
1 
 
 

Forecasting global stock market implied volatility indices 

Stavros Degiannakis
1,2

, George Filis
3
*, Hossein Hassani

4
 

1
Department of Economics and Regional Development, Panteion University of Social 

and Political Sciences, 136 Syggrou Avenue, 17671, Greece. 

2
Postgraduate Department of Business Administration, Hellenic Open University, 

Aristotelous 18, 26 335, Greece. 

3
Bournemouth University, Department of Accounting, Finance and Economics, 

Executive Business Centre, 89 Holdenhurst Road, BH8 8EB, Bournemouth, UK. 

4
Research Institute of Energy Management and Planning, University of Tehran, No. 

13, Ghods St., Enghelab Ave., Tehran, Iran. 

 

*Corresponding author: email: gfilis@bournemouth.ac.uk, tel: 0044 (0) 

01202968739, fax: 0044 (0) 01202968833 

Abstract 

This study compares parametric and non-parametric techniques in terms of 

their forecasting power on implied volatility indices. We extend our comparisons 

using combined and model-averaging models. The forecasting models are applied on 

eight implied volatility indices of the most important stock market indices. We 

provide evidence that the non-parametric models of Singular Spectrum Analysis 

combined with Holt-Winters (SSA-HW) exhibit statistically superior predictive 

ability for the one and ten trading days ahead forecasting horizon. By contrast, the 

model-averaged forecasts based on both parametric (Autoregressive Integrated model) 

and non-parametric models (SSA-HW) are able to provide improved forecasts, 

particularly for the ten trading days ahead forecasting horizon. For robustness 

purposes, we build two trading strategies based on the aforementioned forecasts, 

which further confirm that the SSA-HW and the ARI-SSA-HW are able to generate 

significantly higher net daily returns in the out-of-sample period. 
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1. Introduction and review of the literature 

It has been well established that stock market volatility forecasting is 

important for investors, portfolio managers, asset valuation, hedging strategies, risk 

management purposes, as well as, policy makers (see, inter alia, Figlewski, 1997; 

Andersen et al., 2003,2005; Christodoulakis, 2007; Fuertes et al., 2009; Charles, 

2010; Barunik et al., 2016).  

For instance, investors and portfolio managers seek a prediction of their future 

uncertainty in order to estimate a specific upper limit of risk that are willing to accept, 

to reach optimal portfolio decisions and to form appropriate hedging strategies.  

Even more, forecasting volatility is the single most important component for 

pricing derivative products, such as option contracts. Unless derivatives contracts are 

priced correctly, hedging strategies can be expensive and not yield the desired 

outcome. Nowadays, volatility can be the underlying asset of derivatives products, 

such as in the VIX futures contracts. Thus, forecasting the expected volatility of the 

underlying asset helps for the correct valuation of these contracts.   

Forecasting volatility is also important for policy makers, since it informs 

monetary policy decisions and it allows for measuring the expectations of the 

financial markets regarding the (un)successful outcome of fiscal and/or monetary 

policy decisions. The aforementioned arguments render important the accurate stock 

market volatility forecasting.   

The vast majority of the stock market volatility forecasting studies have 

concentrated their attention on the use of models which are variants of GARCH 

models (see, inter alia, Bollerslev et al., 1994; Degiannakis, 2004; Hansen and Lunde, 

2005), stochastic volatility models (see, among others, Deo, 2006; Yu, 2012) or 

realized volatility models (Andersen et al., 2003, Andersen et al., 2005).  

These models generate forecasts of the current looking volatility, despite the 

fact that implied volatility indices have been long considered as better predictors of 

the future volatility (see for instance, Chiras and Manaster, 1978; Beckers, 1981).  

More recently, studies by Fleming et al. (1995), Christensen and Prabhala (1998), 

Fleming (1998), Blair et al. (2001), Simon (2003), Giot (2003), Degiannakis (2008a) 

and Frijns et al. (2008a) have also provided evidence that implied volatility is more 

informative when we forecast stock market volatility. 
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Methodologically, the literature provides evidence that the fractionally 

integrated autoregressive moving average models outperform the volatility forecasts 

that are produced by the GARCH and stochastic volatility models (Koopman et al., 

2005). Degiannakis (2008b) also maintains that due to the long memory property of 

volatility, the ARFIMA framework is suitable for estimating and forecasting the 

logarithmic transformation of volatility. At the same time, some argue that 

heterogeneous autoregressive models (HAR) are more successful in forecasting 

volatility due to the fact that they are parsimonious and they can capture the long-

memory that is observed in volatility (see, inter alia, Andersen et al., 2007; Corsi, 

2009; Busch et al., 2011; Fernandes et al., 2014, Sevi, 2014). Nevertheless, Angelidis 

and Degiannakis (2008) provide evidence that there is not a unique model that is 

offering better predictive ability than others in all instances. 

Despite the fact that the existing evidence has established that models such as 

ARFIMA and HAR are the best performing forecasting models, the literature remains 

relatively silent in the use of various non-parametric techniques when forecasting 

stock market implied volatility.  

The rather limited literature on volatility forecasting using non-parametric 

techniques or a combination of parametric and non-parametric techniques provides 

some encouraging results, although it concentrates its attention on the use of 

biological algorithms and neural networks. For instance, Hung (2011a,b) combines 

fuzzy systems with the GARCH models and shows that such combinations provide 

significant predictive gains. Wei (2013) provides similar findings using an adaptive 

network-based fuzzy inference system (ANFIS), employing genetic algorithms to 

calibrate the weights of the rules in the ANFIS model. Furthermore, several authors 

combine artificial neural networks (ANN) with GARCH-type models to forecast stock 

market volatility and their findings corroborate the ones presented before, suggesting 

that such combinations could lead to significant reduction in the predictive error of 

parametric models (see, inter alia, Kristjanpoller et al., 2014; Hajizadeh et al., 2012; 

Bildirici and Ersin, 2009, Donaldsona and Kamstrab, 1997). 

Adding to this literature we focus on the use of Singular Spectrum Analysis 

(SSA) in forecasting stock market volatility. SSA is regarded as a non-parametric 

technique for time series analysis and forecasting, which offers great success in 

forecasting economic and financial series (see for example, Hassani et al., 2009; 
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Beneki et al., 2012). Nevertheless, it has not been applied before to the forecast of 

implied volatility indices, despite the fact that since the early 2000s Thomakos et al. 

(2002) maintained that SSA is able to decompose volatility series more effectively, 

capturing both the market trend and a number of market periodicities. Thus, an 

important extension to the existing literature would be to assess the forecasting ability 

of SSA in the context of volatility modeling.  

Overall, the limited empirical applications of SSA to economic and financial 

series provide so far significant evidence of its superior predictive ability against the 

standard forecasting models, such as the ARIMA-type and GARCH-type models. 

In short, SSA decomposes a time series into the sum of a small number of 

independent and interpretable components such as a slowly varying trend, oscillatory 

components and noise (Hassani et al., 2009). The main advantage of SSA-type 

models is that they do not require any statistical assumptions in terms of the 

stationarity of the series or the distribution of the residuals. In fact, SSA uses 

bootstrapping to generate the confidence intervals that are required for the evaluation 

of the forecasts (Hassani and Zhigljavsky, 2009; Vautard et al., 1992).  

The aim of this study is to use both the best parametric forecasting techniques 

(such as ARFIMA and HAR) and the best performing non-parametric forecasting 

techniques (such as SSA) in the forecast of implied volatility indices. We further our 

comparisons using model-averaging forecasts. For robustness purposes, we compare 

the forecasts from the aforementioned models with four naïve models; i.e. I(1), 

ARI(1,1), FI(1) and ARFI(1,1). The forecasting horizons are 1-day and 10-days ahead 

and they are chosen as these time horizons are more adequate for investors and 

portfolio managers, according to the aforementioned volatility forecasting literature.  

The contribution of the paper is described succinctly. First, we provide an 

alternative model to forecast implied volatility; second, we open new avenues for the 

use of SSA-type in finance and third, we contribute to the non-parametric literature of 

financial markets.  

The study provides empirically significant evidence that the combination of 

two non-parametric models (SSA and Holt-Winter (HW)) achieves more accurate 

forecasts for the 1-day and 10-days ahead, compared to the parametric models of 

ARFIMA, HAR, as well as, to the four naïve models. On the other hand, model-

averaged forecasts reveal that the forecasting accuracy of the SSA-HW is enhanced, 
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particularly for the 10-days ahead, if it is combined with the ARI(1,1) model. The 

predictive accuracy is assessed by the Mean Squared Error (MSE) and the Mean 

Absolute Error (MAE) loss functions, the Model Confidence Set forecasting 

evaluation procedure and the Direction-of-Change criterion. Finally, we assess the 

forecasting ability of the models by means of two trading strategies. The results reveal 

that investors can generate significant positive average net profits using the SSA-HW 

and the ARI-SSA-HW models. 

The rest of the paper is structured as follows. Section 2 presents the data of the 

study, followed by Section 3, which illustrates the forecasting framework. Section 4 

provides a detailed explanation of the implied volatility forecasts estimation 

procedure and section 5 describes the adopted forecasting evaluation methods. 

Section 6 analyses the empirical findings, whereas Section 7 concludes the study. 

 

2. Data description 

 We use daily data from the 1
st
 of February, 2001 up to the 9

th
 of July, 2013 

(i.e. 3132 trading days) from eight implied volatility indices. The implied volatilities 

are the following: VIX (S&P500 Volatility Index – US), VXN (Nasdaq-100 Volatility 

Index – US), VXD (Dow Jones Volatility Index – US), VSTOXX (Euro Stoxx 50 

Volatility Index – Europe), VFTSE (FTSE 100 Volatility Index – UK), VDAX (DAX 

30 Volatility Index – Germany), VCAC (CAC 40 Volatility Index – France) and VXJ 

(Japanese Volatility Index - Japan). The stock markets under consideration represent 

six out of the ten most important stock markets internationally, in terms of 

capitalization. In addition, these markets are among the most liquid markets of the 

world. Thus, we maintain that their implied volatility indices are representative of the 

world’s stock market uncertainty. The data were extracted from Datastream
®
. As we 

aim for a common sample of the aforementioned implied volatility indices, the 

starting data of the sample period were dictated by the availability of the data of the 

VXN index. 

