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Abstract.

Information theory concepts and methodologies constitute the background of how communication

systems are studied and understood. They are focused mainly on the source-channel-receiver problem and on the
asymptotic limits of accuracy and communication rates, which are the classical problems studied by Shannon.
However, the impact of information theory on networks (acting as the channel) is just starting. Here, we present an
approach to understand how information flows in any connected network. Our approach is based on defining linear
conservative flows that travel through the network from single or multiple sources to receivers. With these flows, we
define a transition probability matrix that is similar to a Markovian process. Consequently, this framework allows
us to have an analytical description of the problem and also to link the topological invariants of the network, such
as the node degree, with the information flow and capacity, namely, the maximum amount of information generated
by the network for any source-receiver configuration. In particular, our approach is able to deal with information
transmission in modular networks (networks containing community structures) or multiplex networks (networks
with multiple layers), which are nowadays of paramount importance.
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1. Introduction

The physical universe is ruled by physical laws. These
laws are constructed under the principle that any two
bodies interact among themselves by the force between
them. The interaction level is measured by the force
magnitude. In the field of complex systems, an exten-
sion of this concept, and widely employed quantity to
measure the interaction level between two or more sys-
tems, is their synchronisation degree [1, 2]. Namely,
a measure that quantifies the similarity between their
behaviour. From the perspective of information theory,
similar behaviours correspond to significant informa-
tion sharing. Namely, knowing what one system is doing
allows one to predict with high accuracy what the other
system is doing [3]. For example, the mutual informa-
tion rate was recently proposed as a way to measure
how two dynamical systems (or group of systems) cou-
pled in a network are related to each other [4, 5], which
has also proven useful to infer their structural con-
nection [6] where inferring by synchronisation degree
fails. Consequently, the main question that we raise
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is to understand how strong will two systems or net-
works interact by analysing them as a communication
system.

On the one hand, using dynamical networks to gen-
erate encodings, such that the information transmis-
sion is enabled, has proven to be an important task
in recent years. In this sense, an outstanding achieve-
ment is the Computing Reservoir technique [7-9],
which is somewhat of an extension of the well-known
neural networks. These networks are composed of
active elements or nodes. Nevertheless, the information
generation/transmission, underlying mechanisms, and
practical capabilities of such techniques are not fully
understood yet. On the other hand, network structures
have recently been used to assess their vulnerability to
cascade failures [10-14], and to a lesser extent, their
information capabilities [ 15, 16]. These works are based
on passive elements and discard physical quantities that
might be transported through the network, focussing
solely on the network’s structure. Hence, they are unsuit-
able to be analysed as a communication system since
there is no transmitter or receiver.



18

In an effort to bridge this gap, some works have
dealt with transportation problems on passive networks,
namely, traffic flows, setting routines and rules to
transport packages across the network and finding
numerically the resulting flows and jamming properties
[17-21]. However, aside from power-law behaviours
that emerge under particular topologies or under thermo-
dynamic limits, the resulting flows are mathematically
untractable and depend on the location of the transmitter
and receiver.

Here, we present a different approach to the dynami-
cal networks and to the former transportation networks,
specially when queuing packages is possible. We use
passive networks and define physical flows on top of
their structure by setting electric currents that travel
from sources to sinks, i.e., we define a tractable trans-
portation system. Thus, our apporach becomes analyt-
ical (even for finite-size systems) and it allows us to
quantify how information is transmitted in any complex
network and how much information the network can
handle under any source-sink configuration, namely, its
capacity.

