
Discovering Candidates for Gene Network
Expansion by Distributed Volunteer Computing

Francesco Asnicar
DISI, University of Trento

f.asnicar@unitn.it

Luca Erculiani
DISI, University of Trento

Francesca Galante
DISI, University of Trento

Caterina Gallo
Dmath, University of Trento

Luca Masera
DISI, University of Trento

Paolo Morettin
DISI, University of Trento

Nadir Sella
DISI, University of Trento

Stanislau Semeniuta
DISI, University of Trento

Thomas Tolio
DISI, University of Trento

Giulia Malacarne
CRI

Fondazione Edmund Mach
giulia.malacarne@fmach.it

Kristof Engelen
CRI

Fondazione Edmund Mach
kristof.engelen@fmach.it

Andrea Argentini
Dpt. of Biochemistry, Ghent University

Dpt. of Medical Protein Research
VIB, Ghent

Valter Cavecchia
CNR-IMEM

Via alla Cascata 56/C Povo, Trento, Italy
valter.cavecchia@cnr.it

Claudio Moser
CRI, Fondazione Edmund Mach

S. Michele all’Adige, Italy
claudio.moser@fmach.it

Enrico Blanzieri
DISI, University of Trento

via Sommarive, 9 Povo, Trento, Italy
blanzier@disi.unitn.it

Abstract—Our group has recently developed gene@home, a
BOINC project that permits to search for candidate genes for
the expansion of a gene regulatory network using gene expres-
sion data. The gene@home project adopts intensive variable-
subsetting strategies enabled by the computational power pro-
vided by the volunteers who have joined the project by means of
the BOINC client, and exploits the PC algorithm for discovering
putative causal relationships within each subset of variables. This
paper presents our TN-Grid infrastructure that is hosting the
gene@home project. Gene@home implements a novel method
for Network Expansion by Subsetting and Ranking Aggregation
(NESRA), producing a list of genes that are candidates for the
gene network expansion task. NESRA is an algorithm that has: 1)
a ranking procedure that systematically subsets the variables; the
subsetting is iterated several times and a ranked list of candidates
is produced by counting the number of times a relationship is
found; 2) several ranking steps are executed with different values
of the dimension of the subsets and with different number of
iterations producing several ranked lists; 3) the ranked lists are
aggregated by using a state-of-the-art ranking aggregator. In our
experimental results, we show that a single ranking step is enough
to outperform both PC and PC*. Evaluations and experiments
are done by means of the gene@home project on a real gene
regulatory network of the model plant Arabidopsis thaliana.

Keywords—Volunteer Computing; Distributed Computing;
BOINC; Bioinformatics; Gene Network Expansion

I. INTRODUCTION

Gene expression data are accumulating at an increas-
ing pace and compendia that integrate different data source
are now available [26]. The causal relationships between
the expression levels of genes, however, are still far from
being completely characterized, even for model organisms.
The information about the causal relationships between the
gene expression levels can be organized in gene regulatory

networks [14]. Methods that can guide and suggest possible
candidates which regulate, or are regulated within a given
gene network are important in the biological research where
it is common to take into account prior knowledge about
a phenomenon. In particular, considering the gene network
that by knowledge or by hypothesis biologists assume to be
relevant, an expansion method, for example GENESYS [33],
can guide the discovery of candidate genes that can be causally
connected to the network.

The PC algorithm [30], whose name derives from the
initials of its authors is an algorithm that discovers causal
relationships among variables. In particular, the PC algorithm
is based on the systematic testing for conditional indepen-
dence of variables given subsets of other variables. It has
been comprehensively presented and evaluated by Kalish and
colleagues [17] who proposed it also for gene network recon-
struction purposes [22]. For this task, some modifications of
the original formulation of the PC were also proposed by other
authors [32], [31], [34], [36]. Existing other methods used for
gene network reconstruction comprises ARACNE [25], [24],
BANJO [13], and NIR [11]. Allen and colleagues [1] have
recently compared ARACNE with other competitors in the task
of large scale networks reconstruction and ARACNE proved
to be a state-of-the-art method.