  Figure 1 and Table 1 exhibit the series under consideration and list their 

descriptive statistics, respectively.  

[FIGURE 1 HERE] 

[TABLE 1 HERE] 
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In Figure 1 we observe that all implied volatility indices display very similar 

patterns. For example, it is evident that during the Great Recession of 2007-2009 all 

indices reached their highest level over the sample period. In addition, the magnitude 

of these peaks is comparable across indices. Furthermore, we observe two more peaks 

in 2003 and 2011, respectively. The volatility spikes in 2003 can be attributed to the 

second war in Iraq, whereas a plausible explanation of the 2011 peak in stock market 

volatilities can be found in the European debt crisis which initiated in Greece before 

spreading to other countries such as Ireland, Spain and Portugal. The US debt-ceiling 

crisis of the same year could have aggravated higher uncertainty in world stock 

markets.  

In Table 1 we notice that average volatility is of similar size across indices, 

with the exception being the VXN and VXD indices, which exhibit the highest and 

lowest average volatility, respectively. Furthermore, the VXN index also exhibits the 

highest level of standard deviation, suggesting that it is the most volatile index. All 

series under examination are stationary and heteroscedastic, as suggested by the ADF 

and ARCH LM tests, respectively. 

 

3. Methodology and IV-SSA-HW model 

The modelling and forecasting of economic and financial time series are often 

rendered difficult due to their non-stationary nature and frequent structural breaks. In 

this light, the SSA technique can be particularly advantageous as it is not bound by 

the assumptions of stationarity, linearity and normality, which govern classical time 

series analysis and forecasting models (Hassani et al., 2017). As a result, we can 

obtain a comparatively more realistic approximation to the real data. Moreover, unlike 

classical models, which forecast both the signal and noise in tandem, the SSA has the 

capacity to extract a more accurate signal from the implied volatility series and thus 

helps to improve the accuracy of the final forecast (Hassani and Thomakos, 2010). 

Furthermore, unlike parametric forecasting models which rely on several unknown 

parameters, the SSA technique relies solely on the choices of its Window Length, L 

and the number of eigenvalues, r. The SSA technique has also proven to be a viable 

option for forecasting during recessions, when faced with structural breaks in time 

series (see for example, Hassani et al., 2013; Silva and Hassani, 2015). Relevant to 

the aforementioned point, it is also worth noting that SSA can handle both short and 
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long time series equally successfully where classical methods fail (Silva and Hassani, 

2015).  

Obviously, there are several linear and nonlinear filtering methods such as the 

Hodrick-Prescott filter, ARMA model, simple nonlinear filtering and local projective. 

However, the SSA technique relies on the Singular Value Decomposition (SVD) 

approach for noise reduction, which is regarded as a more effective noise reduction 

tool in comparison to standard filtering techniques which decompose series in 

different frequencies (Soofi and Cao, 2002; Ortu et al., 2013). Furthermore, unlike 

local methods, such as linear filtering or wavelets, or even the HW, the SSA exploits 

the trajectory matrix computed using all parts of a time series (Alexandrov, 2009). In 

the past, one of the main drawbacks of the SVD approach was its computational 

complexity. However, the use of modern day technology and parallel algorithms have 

helped to reduce this shortcoming (Golyandina et al., 2015).  

In this paper, we combine the advantages of SSA as a filtering method, along 

with Holt Winters’ (HW) non-parametric forecasting capacity. Whilst it is possible to 

build a combination forecast using any other time series analysis and forecasting 

technique, here we opted for SSA in combination with HW as HW, similar to SSA, is 

a non-parametric technique. Accordingly, by combining two non-parametric 

techniques, we can clear out the need for assumptions that must be considered when 

adopting parametric techniques.  

To motivate further the combination of SSA-HW, we turn our attention to the 

stylized facts of volatility. For instance, (i) implied volatility indices are highly 

persistent, (ii) the autocorrelations of the index level and the logarithm of the index 

level are statistically significant and positive for at least 250 trading days and (iii) 

implied volatility indices are mean reverting in the long run. Thus, changes in 

volatility have a very long-lasting impact on its subsequent evolution. ARFIMA and 

HAR models are trying to capture that type of long memory property. However, the 

SSA can decompose the implied volatility series more effectively, capturing both the 

market trend and the volatility periodicities. 

In addition, volatility is not constant and tends to cluster through time. 

Observing a large (small) implied volatility today is a good precursor of large (small) 

implied volatility in the coming days. HW is an appropriate forecasting technique for 

series with a time trend and additive (or multiplicative) periodic variation. The HW 
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technique is characterised by its ability to decompose non-parametrically the 

forecasting procedure into the smoothing equation for the level of the predicted series, 

the trend equation and the periodic component. 

Furthermore, the SSA-HW combination allows a compromise between model 

parsimony and forecast accuracy. In brief, the principle of parsimony suggests that 

one must opt for the model with the smallest number of parameters (simplest model) 

such that an adequate representation of the actual data is provided (Chatfield, 1996). 

When combining forecasts, studies indicate that forecasting accuracy can only be 

improved if forecasts are combined from two adequate parsimonious forecasting 

models (McLeod, 1993). Parsimony also allows better predictions and generalizations 

of new data as it helps to distinguish the signal from the noise (Busemeyer et al., 

2015). This is in addition to the preference for parsimony as an approach for avoiding 

over-parameterization when modelling data for forecasting (Booth and Tickle, 2008) 

and it is a recommended criterion for differentiating between forecasting models 

(Harvey, 1990). However, the best compromise between model parsimony and 

forecast accuracy is likely to consider whether the forecasts from the parsimonious 

model are significantly more accurate than a forecast from a competing model, 

provided the models in question are not affected by over or under fitting.  

Thus, in this paper, even though we decompose the implied volatility series 

using SSA and we then forecast each of the decomposed series using the HW model
1
, 

we also forecast each of the implied volatility series using the SSA and HW 

separately.  

In the decomposition stage, the first step is referred to the embedding process 

and the construction of the trajectory matrix. Consider the implied volatility index 

t
IV  of length T


. Embedding process maps the one dimensional time series 

t
IV  into a 

multidimensional time series K
XX ,...,

1  with vectors  '

121
,...,,,




Liiiii
IVIVIVIVX , 

where L  is an integer such that 12  T


L . The selection of the optimal window 

length L for decomposing the time series is based on the RMSE criterion
2
. The 

                                                           
1
 The SSA-HW model is estimated in R software. 

2
 The implied volatility series is divided into training and test sets. Decomposition of the training set is 

evaluated for different window lengths and eigenvalues. The results from the best decomposition as 

determined via the training approach is then used to decompose the test set of each index and then 

forecasted individually with HW prior to combining these decomposed forecasts for which the out-of-

sample forecasting errors are reported. 
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trajectory matrix, X , is constructed such that 1 LTK


; X  is a Hankel matrix, 

i.e. elements along the diagonal i+j equal: 

   



































T

K

K

K

jijiKr

IVIVIVIV

IVIVIVIV

IVIVIVIV

xXXX









21

1432

321

,

1,,1
,...,,...,

LLL

L
X . (1) 

The second step of the decomposition stage is known as singular value 

decomposition (SVD). In order to obtain the SVD of the trajectory matrix X , we 

calculate 
'

XX for which L
λ,...,λ

1  denote the eigenvalues in decreasing order, and 

L
UU ,...,

1  represent the corresponding eigenvectors. The SVD step then provides the 

singular values r (the second parameter of SSA), such that r
XX  ...

1
X . 

Thereafter, we use diagonal averaging to transform the components of the matrix X 

into a Hankel matrix which can then be converted into time series 1,t
IV …. rt

IV
, , 

where rt
IV

,  refers to the decomposed time series from the original implied volatility 

index. Having decomposed the implied volatility series, we apply the HW algorithm 

(Hyndman et al., 2013) to forecast the decomposed series 1,t
IV …. rt

IV
, . 

In this paper, during the SSA filtering process, we follow a binary approach 

and extract the trend and two other leading components (henceforth, r=3) whilst 

considering the remaining components as noise, in line to the standard practice in 

SSA applications (Hassani et al., 2017)
3
. 

 We propose the combination of the forecasts attained via HW for each 

decomposed component via aggregation. The underlying idea behind this approach is 

to firstly decompose a given series, so that we can identify the various fluctuations, 

which were previously hidden under the overall series and secondly, to forecast each 

of these decompositions with HW. In this way, the model can capture all fluctuations, 

which were hidden previously, and then combine all these forecasts via aggregation to 

generate the SSA-HW forecast. Depending on the characteristics of the time series, 

the Hyndman et al. (2013) algorithm automatically selects either the multiplicative or 

                                                           
3
 The extracted components are available upon request. 
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the additive HW method. The additive HW framework for forecasting the 

decomposed series, 
rt

IV
,

, is presented as:  

    
rtrtrrmtrtrrt

blsIVl
,1,1,,,

ˆˆˆ1ˆˆˆ


   

   
rtrrtrtrrt

bllb
,1,1,,

ˆˆ1ˆˆˆˆ


   

   
rmtrrtrtrtrrt

sblIVs
,,1,1,,

ˆˆ1ˆˆˆˆ


  , 

(2)  

where 
rt

l
,

ˆ  is the smoothing equation for the level, rt
b

,  is for the trend, rt
s

,  is the 

periodicity equation and m is used to denote the periodicity frequency. The 

alternative, which is the multiplicative HW method has the form:  

    
rtrtrmtrtrt

blsIVl
,1,1,,,

ˆˆˆ1ˆˆˆ


   

   
rtrrtrtrrt

bllb
,1,1,,

ˆˆ1ˆˆˆˆ


   

   
rmtrrtrtrrt

slIVs
,,,,

ˆˆ1ˆˆˆ


  . 