We define the physical flows by interpreting a sub-
set of its nodes to be transmitters (sources), and another
subset to be receivers (sinks), as is shown in figure 1.
The information transmitted is derived from these phys-
ical flows by encoding them similarly to how it is
done when random walks are defined on graphs, except
that here we use the network’s structure and the flow
distribution resulting from the transmitter input and
receiver ouput. For example, in the case of random
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Figure 1. The top panel shows schematically our commu-
nication network, where we divide the network in a subset
of transmitter [receiver] nodes, S [T], that are connected by
edges, g. For example, this division can be straightforwardly
set in modular networks. The bottom panel shows the cor-
responding information flow matrix E[A], which depends on
the network’s structure given by its adjacency matrix, A.
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walkers in graphs, the voltage potential at the nodes
of a resistor network can be linked to the probability
of finding the walker at the node [22-25]; however, a
voltage is always defined up to an arbitrary reference
value. On the contrary, our approach uses the voltage
potential differences and the edge weights (resistance)
to define the physical flows (currents), thus defining
invariant physical quantities. The information flows are
derived from these physical flows by setting them as
the probability for the random walker to take a jump
between sites in the network (see eq. 5). Consequently,
our formulation allows us to derive exact and approx-
imate expressions for the resultant information flows
for any network and any transmitter-receiver configura-
tion, thereby bridging the gap between single-channel
communication systems and multiple-channel commu-
nication systems. Moreover, we are able to interpret
directly the information transmission capacity of the
network with the network invariants, such as the node
degree.

2. Methods and model

The starting point in our approach is to define and to
analytically solve the flows in a conservative transport
network, namely, solve the Voltage-Flow (VF) problem
in a network. The model for our VF problem is that of
an ohmic (passive) circuit [26] with input and output
currents, i.e., a resistor network, G, where each edge
current, fl-j, is linearly related to the potential difference,
AV,;, between the nodes that the edge connects (i and j)
and its resistance, R;;. Specifically,

fi=—— (1)

The input currents are set in a node subset, S C G,
and the total input leaves the network at another node
subset, 7 C G, corresponding to the network’s output.
In other words, a total current / enters the circuit at some
nodes and the same amount / leaves the circuit at other
nodes, thus defining a conservative-flow network (which
means that the total current arriving at any node is equal
to the total current leaving the node). Consequently, the
values that the edge flows, f;;, take in eq. (1) depend
on the location of the source and sink nodes and the
magnitude of the total input flow, namely, flj(s n, Here,
without loss of generality, we define a VF problem with
I =1 and set a single-source/single-sink system (for an
extension of the problem to multiple sources and sinks,
see, for example, [27]), thus, the edge flow is flj(s 23

In particular, the resistor network is derived from
the network structure; hence, it is defined from the set
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G={V, £}, where V and £ are the node and edge sets,
respectively. We restrict ourselves to symmetric net-
works by setting the edge weightsas W, = A;;/ sz’ with
i,j=1,..., N, N being the number of nodes inV, A
the ij-th element of the adjacency matrix, and R;; the
edge’s resistance. In the cases where the network is
unweighted, then W;; = A;. Consequently,

G f}(st) — fv(st) , (2)
where the upper indexes indicate that the VF prob-
lem depends on the location of the source-sink nodes,

s-t, FO) is the flow vector containing the total cur-
rent at each node (1 e., [FOD], = o f(s D=5, -6,
fori=1, ..., 6; being the Kronecker delta) and

G is the weighted Laplacian matrix whose entries
are

N .
G. = { zk:1 Wik if
Y -W. if
y

The solution for the VF problem (eq. (2)) is achieved
once the voltages at each node are found from invert-
ing G. However, because G is a Laplacian matrix, its
inverse is ill-defined (its kernel has non-null dimension).
Despite this, we can use the Moore—Penrose pseudo
inverse matrix to invert G, allowing us to find an exact
value for the voltage differences [27-31]. The result is

that
v (8 [l)
A

AVED =

n=2 n

i=j,
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where Wy, is the n-th eigenvector associated to
the eigenvalue 4, of G (ie., Gy,=4,y,Yn) and
A[l//n]y w,]; — [lif'n]j is the i and j eigenvector-
coordinate difference for the n-th eigenmode. We
note that the first eigenmode, n=1, corresponds to
4, =0 and , =1//N, which is the condition that
any Laplacian matrix row-sum is null, hence, its
kernel has at least dimension 1 [28, 29]. Also, the
edge flows, fljs D are straightforwardly derived from
this expression by means of eq. (1). Furthermore,
eq. (4) shows how the location of the source and
sink nodes modify the voltage difference value by
means of the corresponding eigenvector-coordinate
difference.