The task of gene network expansion is different and
somehow more computationally demanding than performing
a pure gene network reconstruction. A Local Gene Network
(LGN) of an organism, is a subset of genes known to be
causally connected. Gene network expansion can be infor-
mally defined as: given a LGN, find other candidate genes
that are causally connected with the LGN. Once achieved a
good reconstruction of the overall network it is in principle
possible to use the information for deriving the expansion of a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Fondazione Edmund Mach

https://core.ac.uk/display/145642201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

given subnetwork. However, the reconstruction should be done
genome-wide with a considerable accuracy. On the contrary,
in many gene network reconstruction tasks [23] the relevant
genes to be included in the network are already known. When
applied to genome-wide scale the reconstruction methods are
computationally demanding and, as we will see here, not
accurate enough for the expansion task.

In this paper, we explicitly define the task of finding can-
didates for gene network expansion and we propose a method
that we called Network Expansion by Subsetting and Ranking
Aggregation (NESRA) that is based on the PC algorithm and
that we run on our project gene@home based on the BOINC
platform [2]. We evaluate NESRA on real data of the model
plant Arabidopsis thaliana.

The paper is organized as follows: Section II introduces
the main ideas of our approach and in Section III we detailed
both the TN-Grid platform and the gene@home project based
on volunteer distributed computing. Section IV presents the
NESRA algorithm, whose evaluation is described in Section V.
Finally, Section VI draws some conclusions providing future
insights for the gene@home project and the proposed meth-
ods.

II. GENE NETWORK EXPANSION

Given a set S of gene transcripts whose level of expression
has been measured p times such that for each si ∈ S there
is a vector xi ∈ Rp of expression levels, and let us assume
that there exists a golden truth direct graph G = (S,B) with
B ⊂ S×S that represents the real causal relationships between
the gene transcripts, it is possible to define the following tasks.

Task 1, Gene Network reconstruction. Given a subset of
transcripts N ⊆ S, find a (direct) graph G = (N,B) where
B ⊂ N ×N is a relation between the elements of N , and G
approximates the subgraph in G obtained considering just the
transcripts in N .

Task 2, Gene Network expansion. Given a graph G =
(N,B) where N ⊆ S and B ⊂ N × N is a causal relation
between the elements of N , find a graph G′ = (N ′, B′) such
that N ′ is a superset of N , B′ is a superset of B, and G′

approximates the subgraph G obtained considering just N ′.

Task 3, Discovery candidate genes for Gene Network
expansion. Given a graph G = (N,B) where N is a subset of
the transcripts of S and B ⊂ N ×N is a relation between the
elements of N , find a ranked list of elements of S \ N such
that the elements of the list are connected or very near to the
elements of N in G.

In our approach, the variables correspond to the genes and
the samples are the actual measures, or measure comparisons
against a reference, of the level of the expression in a given hy-
bridization. In this paper, we will consider Task 3, motivated by
the fact that in biological research the work is often guided by
prior knowledge about the relevance of some genes. Moreover,
a high-quality candidate short list would suffice because the
actual validation of the possible interactions requires a complex
mix of analytical and wet-lab techniques. It is worth to note
that a perfect solution for Task 1 encompassing the whole
genome would perfectly solve also Tasks 2 and Task 3 for
all the possible networks. In the same way a perfect solution

for Task 2 for a specific network would solve also Task 3.
However, the state-of-the-art methods are far from perfect
and a good solution for Task 3, in terms of precision of the
candidate lists would be useful whenever the whole network
and the interactions are still not known and Tasks 1 and 2 are
not solved.

III. TN-GRID AND THE GENE@HOME BOINC PROJECT

TN-Grid1 is a BOINC server installation that has been
thought and developed as an umbrella project, a service
platform to give to local research groups a guided access
to the power of the world-wide, volunteer-based, distributed
BOINC [2] computing network. TN-Grid is the result of a
joint effort made by two institutions of the Italian National
Research Council (CNR), namely the Institute of Materials
for Electronics and Magnetism (IMEM) and the Institute of
Cognitive Sciences and Technologies (ISTC), both having local
branches in Trento, Italy. At the time of writing, TN-Grid is
the only public, BOINC-based active project in Italy.

