66 

lr107 10 1111.31 23-Jun-05 10 1111.31   lrc205 4 1302.20 23-Jun-05 4 1302.20 

lr108 9 968.97 23-Jun-05 9 968.97   lrc206 3 1159.03 12-Mar-03 3 1159.03 

lr109 11 1208.96 27-Feb-03 11 1208.96   lrc207 3 1062.05 04-Jan-04 3 1062.05 

lr110 10 1159.35 23-Jun-05 10 1159.35   lrc208 3 852.76 23-Jun-05 3 852.76 

lr111 10 1108.90 23-Jun-05 10 1108.90   

    
  

 lr112 9 1003.77 23-Jun-05 9 1003.77   

    
  

 Table 6 Best Solutions for 100 Site Instances 

 



 

 

 
Best known LS+AGES+LNS    

 

Best known LS+AGES+LNS  

Instance Veh Distance Date Veh Distance   Instance Veh Distance Date Veh Distance 

LC1_2_1 20 2704.57 23-Jun-05 20 2704.57   LR2_2_1 5 4073.10 09-Dec-03 5 4073.10 

LC1_2_2 19 2764.56 23-Jun-05 19 2764.56   LR2_2_2 4 3796.00 14-Feb-03 4 3796.00 

LC1_2_3 17 3128.61 08-Jul-03 17 3128.61   LR2_2_3 4 3098.36 08-Jul-03 4 3098.36 

LC1_2_4 17 2693.41 27-Jun-03 17 2693.41   LR2_2_4 3 2486.14 08-Jul-03 3 2491.73 

LC1_2_5 20 2702.05 23-Jun-05 20 2702.05   LR2_2_5 4 3438.39 13-Dec-03 4 3438.39 

LC1_2_6 20 2701.04 2001 20 2701.04   LR2_2_6 4 3201.54 2001 3 4639.85 

LC1_2_7 20 2701.04 23-Jun-05 20 2701.04   LR2_2_7 3 3124.57 19-Nov-15 3 3201.68 

LC1_2_8 19 3379.97 19-Nov-15 19 3397.65   LR2_2_8 2 2552.16 14-Apr-15 2 2586.42 

LC1_2_9 18 2724.24 23-Jun-05 18 2724.24   LR2_2_9 3 3930.49 25-Feb-05 3 3927.13 

LC1_2_10 17 2942.13 19-Nov-15 17 2947.00   LR2_2_10 3 3282.45 19-Nov-15 3 3274.96 

LC2_2_1 6 1931.44 2001 6 1931.44   LRC1_2_1 19 3606.06 14-Dec-03 19 3606.06 

LC2_2_2 6 1881.40 23-Jun-05 6 1881.40   LRC1_2_2 15 3671.02 19-Nov-15 15 3683.24 

LC2_2_3 6 1844.33 15-Apr-03 6 1844.33   LRC1_2_3 13 3161.44 19-Nov-15 13 3154.92 

LC2_2_4 6 1767.12 2001 6 1767.12   LRC1_2_4 10 2631.82 08-Jul-03 10 2631.82 

LC2_2_5 6 1891.21 23-Jun-05 6 1891.21   LRC1_2_5 16 3715.81 27-Jun-03 16 3715.81 

LC2_2_6 6 1857.78 29-Dec-03 6 1857.78   LRC1_2_6 16 3572.16 19-Nov-15 16 3572.16 

LC2_2_7 6 1850.13 10-Dec-03 6 1850.13   LRC1_2_7 14 3666.34 13-Apr-15 14 3697.71 

LC2_2_8 6 1824.34 2001 6 1824.34   LRC1_2_8 13 3167.23 19-Nov-15 13 3202.16 

LC2_2_9 6 1854.21 01-Sep-03 6 1854.21   LRC1_2_9 13 3157.34 19-Nov-15 13 3157.34 

LC2_2_10 6 1817.45 23-Jun-05 6 1817.45   LRC1_2_10 12 2928.90 19-Nov-15 12 2948.60 

LR1_2_1 20 4819.12 2001 20 4819.12   LRC2_2_1 6 3595.18 14-Apr-15 6 3595.18 

LR1_2_2 17 4621.21 08-Jul-03 17 4621.21   LRC2_2_2 5 3184.23 17-Nov-15 5 3342.00 

LR1_2_3 14 4656.11 02-Nov-15 14 4402.38   LRC2_2_3 4 2907.35 17-Nov-15 4 2948.56 

LR1_2_4 10 3031.20 15-Jul-03 10 3044.69   LRC2_2_4 3 2861.74 26-May-14 3 2908.50 

LR1_2_5 16 4760.18 27-Jun-03 16 4760.18   LRC2_2_5 5 2776.93 27-Jun-03 5 2776.93 

LR1_2_6 14 4175.16 27-Jun-03 13 4800.94   LRC2_2_6 5 2707.96 21-Dec-03 5 2707.96 

LR1_2_7 12 3550.61 08-Jul-03 12 3550.61   LRC2_2_7 4 3018.05 17-Nov-15 4 3057.23 

LR1_2_8 9 2766.42 19-Nov-15 9 2814.32   LRC2_2_8 4 2399.89 17-Nov-15 4 2400.19 

LR1_2_9 14 4343.86 14-Apr-15 13 5050.75   LRC2_2_9 4 2208.49 08-Jul-03 4 2208.49 

LR1_2_10 11 3692.20 19-Nov-15 11 3748.06   LRC2_2_10 3 2442.59 17-Nov-15 3 2664.99 

Table 7 Best Solutions for 200 Site Instances 

 

 
Best known LS+AGES+LNS    

 

Best known LS+AGES+LNS  

Instance Veh Distance Date Veh Distance   Instance Veh Distance Date Veh Distance 