Eq. (4) is the main derivation that allows us to define
our information flows approach. It is applicable to any
connected weighted graph and is extendible to many
sources and sinks with different inputs and outputs, as
long as flow conservation is fulfilled. Specifically, we
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define our information flows from the following flow-
transmission probability matrix, II®:?, with ij entry

1 lf(s, b
dl' l] ’

where d; = ZN Lf(s Dl

j Vi
(by conservation, it also means twice the total out-
flow) at node i because flj(v = —];ES’ " By constructing
this transition matrix (eq. (5)), we are detaching our-
selves from random walks (RW) on graphs, which solely
depend on the network’s structure, and we are includ-
ing the functionality of the network as a communication
channel.

An RW on a graph is defined by a transition prob-
ability that depends on the graph’s structure, namely,
HEJRW) = W,;/d;, where W; is the ij edge’s weight
and d; the weighted degree. This probability matrix is
asymmetric (H(RW) < njﬁfW)) but it fulfils detailed bal-
(RW)

e = 5)

which is twice the total inflow

ance, 1.e., p; H =p; H](.lRW) for every node i and j
and probablhty distribution p [32,33]. Hence, it deter-
mines a Markov process: p(n) = p(0) [II®V)]", vn €
N*. Consequently, it converges to a unique stationary
probability distribution (SPD), regardless of the initial

condition.

3. Results and discussion

Our approach to define information flows (i.e., the flow-
transmission probability matrix, "), allows us to
include the network’s structure and function into the
problem. In other words, our random walker takes into
account the network’s structure at each node (e.g., how
likely is to jump to any of its neighbours given the
number of neighbours it has) and also the net current
strength at the node (ZJN [fu(b t)|), which is determined
by the locations of s and ¢. In this way, we force a
direction for the random walker to follow the paths
that take it from the source (transmitter) to the sink
(receiver). Moreover, since our formulation follows the
main mathematical properties of the classical RW on
graphs [32,33], our II*>? converges to a SPD as well,
regardless of the initial conditions, namely, regardless of
the initial probability distribution (which is independent
of s and ). Specifically, p(n)*" = p(0) I&" — !
where 7" and p(n)®" inherit the dependence on s
and ¢ because of our flow-transition matrix definition in

eq. (9).
We note that in the RWs on unweighted graphs the

SPD is ") = k;/ X, k; [32], where k; = ¥ |
the i-th node degree. Hence the RW SPD is dlrectly

#(s )
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dependent on the degree distribution of the network
alone. On the other hand, our SPD, ", depends
on where the transmitter and receiver are located as
well as on the flow-weighted degree distribution (i.e.,
it depends on d,= Z;V [fl.j(.s’t)l). Nevertheless, analo-
gously to the RW, our SPD can be derived from
our flow-transition probability matrix (FTPM), IT¢:?,
using standard techniques [32, 33] as we do in what
follows.

The reason to obtain a unique SPD is that our FTPM
is a stochastic matrix with positive entries that has unit
row-sums (Zj Hl(;’ D=1v i), as can be directly verified
from eq. (5). Consequently, its eigenvalue spectrum is
bounded in the complex plane by the disc of unit radius,
as the Gershgorin theorem predicts [29]. Moreover, this
means that there is a non-degenerate maximum-valued
eigenvalue @; = 1, which we arbitrarily set to the
first eigenmode of the FTPM, that is non-vanishing. In
what follows, we assume that the FTPM is irreducible
and aperiodic; thus, a; is non-degenerate and its right
eigenvector set, P = {V,,...,Vy}, is orthonormal (i.e.,
ViV, = 6; Yi,j) [32,33]. Since MYV, = a,v, for

every eigenmode, the stationary FTPM is

. 1 0 .-
oc"" = pA"P' S P [ 00 - ] P, (6)
00 -
where A is the diagonal matrix containing the eigenval-
ues of the FTPM (i.e., A = {1, q,, ..., ay}) and P is the
matrix containing in each column the right eigenvec-
tors of the FTPM, which depend on s and ¢. This means
that the limit process selects the product between P’s

first column, that is v, = 1 / \/N (as with the Laplacian
matrix), and P~!’s first row. Thus, the stationary FTPM
entries are given by