The gene@home project is the first one hosted in the
TN-Grid framework. It started as a collaboration between
the Edmund Mach Foundation (FEM) and the Department
of Information Engineering and Computer Science (DISI) of
the University of Trento, Italy. The actual development of the
gene@home project began as a course project in the academic
year 2013/2014 during the Laboratory of Biological Data
Mining course at the University of Trento, Italy. Gene@home
is a distributed computational biology project based on the
computation of the PC algorithm for the Gene Network Ex-
pansion task. The final goal of the project is the possibility to
automatically perform Gene Network Expansion tasks.

After having setup our BOINC server, we coded several
scripts to customize it accordingly to the needs of our project.
In particular, we designed and developed the work genera-
tor using Python. BOINC APIs however, are available only
through C++ libraries. For this reason, we implemented two
C++ programs that wrap the necessary BOINC functions for
the work generator. Our work generator is also responsible of
the creation of the workunits that are then distributed to the
volunteers. Because of this, the work generator has to predict
the duration of each workunit. The duration of a workunit is
not related to the execution time of a single PC run, its input
data, or its parameters. So far, we are using a function that
we obtained from a regression analysis on several workunits.
However, as soon as we change the organism, the LGN, or the
input data, we should re-do such analysis. To solve this issue
we planned to have a benchmarking system able to estimate the
duration of a workunit, making the work generator estimates
more precise.

One of the most relevant parts of our implementation is the
client application. The client application has been developed to
be portable on a number of different architectures (32 and 64
bit) and operating systems, such as: Linux, Windows, and Mac
OS. Our client application is actually a C++ implementation of
the skeleton function (Algorithm 1), functionally equivalent to
the one present in the “pcalg” R package [18], [15]. The choice
of implementing the PC algorithm in C++ led to a speed-up of
240 times in the execution, together with a reduced memory

1http://gene.disi.unitn.it/test/

TABLE I: BOINC statistics of the gene@home project taken
on four different days during the year 2014 and one time
point in the year 2015 (reference period: the previous seven
days). Date is represented as “dd/mm/yyyy”. Over: the total
number of returned results, Success: successfully computed,
Valid: validated results, Initial: pending validation, and Errors:
faulty results.

Date Over Success (%) Valid (%) Initial Errors
22/04/2014 15543 15392 (99.0%) 15340 (98.7%) 19 85
20/05/2014 69536 68621 (98.7%) 67096 (97.7%) 1450 89
16/12/2014 33232 31798 (96.2%) 29525 (88.8%) 2147 38
24/12/2014 91315 89536 (98.1%) 87584 (95.9%) 1716 61
27/03/2015 32062 30598 (95.4%) 29525 (92.1%) 865 34

consumption of about 10 times, when compared to the original
version present in the R package. During the implementation
and testing of the initial version of the gene@home project, we
had to face several issues, mainly related to the characteristics
of our project. One of them, in particular, is the amount of
data that needs to be exchanged between the server and the
users. We solved this problem with the help of the BOINC core
developers that implemented the possibility of compressing the
data during the upload and download phases. Subsequently, we
optimized our implementation to further reduce the amount of
data exchanged. When using a volunteer distributed system,
one should be concerned about the validity of the results
returned by the volunteers. On the gene@home server, we
perform a validation step on the returned workunits, available
in all BOINC systems. Because of the nature of our project,
we were not able to find a self-validation method to confirm
a result of a single workunit. For this reason, we are currently
using a double validation method that consists of sending each
workunit to two different volunteers. We then required the
returned results to be equal bit-wise.

A first step of the processing of the results is implemented
in the client application. As soon as a workunit finishes, a
first aggregation of the results of the workunit is performed.
This was also necessary in order to dramatically reduce the
size of the output file that the volunteers need to upload in the
gene@home server. The results collected with the gene@home
project undergo further offline processing developed into a
pipeline of Python and R scripts, that complete the analysis
of the partial results of each workunit.

In Table I we present some statical results of the BOINC
server collected in 5 different period of time. It is worth
to note the high percentage values of successfully computed
workunits, as well as the very low number of workunits that
reported an error.