LC1_4_1 40 7152.06 16-Jun-03 40 7152.06   LR2_4_1 8 9726.88 27-Jun-03 8 9726.88 

LC1_4_2 38 8007.79 08-Oct-15 38 8007.79   LR2_4_2 7 9440.93 16-Nov-15 7 9473.11 

LC1_4_3 33 8162.80 09-Oct-15 32 9252.95   LR2_4_3 6 8116.53 25-Feb-05 5 10658.64 

LC1_4_4 30 6451.68* 2001 30 6918.00   LR2_4_4 4 6649.78 08-Jul-03 4 6721.54 

LC1_4_5 40 7150.00 19-Apr-03 40 7150.00   LR2_4_5 6 10084.44 11-Jan-16 6 10152.96 

LC1_4_6 40 7154.02 2001 40 7154.02   LR2_4_6 5 9044.03 14-Dec-15 5 9145.93 

LC1_4_7 40 7149.43 15-Mar-03 40 7149.43   LR2_4_7 5 6729.67 14-Dec-15 5 6964.65 

LC1_4_8 39 7111.16 2001 39 7111.16   LR2_4_8 4 5356.37 02-Oct-15 4 5454.27 

LC1_4_9 36 7451.20 09-Oct-15 36 7451.20   LR2_4_9 6 7930.55 04-Jan-16 6 7998.74 

LC1_4_10 35 7387.13 08-Jul-03 35 7325.01   LR2_4_10 5 7846.99 16-Nov-15 5 8349.58 

LC2_4_1 12 4116.33 2001 12 4116.33   LRC1_4_1 36 9127.15 25-Feb-05 36 9124.52 

LC2_4_2 12 4144.29 15-May-03 12 4144.29   LRC1_4_2 31 8346.06 08-Jul-03 31 8346.06 

LC2_4_3 12 4424.08 27-May-14 12 4418.88   LRC1_4_3 25 7307.09 27-Jun-03 24 7856.72 

LC2_4_4 12 3743.95* 2001 12 4038.00   LRC1_4_4 19 5806.20 30-Jun-11 19 5841.95 

LC2_4_5 12 4030.63 01-May-03 12 4030.63   LRC1_4_5 32 8867.38 30-Jun-11 32 8872.08 

LC2_4_6 12 3900.29 20-Apr-03 12 3900.29   LRC1_4_6 30 8423.70 30-Jun-11 30 8396.08 

LC2_4_7 12 3962.51 27-Jun-03 12 3962.51   LRC1_4_7 28 8037.87 30-Jun-11 28 8295.76 



 

 

LC2_4_8 12 3844.45 2001 12 3844.45   LRC1_4_8 27 7563.09 30-Jun-11 26 8173.63 

LC2_4_9 12 4188.93 08-Jul-03 12 4188.93   LRC1_4_9 26 7790.26 30-Jun-11 25 8181.32 

LC2_4_10 12 3828.44 27-Jun-03 12 3828.44   LRC1_4_10 24 7065.73 08-Jul-03 23 7222.97 

LR1_4_1 40 10639.75 2003 40 10639.75   LRC2_4_1 12 7454.14 20-Oct-15 12 7454.14 

LR1_4_2 31 10015.85 25-Feb-05 31 9985.28   LRC2_4_2 10 7424.72 28-Jan-16 10 7605.61 

LR1_4_3 22 9458.99 25-Apr-15 22 9291.25   LRC2_4_3 9 5410.19 19-Jan-16 8 6576.48 

LR1_4_4 16 6744.33 08-Jul-03 16 6710.99   LRC2_4_4 5 5322.43 08-Jul-03 5 5779.02 

LR1_4_5 29 10599.54 25-Feb-05 28 11374.06   LRC2_4_5 11 6120.13 27-Jun-03 10 7462.66 

LR1_4_6 24 10326.45 21-Apr-15 24 9891.02   LRC2_4_6 9 6337.08 21-Jan-16 9 6342.74 

LR1_4_7 19 8200.37 25-Feb-05 18 8999.97   LRC2_4_7 8 6326.50 20-Jan-16 8 6704.21 

LR1_4_8 14 5946.44 08-Jul-03 14 5944.67   LRC2_4_8 7 5814.93 19-Jan-16 7 6070.90 

LR1_4_9 24 9886.14 25-Feb-05 24 9862.65   LRC2_4_9 7 5259.20 20-Jan-16 6 6877.02 

LR1_4_10 21 8016.62 08-Jul-03 20 8364.66   LRC2_4_10 6 5585.18 22-Jan-16 6 5840.81 

Table 8 Best Solutions for 400 Site Instances 

 

 
Best known LS+AGES+LNS    

 

Best known LS+AGES+LNS  

Instance Veh Distance Date Veh Distance   Instance Veh Distance Date Veh Distance 

LC1_6_1 60 14095.60 23-Jun-05 60 14095.64   LR2_6_1 11 21945.30 14-Jul-03 11 21955.29 

LC1_6_2 57 15120.97 10-Apr-15 57 15048.16   LR2_6_2 10 19666.59 25-Feb-05 9 23903.03 

LC1_6_3 50 14683.43 14-Jul-03 50 14724.64   LR2_6_3 8 15609.96 14-Jul-03 7 19183.41 

LC1_6_4 47 13648.03 14-Jul-03 48 13348.84   LR2_6_4 6 10819.45 14-Jul-03 6 11994.47 

LC1_6_5 60 14086.30 23-Jun-05 60 14086.30   LR2_6_5 9 19567.41 14-Jul-03 9 19411.73 

LC1_6_6 60 14090.79 14-Jul-03 60 14090.79   LR2_6_6 8 17262.96 14-Jul-03 7 22570.45 

LC1_6_7 60 14083.76 13-Jul-03 60 14083.76   LR2_6_7 6 15812.42 14-Jul-03 6 15526.81 

LC1_6_8 59 14554.27 13-Jul-03 58 14880.70   LR2_6_8 5 10950.90 14-Jul-03 5 11410.69 

LC1_6_9 54 14706.12 14-Jul-03 54 14661.73   LR2_6_9 8 18799.36 14-Jul-03 8 19838.35 