(3)  

  

4. Forecasting IV indices 

4.1. IV-SSA-HW model 

We aggregate the Holt-Winters forecasts obtained for time series 1,t
IV ….

rt
IV

,  to arrive at the SSA-HW forecasts. The additive HW one-step-ahead, 
tt

IV
|1

, and 

10-days-ahead, 
tt

IV
|10
, implied volatility forecasts are computed as: 

 





3

1

,1,,|1
ˆˆˆ

r

rmtrtrttt
sblIV  (4)  

and  

 





3

1

,10,,|10
ˆˆ10ˆ

r

rmtrtrttt
sblIV , (5)  

respectively. By contrast, the multiplicative HW one-step-ahead, 
tt

IV
|1
, and 10-days-

ahead, 
tt

IV
|10
, implied volatility forecasts are computed as: 

rmtrtrttt
sblIV

,1,,|1
ˆ*)ˆˆ(


  (6)  

and  

rmtrtrttt
sblIV

,10,,|10
ˆ*)ˆ10ˆ(


 , (7)  
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respectively
4
. 

 

4.2. Naïve models, ARFIMA, HAR & model-averaged forecasts 

As mentioned in Section 1, apart from the model frameworks presented in this 

section we further employ four naïve models, namely, the I(1), ARI(1,1), FI(1) and 

ARFI(1,1), the HW and SSA models, separately, as well as, the ARFIMA and HAR 

models. For brevity, these models’ specifications are presented in the Appendix.  

Furthermore, we employ model-averaged forecasts combining the best naïve 

model with the HAR, ARFIMA and SSA-HW. In addition, since the aim of the study 

is to compare non-parametric models and their combination against parametric 

models, we also proceed with the model-averaged forecast of the HAR-ARFIMA 

model. Forecasting literature states (i.e. Favero and Aiolfi, 2005, Samuels and Sekkel, 

2013, Timmermann, 2006) that model-averaged forecasts provide incremental 

predictive gains compared to single models. In particular, forecast combinations with 

(i) equal weight averaging and (ii) fewer models included in the combination provide 

more accurate forecasts.  

Even though the literature suggests that equal weight averaging may work 

particularly well, we also consider the Granger and Ramanathan (1984) approach, 

where the weights of the model average forecasts are based on their forecasting 

performance in the most recent past. The combined forecasts 
)(,| ctst

IV


 are computed 

recursively as follows: 

)2(,|)(,2)1(,|)(,1)(,0)(,| tstttstttctst
IVwIVwwIV




,
 (8)  

where 
)1(,|tst

IV


 and 
)2(,|tst

IV


are the s-step-ahead forecasts from models (1) and (2), 

whereas the 
)(,0 t

w , 
)(,1 t

w  and 
)(,2 t

w  denote the OLS recursive estimates from 

tstttsttttt
uIVwIVwwIV 

 )2(,|)(,2)1(,|)(,1)(,0
, for     (    

 ). 

In order to avoid a forward looking bias, at each trading day t, the weights are 

re-estimated based on the 250 most recent past forecasts. The intercept 
)(,0 t

w  allows 

for a possible bias adjustment in the combined forecast. The combined forecasts have 

been also computed (i) without the intercept and (ii) for the sum of weights to equal 1 

(i.e.
)(,1 t

w +
)(,2 t

w  =1). Nevertheless, the latter two approaches, and the equally 

                                                           
4
 For the calibration and estimation of the HW parameters, please see Hyndman and Athanasopoulos 

(2014). 
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weighted combined forecasts did not achieve better forecasts (which is in line with 

Granger and Ramanathan, 1984), thus, we only present the combined forecasts based 

on Eq 8. 

 

5. Forecasting evaluation 

5.1. MSE, MAPE loss functions and the model confidence set 

The training period of the models is T
~

=1000 days, i.e. from 02/02/2001 until 

28/01/2005
5
. The remaining T =2132 days are used for the evaluation period of the 

out-of-sample forecasts. In order to proceed to the first out-of-sample forecast (i.e. 

t+1 forecast or day 1001), we train the models using the initial 1000 days. A rolling 

window approach with fixed length of 1000 days is used for all subsequent forecasts. 

The use of a restricted window length of 1000 trading days incorporates changes in 

trading behaviour more efficiently. For example, Angelidis et al. (2004), Degiannakis 

et al. (2008) and Engle et al. (1993) provide empirical evidence that the use of 

restricted rolling window samples captures the changes in market activity more 

effectively
6,7

. The total number of observations is TTT 
~

. The forecasting 

accuracy of the models is initially gauged using two established loss functions, the 

Mean Squared Error,  
2

1

|

1

T

t n t t n

t

M SE T IV IV


 



  , and the Mean Absolute Error, 









T

t

nttnt
IVIVTMAE

1

|

1 , where, tnt
IV

|  is the implied volatility forecast, whereas 

nt
IV


 is the actual implied volatility .

8
 

                                                           
5
 There are two reasons that justify the choice of initial training period. First, a large sample size for the 

estimation of the models was required. Second, it was preferable for our initial training period to stop 

before the Global Financial Crisis of 2007-09. The inclusion of the Global Financial Crisis period in 

the out-of-sample period allows for the better evaluation of the forecasting models’ performance. 

Nevertheless, a training period of 750 and 1250 days was also considered and the results are 

qualitatively similar. 
6
 For robustness, we used various window lengths for the rolling window approach and the results 

remain qualitatively unchanged.  
7
 We also considered a recursive approach, where for each subsequent forecast after the  1t  forecast 

we added an additional day to the training period. For example, for the 2t  forecast we used 1
~
T  

daily observations. The results are qualitatively similar and they are available upon request.  
8
 An alternative forecasting evaluation method is the Mincer and Zarnowitz (1969) regression, where 

the future VIX is regressed against the three different forecasts. The coefficients of the regressions are 

interpreted as the amount of information embedded in the different forecasts. The results are 

qualitatively similar.  
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In addition, we employ the Model Confidence Set (MCS) procedure of Hansen 

et al. (2011). The MCS test determines the set of models that consists of the best 

models where best is defined in terms of a predefined loss function. In our case two 

loss functions are employed, namely the MSE and the MAE. The MCS compares the 

predictive accuracy of an initial set of 
0

M  models and investigates, at a predefined 

level of significance, which models survive the elimination algorithm. For ti
L

,  

denoting the loss function of model i  at day t , and tjtitji
LLd

,,,,
  is the evaluation 

differential for 
0

, Mji   the hypotheses that are being tested are:  

  0:
,,,0


tjiM

dEH  (9)  

for Mji  , , 
0

MM   against the alternative   0:
,,,1


tjiM

dEH  for some Mji ,

. The elimination algorithm based on an equivalence test and an elimination rule, 

employs the equivalence test for investigating the 
M

H
,0

 for  
0

MM   and the 

elimination rule to identify the model i  to be removed from M in the case that  
M

H
,0

 

is rejected.  

We should highlight here that several studies compare their forecasting models 

against a pre-selected benchmark, using tests, such as the Diebold-Mariano (Diebold 

and Mariano, 1995) for pairwise comparisons, the Equal Predictive Accuracy test 

(Clark and West, 2007) for nested models, or even the Reality Check for Data 

Snooping (White, 2000) and the Superior Predictive Ability (Hansen, 2005) for 

multiple comparisons.  

By contrast, in this case we are not interested in pairwise comparisons, nor we 

have a benchmark model as the aim is to simultaneously evaluate the forecasting 

performance of the competing models and evaluate which models belong to the set of 

the best performing models.  

In any case, the Superior Predictive Ability (SPA) test of Hansen (2005) was 

also used to evaluate the forecasting accuracy of the competing models, for robustness 

purposes. Initially, the benchmark model for the SPA test was the ARI(1,1), which is 

the best naïve model. Subsequently, we used the IV-HAR and the IV-ARFIMA as 

benchmark models against the SSA-HW. The results confirm the MCS findings and 

although they are not reported here, they are available upon request. 



14 
 
 

5.2. Direction-of-change 

Furthermore, we consider the Direction-of-Change (DoC) forecasting 

evaluation technique. The DoC is particularly important for trading strategies as it 

provides an evaluation of the market timing ability of the forecasting models. The 

DoC criterion reports the proportion of trading days that a model correctly predicts 

the direction (up or down) of the volatility movement for the 1-day and 10-days 

ahead.  

 

5.3. Forecast evaluations based on trading strategies 

Finally, we compare the performance of each forecasting method based on two 

trading strategies. In the first trading strategy, the investor invests into a single-asset 

portfolio, which is composed by an implied-volatility index (i.e. we assume that each 

implied volatility index is a tradable asset). For the 1-day ahead forecasts, the trader 

takes a long position when the 1t  forecasted implied volatility of model i  is higher 

compared to the actual implied volatility at time t . By contrast, when the 1t  

forecasted implied volatility of model i  is lower compared to the actual implied 

volatility at time t , then the trader takes a short position. Put it simply, when the 

investor expects an implied volatility index to increase (decrease) at 1t  based on 

model i  then she goes long (short) in the specific implied volatility index. Similarly, 

we construct the trading strategy for the 10-days ahead forecasts. Portfolio returns are 

computed as the average net daily returns over the investment horizon, which 

coincides with our out-of-sample forecasting period of T =2132 days. The transaction 

costs per unit for each trade are estimated to be between 0.6%-1.2% (see Jung, 2016). 

The intuition of this rather naïve trading strategy is to evaluate the directional 

accuracy of the competing models based on the economic profits from trading implied 

volatility indices.  

Following this naïve trading strategy, we employ a more sophisticated strategy 

as an additional economic criterion, based on option straddles trading; a straddle is an 

options strategy in which the investor holds a position in both a call and put option 

with the same strike price and expiration date. Based on Xekalaki and Degiannakis 

(2005) and Engle et al. (1993) we allow investors to go long (short) in a straddle 

when the forecasted implied volatility at time t+s is higher (lower) than the actual 
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implied volatility index at the present time t. Similar approaches have been employed 

by Degiannakis and Filis (2017), Andrada-Felix et al. (2016), Angelidis and 

Degiannakis (2008). 