IV. NESRA

The general approach used by NESRA is to systematically
and iteratively apply subsetting in order to compute several
ranked lists with varying iterated subsetting parameters. The
lists are then aggregated by means of a ranking aggregator. The
high-level structure of NESRA is described in Algorithm 1.
NESRA calls the ranking procedure (Algorithm 2) several
times with different parameters producing several rankings
that are then inputed to the ranking aggregation method for
producing a final list.

The ranking procedure has three steps, which respectively
create the subsets (Step 1), iterate several calls (Step 2) of
the skeleton procedure of the PC algorithm (Algorithm 3)
that processes the expression data of different subsets of
the overall transcripts, and finally, compute the transcripts
frequency that defines the order of each ranking (Step 3). The
ranking procedure takes as parameters the number of iterations
i and the dimension of the subset t as well as the significance
level α for the PC algorithm. The computational cost of the PC
algorithm is exponential, but it behaves reasonably in the case
of sparse networks [22] consequently the ranking procedure
requires relatively small values of t.

The ranking procedure is partially performed on the
BOINC platform with the exception of the frequencies com-
putation and the rankings aggregation that are implemented in
Python and R scripts, which run outside BOINC.

A. Variable Subsetting

Subsetting is a computational practice that has been used
in many domains including recently genomics [27]. It consists
of selecting from the available data a subset of the data to be
processed by the successive steps of the analysis. The idea in
itself is not new and it can be found, with different names, at
the very core of techniques such as bootstrapping or subsam-
pling like in bagging [4] or singling-out features like in random
forest [5] or in feature selection itself. We prefer here to call it
subsetting for the sake of clarity because we will specifically
focus on variable subsetting, namely different subsets of the
variables will be used for gene network reconstruction using
the PC algorithm. We avoid to call it subsampling because
subsampling does not affect the presence of a variable but
selects the samples of the variable. On the other hand, we do
not call it feature selection because, in this setting the gene is
not a feature that describes something, nor variable selection
because we do not select variables in any way that is not purely
random.

In NESRA subsetting is applied to genes to be selected for
the application of the PC algorithm. The iterated subsetting
will be systematic and controlled by two varying parameters
producing a ranked list of genes for each pair of parameters
values. Those rankings will be then aggregated.

B. Aggregation of ranked lists

The method that we propose as a solution, NESRA, ex-
ploits variable subsetting and ranking aggregation for tackle
the problem formulated in Task 3.

We applied different ranking aggregation methods on the
ranked lists. These methods are a simple technique such as
the number of appearances, and less simple methods such as
Borda Count [3] and MC4 heuristic [21], [9]. The baseline
method that we considered is the number of appearances
that counts in how many rankings a certain gene is present,
i.e. the more a gene is present, the higher its position in
the aggregated rank. The Borda Count method consists in
constructing a matrix whose elements bij are for each gene
si and ranking rj the rank of the gene si in the ranking rj .
After that a statistic for every gene is computed on the rows
of the matrix. The two statistical measures that we considered
are the mean (BC-mean) and the minimum (BC-min) of the

elements. MC4 heuristic is an aggregator based on Markov
chains and it consists in computing a transition matrix such
that the steady state of the chain assigns a higher probability
to the elements with higher rank. MC4 has as parameter the
significance level αMC4.

C. The use of the gene@home project

NESRA exploits the gene@home project for computing
the first two steps of the Algorithm 2. In details, the tiles
creation (Step 1) is implemented in the work generator of
the gene@home, while the application of the PC (Step 2) is
implemented in the client application, running on the volunteer
computers. A first aggregation of the results is then performed
on the volunteer’s computers, as soon as the workunit finishes.
The complete processing of the results is then performed
offline from BOINC by means of Python and R scripts.