[H(S’ l)n] ' —n) [P_]]lj

ij \/ﬁ
The first result from taking our approach and define
flows on the network, is that we are able to derive

an expression for our SPD, ", in terms of eq. (7).
Specifically, for any initial distribution j, converges to

non P! P!
fip " — SRR ) (8)
VN VN
Consequently, we can compute the amount of informa-

tion encoded in the network, H®", due to the flows in
the particular s-t configuration by

, YVi=1,...,N. @)

N
HSD = =) 4% 1og [;4?5’ ’)] : 9)
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We note that the expression for " is also the one
for the left eigenvector of the FTPM maximum-valued
eigenvalue, because the Markov process defined by the
FTPM converges when ji*" = [ II®D, As a left
eigenvector, it has to have unit L,-norm, i.e., || ’)|| .

=1=Y, | /45‘“ ’)‘, because they constitute probability

distributions, contrary to the right eigenvectors of II¢?
which have unit L,-norm (also known as the Euclidean
norm).

The network’s maximum information, namely, its
information capacity C, is achieved when searching for
the maximum H? after changing s and #’s location
around the network, i.e.,

C = max {H(“)} .

s,teg (10)
Because we have an analytical expression for the flows
in the network (eq. 4), we can compute the information
flows directly (eq. 5), and thus, we are presenting an
efficient approach to compute C straightforwardly.

The second result comes from the information shared
in the network between source and sink at any given
time n, i.e., the mutual information (MI). In particular,
we find that under the SPD conditions, the network’s MI
is null. In general, the mutual information of a given s-¢
configuration at an instant » is defined as

Py ()

e pnen |

N
Iy () = Z pf.j]: (n)log
iy

where pfj/ (n) is the joint probability to find node i and j
having the same event at time n, which in our case, cor-
responds to the same information flows determined by
eq. (5). In order to understand this, we recall that a joint
probability can always be defined from the probability
distribution and the transition probabilities by
P ) = pi ™ [I0] (12)
This expression also shows that the joint proba-
bility always depends on the location of s and ¢,
contrary to the initial probabilities p;(0). According
to eq. (12), when n — oo we retrieve the SPD,
pi(n) — /45‘”), and the stationary transition probabil-
ity, [I®"]; ,u;s’ " (eq. 7). Thus, the joint probability
becomes decoupled. In other words, when the informa-
tion flows become stationary, the probabilities at each
node are independent quantities which only depend on

the location of the source and sink and the network
structure.
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As a final result, and to illustrate our approach, we
apply egs (5-9) to an unweighted modular network with
N = 100 nodes, two identical modules with 50 nodes
each, identical edge density p = 0.5, and Erdds—Rényi
(ER) network characteristics [34]. We place 10 extra
links randomly between the modules to interconnect
them.

In order to contrast our results with that of a clas-
sical RW, we first show in figure 2 the RW transition
probability matrix, II®Y), (top panel) and the corre-
sponding SPD, i®™) (bottom panel). From the top
panel, it can be seen that the walker is able to tran-
sit through the network only according to the net-
work’s structure, as each transition is defined by H;BW)

= A;/k;. Moreover, the SPD is the vector of node

degrees, %, divided by the total edge number, which in

this case, is i®Y) =k /2492. We recall that the expected
edge number, E[M], for an ER network of size N is:
E[M] = pN (N — 1)/2, which in our case corresponds
to E[M] = 612.5 for each module. Thus, taking into
account both modules plus the extra inter-links, the
total expected edges are 2(2M) + 10 = 2460, which
is close to the exact value in our case of study, namely,
2492 = Y k.