The straddle trading is employed given that the straddle holder’s rate of return 

is indifferent to any change in the underlying asset price and is affected only from 

changes in volatility. Following Engle et al. (1993), the next trading day's straddle 

price on a $1 share of the underlying stock market index with   days to expiration and 

$1 exercise price is: 

         (
  ̅̅ ̅     

 
)   , (10) 

where  denotes the cumulative normal distribution function and  

  ̅̅  ̅     
∑        
 
   

   √   
 is the volatility forecast during the life of the option. The daily 

profit from holding the straddle is       ( 
                ), for    denoting 

the underlying stock market index log-returns and     being the risk-free interest rate.  

We assume the existence of thirteen investors who trade their volatility 

forecasts. Each investor   prices the straddles,       
( )

, every trading day according to 

one of the thirteen volatility forecasting models
9
. A trade between two investors,   and 

  , is executed at the average of their forecasting prices, yielding to investor   a profit 

of: 

    
(    )

 {
     (      

( )
       

(  )
)    

(      
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(  )

)      
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. (11) 

As an economic evaluation criterion, we define the cumulative returns computed as 

 ( )  
 

 
∑ ∑   

(    ) 
    

 ̌
   .  

 

6. Empirical findings 

6.1. MSE and MAE analysis 

We consider the models’ forecasting performance at two different horizons, 

namely 1-day and 10-days ahead. The MSE and MAE loss functions, as well as, the 

MCS test results are presented in Tables 2 and 3. 

[TABLE 2 HERE] 

                                                           
9
 I.e. the HAR, ARFIMA, HW, SSA, SSA-HW, I(1), ARI(1,1), FI(1), ARFI(1,1), ARI-HAR, ARI-

ARFIMA, HAR-ARFIMA and ARI-SSA-HW. 

 .N
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[TABLE 3 HERE] 

Tables 2 and 3 provide evidence that the forecasts of the SSA-HW model 

outperform these produced by all naïve, SSA, HW, ARFIMA and HAR models. We 

observe that this holds true for both time horizons, i.e. 1-day and 10-days ahead, and 

all indices. The only exception for the 1-day ahead forecasts is the VFTSE, for which 

the best forecast is achieved by the SSA, according to the MAE. In addition, for the 

10-days ahead forecast, the MAE (MSE) suggests that for the VCAC index the best 

forecast is obtained by the IV-ARFIMA (HW), whereas according to the MSE the 

best forecasts for the VTFSE and VXD are generated by the HW. 

Despite these exceptions, it is clear that the use of the SSA-HW model, as 

opposed to the naïve, SSA, HW, ARFIMA or HAR models, provides a considerable 

improvement to the forecasting accuracy for all indices.  

 Next, we compare the forecasting accuracy of the models using the MCS 

procedure. The results for the 1-day ahead forecasts (Table 2) suggest that in both the 

cases of the MAE and the MSE loss functions, the model that belongs to the confident 

set of the best performing models is only the SSA-HW. The only exception is the 

forecasts for VFTSE, where in the case of the MAE the best performing model is only 

the SSA, whereas in the case of MSE it is also the SSA that belongs to the set of the 

best performing models. For the 10-days ahead forecasts (Table 3), only the SSA-HW 

is the best one for VXJ and VXN, according to the MSE, whereas for all the other 

cases, SSA-HW belongs to the set of best models. Based on the MAE, only the SSA-

HW is the best model for all the cases except for the VCAC. For the latter, the SSA-

HW belongs to the set of the best models. 

Overall, evidence suggests that the use of the SSA-HW model offers a 

substantial improvement to forecasting accuracy, compared to the naïve, SSA, HW, 

ARFIMA and HAR models. 

 As a further test for the validity of our findings, we estimate the forecast bias 

of the SSA-HW relatively to the best performing parametric models (i.e. HAR and 

ARFIMA). To do so, we employ the Ashley et al. (1980) test. We denote as 

stitstitst
IVIVe




,|,|
 the s-step-ahead forecast error of model i, and 

i
e  the average of 

these forecasts. Based on Ashley et al. (1980), we are able to estimate the following 

auxiliary model:     
sttsttsttsttst

zeeeebaee



212,|1,|2,|1,| , for 
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 2
,0~

zt
Nz  . A statistically significant intercept provides evidence that there is 

significant difference in the forecast errors. Moreover, a statistically significant slope 

shows a difference in the forecast error variances. Overall, we may investigate the 

null hypothesis that the difference between the two forecasting models is statistically 

negligible. As Ashley et al. (1980) noted, in the case that either of the two least 

squares estimates is significantly negative, the model (1) (i.e. SSA-HW in our case) 

provides superior forecasts
10

. The results are reported in Table 4. 

[TABLE 4 HERE] 

 From Table 4 we find evidence that the improvement in the forecasts of the 

implied volatilities using the SSA-HW model primarily stems from the reduction in 

the variance of the forecast errors, given that the   coefficient is negative and 

significant, relatively to the HAR and ARFIMA models.  

 

6.2. SSA-HW performance over time 

 The aforementioned results provide a convincing picture that the SSA-HW is 

the best performing forecasting model for both the 1-day and 10-days ahead horizons. 

Next we evaluate whether its predictive ability holds during different market 

conditions, namely, during periods characterized by high or low volatility. To do so, 

we calculate the incremental predictive ability of the SSA-HW model relatively to the 

best performing parametric models, i.e. HAR and ARFIMA. Motivated by 

Degiannakis and Filis (2017), the incremental value of the SSA-HW is captured by 

the cumulative difference between its MAE relatively to the MAE of the HAR and 

ARFIMA models, separately. Figures 2 and 3 depict these cumulative differences for 

the 1-day and 10-days ahead horizons, respectively.  

[FIGURE 2 HERE] 

[FIGURE 3 HERE] 

 We should note that when the cumulative difference increases then the SSA-

HW exhibits incremental predictive gains, whereas the reverse holds true with the 

cumulative difference decreases. Figures 2 and 3 reveal that in almost all cases the 

SSA-HW does provide incremental predictive gains compared to the two best 

                                                           
10

 If one estimate is negative and statistically insignificant, then a one-tailed t-test on the other 

coefficient can be used. If both estimates are positive, an F test for the null hypothesis that both 

coefficients are statistically zero can be applied (half of the significance level reported from the tables 

must be reported). 
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performing parametric models, i.e. the HAR and ARFIMA (although this does not 

apply to the post-global financial crisis for the 1-day ahead horizon of VFTSE and the 

10-days ahead horizon of VCAC). It is also important to highlight that almost all 

figures exhibit a steeper increase during the 2008-09 period, i.e. the global financial 

crisis. This is suggestive of the fact that during turbulent times the SSA-HW provides 

even higher incremental predictive gains.  

The last observation even holds for the case of the 10-days ahead forecast of 

the VCAC, for which we documented that the SSA-HW does not provide the most 

accurate forecasts. More specifically, a steep upward movement in the VCAC figure 

is observed during the global financial crisis, suggesting that for this period the SSA-

HW does provide very high incremental predictive gains relatively to the HAR and 

ARFIMA models.  

This is further evidence that SSA-HW not only exhibits a high forecasting 

ability, but also its ability is stronger during turbulent times, when accurate forecasts 

are even more necessary. 

 

6.3. Model-averaged forecasts 

Next, we proceed with model-averaged forecasts in order to assess whether the 

inclusion of a naïve model could improve the performance of the competing models. 

According to Tables 2 and 3 the best naïve model is the ARI(1,1) model. Thus, we 

consider the following model-averaged forecasts, ARI-IV-ARFIMA, ARI-IV-HAR 

and ARI-SSA-HW. In addition, we also use the model-averaged forecast of the 

ARFIMA-HAR models. Table 5 summarizes the results for the 1-day and 10-days 

ahead forecasts for both the MSE and the MAE. 

[TABLE 5 HERE] 

 For the 1-day ahead forecasts, we observe that apart from the VCAC, VDAX 

and VSTOXX, in all other cases the model-averaged forecasts based on the ARI-

SSA-HW can outperform the SSA-HW. Even more, for the 10-days ahead forecasts, 

we notice that the inclusion of the ARI(1,1) model in the SSA-HW is able to produce 

superior predictions for all implied volatility indices.  

 To assess further the superior predictive ability of the ARI-SSA-HW, we 

perform the MCS test including all competing models, i.e. the original nine models, as 
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well as, the model-averaged forecasts. For brevity, Table 6 presents the MCS p-values 

of the best performing models only, for the 1-day ahead and 10-days ahead horizons.  

[TABLE 6 HERE] 

Table 6 suggests that for the 1-day ahead forecasts, in almost all cases the 

SSA-HW model belongs to the set of the best performing models along with the ARI-

SSA-HW. The only exception is the VXJ, where only the ARI-SSA-HW is included 

in the set of the best performing models. Thus, even though the model-averaged 

forecasts improve the forecasting accuracy of the SSA-HW model, this improvement 

is not significantly higher for all implied volatility indices.  

 The MCS results for the 10-days ahead forecasts (see Table 6) reveal that the 

ARI-SSA-HW model is always among the best performing models; yet, the SSA-HW 

also belongs to the set of the best models in three cases (VDAX, VFTSE and VIX). 

HW is also among the best models for the case of VFTSE. Thus, our study presents 

empirical evidence that in the case of multi-days-ahead volatility forecasts the 

predictive accuracy of the model-averaged method is statistically significantly 

improved. 