Algorithm 1: NESRA.
Data: S set of candidate transcripts, SLGN set of LGN

transcripts, E expression data
Input: I set of values of number of iterations, D set of

values of the subset dimension, A set of values
of the significance level α, k maximum lenght
of the lists

Result: ordered list of candidate transcripts
L← ∅ // L set of ordered lists
foreach α ∈ A do

foreach d ∈ D do
foreach i ∈ I do

L← L∪ Ranking Procedure(S, SLGN , E,
i, d, α) // call Algorithm 2

L← top(L, k) // cut each list in L to
the first k elements
return Ranking aggregation(L)

V. EVALUATION OF NESRA ON Arabidopsis thaliana

In our evaluation of NESRA, we used the Flower
Organ Specification Gene Regulatory Network (FOS) of the
model plant Arabidopsis thaliana. The FOS gene network
has been characterized and validated in vivo by the use
of specific mutants [10], and it encompasses 15 genes
(AT3G02310.1, AT1G69120, AT5G61850, AT1G30950,
AT1G65480, AT5G15800, AT5G-60910, AT5G20240,
AT4G36920, AT3G54340, AT2G17950, AT1G24260,
AT5G11530, AT4G18960, AT5G03840.1) linked by 54
causal relationships [28]. Gene Expression Data for testing
the algorithms were selected from the A. thaliana microarray
expression data publicly available in the Plex database [8].
The dataset consists of 393 hybridization experiments of the
GeneChip Arabidopsis ATH1 Genome Array that contains
22810 probe sets.

NESRA was run on the A. thaliana data as well as three
competitors: PC, PC*, and ARACNE. The quality of the
output list of NESRA and of the competitors was assessed
by comparison with the available literature. A bibliographic
search and classification of the genes provided in output by
NESRA and by the competitors led to four classes: Class 1:

Algorithm 2: NESRA ranking procedure.
Data: S set of candidate transcripts, SLGN set of LGN

transcripts, E expression data
Input: i ≥ 1 number of iterations, t subset dimension,

α significance level
Result: l, ordered list of candidate transcripts
N ← |S|
n← |SLGN |
L← ∅
foreach g ∈ S do

pg = i
fg = 0

foreach j, 1 ≤ j ≤ i do
// Step 1: tiles creation

Stemp ← S
foreach h, 1 ≤ h ≤ bN/tc do

while |Th,j | < t do
random select g ∈ Stemp
Th,j ← Th,j ∪ {g}
Stemp ← Stemp \ {g}

if remainder(N/t) 6= 0 then
h← bN/tc
while Stemp 6= ∅ do

random select g ∈ Stemp
Th+1,j ← Th+1,j ∪ {g}
Stemp ← Stemp \ {g}

while |Th+1,j | < t do
random select g ∈ S \ Th+1,j

Th+1,j ← Th+1,j ∪ {g}
pg ← pg + 1

foreach j, 1 ≤ j ≤ i do
// Step 2: PC application

foreach h, 1 ≤ h ≤ dN/te do
Nh,j = PC(Th,j , E, α) // call Algo 3

foreach g ∈ S do
// Step 3: Transcripts frequency

computation
foreach q ∈ SLGN do

foreach j, 1 ≤ j ≤ i do
foreach h, 1 ≤ h ≤ dN/te do

if g ∈ AdjNh,j
(q) then

// adjacent nodes of q in
Nh,j
l← l ∪ {g}
fg ← fg + 1

f ′g = fg/(pg ∗ n) // Normalized frequency

return l ordered w.r.t. f ′g

genes reported to be biologically or functionally related to the
LGN; Class 2: genes not reported to be directly related with the
input network, but reported to be related with genes of Class 1;
Class 3: genes described in literature, but reported not to be
related with the input network or with the genes of Class 1;
Class 4: genes not described in the available literature. A gene

Algorithm 3: PC Algorithm: skeleton procedure [17].
Data: T, Set of transcripts, E expression data
Input: Significance level α
Result: An undirected graph with causal relationship

between transcripts
Graph G← complete undirected graph with nodes in T
l← −1
while l < |G| do

l← l + 1
foreach ∃u, v ∈ G s.t. |AdjG(u) \ {v}| ≥ l do

// AdjG(u) adjacent nodes of u in
G
if v ∈ AdjG(u) then

foreach A ⊆ AdjG(u) \ {v} s.t. |A| = l do
if u, v are conditionally independent
given A w.r.t. E with significance level α
then

remove edge {u, v} from G

return G

TABLE II: A. thaliana, FOS network. Lists length and preci-
sion of the competitors, PC and PC*. PC values are mean and
standard deviation of the 20 runs.