LC1_6_10 52 18762.62 21-Apr-15 52 15204.30   LR2_6_10 7 17034.63 14-Jul-03 7 17129.58 

LC2_6_1 19 7977.98 14-Jul-03 19 7977.98   LRC1_6_1 52 27262.21 18-Apr-15 52 18312.60 

LC2_6_2 18 9914.10 18-Jan-16 18 9940.34   LRC1_6_2 44 16302.54 25-Feb-05 43 17063.21 

LC2_6_3 17 8718.22 04-Jan-16 18 7436.50   LRC1_6_3 36 14060.31 14-Jul-03 36 14115.00 

LC2_6_4 17 7902.66 04-Jan-16 17 8022.96   LRC1_6_4 25 10950.52 14-Jul-03 25 11006.02 

LC2_6_5 19 8047.37 27-Jun-03 19 8047.37   LRC1_6_5 47 16742.55 14-Jul-03 46 17067.17 

LC2_6_6 19 8094.11 14-Jul-03 18 8859.78   LRC1_6_6 44 16894.37 14-Jul-03 42 17405.48 

LC2_6_7 19 7997.96 15-Jan-16 19 7997.96   LRC1_6_7 39 15394.87 14-Jul-03 38 15609.86 

LC2_6_8 18 7579.93 14-Jul-03 18 7580.88   LRC1_6_8 36 15154.79 14-Jul-03 33 15919.78 

LC2_6_9 18 8864.29 12-Jan-16 18 9019.78   LRC1_6_9 35 15134.24 14-Jul-03 34 15236.23 

LC2_6_10 17 7965.41 14-Jan-16 17 8064.71   LRC1_6_10 31 13925.51 14-Jul-03 29 14607.38 

LR1_6_1 59 22838.30 27-Jun-03 59 22824.32   LRC2_6_1 16 14817.72 14-Jul-03 16 14892.18 

LR1_6_2 45 20246.18 14-Jul-03 45 20355.13   LRC2_6_2 14 12758.77 14-Jul-03 13 15649.64 

LR1_6_3 37 18073.14 14-Jul-03 37 17987.49   LRC2_6_3 10 12812.67 25-Feb-05 10 14845.21 

LR1_6_4 28 13269.71 14-Jul-03 28 13191.79   LRC2_6_4 7 10574.87 25-Feb-05 7 11282.95 

LR1_6_5 38 22562.81 25-Feb-05 38 22489.30   LRC2_6_5 14 13009.52 14-Jul-03 13 15196.60 

LR1_6_6 32 20641.02 14-Jul-03 31 22188.80   LRC2_6_6 13 12642.68 04-Jan-04 12 17149.19 

LR1_6_7 25 17162.90 14-Jul-03 24 18531.68   LRC2_6_7 11 11975.28 24-Apr-15 10 16094.11 

LR1_6_8 19 11957.59 14-Jul-03 18 12255.29   LRC2_6_8 10 12163.43 14-Jul-03 9 15024.47 

LR1_6_9 32 21423.05 14-Jul-03 32 21117.75   LRC2_6_9 9 13768.01 14-Jul-03 9 14560.69 

LR1_6_10 27 18723.13 14-Jul-03 26 19028.25   LRC2_6_10 8 12016.94 14-Jul-03 7 15098.15 

Table 9 Best Solutions for 600 Site Instances 

 
Best known LS+AGES+LNS    

 

Best known LS+AGES+LNS  

Instance Veh Distance Date Veh Distance   Instance Veh Distance Date Veh Distance 

LC1_8_1 80 25184.38 16-Jun-03 80 25184.38   LR2_8_1 15 33816.90 22-Aug-03 14 46452.00 

LC1_8_2 77 33329.26 04-May-15 77 26864.13   LR2_8_2 12 32575.97 22-Aug-03 12 35732.86 



 

 

LC1_8_3 65 25918.45 22-Aug-03 63 27459.81   LR2_8_3 10 25310.53 22-Aug-03 9 30485.19 

LC1_8_4 60 22970.88 22-Aug-03 60 22943.54   LR2_8_4 7 19506.42 25-Feb-05 6 24285.15 

LC1_8_5 80 25211.22 12-Jul-03 80 25211.22   LR2_8_5 12 32634.29 22-Aug-03 11 37332.53 

LC1_8_6 80 25164.25 12-Jul-03 80 25164.25   LR2_8_6 10 27870.80 22-Aug-03 9 31372.05 

LC1_8_7 80 25158.38 13-Jul-03 80 25158.38   LR2_8_7 8 25077.85 25-Feb-05 7 30605.35 

LC1_8_8 78 25348.45 22-Aug-03 78 25381.04   LR2_8_8 5 19256.79 22-Aug-03 6 19390.75 

LC1_8_9 73 25541.94 22-Aug-03 72 26360.69   LR2_8_9 10 30791.77 22-Aug-03 10 34699.60 

LC1_8_10 71 25712.12 22-Aug-03 70 26811.45   LR2_8_10 9 28265.24 22-Aug-03 9 30147.88 

LC2_8_1 24 11687.06 19-May-03 24 11687.06   LRC1_8_1 66 35901.74 04-May-15 66 32302.57 

LC2_8_2 24 14358.92 22-Aug-03 24 14039.96   LRC1_8_2 56 28843.10 27-Jun-03 56 28042.91 

LC2_8_3 24 13198.29 22-Aug-03 24 13265.98   LRC1_8_3 48 29276.29 04-May-15 48 24693.73 

LC2_8_4 23 13376.82 22-Aug-03 24 12373.83   LRC1_8_4 34 23099.15 04-May-15 34 18806.89 

LC2_8_5 25 12298.90 27-Jun-03 25 12329.80   LRC1_8_5 59 34909.37 04-May-15 58 31457.69 

LC2_8_6 24 12702.87 22-Aug-03 24 12835.00   LRC1_8_6 56 29971.97 02-Jun-03 54 29836.27 