 Scatter plots in Figure 4 provide a visual representation of the relationship 

between actual and predicted implied volatility indices for the VIX index, 

indicatively. Panel A corresponds to the 1-day ahead forecasts, whereas Panel B 

exhibits the 10-days ahead forecasts. These scatter plots rendered it clear that the 

SSA-HW produces the slimmest plots (middle column) for the 1-day ahead forecast, 

whereas for the 10-days ahead forecast it is the ARI-SSA-HW (right column). The 

worse forecasts are produced by the FI(1,1) for both forecasting horizons. In addition, 

the SSA-HW for the 1-day ahead and the ARI-SSA-HW model for the 10-days ahead 

forecasts are observed to have fewer outliers. In addition, it is worth noting that at the 

higher levels of volatility, the SSA-HW (for the 1-day ahead) and the ARI-SSA-HW 

(for the 10-days ahead) models appear to produce less scattered points. 

[FIGURE 4 HERE] 

Overall, the SSA-HW model, along with the ARI-SSA-HW, are superior to 

their competitors, for the 1-day ahead forecast, whereas the combination of SSA-HW 

with the ARI(1,1) is the best model for the 10-days ahead. We also assess the 

forecasting performance of our models in three sub-periods (pre-crisis period: January 

2005 – November 2007, crisis period: December 2007 – June 2009, post-crisis period: 
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July 2009 – July 2013) and the results are qualitatively similar. For brevity, these 

results are available upon request. 

The ability of the SSA-HW to generate superior forecasts stems from the fact 

that it utilises the advantages of each of the model’s components. The SSA has the 

ability to decompose volatility indices into interpretable components. By 

decomposing the series using SSA, the interpretable components capture the 

dynamics of volatility indices, which can then be forecasted individually using HW. 

In turn, HW can provide accurate forecasts of trend and signal via exponentially 

weighted moving averages (Holt, 2004). Thus, HW’s modelling capability is 

enhanced by the SSA filtering, which reduces the noise of the series. Therefore, 

instead of forecasting the index itself, we forecast each decomposed series prior to 

combining these forecasts. 

In more simple terms, the superior performance reported by SSA-HW can be 

attributed to the fact that in the absence of filtering with SSA, the trend and other 

signals within the index would be distorted by the noise. When we decompose the 

series, we are able to separate all such components into individual time series where 

each series will have its own and varying structure, earlier hidden underneath the 

overall series. Thereby, forecasting these individual series (extracted from SSA) with 

HW enables us to capture the underlying fluctuations, which would have been more 

difficult to reveal without SSA filtering. This is further evidenced by the fact that 

neither SSA nor HW is able to outperform the forecasts of SSA-HW at both horizons, 

apart from few exceptions. 

Furthermore, SSA is more popular as a filtering technique as opposed to a 

forecasting technique. This might explain its poor forecasting performance, as the 

SSA forecasting algorithm appears to encounter problems with modelling implied 

volatility even after filtering for noise. Note that when SSA filters for noise, it 

forecasts the signal alone and, contrary to the SSA-HW approach, this is not 

decomposed further. Similarly, HW’s poor predictive performance is attributable to 

the fact that there is no filtering involved and as a result, it encounters problems in 

identifying the true signal, which is distorted by the noise component of the implied 

volatility indices. 
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6.4. Direction of change 

The DoC results are shown in Tables 7 and 8 for the 1-day and 10-days ahead, 

respectively. Table 7 shows that all forecasting models exhibit a good prediction of 

the DoC, since all scores are above the 50% level (with the only exception being the 

I(1) model), nevertheless the forecasting model with the highest prediction ability is 

the SSA-HW, followed by the ARI-SSA-HW and the SSA. More specifically, the 

SSA-HW and ARI-SSA-HW are capable of predicting the DoC accurately in 65-80% 

of the cases, depending on the volatility index. Similar findings are reported for the 

10-days ahead forecasts (as shown in Table 8), where the SSA-HW and ARI-SSA-

HW exhibit a very high predictive ability of the DoC, although the highest precision 

is attributed to the SSA-HW. In particular, the models are able to predict 65-88% of 

the directional changes of the implied volatilities. These results corroborate the 

findings of the MCS, which provided evidence that the best model is the SSA-HW, 

followed by the ARI-SSA-HW.  

[TABLES 7 and 8 HERE] 

 

6.5. Forecasting performance based on the trading strategies 

The results of the trading strategy are reported in Tables 9 and 10 for the 1-day 

and 10-days ahead, respectively. 

[TABLES 9 and 10 HERE] 

For the 1-day ahead (see Table 9), it is evident that the SSA, SSA-HW and the 

ARI-SSA-HW provide positive net returns, which are significantly higher than zero. 

The largest figures are observed for the SSA-HW, followed by the ARI-SSA-HW and 

the SSA. Turning our attention to the 10-days ahead (see Table 10), we can make a 

similar inference, as the only forecasting models that yield positive net returns are 

those of the HW, SSA-HW and ARI-SSA-HW. Nevertheless, we observe that 

statistically significant net returns are only feasible for the VIX and VSTOXX 

indices. Hence, these findings confirm the superior predictive ability of the SSA-HW. 

 Finally, Tables 11 and 12 present the cumulative returns of investors who are 

pricing their straddles according to the implied volatility forecasts from the thirteen 

competing models. The results show that the SSA-HW and the ARI-SSA-HW models 

are able to generate superior positive profits against the other competing models, 

although this does not apply to all implied volatility indices. We should highlight here 
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that even when investors, who use the aforementioned models, do not obtain the 

highest positive profits, their trading strategies are in almost all cases among the most 

profitable. In any case, the option straddles trading strategy provides some additional 

evidence that the SSA-HW and the ARI-SSA-HW are capable of producing forecasts 

that are economically important.   

[TABLES 11 and 12 HERE] 

 

7. Conclusion 

The aim of this paper is to compare parametric and non-parametric techniques 

in terms of their forecasting power for implied volatility indices. We extend our 

comparisons using combined and model-averaging models. More specifically, we 

generate 1-day and 10-days ahead forecasts based on the SSA, HW, ARFIMA and 

HAR models, as well as, combined models and model-averaged frameworks. In 

addition, we use four naïve models. We compare their forecasting accuracy using the 

MSE and MAE evaluation criteria, the MCS procedure and the Direction-of-Change. 

Furthermore, we assess the forecasting ability of the models using two trading 

strategies.  

The results show that the SSA-HW is a powerful tool for predicting implied 

volatility indices as it is able to exploit the advantages of two non-parametric 

methods. The forecasting accuracy tests reveal that the forecasts generated by the 

SSA-HW model outperform these by the naïve, ARFIMA and HAR models for the 1-

day ahead. On the other hand, the model-averaged forecasts reveal that the ARI-SSA-

HW improves the SSA-HW forecasts, particularly for the 10-days ahead forecasts. 

The results of the trading strategies confirm these findings, revealing that the 

SSA-HW and the ARI-SSA-HW could provide significantly positive net returns over 

the out-of-sample period, although this primarily holds for the 1-day ahead. Overall, 

we maintain that this superior forecasting ability of the non-parametric techniques, as 

well as, the model-averaging between parametric and non-parametric model is 

important to investors (e.g. for portfolio allocation decisions), portfolio managers (e.g. 

for Global Tactical Asset Allocation strategies), derivatives pricing, risk management 

purposes, as well as, policy makers (e.g. monetary policy decisions). 

The use of SSA-HW enables us to overcome the parametric assumptions, 

which restrict the applicability of many parametric models to real world scenarios. As 
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such we believe this proposed forecasting framework, which combines a renowned 

forecasting technique (HW) with an equally renowned filtering technique (SSA), will 

enable users to achieve better outcomes when applied to other real world forecasting 

problems, which go beyond implied volatility forecasts. In a world where the 

emergence of Big Data and the related noise continue to distort the signal in time 

series, the proposed SSA-HW approach can be a useful tool for attaining reliable and 

accurate forecasts in the future. An interesting avenue for further study is to assess 

SSA forecasting ability using intra-day data.  
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Figures 

Figure 1: Implied Volatility Indices. The sample period runs from January, 2001 to July, 

2013. 
 

 
 

 

Figure 2: Cumulative incremental predictive gains of the IV-SSA-HW model vs. the IV-

HAR and IV-ARFIMA for the 1-day ahead, based on the MAE. 

 
Note: Upward (downward) movements suggest that the IV-SSA-HW (IV-HAR or IV-ARFIMA) 

provides the best predictive gains. 
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Figure 3: Cumulative incremental predictive gains of the IV-SSA-HW model vs. the IV-

HAR and IV-ARFIMA for the 10-days ahead, based on the MAE. 

 
Note: Upward (downward) movements suggest that the IV-SSA-HW (IV-HAR or IV-ARFIMA) 

provides the best predictive gains. 
 

Figure 4: One-day and 10-days ahead forecasts scatter plots of the models for the VIX 

index. The sample period runs from January, 2005 to July, 2013. 
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10-days ahead forecasts 
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Note: Columns from left to right present the scatter plots for FI(1,1), SSA-HW and ARI(1,1)-SSA-HW, 

respectively. The y-axes (x-axes) show the actual (predicted) values. 
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Tables 

 

Table 1: Descriptive Statistics of Implied Volatility Indices (January, 2001 to July, 2013). 