Lists Length Precision
PC, 20 runs 54.20± 1.28 0.40± 0.05
PC* 44 0.43

falling in Class 1 or Class 2 is considered to be a true positive
and a gene in Class 3 or Class 4 a false positive. Precision is
defined as the ratio between the number of true positives and
the sum of true positives and false positives.

PC, PC*, and ARACNE solve the task of gene network
reconstruction. For obtaining list of candidate genes for the
expansion we considered all the genes that are connected to
FOS genes in the resulting overall network. ARACNE was run
with default parameters and the list was ranked according to
the p-values that ARACNE itself provides. The PC algorithm
was repeated 20 times shuffling the order of the input probe
sets, given its dependency on the order. The results of the PC
and PC* are reported in Table II, note that PC had a mean
length of the list of 54.2 and so we took 55 as a cut-off for
ARACNE and NESRA for sake of comparison. PC* found 44
genes, and since it is order independent we could not retrieve
a result with 55 probes. We reported the result of ARACNE
in Table IV because we used the p-values to evaluate the list
at different cut-off values.

For NESRA we tried five different ranking aggregators:
one based on the number of appearances in the 55-long lists
used as baseline, two based on Borda Counts, BC-mean and
BC-min, and then two based on the MC4 with two significance
level values: αMC4 = 0.05 and αMC4 = 0.01.

The sets of parameters I , D, and A (see Algorithm 1) used
by NESRA for numbers of iterations, subset dimensions, and
the significance level are: I = 100, 250, 500, 1000, 1500, 2000,
D = 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, and
A = 0.05, respectively.

An example of the output list of a run of NESRA is shown
in Table III, where we aggregated 60 different rankings. In
order to assess the stability of NESRA we repeated it 30 times
with selected parameters, mean and standard deviations of the
results are presented in Table IV.

MC4 and BC-mean present in general very good results.
BC-min instead, gives more variable outputs, sometimes show-
ing better results (k = 5), but in other cases behaving as the
baseline method (k = 20 or k = 55). The results in Table IV
show also that, regardless of the aggregation method used,
NESRA founds more correct genes (genes belonging to either
Class 1 or Class 2) in the first 20 positions (k = 5, 10, 20)
compared to ARACNE. ARACNE instead, founds correct
genes only when considering a longer list (k = 55).

VI. CONCLUSIONS

We have presented the TN-Grid platform that is hosting the
gene@home BOINC project. In particular, the gene@home
project has been developed with the idea of automatically
perform the Gene Network Expansion task. The gene@home
project, so far, is running only on the CPUs of the volunteers’
computers. As a future improvement of the gene@home, we
developed and tested a parallel version of PC* for executing
on the Graphics Processing Unit (GPU). The choice of imple-
menting PC* instead of PC is due to its independence with
respect to the order of the input.

We also presented NESRA that is a new method that
exploits variable subsetting and ranking aggregation to find
candidate genes for the expansion of gene networks. The
method relies on the BOINC platform for running the PC
algorithm while all the other post-processing, ranking and
aggregation analyses, are performed offline. The evaluation on
the FOS gene network of the model plant Arabidopsis thaliana
shows good results, and when the results are compared to the
biological literature, NESRA outperforms the competitors. In
general, NESRA can be used to find candidate variables that
are causally connected to other variables and it has proved
to work with more than 20000 variables. We foresee the
application of NESRA also in other biological domains.

REFERENCES

[1] J. D. Allen, Y. Xie, M. Chen, L. Girard, and G. Xiao. Comparing
statistical methods for constructing large scale gene networks. PLoS
ONE, 7(1):e29348, 2012.

[2] D. P. Anderson. BOINC: A system for public-resource computing and
storage. In Proceedings of the 5th IEEE/ACM International Workshop
on Grid Computing, GRID ’04, pages 4–10, Washington, DC, USA,
2004. IEEE Computer Society.