LC2_8_7 25 11855.86 22-Aug-03 25 11854.44   LRC1_8_7 52 32430.86 10-Jul-15 51 28705.17 

LC2_8_8 24 11482.88 22-Aug-03 24 11454.33   LRC1_8_8 47 29814.93 04-May-15 45 27374.52 

LC2_8_9 24 11629.61 22-Aug-03 24 11629.41   LRC1_8_9 46 28955.40 10-Jul-15 44 25980.07 

LC2_8_10 24 11578.58 22-Aug-03 24 11583.30   LRC1_8_10 42 24271.52 22-Aug-03 40 24582.28 

LR1_8_1 80 39315.92 22-Aug-03 80 39292.13   LRC2_8_1 20 23289.40 22-Aug-03 20 23157.34 

LR1_8_2 59 34370.37 22-Aug-03 59 34325.92   LRC2_8_2 18 21786.62 22-Aug-03 17 22686.62 

LR1_8_3 44 29718.09 22-Aug-03 44 29676.42   LRC2_8_3 15 36127.35 04-May-15 14 21651.20 

LR1_8_4 25 21197.65 22-Aug-03 25 21189.75   LRC2_8_4 11 38856.21 10-Jul-15 11 16232.51 

LR1_8_5 50 39046.06 22-Aug-03 49 39624.94   LRC2_8_5 17 41062.80 04-May-15 16 24404.69 

LR1_8_6 41 40488.25 04-May-15 40 35042.41   LRC2_8_6 16 21088.57 22-Aug-03 15 23854.87 

LR1_8_7 31 33431.22 04-May-15 30 28252.49   LRC2_8_7 15 19695.96 22-Aug-03 14 24514.06 

LR1_8_8 21 19570.21 22-Aug-03 20 20037.07   LRC2_8_8 13 19009.33 22-Aug-03 12 21508.49 

LR1_8_9 42 36126.69 22-Aug-03 40 40077.86   LRC2_8_9 12 19003.68 22-Aug-03 11 21998.18 

LR1_8_10 32 30200.86 22-Aug-03 31 32241.06   LRC2_8_10 10 19766.78 22-Aug-03 10 19712.20 

Table 10 Best Solutions for 800 Site Instances 

 
Best known LS+AGES+LNS    

 

Best known LS+AGES+LNS  

Instance Veh Distance Date Veh Distance   Instance Veh Distance Date Veh Distance 

LC1_10_1 100 42488.66 23-Apr-03 100 42488.66   LR2_10_1 19 45422.58 25-Feb-05 18 56089.88 

LC1_10_2 95 43858.42 10-Apr-15 94 45238.29   LR2_10_2 15 47824.44 25-Feb-05 14 58654.95 

LC1_10_3 82 42631.11 25-Feb-05 80 45175.07   LR2_10_3 11 39894.32 25-Feb-05 11 45477.21 

LC1_10_4 74 39217.18 23-May-15 74 38376.00   LR2_10_4 8 28314.95 25-Feb-05 8 29113.98 

LC1_10_5 100 42477.40 10-Aug-03 100 42477.41   LR2_10_5 14 53209.98 25-Feb-05 14 54053.67 

LC1_10_6 101 42838.39 11-Aug-03 101 42838.39   LR2_10_6 12 43792.11 25-Feb-05 11 53051.42 

LC1_10_7 100 42854.99 25-Jun-05 100 42854.99   LR2_10_7 9 36728.20 25-Feb-05 9 41524.99 

LC1_10_8 98 42951.56 25-Feb-05 98 42965.59   LR2_10_8 7 26278.09 25-Feb-05 7 30358.26 

LC1_10_9 92 42391.98 25-Feb-05 91 43426.76   LR2_10_9 13 48447.49 25-Feb-05 13 50126.78 

LC1_10_10 90 42435.16 25-Feb-05 88 42873.50   LR2_10_10 11 44155.66 25-Feb-05 11 43889.20 

LC2_10_1 30 16879.24 2003 30 16879.24   LRC1_10_1 84 49315.30 27-Jun-03 82 49285.19 

LC2_10_2 31 18980.98 25-Feb-05 31 19342.00   LRC1_10_2 72 58291.72 10-Jul-15 72 45289.03 

LC2_10_3 30 17772.49 25-Feb-05 30 17943.81   LRC1_10_3 54 43435.85 10-Jul-15 53 36499.96 

LC2_10_4 29 18089.98 25-Feb-05 29 18231.53   LRC1_10_4 40 27680.12 09-Apr-15 40 27987.45 

LC2_10_5 31 17137.53 25-Feb-05 31 17289.55   LRC1_10_5 76 49816.18 25-Feb-05 72 51733.03 

LC2_10_6 31 17198.01 25-Feb-05 31 17204.18   LRC1_10_6 69 44469.08 25-Feb-05 68 44444.34 

LC2_10_7 31 19117.67 25-Feb-05 31 19347.93   LRC1_10_7 63 49951.54 10-Jul-15 61 41917.62 

LC2_10_8 30 17018.63 25-Feb-05 30 17015.41   LRC1_10_8 58 50171.34 10-Jul-15 56 42640.89 

LC2_10_9 31 17565.95 25-Feb-05 30 20057.42   LRC1_10_9 56 46710.65 10-Jul-15 53 40848.27 

LC2_10_10 29 17425.55 25-Feb-05 29 17898.25   LRC1_10_10 50 45156.36 10-Jul-15 48 36092.22 

LR1_10_1 100 56903.88 25-Feb-05 100 56875.21   LRC2_10_1 22 35059.40 30-Nov-15 22 34960.69 

LR1_10_2 80 49652.10 25-Feb-05 80 49627.16   LRC2_10_2 21 30932.74 25-Feb-05 20 33576.15 

LR1_10_3 54 42124.44 25-Feb-05 54 42346.86   LRC2_10_3 16 28403.51 25-Feb-05 16 29495.48 