    Mean Min Max Std.Dev Jarque-Bera ADF-statistic ARCH LM Test 

VIX 21.52 9.89 80.86 9.48 6174.43 
*** 

-3.23 
** 

5288.04 
*** 

VSTOXX 25.99 11.60 87.51 10.78 1655.11 
*** 

-3.63 
*** 

5759.33 
*** 

VFTSE 21.19 9.10 78.69 9.45 3829.52 
*** 

-3.89 
*** 

5535.42 
*** 

VDAX 23.32 10.98 74.00 9.54 1578.59 
*** 

-3.16 
** 

8317.23 
*** 

VCAC 24.31 9.24 78.05 9.76 2250.23 
*** 

-3.69 
*** 

4588.81 
*** 

VXN 27.92 12.03 80.64 13.01 929.13 
*** 

-2.98 
** 

12370.04 
*** 

VXD 19.98 9.28 74.60 8.80 5205.14 
*** 

-3.17 
** 

6263.71 
*** 

VXJ 26.66 11.53 91.45 9.70 12706.03 
*** 

-4.10 
*** 

5620.22 
*** 

***,**,* indicate significance at 1%, 5% and 10% level, respectively. 

 

 

Table 2: Forecast accuracy tests: One-day ahead forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 

Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 4.18 2.21 2.92 3.81 3.76 2.91 4.67 3.12 

MAE 1.21 0.90 1.06 1.15 1.17 1.03 1.24 1.10 

IV-ARFIMA 
MSE 4.20 2.19 2.90 3.84 3.77 2.96 4.67 3.18 

MAE 1.22 0.90 1.06 1.16 1.17 1.04 1.25 1.10 

HW 
MSE 4.65 2.76 3.54 4.42 4.90 3.36 5.46 4.18 

MAE 1.37 1.11 1.28 1.34 1.49 1.19 1.45 1.44 

SSA 
MSE 2.55 1.67 2.39* 2.92 2.87 2.09 2.71 2.41 

MAE 0.99 0.81 0.98* 1.04 1.05 0.91 0.97 0.99 

SSA-HW 
MSE 1.46* 1.29* 2.28* 2.18* 2.20* 1.49* 1.46* 1.86* 

MAE 0.79* 0.73* 1.02 0.91* 0.94* 0.79* 0.75* 0.89* 

I(1) 
MSE 4.28 2.21 2.94 3.96 3.81 3.00 4.64 3.16 

MAE 1.22 0.90 1.06 1.16 1.18 1.04 1.24 1.10 

ARI(1,1) 
MSE 4.26 2.22 2.93 3.86 3.81 2.94 4.70 3.15 

MAE 1.22 0.90 1.06 1.16 1.18 1.03 1.25 1.10 

FI(1) 
MSE 6.11 3.98 5.23 6.07 6.29 4.75 8.22 5.20 

MAE 1.45 1.17 1.32 1.39 1.45 1.26 1.54 1.35 

ARFI(1,1) 
MSE 4.37 2.33 3.10 4.28 3.96 3.27 5.14 3.42 

MAE 1.24 0.92 1.07 1.19 1.18 1.06 1.30 1.13 

Bold face fonts present the models with the lowest values of MAE and MSE. * denotes that the model is included in 

the set of the best performing models, according to the MCS test. 
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Table 3: Forecast accuracy tests: Ten-days ahead forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 

Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 
MSE 21.22* 13.86* 19.85 18.94 22.17 15.60* 29.57 18.88 

MAE 2.92* 2.39 2.77 2.72 2.96 2.50 3.20 2.74 

IV-ARFIMA 
MSE 21.27* 13.47* 19.41 19.32 21.89 15.56* 29.18 19.61 

MAE 2.90* 2.34 2.73 2.69 2.93 2.44 3.19 2.76 

HW 
MSE 17.77* 13.36* 14.04* 13.98* 19.03* 13.51* 21.90 18.66 

MAE 2.91* 2.27 2.38 2.38 2.73 2.49 2.74 3.04 

SSA 
MSE 45.80 19.78 33.12 26.24 36.10 24.52 54.05 34.66 

MAE 4.26 2.72 3.46 3.20 3.58 3.22 4.32 3.69 

SSA-HW 
MSE 20.41* 12.12* 14.99* 13.13* 15.49* 14.40* 19.00* 12.70* 

MAE 3.10* 1.89* 2.29* 1.79* 1.66* 2.21* 2.39* 2.22* 

I(1) 
MSE 22.22 13.77* 20.15 18.56 22.56 14.93* 30.19 18.37 

MAE 3.05 2.42 2.83 2.74 3.08 2.50 3.26 2.77 

ARI(1,1) 
MSE 21.98 13.75* 20.11 18.35 22.49 14.81* 30.11 18.29 

MAE 3.03 2.42 2.83 2.74 3.08 2.50 3.25 2.77 

FI(1) 
MSE 28.12 21.69 27.82 31.20 32.24 25.22 42.89 27.89 

MAE 3.21 2.82 3.10 3.23 3.38 2.93 3.78 3.22 

ARFI(1,1) 
MSE 26.55 19.69 25.65 29.43 29.84 23.72 41.37 26.03 

MAE 3.11 2.67 2.97 3.13 3.25 2.84 3.69 3.09 
Bold face fonts present the models with the lowest values of MAE and MSE. * denotes that the model is included in the set 

of the best performing models, according to the MCS test. 
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Table 4: Bias and forecast variance reduction for the 1-day and 10-days ahead horizons (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Forecast 

horizon Coeff. VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

  SSA-HW vs HAR 

1-day ahead 
  -0.003 -0.001 -0.000 -0.013 0.006 -0.021 0.008 -0.044 

  -0.286*** -0.144*** -0.068*** -0.146*** -0.142*** -0.178*** -0.307*** -0.137*** 

10-days ahead 
  0.191 0.121 0.049 0.111 0.192 0.178 0.202 0.209 

  -0.014 -0044*** -0.085*** -0.174*** -0.214*** -0.026* -0.156*** -0.166*** 

  SSA-HW vs ARFIMA 

1-day ahead 
  0.010 0.011 0.018 0.011 0.025 0.010 0.016 0.020 

  -0.289*** -0.143*** -0.066*** -0.148*** -0.143*** -0.183*** -0.307*** -0.142*** 

10-days ahead 
  0.117 0.226 0.196 0.265 0.155 -0.049 0.115 0.121 

  -0.014 -0.034*** -0.078*** -0.188*** -0.205*** -0.028** -0.161*** -0.151*** 

Note: *, **, *** denote significance at the 10%, 5% and 1% level, respectively. The   and   coefficients are estimated based on the Ashley et al. (1980) 

auxiliary regression model. If the   coefficient is negative and significant then it denotes a forecast bias reduction of the SSA-HW relatively to the HAR and 

ARFIMA models. If the   coefficient is negative and significant this denotes a reduction in the forecast error variance from the SSA-HW relatively to the 

other two models. 
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Table 5: Forecast accuracy tests: Model-averaged forecasts based on the Granger and Ramanathan 

(1985) approach (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 

Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

 

One-day ahead 

ARI-IV-HAR 
MSE 4.11 2.39 3.06 4.06 4.10 3.07 4.82 3.28 

MAE 1.19 0.92 1.08 1.17 1.20 1.05 1.26 1.11 

ARI-IV-ARFIMA 
MSE 4.15 2.40 3.08 4.15 4.06 3.11 4.85 3.31 

MAE 1.20 0.92 1.08 1.17 1.20 1.05 1.27 1.11 

HAR-ARFIMA 
MSE 4.48 2.37 3.09 4.07 4.02 3.08 4.84 3.26 

MAE 1.24 0.92 1.09 1.18 1.20 1.06 1.28 1.12 

ARI-SSA-HW 
MSE 1.51 1.32 2.20 2.06 2.24 1.39 1.20 1.83 

MAE 0.79 0.73 0.94 0.89 0.95 0.78 0.71 0.88 

 
Ten-days ahead 

ARI-IV-HAR 
MSE 21.01 13.02 18.84 17.41 21.44 14.48 27.42 16.56 

MAE 2.92 2.36 2.72 2.65 2.94 2.47 3.25 2.64 

ARI-IV-ARFIMA 
MSE 21.18 13.33 19.67 17.07 21.55 14.02 27.80 16.61 

MAE 2.95 1.67 2.81 2.63 2.96 2.43 3.25 2.63 

HAR-ARFIMA 
MSE 22.24 14.13 20.07 20.19 22.88 17.36 29.38 19.46 

MAE 3.02 2.45 2.87 2.82 3.09 2.62 3.43 2.84 

ARI-SSA-HW 
MSE 13.64 9.68 13.79 7.83 7.98 10.77 15.52 10.07 

MAE 2.45 1.92 2.27 1.72 1.55 2.07 2.23 2.06 
Bold face fonts present the model that outperforms the best performing models of Table 2 and 3 for the 1-day and 10-days 

ahead, respectively. 
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Table 6: MCS p-values of the best performing models: Model-averaged forecasts (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model 

Loss 

Function VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

 One-day ahead 

SSA 
MSE 0.0001 0.0001 0.2453* 0.0000 0.0002 0.0000 0.0001 0.0000 

MAE 0.0000 0.0000 0.0186 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA-HW 
MSE 1.0000* 1.0000* 0.3604* 0.1360* 1.0000* 0.0720 0.0002 0.5968* 

MAE 0.8539* 1.0000* 0.0000 0.1944* 1.0000* 0.5014* 0.0000 0.3625* 

ARI-SSA-HW 
MSE 0.0016 0.5059* 1.0000* 1.0000* 0.7361* 1.0000* 1.0000* 1.0000* 

MAE 1.0000* 0.1249* 1.0000* 1.0000* 0.0723 1.0000* 1.0000* 1.0000* 

 Ten-days ahead 

HW 
MSE 0.0003 0.0028 0.7670* 0.0000 0.0002 0.0302 0.0000 0.0000 

MAE 0.0000 0.0000 0.1625* 0.0000 0.0000 0.0000 0.0000 0.0000 

SSA-HW 
MSE 0.0002 0.0171 0.3619* 0.0000 0.0020 0.0199 0.0000 0.0031 

MAE 0.0000 1.0000* 0.6613* 0.1713* 0.0787 0.0033 0.0024 0.0020 

ARI-SSA-HW 
MSE 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

MAE 1.0000* 0.6324* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 
* denotes that the model belongs to the confidence set of the best performing models. The interpretation of the MCS p-value is 

analogous to that of a classical p-value; a  a1  confidence interval that contains the ‘true’ parameter with a probability no less than 

 a1 . 
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Table 7: Direction of Change - One-day ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 0.5397 0.5270 0.5211 0.5336 0.5276 0.5315 0.5220 0.5202 