[3] J. Borda. Mémoire sur les élections au Scrutin. Histoire de l’ Académie
Royale des Sciences, 1781.

[4] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[6] X. Cai et al. A putative CCAAT-binding transcription factor is a

regulator of flowering timing in Arabidopsis. Plant Physiol., 145(1):98–
105, Sep 2007.

[7] L. Q. Chen et al. Sucrose efflux mediated by SWEET proteins as a key
step for phloem transport. Science, 335(6065):207–211, Jan 2012.

[8] S. Dash, J. Van Hemert, L. Hong, R. P. Wise, and J. A. Dickerson.
PLEXdb: gene expression resources for plants and plant pathogens.
Nucleic Acids Res., 40(Database issue):D1194–1201, Jan 2012.

TABLE III: A. thaliana, FOS network. Example of output list of NESRA with ranking aggregation method MC4 with αMC4 =
0.01 with precision 0.90 with k = 5 and 0.80 with k = 10.

Rank AffyID Gene Annotation Class
1 259089 at AT3G04960 similar to unknown protein Class 1 [20]
2 255644 at AT4G00870 basic helix-loop-helix (bHLH) family protein Class 2 [16]
3 265441 at AT2G20870 cell wall protein precursor Class 1 [6]
4 267528 at AT2G45650 AGL6 (AGAMOUS LIKE-6) Class 1 [35]
5.5 245571 at AT4G14695 unknown protein Class 4
5.5 249939 at AT5G22430 similar to unknown protein Class 1 [37]
7 245842 at AT1G58430 RXF26 Class 1 [29]
8 248496 at AT5G50790 ATSWEET10 Class 3 [7]
9 264180 at AT1G02190 CER1 protein Class 1 [12]
10 261375 at AT1G53160 SPL4 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 4) Class 1 [19]

TABLE IV: A. thaliana, FOS network. NESRA precisions (mean and standard deviation) on 30 different runs with the sets of
parameters: values of iterations I ′ = 100, 500, 2000 and subset dimensions D′ = 1000, 2000.

Aggregation Method k=5 k=10 k=20 k=55
N of appearances 0.54± 0.054 0.54± 0.054 0.53± 0.060 0.42± 0.015
BC-mean 0.90± 0.098 0.65± 0.049 0.63± 0.038 0.43± 0.016
BC-min 0.86± 0.098 0.68± 0.038 0.60± 0.053 0.43± 0.021
MC4 (αMC4 = 0.05) 0.88± 0.098 0.65± 0.049 0.63± 0.038 0.42± 0.012
MC4 (αMC4 = 0.01) 0.88± 0.098 0.65± 0.049 0.63± 0.038 0.42± 0.012

ARACNE 0.20 0.30 0.35 0.45

[9] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank Aggregation
Methods for the Web. In Proceedings of the 10-th WWW Conference,
pages 613–622, 2001.

[10] C. Espinosa-Soto et al. A gene regulatory network model for cell-fate
determination during Arabidopsis thaliana flower development that is
robust and recovers experimental gene expression profiles. Plant Cell,
16(11):2923–2939, Nov 2004.

[11] T. S. Gardner et al. Inferring genetic networks and identifying com-
pound mode of action via expression profiling. Science, 301(5629):102–
105, Jul 2003.

[12] C. Gomez-Mena, S. de Folter, M. M. Costa, G. C. Angenent, and
R. Sablowski. Transcriptional program controlled by the floral
homeotic gene AGAMOUS during early organogenesis. Development,
132(3):429–438, Feb 2005.

[13] A. J. Hartemink. Reverse engineering gene regulatory networks. Nat.
Biotechnol., 23(5):554–555, May 2005.

[14] J. Hasty et al. Computational studies of gene regulatory networks: in
numero molecular biology. Nat. Rev. Genet., 2(4):268–279, Apr 2001.

[15] A. Hauser and P. Bühlmann. Characterization and greedy learning of
interventional Markov equivalence classes of directed acyclic graphs.
Journal of Machine Learning Research, 13:2409–2464, 2012.