 

 

LR1_10_4 28 32133.36 25-Feb-05 28 31617.58   LRC2_10_4 12 23083.20 25-Feb-05 11 26239.60 

LR1_10_5 61 59135.86 25-Feb-05 59 60616.90   LRC2_10_5 18 33451.16 30-Nov-15 17 37312.43 

LR1_10_6 49 57674.00 10-Jul-15 48 51842.12   LRC2_10_6 17 31470.58 30-Nov-15 17 32745.90 

LR1_10_7 37 38936.54 25-Feb-05 36 40127.52   LRC2_10_7 17 29499.79 30-Nov-15 16 32537.87 

LR1_10_8 26 29452.32 25-Feb-05 26 29099.22   

 

- - -   

 LR1_10_9 50 52223.15 25-Feb-05 49 53353.22   

 

- - -   

 LR1_10_10 40 46218.35 25-Feb-05 39 47290.00   LRC2_10_10 12 29380.12 30-Nov-15 11 31334.49 

Table 11 Best Solutions for 1000 Site Instances 

 

Instance Veh. Dist. Time (s)   Instance Veh. Dist. Time (s) 

lc101 10 828.94 300 

 

lr201 4 1253.23 300 

lc102 10 828.94 300 

 

lr202 3 1197.67 300 

lc103 9 1038.35 300 

 

lr203 3 952 300 

lc104 9 861.95 300 

 

lr204 2 849.05 300 

lc105 10 828.94 300 

 

lr205 3 1054.02 300 

lc106 10 828.94 300 

 

lr206 3 931.63 300 

lc107 10 828.94 300 

 

lr207 2 903.06 300 

lc108 10 826.44 300 

 

lr208 2 734.85 300 

lc109 9 1000.6 300 

 

lr209 3 930.59 300 

lc201 3 591.56 300 

 

lr210 3 964.22 300 

lc202 3 591.56 300 

 

lr211 2 911.52 300 

lc203 3 591.17 300 

 

lrc101 14 1708.8 300 

lc204 3 638.18 300 

 

lrc102 12 1558.07 300 

lc205 3 588.88 300 

 

lrc103 11 1258.74 300 

lc206 3 588.49 300 

 

lrc104 10 1128.4 300 

lc207 3 588.29 300 

 

lrc105 13 1637.62 300 

lc208 3 588.32 300 

 

lrc106 11 1424.73 300 

lr101 19 1650.8 300 

 

lrc107 11 1230.14 300 

lr102 17 1487.57 300 

 

lrc108 10 1147.43 300 

lr103 13 1292.68 300 

 

lrc201 4 1455.54 300 

lr104 9 1013.39 300 

 

lrc202 3 1374.27 300 

lr105 14 1377.11 300 

 

lrc203 3 1089.07 300 

lr106 12 1252.62 300 

 

lrc204 3 818.66 300 

lr107 10 1111.31 300 

 

lrc205 4 1302.2 300 

lr108 9 968.97 300 

 

lrc206 3 1159.03 300 

lr109 11 1208.96 300 

 

lrc207 3 1062.05 300 

lr110 10 1159.35 300 

 

lrc208 3 852.76 300 

lr111 10 1108.9 300 

     lr112 9 1003.77 300 

     

         LC1_2_1 20 2704.57 900   LR2_2_1 5 4073.1 900 

LC1_2_2 19 2764.56 900 

 

LR2_2_2 4 3796 900 

LC1_2_3 17 3127.78 900 

 

LR2_2_3 4 3098.36 900 

LC1_2_4 17 2695.35 900 

 

LR2_2_4 3 2511.77 900 

LC1_2_5 20 2702.05 900 

 

LR2_2_5 4 3438.39 900 

LC1_2_6 20 2701.04 900 

 

LR2_2_6 3 5079.87 900 

LC1_2_7 20 2701.04 900 

 

LR2_2_7 3 3226.37 900 

LC1_2_8 19 3453.1 900 

 

LR2_2_8 2 2907.04 900 

LC1_2_9 18 2724.24 900 

 

LR2_2_9 3 3998.73 900 

LC1_2_10 17 3114.95 900 

 

LR2_2_10 3 3372.39 900 

LC2_2_1 6 1931.44 900 

 

LRC1_2_1 19 3606.06 900 

LC2_2_2 6 1881.4 900 

 

LRC1_2_2 15 3678.89 900 

LC2_2_3 6 1844.7 900 

 

LRC1_2_3 13 3194.84 900 



 

 

LC2_2_4 6 1767.12 900 

 

LRC1_2_4 10 2633.25 900 

LC2_2_5 6 1891.21 900 

 

LRC1_2_5 16 3715.81 900 

LC2_2_6 6 1857.78 900 

 

LRC1_2_6 16 3713.7 900 

LC2_2_7 6 1850.13 900 

 

LRC1_2_7 14 3769.84 900 

LC2_2_8 6 1824.34 900 

 

LRC1_2_8 13 3209.72 900 

LC2_2_9 6 1854.21 900 

 

LRC1_2_9 13 3250.5 900 

LC2_2_10 6 1817.45 900 

 

LRC1_2_10 12 2963.71 900 

LR1_2_1 20 4819.12 900 

 

LRC2_2_1 6 3595.18 900 

LR1_2_2 17 4621.21 900 

 

LRC2_2_2 5 3253.69 900 

LR1_2_3 14 4405.43 900 

 

LRC2_2_3 4 3003.99 900 

LR1_2_4 10 3034.17 900 

 

LRC2_2_4 3 3092.38 900 

LR1_2_5 16 4773 900 

 

LRC2_2_5 5 2776.93 900 

LR1_2_6 13 4800.94 900 

 

LRC2_2_6 5 2707.96 900 

LR1_2_7 12 3550.61 900 

 

LRC2_2_7 4 3080.74 900 

LR1_2_8 9 2810.26 900 

 

LRC2_2_8 4 2399.99 900 

LR1_2_9 14 4372.32 900 

 