IV-ARFIMA 0.5244 0.5347 0.5216 0.5364 0.5318 0.5315 0.5258 0.5164 

HW 0.5077 0.4868 0.5053 0.5002 0.4995 0.5081 0.5158 0.5088 

SSA 0.6789 0.6437 0.6207 0.6397 0.6336 0.6492 0.7204 0.6456 

SSA-HW 0.7373 0.6992 0.6547 0.7044 0.6887 0.7169 0.7973 0.6922 

I(1) 0.5785 0.4840 0.4646 0.4584 0.4577 0.4628 0.4618 0.4637 

ARI(1,1) 0.5780 0.4926 0.4799 0.5296 0.4748 0.5243 0.4914 0.4907 

FI(1) 0.5900 0.5318 0.5259 0.5450 0.5347 0.5372 0.5325 0.5287 

ARFI(1,1) 0.5780 0.5122 0.5292 0.5093 0.5247 0.5148 0.5191 0.5059 

ARI-IV-HAR 0.5431 0.5088 0.5005 0.5250 0.5157 0.5291 0.5105 0.5221 

ARI-IV-ARFIMA 0.5258 0.5265 0.5115 0.5250 0.5166 0.5338 0.5096 0.5164 

HAR-ARFIMA 0.5411 0.5328 0.5220 0.5393 0.5276 0.5372 0.5249 0.5164 

ARI-SSA-HW 0.7340 0.6872 0.6379 0.6844 0.6811 0.6930 0.7677 0.6770 
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Table 8: Direction of Change - Ten-days ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX VSTOXX VXD VXJ VXN 

IV-HAR 0.5630 0.5441 0.5598 0.5564 0.5779 0.5764 0.5488 0.5638 

IV-ARFIMA 0.5749 0.5488 0.5655 0.5645 0.5703 0.5517 0.5360 0.5642 

HW 0.6559 0.6498 0.6902 0.6545 0.6678 0.6300 0.6635 0.6406 

SSA 0.4829 0.5005 0.5161 0.5308 0.5418 0.4720 0.4967 0.4917 

SSA-HW 0.7180 0.7223 0.6917 0.8308 0.8783 0.6689 0.7739 0.7411 

I(1) 0.4867 0.4512 0.4715 0.4564 0.4743 0.4568 0.4408 0.4661 

ARI(1,1) 0.4905 0.4521 0.4682 0.4739 0.4796 0.4782 0.4673 0.4827 

FI(1) 0.5820 0.5602 0.5740 0.5654 0.5827 0.5583 0.5445 0.5533 

ARFI(1,1) 0.5815 0.5531 0.5802 0.5635 0.5822 0.5574 0.5427 0.5505 

ARI-IV-HAR 0.5687 0.5275 0.5460 0.5488 0.5703 0.5697 0.5365 0.5614 

ARI-IV-ARFIMA 0.5754 0.5531 0.5645 0.5602 0.5775 0.5398 0.5299 0.5505 

HAR-ARFIMA 0.5763 0.5531 0.5669 0.5592 0.5798 0.5659 0.5398 0.5657 

ARI-SSA-HW 0.7166 0.7133 0.6874 0.8265 0.8788 0.6618 0.7716 0.7378 
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Table 9: Naïve trading strategy results - One-day ahead (January, 2005 to July, 2013). 

 

Implied Volatility Indices 

Model VCAC   VDAX   VFTSE   VIX   VSTOXX   VXD   VXJ   VXN   

IV-HAR -0.0021 

 

-0.0045 

 

-0.0035 

 

0.0000 

 

-0.0039 

 

-0.0012 

 

-0.0033 

 

-0.0030 
 IV-ARFIMA -0.0026 

 

-0.0041 

 

-0.0034 

 

0.0001 

 

-0.0029 

 

-0.0009 

 

-0.0037 

 

-0.0032 
 HW -0.0065 

 

-0.0079 

 

-0.0068 

 

-0.0059 

 

-0.0076 

 

-0.0059 

 

-0.0060 

 

-0.0053 
 SSA 0.0213 *** 0.0112 *** 0.0113 *** 0.0179 *** 0.0128 *** 0.0183 *** 0.0225 *** 0.0139 *** 

SSA-HW 0.0273 *** 0.0167 *** 0.0148 *** 0.0249 *** 0.0190 *** 0.0255 *** 0.0280 *** 0.0193 *** 

I(1) 0.0016 

 

-0.0067 

 

-0.0056 

 

-0.0053 

 

-0.0066 

 

-0.0054 

 

-0.0055 

 

-0.0076 
 ARI(1,1) 0.0014 

 

-0.0065 

 

-0.0068 

 

-0.0003 

 

-0.0074 

 

-0.0021 

 

-0.0063 

 

-0.0067 
 FI(1) 0.0023 

 

-0.0037 

 

-0.0030 

 

-0.0005 

 

-0.0024 

 

-0.0006 

 

-0.0032 

 

-0.0019 
 ARFI(1,1) 0.0013 

 

-0.0060 

 

-0.0032 

 

-0.0047 

 

-0.0040 

 

-0.0042 

 

-0.0033 

 

-0.0040 
 ARI-IV-HAR -0.0018 

 

-0.0062 

 

-0.0049 

 

-0.0010 

 

-0.0034 

 

-0.0007 

 

-0.0050 

 

-0.0031 
 ARI-IV-ARFIMA -0.0027 

 

-0.0046 

 

-0.0029 

 

-0.0009 

 

-0.0037 

 

-0.0006 

 

-0.0053 

 

-0.0033 
 HAR-ARFIMA -0.0013 

 

-0.0045 

 

-0.0032 

 

0.0007 

 

-0.0039 

 

0.0000 

 

-0.0029 

 

-0.0038 
 ARI-SSA-HW 0.0271 *** 0.0155 *** 0.0132 *** 0.0225 *** 0.0178 *** 0.0227 *** 0.0256 *** 0.0179 *** 

Note: The numbers denote net average daily profits having deducted the transaction costs. *** denotes significance at 1% level. 
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Table 10: Naïve trading strategy results - Ten-days ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX   VSTOXX   VXD VXJ VXN 

IV-HAR -0.0005 -0.0014 -0.0009 -0.0012 

 

-0.0011 

 

-0.0007 -0.0012 -0.0014 

IV-ARFIMA -0.0005 -0.0012 -0.0008 -0.0009 

 

-0.0014 

 

-0.0012 -0.0016 -0.0013 

HW 0.0019 0.0016 0.0028 0.0023 

 

0.0024 

 

0.0010 0.0021 0.0008 

SSA -0.0050 -0.0041 -0.0042 -0.0020 

 

-0.0018 

 

-0.0046 -0.0056 -0.0038 

SSA-HW 0.0041 0.0027 0.0034 0.0070 *** 0.0074 *** 0.0024 0.0046 0.0039 

I(1) -0.0035 -0.0044 -0.0044 -0.0035 

 

-0.0039 

 

-0.0037 -0.0043 -0.0039 

ARI(1,1) -0.0035 -0.0043 -0.0047 -0.0033 

 

-0.0037 

 

-0.0036 -0.0037 -0.0037 

FI(1) -0.0002 -0.0011 -0.0004 -0.0009 

 

-0.0006 

 

-0.0009 -0.0015 -0.0012 

ARFI(1,1) -0.0003 -0.0011 -0.0001 -0.0010 

 

-0.0006 

 

-0.0010 -0.0013 -0.0012 

ARI-IV-HAR -0.0005 -0.0016 -0.0014 -0.0012 

 

-0.0012 

 

-0.0008 -0.0015 -0.0015 

ARI-IV-ARFIMA -0.0005 -0.0010 -0.0007 -0.0011 

 

-0.0010 

 

-0.0014 -0.0016 -0.0016 

HAR-ARFIMA -0.0004 -0.0012 -0.0007 -0.0011 

 

-0.0010 

 

-0.0009 -0.0014 -0.0013 

ARI-SSA-HW 0.0041 0.0026 0.0033 0.0069 *** 0.0074 *** 0.0024 0.0046 0.0039 

Note: The numbers denote net average daily profits having deducted the transaction costs. *** denotes significance at 1% level. 
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Table 11: Options straddles trading strategy results - One-day ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX  VSTOXX VXD VXJ VXN 

IV-HAR 0.3885 0.0394 0.3744 -0.2494 0.6541 -0.1577 0.1977 0.0153 

IV-ARFIMA 0.4574 -0.0544 -0.2506 0.2125 0.1862 0.3394 0.2203 0.1313 

HW 0.1623 0.0009 -0.6765 -0.0019 -1.0273 0.1923 -1.3628 0.1229 

SSA 1.5345 0.5137 0.3608 1.8460 0.4259 1.5356 0.5840 1.7529 

SSA-HW 1.7328 0.6248 0.5820 1.8907 0.3808 1.8071 0.7806 1.5875 

I(1) -2.0262 -0.7400 -0.3316 1.1024 -0.3824 0.8889 -0.2549 1.3423 

ARI(1,1) -1.8083 -0.4687 -0.2150 0.7909 -0.0032 0.7287 -0.7495 0.9944 

FI(1) -1.8142 0.1899 0.4554 -2.9625 0.0091 -2.7395 0.4828 -3.3940 

ARFI(1,1) -2.2580 -1.2324 -0.5838 -1.7980 -0.6758 -1.6637 1.0054 -1.6315 

ARI-IV-HAR 0.6938 -0.7415 -0.4630 -0.7877 -0.2910 -0.7310 -0.3726 -0.7729 

ARI-IV-ARFIMA 0.9511 -0.0024 -0.1147 -0.5308 -0.3434 -0.2983 -0.7126 -0.4818 

HAR-ARFIMA 0.4385 0.7247 0.3523 -0.9026 0.4887 -0.9662 -0.7850 -0.9495 

ARI-SSA-HW 1.5479 1.1460 0.5106 1.3904 0.5783 1.0644 0.9666 1.2831 

Note: The numbers denote the cumulative returns,  ( )  
 

 
∑ ∑   

(    ) 
    

 ̌
   . Bold face fonts show the model with the 

highest profit levels.  
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Table 12: Options straddles trading strategy results - Ten-days ahead (January, 2005 to July, 2013). 