[16] W. Hu, Y. Wang, C. Bowers, and H. Ma. Isolation, sequence analysis,
and expression studies of florally expressed cDNAs in Arabidopsis.
Plant Mol. Biol., 53(4):545–563, Nov 2003.

[17] M. Kalisch and P. Bühlmann. Estimating high-dimensional directed
acyclic graphs with the PC-algorithm. J. Mach. Learn. Res., 8:613–
636, May 2007.

[18] M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and
P. Bühlmann. Causal inference using graphical models with the R
package pcalg. Journal of Statistical Software, 47(11):1–26, 2012.

[19] S. Lal, L. B. Pacis, and H. M. Smith. Regulation of the SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 mod-
ule by the homeodomain proteins PENNYWISE and POUND-
FOOLISH in Arabidopsis. Mol Plant, 4(6):1123–1132, Nov 2011.

[20] J. Y. Lee, S. F. Baum, J. Alvarez, A. Patel, D. H. Chitwood, and J. L.
Bowman. Activation of CRABS CLAW in the Nectaries and Carpels
of Arabidopsis. Plant Cell, 17(1):25–36, Jan 2005.

[21] S. Lin. Rank Aggregation Methods. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(5):555–570, 2010.

[22] M. H. Maathuis et al. Predicting causal effects in large-scale systems
from observational data. Nat. Methods, 7(4):247–248, Apr 2010.

[23] D. Marbach et al. Wisdom of crowds for robust gene network inference.
Nat. Methods, 9(8):796–804, Aug 2012.

[24] A. A. Margolin et al. ARACNE: an algorithm for the reconstruction
of gene regulatory networks in a mammalian cellular context. BMC
Bioinformatics, 7 Suppl 1:S7, 2006.

[25] A. A. Margolin et al. Reverse engineering cellular networks. Nat Protoc,
1(2):662–671, 2006.

[26] P. Meysman et al. COLOMBOS v2.0: an ever expanding collection
of bacterial expression compendia. Nucleic Acids Res., 42(Database
issue):D649–653, Jan 2014.

[27] L. A. Peternelli. Cost-effective implementation of genomic selection by
subsetting snp markers. In Plant and Animal Genome XXIII Conference.
Plant and Animal Genome, 2015.

[28] Y. E. Sanchez-Corrales et al. The Arabidopsis thaliana flower organ
specification gene regulatory network determines a robust differentiation
process. J. Theor. Biol., 264(3):971–983, Jun 2010.

[29] J. X. Shi et al. SHINE transcription factors act redundantly to pattern
the archetypal surface of Arabidopsis flower organs. PLoS Genet.,
7(5):e1001388, May 2011.

[30] P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse
causal graphs. Social Science Computer Review, 9:62–72, 1991.

[31] M. Tan, M. Alshalalfa, R. Alhajj, and F. Polat. Influence of prior
knowledge in constraint-based learning of gene regulatory networks.
IEEE/ACM Trans Comput Biol Bioinform, 8(1):130–142, 2011.

[32] M. Tan et al. Combining multiple types of biological data in constraint-
based learning of gene regulatory networks. In Computational Intelli-
gence in Bioinformatics and Computational Biology, 2008. CIBCB ’08.
IEEE Symposium on, pages 90–97, Sept 2008.

[33] A. Tanay and R. Shamir. Computational expansion of genetic networks.
Bioinformatics, 17 Suppl 1:S270–278, 2001.

[34] M. Wang et al. Inferring large-scale gene regulatory networks using a
low-order constraint-based algorithm. Mol Biosyst, 6(6):988–998, Jun
2010.

[35] S. L. Yoo et al. AGAMOUS-LIKE 6 is a floral promoter that negatively
regulates the FLC/MAF clade genes and positively regulates FT in
Arabidopsis. Plant J., 65(1):62–76, Jan 2011.

[36] X. Zhang et al. Inferring gene regulatory networks from gene expres-
sion data by path consistency algorithm based on conditional mutual
information. Bioinformatics, 28(1):98–104, Jan 2012.

[37] M. Zik and V. F. Irish. Global identification of target genes regulated
by APETALA3 and PISTILLATA floral homeotic gene action. Plant
Cell, 15(1):207–222, Jan 2003.