LRC2_2_9 4 2208.52 900 

LR1_2_10 11 3714.16 900 

 

LRC2_2_10 3 2691.21 900 

         LC1_4_1 40 7152.06 900   LR2_4_1 8 9842.79 900 

LC1_4_2 38 8199.22 900 

 

LR2_4_2 7 10510.74 900 

LC1_4_3 33 8512.53 900 

 

LR2_4_3 6 9449.97 900 

LC1_4_4 30 7166.68 900 

 

LR2_4_4 4 7447.74 900 

LC1_4_5 40 7150 900 

 

LR2_4_5 6 10658.54 900 

LC1_4_6 40 7154.02 900 

 

LR2_4_6 5 9663.35 900 

LC1_4_7 40 7149.43 900 

 

LR2_4_7 5 7438.04 900 

LC1_4_8 39 7111.16 900 

 

LR2_4_8 4 6178.83 900 

LC1_4_9 36 8240.48 900 

 

LR2_4_9 6 9741.13 900 

LC1_4_10 35 7785.96 900 

 

LR2_4_10 5 8588.43 900 

LC2_4_1 12 4116.33 900 

 

LRC1_4_1 36 9148.44 900 

LC2_4_2 12 4144.29 900 

 

LRC1_4_2 31 8366.84 900 

LC2_4_3 12 4427.69 900 

 

LRC1_4_3 24 7940.56 900 

LC2_4_4 12 4155.54 900 

 

LRC1_4_4 19 5851.35 900 

LC2_4_5 12 4030.63 900 

 

LRC1_4_5 32 8973.9 900 

LC2_4_6 12 3900.29 900 

 

LRC1_4_6 30 8561.18 900 

LC2_4_7 12 4290 900 

 

LRC1_4_7 28 8552.88 900 

LC2_4_8 12 3844.45 900 

 

LRC1_4_8 26 8341.27 900 

LC2_4_9 12 4189.25 900 

 

LRC1_4_9 25 8475.36 900 

LC2_4_10 12 3829.34 900 

 

LRC1_4_10 23 7552.75 900 

LR1_4_1 40 10639.75 900 

 

LRC2_4_1 12 7587.81 900 

LR1_4_2 31 10009.1 900 

 

LRC2_4_2 10 8488.36 900 

LR1_4_3 22 9437.76 900 

 

LRC2_4_3 8 6739.24 900 

LR1_4_4 16 7101.42 900 

 

LRC2_4_4 5 6086 900 

LR1_4_5 29 10621.62 900 

 

LRC2_4_5 10 7835.13 900 

LR1_4_6 24 9872.59 900 

 

LRC2_4_6 9 6522.83 900 

LR1_4_7 19 8501.8 900 

 

LRC2_4_7 8 6780.16 900 

LR1_4_8 14 5953.51 900 

 

LRC2_4_8 7 5969.35 900 

LR1_4_9 24 10052.08 900 

 

LRC2_4_9 7 5420.5 900 

LR1_4_10 20 8584.19 900 

 

LRC2_4_10 6 7590.79 900 

         LC1_6_1 60 14095.64 1800   LR2_6_1 11 22004.07 1800 

LC1_6_2 57 15062.27 1800 

 

LR2_6_2 9 23804.19 1800 

LC1_6_3 50 14684.81 1800 

 

LR2_6_3 7 19376.93 1800 

LC1_6_4 48 13346.44 1800 

 

LR2_6_4 6 13085.37 1800 

LC1_6_5 60 14086.3 1800 

 

LR2_6_5 9 22058.19 1800 



 

 

LC1_6_6 60 14090.79 1800 

 

LR2_6_6 7 23302.97 1800 

LC1_6_7 60 14083.76 1800 

 

LR2_6_7 6 16431.55 1800 

LC1_6_8 58 15205.1 1800 

 

LR2_6_8 8 21904.29 1800 

LC1_6_9 54 14859.61 1800 

 

LR2_6_9 8 22699.46 1800 

LC1_6_10 52 15811.84 1800 

 

LR2_6_10 7 17914.13 1800 

LC2_6_1 19 7977.98 1800 

 

LRC1_6_1 52 18467.73 1800 

LC2_6_2 18 10685.95 1800 

 

LRC1_6_2 43 17092.29 1800 

LC2_6_3 18 7440.4 1800 

 

LRC1_6_3 36 14110.35 1800 

LC2_6_4 17 8068.58 1800 

 

LRC1_6_4 25 11099.15 1800 

LC2_6_5 19 8047.37 1800 

 

LRC1_6_5 46 17167.51 1800 

LC2_6_6 18 9622.26 1800 

 

LRC1_6_6 42 17576.85 1800 

LC2_6_7 19 8010.02 1800 

 

LRC1_6_7 38 15557.42 1800 

LC2_6_8 18 7579.93 1800 

 

LRC1_6_8 33 16049.69 1800 

LC2_6_9 18 11084.98 1800 

 

LRC1_6_9 34 15476.3 1800 

LC2_6_10 18 7493.7 1800 

 

LRC1_6_10 29 15213.25 1800 

LR1_6_1 59 22821.65 1800 

 

LRC2_6_1 16 15118.51 1800 

LR1_6_2 45 20458.42 1800 

 

LRC2_6_2 13 17675.41 1800 

LR1_6_3 37 18157.15 1800 

 

LRC2_6_3 10 13508.6 1800 

LR1_6_4 28 13419.2 1800 

 

LRC2_6_4 7 15185.64 1800 

LR1_6_5 38 22777.17 1800 

 

LRC2_6_5 13 15438.84 1800 

LR1_6_6 31 23145.06 1800 

 

LRC2_6_6 12 15897.94 1800 

LR1_6_7 25 17481.34 1800 

 

LRC2_6_7 10 16674.47 1800 

LR1_6_8 18 12683.97 1800 

 

LRC2_6_8 9 15397.81 1800 

LR1_6_9 32 21878.25 1800 

 