On the other hand, we set a source (transmitter) in
one module, s = 46, and a sink (receiver), t = 90,
in the other module. This defines a voltage difference
between every node in the network (eq. 4). Hence,
the information flows have a transition matrix that
allows the walker to jump freely between modules,

™) x 102
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Figure 2. Transition probability matrix (TPM) II®W) (top
panel), and stationary probability distribution (SPD) z#®W)
(bottom panel), for a random walk in a two-module network
with N = 10 nodes. The two modules are identical, have
an Erdos—Rényi topology (namely, they are random) with
50 nodes and a 0.5 edge density, and are interconnected by
10 edges. The TPM entries are represented by the colour-
code. Both TPM and SPD are multiplied by N to improve
clarity.
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Figure 3. Flow-transition probability matrix (FTPM) IT¢-")
(top panel), and stationary probability distribution (SPD) i)
(bottom panel), for a source s, sink ¢, configuration in the same
network as figure 2. Colour codes and normalisation follow
the same criteria as in figure 2.

as is seen in figure 3. Moreover, we can see that the
probabilities to jump between modules are higher than
the inner jumps, which is the opposite situation to that
in the RW. Also, we can directly distinguish the impor-
tance of source and sink nodes in the FTPM and in the
SPD, because both have higher values than the rest of the
nodes.

For this s-t flow configuration, the information gen-
erated is comparable with the RW, as we verify with
eq. (9), resulting in H®W) ~ 6.63 bits and H“*°Y ~ 6.64
bits. However, if we place the transmitter and the
receiver in the same module, most FTPM values become
nearly null, with the exception of those that correspond
to the paths in the module joining the source with
the sink. Consequently, the information decreases. For
example, the configuration with s = 46 and ¢+ = 30
results in H®#630 ~ 574 bits. This means that the
network’s information capacity (eq. 10) is influenced
mainly by the number of modules in the network, with
the maximum achieved when source and sink are set
the furthest apart. Similar results are expected for multi-
layered networks, since each layer can be thought of as
a different module.

4. Conclusions

In this work we present a rather novel approach to
tackle the problem of information transmission in net-
works. We define a circuit-like network based on the
network’s structure, set a source [sink] node that inputs
[outputs] a constant flow, and solve the voltage-flow
problem for every edge in the network. By doing
this, we are able to define a flow-transition probabil-
ity matrix, similar to how it is done with random walks
in graphs, but instead of using solely the network’s
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structure, we use the resultant flows. The reason behind
defining the source-sink nodes is that it allows us to
interpret the problem as a transmitter-receiver problem
whose communication channel has multiple paths. Con-
sequently, with our approach, we have a tractable way
to understand how the information is transmitted across
the network.

In particular, we see that modular networks have an
information capacity that increases with its modularity,
namely, with the number of communities in the network.
In general, we see that the further apart the transmitter
and receiver are, the higher the information that is gen-
erated in the network. This conclusion leads us to think
that modular networks have higher information capaci-
ties than non-modular networks due to the bottlenecks
that inter-links constitute for the flows. However, we
note that further research in this line is needed in order
to have sound conclusions. Moreover, we expect sim-
ilar results to hold also for multi-layered or multiplex
networks, where source and sink should be placed in
different layers in order to increase the overall network
capacity.

In general, the paper lays down a new theoretical
framework to interpret how physical flows in a flow
network can be used to encode and transmit informa-
tion in a communication system based on networks or
multiplex networks, where one node or network has the
role of a transmitter and another node or network has
the role of a receiver. We demonstrate how to calcu-
late information capacities for the whole transmitter-
receiver multiplex networks, and discuss how mutual
information can be calculated in this framework. Hence,
we have put forward a method to interpret mutual infor-
mation in this communication network as a quantity that
measures the amount of information that is exchanged
in the whole transmitter-receiver network at a given
state and time. Since the probabilities we define from
the physical flows have Markovian memoryless prop-
erties, the considered mutual information is null when
the system reaches the steady-state equilibrium. This,
however, does not mean that the proposed system can-
not be used to transmit information, only that another
interpretation of the mutual information should be used
to transform this theoretical framework into a practical
communication system. Future work should demon-
strate that in order for the network to transmit all the
information available (whose upper bound is provided
by the information capacity of the network), the def-
inition of the mutual information (reflecting the way
information is actually transmitted) should split the
probability set and the transition probability matrix into
two sets, one set related to the transmitter at a given
time, and another set related to the receiver at another
time.
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