

**Do ecosystem services have a biological cost?** Ozone and climate regulation by Norway spruce forests along an Alpine altitudinal transect in Trentino, northern Italy

#### Elena Gottardini, Fabiana Cristofolini, Antonella Cristofori

Research and Innovation Centre, Fondazione Edmund Mach (FEM) San Michele all'Adige, Trento, Italy



#### Marco Ferretti

TerraData environmetrics Monterotondo M.mo, Grosseto, Italy



# Scheme of the presentation

- Introduction
  - Ozone and impact on ecosystem services provided by forests
- The study on *Picea abies* along an altitudinal transect on Alps
  - Study design
  - Measurements of environmental and tree response variables
- Results
  - Environmental variables
  - Ozone removal
  - Relationship between ozone removal and
    (i) structural/environmental variables
    (ii) tree responses
- Discussion
  - Functional interpretation of monitoring data
  - Possible biological costs of removing ozone



# Introduction



services

of forests

- Slope stability
- Water cycle regulation
- Carbon storage
- Climate regulation
- Air pollutant removal

#### **Ecosystem services**

#### benefits people obtain from ecosystems



# Introduction



#### **Ecosystem services**

benefits people obtain from ecosystems



- Ozone can potentially affect the vegetation:
- phytotoxicity
- high values
- wide distribution in remote areas
- Forests may reduce ozone through stomatal and non-stomatal deposition



# Aim of the study is to assess the size of ozone regulating services provided by forests:

i) the portion of ozone removed by vegetationii) if ozone removal may have a biological cost for plants

# Scheme of the presentation

- Introduction
  - Ozone and impact on ecosystem services provided by forests
- The study on *Picea abies* along an altitudinal transect on Alps
  - Study design
  - Measurements of environmental and tree response variables
- Results
  - Environmental variables
  - Ozone removal
  - Relationship between ozone removal and
    (i) structural/opvironmental variables
    - (i) structural/environmental variables
    - (ii) tree responses
- Discussion
  - Functional interpretation of monitoring data
  - Possible biological costs of removing ozone



# Study design

Fully randomized study on Norway spruce along an **altitudinal gradient** (900 - 1600 m a.s.l.) in Trentino, north Italy



Italy



# Study design

Fully randomized study on Norway spruce along an **altitudinal gradient** (900 - 1600 m a.s.l.) in Trentino, north Italy



ha



# Study design



#### Statistical selection of:

- 3 + 1 sites (open area)
- 3 x 3 plot (forest)



## **Environmental variables**



In each forest plot and open area, measurement at 2 m of:

#### Passive sampling:

- Ozone
- Nitrogen dioxide
- Data logger:
- Temperature
- Relative humidity

Period: May - August 2013

## **Tree response variables**



#### **Tree health**

Crown condition (n=27 trees)

#### Productivity

- Needle weight (n=9 trees, 900 needles per tree, C0)
- Shoot length (n=9 trees, 45 shoots per tree, C0)

#### **Photosynthetic efficiency**

 Chl a fluorescence (n=9 trees, 15 shoots per tree, C0 and C1)

Fv/Fm = maximum quantum yield efficiency



# Scheme of the presentation

- Introduction
  - Ozone and impact on ecosystem services provided by forests
- The study on *Picea abies* along an altitudinal transect on Alps
  - Study design
  - Measurements of environmental and tree response variables

#### Results

- Environmental variables
- Ozone removal
- Relationship between ozone removal and
  (i) structural/environmental variables
  (ii) tree responses
- Discussion
  - Functional interpretation of monitoring data
  - Possible biological costs of removing ozone



### Altitudinal profile of T and RH concentration



# Altitudinal profile of NO<sub>2</sub> concentration

- Nitrogen dioxide concentration decreased with altitude, both inside and outside forests.
- Concentrations are very low (1.4 ug m<sup>-3</sup>)



## Altitudinal profile of ozone concentration

- Ozone concentration increased with altitude, both inside and outside forests.
- Lower ozone concentrations within the forest (64.8 ug m<sup>-3</sup>) than in open areas (74.5 ug m<sup>-3</sup>) (P<0.001)</li>



## **AOT40** estimation





#### **AOT40: differences between open areas and forest**



#### **AOT40: differences between open areas and forest**



• Is there a relationship between ozone removal and environmental/structural factors?

- Elevation
- Ozone concentration
- LAI
- Tree circumference



#### **Ozone removal vs. environmental/structural factors**



 Is there a biological "cost" for plants because of ozone removal?

Response indicators:

- Trasparency
- Shoot lenght, needle wheight
- Chlorophyll fluorescence



#### Ozone removal vs. tree responses



#### Elevation vs. tree responses



#### **Relationship among tree responses**





Nested within such a superimposed effect of the elevation, the various response indicators were related to each other

# Scheme of the presentation

- Introduction
  - Ozone and impact on ecosystem services provided by forests
- The study on *Picea abies* along an altitudinal transect on Alps
  - Study design
  - Measurements of environmental and tree response variables
- Results
  - Environmental variables
  - Ozone removal
  - Relationship between ozone removal and
    (i) structural/environmental variables
    (ii) tree responses
- Discussion
  - Functional interpretation of monitoring data
  - Possible biological costs of removing ozone



# Functional interpretation of monitoring data



# Functional interpretation of monitoring data



# Functional interpretation of monitoring data



## Possible biological costs of removing ozone

- Vegetation provides ecosystem services  $\rightarrow$  ozone removal
- Ozone removal resulted:
  - slightly dependent on elevation and on ozone concentration
  - slightly associated to lower productivity and photosynthetic activity, and higher crown transparency
- Thus, ozone removal seems to have a slight (if any) "biological cost"
- Plants are able to play an important role in regulating services like ozone removal - also where environmental conditions are more stressful
- Side findings: data suggest a possible functional interpretation of forest health monitoring data

# Acknowledgments

# Forest and Fauna Service of Autonomous Province of Trento

## Parco Naturale Paneveggio, Pale di San Martino