LRC2_6_9 9 14019.72 1800 

LR1_6_10 26 19555.51 1800 

 

LRC2_6_10 8 12924.28 1800 

         LC1_8_1 80 25184.38 3600   LR2_8_1 15 37159.43 3600 

LC1_8_2 77 27053.48 3600 

 

LR2_8_2 12 37143.89 3600 

LC1_8_3 64 27080.22 3600 

 

LR2_8_3 9 31195.51 3600 

LC1_8_4 60 23046.35 3600 

 

LR2_8_4 12 46347.34 3600 

LC1_8_5 80 25211.22 3600 

 

LR2_8_5 11 38199.48 3600 

LC1_8_6 80 25164.25 3600 

 

LR2_8_6 9 36157.03 3600 

LC1_8_7 80 25158.38 3600 

 

LR2_8_7 8 28099.62 3600 

LC1_8_8 78 25525.38 3600 

 

LR2_8_8 11 35100.74 3600 

LC1_8_9 72 26309.29 3600 

 

LR2_8_9 10 34160.16 3600 

LC1_8_10 70 26896.55 3600 

 

LR2_8_10 9 28650.21 3600 

LC2_8_1 24 11687.06 3600 

 

LRC1_8_1 66 32343.63 3600 

LC2_8_2 24 14432.89 3600 

 

LRC1_8_2 56 28028.22 3600 

LC2_8_3 24 13489.52 3600 

 

LRC1_8_3 48 24868.53 3600 

LC2_8_4 24 12724.81 3600 

 

LRC1_8_4 34 18651.8 3600 

LC2_8_5 25 12329.8 3600 

 

LRC1_8_5 58 31743.18 3600 

LC2_8_6 24 12938.93 3600 

 

LRC1_8_6 55 28986.21 3600 

LC2_8_7 25 13313.06 3600 

 

LRC1_8_7 51 28684.47 3600 

LC2_8_8 24 11481.82 3600 

 

LRC1_8_8 45 27386.97 3600 

LC2_8_9 24 11630.33 3600 

 

LRC1_8_9 44 25541.71 3600 

LC2_8_10 24 11586.62 3600 

 

LRC1_8_10 40 24775.03 3600 

LR1_8_1 80 39314.59 3600 

 

LRC2_8_1 20 23280.89 3600 

LR1_8_2 59 34639.58 3600 

 

LRC2_8_2 17 23662.24 3600 

LR1_8_3 44 29672.24 3600 

 

LRC2_8_3 15 19558.58 3600 

LR1_8_4 25 21351.41 3600 

 

LRC2_8_4 11 21502.55 3600 

LR1_8_5 49 39911.37 3600 

 

LRC2_8_5 16 26300.04 3600 

LR1_8_6 40 35319.74 3600 

 

LRC2_8_6 15 23003.29 3600 

LR1_8_7 30 28180.3 3600 

 

LRC2_8_7 14 23874.42 3600 

LR1_8_8 20 20352.08 3600 

 

LRC2_8_8 12 23407.84 3600 



 

 

LR1_8_9 41 36802.82 3600 

 

LRC2_8_9 11 21294.5 3600 

LR1_8_10 31 31612.63 3600 

 

LRC2_8_10 10 22986.75 3600 

         LC1_10_1 100 42488.66 3600   LR2_10_1 18 58315.37 3600 

LC1_10_2 95 43813.15 3600 

 

LR2_10_2 14 62490.96 3600 

LC1_10_3 82 43103.5 3600 

 

LR2_10_3 11 47933.54 3600 

LC1_10_4 74 38849.97 3600 

 

LR2_10_4 14 42660.35 3600 

LC1_10_5 100 42477.41 3600 

 

LR2_10_5 14 54270.3 3600 

LC1_10_6 101 42838.39 3600 

 

LR2_10_6 12 51141.9 3600 

LC1_10_7 100 42854.99 3600 

 

LR2_10_7 10 64292.78 3600 

LC1_10_8 98 43012.3 3600 

 

LR2_10_8 14 64986.32 3600 

LC1_10_9 91 43146.18 3600 

 

LR2_10_9 13 52350.2 3600 

LC1_10_10 88 44889.54 3600 

 

LR2_10_10 11 48354.75 3600 

LC2_10_1 30 16879.24 3600 

 

LRC1_10_1 82 49267.82 3600 

LC2_10_2 31 19572.89 3600 

 

LRC1_10_2 72 45408 3600 

LC2_10_3 30 18045.44 3600 

 

LRC1_10_3 53 37085.36 3600 

LC2_10_4 30 18637.19 3600 

 

LRC1_10_4 40 28722.74 3600 

LC2_10_5 31 17289.55 3600 

 

LRC1_10_5 72 52609.93 3600 

LC2_10_6 31 17212.05 3600 

 

LRC1_10_6 68 44559.84 3600 

LC2_10_7 31 18893.71 3600 

 

LRC1_10_7 61 42347.71 3600 

LC2_10_8 30 17310.82 3600 

 

LRC1_10_8 56 42529.31 3600 

LC2_10_9 30 19420.8 3600 

 

LRC1_10_9 53 40648.11 3600 

LC2_10_10 29 17567.64 3600 

 

LRC1_10_10 48 37535.48 3600 

LR1_10_1 100 57060.03 3600 

 

LRC2_10_1 22 35357.39 3600 

LR1_10_2 80 49688.13 3600 

 

LRC2_10_2 21 31843.7 3600 

LR1_10_3 54 42999.25 3600 

 

LRC2_10_3 16 34504.22 3600 

LR1_10_4 29 30784.3 3600 

 

LRC2_10_4 24 40740.78 3600 

LR1_10_5 60 58370.14 3600 

 

LRC2_10_5 17 38958.91 3600 

LR1_10_6 48 50117.58 3600 

 

LRC2_10_6 17 31476.76 3600 

LR1_10_7 36 39091.89 3600 

 

LRC2_10_7 16 32788.83 3600 

LR1_10_8 26 29338.14 3600 

     LR1_10_9 49 53212.61 3600 

     LR1_10_10 40 46634.81 3600 

 

LRC2_10_10 11 32048.61 3600 

Table 12 Results for a Single Run of Algo1 

 

References 

1. Battarra, M., J. Cordeau, and M. Iori, Chapter 6: Pickup-and-Delivery Problems for Goods 
Transportation, in Vehicle Routing. 2014, Society for Industrial and Applied Mathematics. p. 
161-191. 