  

Implied Volatility Indices 

Model VCAC VDAX VFTSE VIX  VSTOXX VXD VXJ VXN 

IV-HAR -0.5497 0.6566 0.8921 -0.5788 1.1247 0.3138 0.8479 -0.1423 

IV-ARFIMA -0.2667 0.2404 -0.0174 0.1151 0.4626 -0.2959 0.1056 -0.1485 

HW 0.7565 -0.6068 -0.0908 1.3347 -0.1626 1.1698 -1.2018 0.9666 

SSA -2.0723 -0.3865 -0.7066 0.1139 0.2887 0.0829 -1.2985 -0.5859 

SSA-HW 1.2334 0.1431 -0.1499 2.9317 -0.9638 2.1831 0.1474 2.4445 

I(1) 0.3147 0.9410 1.0424 0.6917 1.0982 0.8261 -0.8306 0.9021 

ARI(1,1) 0.2484 1.1948 1.3231 0.4784 1.2422 0.7619 -0.8407 0.5526 

FI(1) -1.9666 -1.5651 -1.6662 -3.0783 -1.6858 -2.6482 0.7632 -2.8646 

ARFI(1,1) -1.5126 -1.3459 -1.4235 -2.3952 -1.3117 -1.9734 1.0257 -2.0601 

ARI-IV-HAR 0.9338 -0.2127 -0.0595 -0.5023 -0.2432 -0.5469 0.3673 -0.0450 

ARI-IV-ARFIMA 0.3410 0.0971 0.4348 -0.6181 -0.0043 -0.2464 -0.0656 0.1175 

HAR-ARFIMA 0.5185 0.5862 0.5435 -1.0072 0.2369 -0.6787 0.0039 -1.1432 

ARI-SSA-HW 2.0216 0.2577 -0.1219 2.5146 -0.0819 1.0519 0.9763 2.0063 

Note: The numbers denote the cumulative returns,  ( )  
 

 
∑ ∑   

(    ) 
    

 ̌
   . Bold face fonts show the model with the 

highest profit levels.  
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Appendix: Naive, ARFIMA and HAR models 

(1) Naïve models 

The I(1), ARI(1,1), FI(1) and ARFI(1,1) naïve models have been estimated in 

the following specifications. 

a) The IV-I(1) model is estimated in the form: 

, (A.1) 

where  and  denotes parameter for estimation.  

 

b) The IV-ARI(1,1) model is estimated in the form: 

, (A.2) 

where  and  and  denote parameters for estimation.  

 

c) The IV-FI(1) model is estimated in the form: 

, (A.3) 

where  and  and  denote parameters for estimation.  

 

d) The IV-ARFI(1,1) model is estimated in the form: 

, (A.4) 

where  and ,  and  denote parameters for estimation.  

 

(2) Single HW and SSA models 

The single HW model is similar to Eqs 4-7 of the main document, replacing 
rt

IV
,

 

with 
t

IV ;
 
i.e. it is estimated for the implied volatility series rather than each one of the 

components of the implied volatility series. 

For the SSA we follow the algorithm of Hassani and Thomakos (2010).  

 

(3) IV-ARFIMA model 

The long memory property of implied volatility indices makes the 

Autoregressive Fractionally Integrated Moving Average, or ARFIMA, model an 

appropriate framework for multiple-step-ahead implied volatility index, 
t

IV , 

    
tt

IVL  
0

log1

 2
,0~


 N

t 0


    
tt

IVLc  
01

log1

 2
,0~


 N

t 1
c

0


1-L( )
d

log IVt( )-b0( )=et

 2
,0~


 N

t 0
 d

     
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d
IVLLc  
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 2
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c
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predictions. The IV-ARFIMA(k,d,l) model for the discrete time t  real-valued process 

 
t

IVlog  is utilized in the form
11

: 

         
ttt

d
LDIVLLC 


1log11

1
xβ , 

 2
,0~


 N

t
, 

(A.7) 

where  



 1111

1
tttt

ydyx  is the vector of explanatory variables, β  is a vector 

of unknown parameters, and   




k

i

i

i
LcLC

1

,   




l

i

i

i
LdLD

1

 are polynomials with the 

parameters 
lk

ddcc ,...,,,...,
11

 for estimation. The 
t

y  denotes the log-returns of the 

underlying stock index and the 
t

d  is a binary dummy variable, i.e.  1
t

d , if 0
t

y

and zero otherwise
12

. 

We define the orders of k and l of the IV-ARFIMA(k,d,l) model based on the 

Schwarz (1978) information criterion (for the total sample)
13

, which is reported in 

Table A.1.  

[TABLE A.1 HERE] 

The IV-ARFIMA(2,d,1) model is estimated for all the IV indices, except for the 

VCAC, VXN and VXJ, for which the IV-ARFIMA(2,d,2) has been selected.  

 For the ARFIMA(2,d,1) model the one-step-ahead logarithmic implied 

volatility,  
tt

IV
|1

log


, is estimated as: 

       
tt

j

j

jtt

j

j

jtttt
dLALALcLcIVLccIV

|1

0

|

1

12

2121|1
ˆˆˆˆ1logˆˆlog  












 xβ

 (A.8) 

where 
 

   1ˆ

ˆ






jd

dj
A

j
, and 

tt |
  denotes the residual term at time t estimated based 

on the information set at time t, or      
121|

logˆˆlog



tttt

IVLccIV  

                                                           
11

  The ARFIMA model was initially developed by Granger and Joyeux (1980). 
12

  The dummy variable models the asymmetric relationship between volatility and lagged log-return; 

i.e. Degiannakis (2008b). 
13

 The models were estimated in the ARFIMA package of Ox; see Doornik and Ooms (2006). The 

Schwarz information criterion (SBC) is computed from the Akaike information criterion (AIC) 

provided by ARFIMA package:   2log
1




TqTAICSBC


, for T


 and q  denoting the number of 

observations and parameters of the models (including the residuals' variance), respectively. 
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 
tt

j

j

jtt

j
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



   xβ .
14

 The infinite expansion of the 

fractional differencing operator is approximated as (see Xekalaki and Degiannakis, 

2010): 
 

   
  ...1

!2

1

!1

1
1

1

2
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
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





LdddLL
jd

dj

j

j
. The parameters of the 

models  
lk

ddccd ,...,,,...,,,
11

β  are re-estimated at each trading day. 

 The 10-step-ahead logarithmic implied volatility is estimated as
15

: 

     
tt

j

j

jtt

j

j

jtttt
dLALAIVLccIV

|1
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9

|
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 . (A.9)  

For  2

,
,0~




tt
N , the  

t
exp  is log-normally distributed. Thus, Granger and 

Newbold (1976) showed that the exponential transformation of  
tst

IV
|

log
  is not 

theoretically optimal and proposed the   2

,|
ˆ

2
1logexp




sttst
IV


  as an optimal 

estimator of 
tst

IV
|

. However, Bårdsen and Lütkepohl (2011) provided both 

theoretical and empirical evidence that the optimal forecast will rarely result in RMSE 

reductions relative to the naïve forecast. They suggest that using the naïve forecast is 

the preferred option in applied work. For our study, we have proceeded to the 

estimation of both optimal and naïve forecasts. The adjustment factor 
2

,
ˆ

2
1




st   is 

relatively too small, providing almost identical results. Hence, we conclude to 

estimate the s-trading-day-ahead implied volatility forecasts as:  

  
tsttst

IVIV
||

logexp


 . (A.10)  

(4) IV-HAR model 

The Heterogeneous Autoregressive, or HAR, model relates the current trading 

day’s implied volatility with the daily, weekly and monthly implied volatilities. The 

autoregressive structure of the volatility over different interval sizes attempts to 

replicate the different perspectives that market participants may have on their 

                                                           
14

 Accordingly, the 
tt |1

 denotes the residual term at time t-1 estimated based on the information set at 

time t. 

15
 The s-step-ahead forecast, for s>2, is      

tt
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jtsttst
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investment horizon, which is the basic idea of the heterogenous market hypothesis in 

economic theory; see Müller et al. (1997). 

The IV-HAR, model for the discrete time real-valued process  
t

IVlog  is 

defined as
16

: 
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(A.11) 

where the 
3210

,,, wwww  are the unknown parameters to be estimated
17

. 

The IV-HAR model forecast for the 1-day-ahead is computed as: 
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 (A.12) 

The 10-days-ahead logarithmic implied volatility, based on IV-HAR model, is 

computed as: 
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Table A.1: The SBC criterion for various orders of the IV-ARFIMA(k,d,l) model. 

 
k=0 

l=0 

k=0  

l=1 

k=1  

l=0 

k=1  

l=1 

k=2  

l=1 

k=1 

 l=2 

k=2 

l=2 

k=3 

l=2 

k=2 

l=3 

VIX -2.338 -2.528 -2.607 -2.650 -2.664 -2.656 -2.661 -2.659 -2.659 

VSTOXX -2.415 -2.683 -2.817 -2.844 -2.863 -2.853 -2.861 -2.858 -2.858 

VFTSE -2.292 -2.549 -2.690 -2.724 -2.739 -2.730 -2.735 -2.733 -2.735 

VDAX -2.609 -2.906 -3.077 -3.108 -3.130 -3.114 -3.127 -3.125 -3.125 

VCAC -2.400 -2.609 -2.714 -2.759 -2.763 -2.760 -2.766 -2.758 -2.764 

VXN -2.606 -2.848 -2.966 -3.006 -3.018 -3.011 -3.019 -3.013 -3.016 

VXD -2.372 -2.564 -2.650 -2.698 -2.712 -2.702 -2.709 -2.706 -2.706 

VXJ -2.353 -2.483 -2.547 -2.618 -2.622 -2.620 -2.622 -2.619 -2.620 

Bold face fonts present the best order of the IV-ARFIMA(k,d,l) model. 

 

                                                           
16

  The HAR model initially developed by Corsi (2009). 
17

 The HAR model could be extended to accommodate heteroscedasticity in the error term, as in Corsi 

et al. (2005). However, the modeling of volatility of realized volatility is out of the scope of the paper. 