2. Bent, R. and P.V. Hentenryck, A two-stage hybrid algorithm for pickup and delivery vehicle 
routing problems with time windows. Computers & Operations Research, 2006. 33(4): p. 
875-893. 

3. Berbeglia, G., et al., Static pickup and delivery problems: a classification scheme and survey. 
TOP, 2007. 15(1): p. 1-31. 

4. Burke, E.K. and Y. Bykov, The Late Acceptance Hill-Climbing Heuristic. European Journal of 
Operational Research, Aceepted for publication 2016. 

5. Cherkesly, M., G. Desaulniers, and G. Laporte, A population-based metaheuristic for the 
pickup and delivery problem with time windows and LIFO loading. Computers & Operations 
Research, 2015. 62: p. 23-35. 

6. Dumas, Y., J. Desrosiers, and F. Soumis, The pickup and delivery problem with time windows. 
European Journal of Operational Research, 1991. 54(1): p. 7-22. 



 

 

7. Gendreau, M., et al., Neighborhood search heuristics for a dynamic vehicle dispatching 
problem with pick-ups and deliveries. Transportation Research Part C: Emerging 
Technologies, 2006. 14(3): p. 157-174. 

8. Gendreau, M., G. Laporte, and D. Vigo, Heuristics for the traveling salesman problem with 
pickup and delivery. Computers & Operations Research, 1999. 26(7): p. 699-714. 

9. Hall, R. and J. Partyka, Vehicle Routing Software Survey: Higher expectations drive 
transformation. ORMS-Today, 2016. 43(1). 

10. Kammarti, R., et al. A new hybrid evolutionary approach for the pickup and delivery problem 
with time windows. in Systems, Man and Cybernetics, 2004 IEEE International Conference on. 
2004. 

11. Li, H. and A. Lim, A Metaheuristic for the Pickup and Delivery Problem with Time Windows. 
International Journal on Artificial Intelligence Tools, 2003. 12(02): p. 173-186. 

12. Lu, Q. and M. Dessouky, An Exact Algorithm for the Multiple Vehicle Pickup and Delivery 
Problem. Transportation Science, 2004. 38(4): p. 503-514. 

13. Masson, R., F. Lehuédé, and O. Péton, An Adaptive Large Neighborhood Search for the 
Pickup and Delivery Problem with Transfers. Transportation Science, 2012. 47(3): p. 344-355. 

14. Nagata, Y. and O. Bräysy, A powerful route minimization heuristic for the vehicle routing 
problem with time windows. Operations Research Letters, 2009. 37(5): p. 333-338. 

15. Nagata, Y. and S. Kobayashi, Guided Ejection Search for the Pickup and Delivery Problem with 
Time Windows, in Evolutionary Computation in Combinatorial Optimization: 10th European 
Conference, EvoCOP 2010, Istanbul, Turkey, April 7-9, 2010. Proceedings, P. Cowling and P. 
Merz, Editors. 2010, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 202-213. 

16. Nagata, Y. and S. Kobayashi, A Memetic Algorithm for the Pickup and Delivery Problem with 
Time Windows Using Selective Route Exchange Crossover, in Parallel Problem Solving from 
Nature, PPSN XI: 11th International Conference, Kraków, Poland, September 11-15, 2010, 
Proceedings, Part I, R. Schaefer, et al., Editors. 2010, Springer Berlin Heidelberg: Berlin, 
Heidelberg. p. 536-545. 

17. Nanry, W.P. and J. Wesley Barnes, Solving the pickup and delivery problem with time 
windows using reactive tabu search. Transportation Research Part B: Methodological, 2000. 
34(2): p. 107-121. 

18. Parragh, S., K. Doerner, and R. Hartl, A survey on pickup and delivery problems. Journal für 
Betriebswirtschaft, 2008. 58(1): p. 21-51. 

19. Ropke, S. and J.-F. Cordeau, Branch and Cut and Price for the Pickup and Delivery Problem 
with Time Windows. Transportation Science, 2009. 43(3): p. 267-286. 

20. Ropke, S. and D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup 
and Delivery Problem with Time Windows. Transportation Science, 2006. 40(4): p. 455-472. 

21. Ruland, K.S. and E.Y. Rodin, The pickup and delivery problem: Faces and branch-and-cut 
algorithm. Computers & Mathematics with Applications, 1997. 33(12): p. 1-13. 

22. Savelsbergh, M. and M. Sol, DRIVE: Dynamic Routing of Independent Vehicles. Operations 
Research, 1998. 46(4): p. 474-490. 

23. Savelsbergh, M.W.P. and M. Sol, The General Pickup and Delivery Problem. Transportation 
Science, 1995. 29(1): p. 17-29. 

24. Shaw, P., Using Constraint Programming and Local Search Methods to Solve Vehicle Routing 
Problems, in Principles and Practice of Constraint Programming — CP98: 4th International 
Conference, CP98 Pisa, Italy, October 26–30, 1998 Proceedings, M. Maher and J.-F. Puget, 
Editors. 1998, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 417-431. 

25. Venkateshan, P. and K. Mathur, An efficient column-generation-based algorithm for solving a 
pickup-and-delivery problem. Computers & Operations Research, 2011. 38(12): p. 1647-
1655. 

26. Xu, H., et al., Solving a Practical Pickup and Delivery Problem. Transportation Science, 2003. 
37(3): p. 347-364. 



 

 

 


