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Trade-time based measures of liquidity

Abstract

Dramatic microstructure changes in equity markets have made standard liquidity
measures less accurate proxies of trading costs. We develop trade-time based liquidity
measures that reflect per-dollar price impacts of fixed-dollar volumes. Our measures
better capture institutional trading costs and better explain the cross-section of re-
turns than do standard measures, especially in recent years. Despite improvements in
measures of market quality, expected trading costs still have explanatory power for the
cross-section of expected returns: we obtain monthly liquidity premium estimates of
5.3bp for expected returns and 2.4bp for risk-adjusted returns. Estimated premia rise
after the financial crisis and remain high thereafter.

JEL Classification: G12, G14.



I Introduction

In the new millennium, U.S. equity markets have undergone revolutionary institutional and

technological changes. Regulatory changes, including decimalization,1 combined with mas-

sive increases in computer power have led to algorithmic trading, explosions in sub-second

(low-latency) order submissions and cancellations, and large increases in trading volume.

These changes transformed the nature of liquidity provision,2 and greatly improved many

measures of market quality.3 In this paper, we ask: Given these radical changes, what has

happened to the liquidity premia that traders demand in return for holding less liquid assets?

The challenge with addressing this question is that the changes in the trading envi-

ronment have reduced accuracies of traditional liquidity measures4 as proxies of trading

costs. Institutional traders now employ sophisticated algorithmic trading strategies that

finely split orders over time; thus, traders care about the cumulative cost of the resulting

transactions. These trading strategies respond sensitively to variations in extant liquidity,

leading to dramatic variations in how fast trading takes place. We develop measures of liq-

uidity that aggregate over trade-times of stock-specific fixed dollar volumes rather than fixed

calendar-time intervals. Our measures are easy to construct; and encapsulate the feature

that execution algorithms adjust according to available liquidity, relying on more aggressive

orders when liquidity is abundant and employing passive orders in less-liquid times. Relative

to traditional measures, we establish that: (i) our trade-time based liquidity measures better

capture trading costs than standard liquidity measures in a stylized dynamic trading model

that incorporates key features of the data; and (ii) our measures are more strongly corre-

1Goldstein and Kavajecz (2000) and Jones and Lipson (2001) study how decimalization, which reduced
the tick size to a penny, affected trading costs.

2Traditional market makers ceased to exist; for example, specialists on the NYSE have been replaced by
Designated Market Makers (DMMs) and Supplemental Liquidity Providers (SLPs), who are not subject to
negative obligations.

3Hendershott et al. (2011) show that, especially for large stocks, increases in algorithmic trading
improved stock liquidity. Hasbrouck and Sarr (2013) find that increased low-latency trading improves
market quality measures. Also, O’Hara et al. (2014) and Conrad et al. (2015), among others, find that
aspects of market quality such as price discovery and market resiliency, improve as algorithmic trading
dominates. Angel et al. (2011) document that improvements in measures of liquidity post-decimalization in
2001 did not continue after implementation of Reg-NMS in 2007.

4For example, spread measures, estimates of Kyle’s λ, or Amihud’s (2002) measure or more generally
measures that aggregate trade information over calendar-time intervals.
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lated with estimates of institutional trading costs provided by Investment Technology Group

(ITG), a leading provider of institutional trade execution services. In asset pricing tests, our

measures outperform traditional liquidity measures in explaining cross-sections of expected

raw and risk-adjusted returns, especially in more recent years. We document economically

meaningful liquidity premia in 2001–2014, and establish that premia rose significantly after

the financial crisis and that they have remained high since.

Motivation for our liquidity measures stems from the observation that standard liquidity

measures reflect trading environment features that no longer prevail. The minimum penny

tick now often binds, making spread measures noisy proxies of trading costs;5 and with

minimal depth, spreads matter less to investors seeking to establish large positions. The im-

plementation of Regulation ATS in 2000 and Regulation NMS in 2005 led to the growth in

alternative lit and dark trading, and a proliferation of order types. Sophisticated algorithms

now identify the optimal trading venue, order type (establishing positions by consuming and

providing liquidity), and order size, breaking “parent” orders into many “child” orders.6 The

resulting temporal-dependence in individual institutional trades can be exacerbated by high

frequency traders (HFTs) who exploit their cumulative price impacts.7 Traditional liquidity

measures also do not account for the fact that, due to these execution strategies, cumula-

tive trading costs realize over variable time horizons according to how quickly algorithms

complete executions of target positions in response to extant liquidity.8

We develop a measure of stock liquidity that (i) addresses temporal dependence of trades,

and (ii) accounts for how institutional trading strategies vary with extant liquidity. Our sim-

5Cross-stock distributions of dollar spreads are truncated at 1¢: over 40% of quoted spreads are at
the penny minimum. As a result, cross-sectional variations in relative spreads are driven increasingly by
cross-stock variation in share prices, and not variations in dollar spreads.

6See O’Hara (2015) who analyzes institutional orders worked by ITG’s order execution algorithms.
7See Hendershott et al. (2011), O’Hara (2015), and Boulatov et al. (2016)).
8Moreover, the dominance of low-latency quote submission and cancellation necessitates sub-second time

stamps when constructing traditional quote-based liquidity measures such as effective spreads or Kyle’s
λ, requiring researchers to deal with massive quoted price data sets. Even if one does this, one must still
confront the dilemma that in a highly-fragmented market place, the lack of sub-second connections between
trading venues makes it almost impossible to accurately match transaction prices with the most recent
prevailing midpoint prices in order to distinguish between liquidity demanders/providers, i.e., to correctly
determine “NBBO” at sub-second frequencies (O’Hara (2015)). Moreover, the often “flickering and fleeting”
posted quotes only give an indication of the likely price, not a guarantee.
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plest measure, BBD, captures average per-dollar absolute returns of fixed-dollar volumes.

To construct BBD, we first group a stock’s transactions into successive trade sequences

whose cumulative dollar volumes correspond to a fixed proportion of stock’s market cap-

italization at the end of previous month. By setting target dollar values proportional to

market capitalization, we can aggregate by “enough” to address temporal dependence of

transactions, but not by so much as to mix very different levels of trading activity. We also

consider a more sophisticated version of BBD that accords with the benchmarks set by many

execution algorithms. To construct this measure, dubbed WBBD, we calculate the price

impact of a trade sequence using the difference between the volume-weighted average price

(VWAP) of the trades in the sequence and the sequence starting price. Constructing BBD

and WBBD uses transaction data that does not need to have sub-second time stamps.

The distinguishing feature of our approach is that, in contrast to traditional measures

that aggregate over fixed calendar-time intervals, we aggregate trade information over vari-

able trade-time intervals that correspond to a fixed dollar value. We establish that shorter

trade-time intervals—indicative of greater trading activity—are associated with higher net

order flow imbalances, larger transaction sizes, but smaller price impacts (e.g., Kyle’s λ and

absolute returns (volatility)). Thus, passive orders are used more often in times of low liq-

uidity, giving rise to low trading activity, balanced order flow, and small transactions when

price impacts are large; while aggressive marketable orders are used more in high-liquidity

times, producing high trading activity, large order flow imbalances, and large transactions,

when price impacts are small. Grouping transactions in this way accords with the feature

that the order submission strategies of investors and HFTs adjust to reflect available liq-

uidity. Our method samples price impacts over shorter intervals when liquidity and trading

intensity is higher, aligning the sampling of price impacts with the actual intensity of liq-

uidity consumption—trading costs are realized over shorter horizons when liquidity is high,

and realized over longer horizons when liquidity is scarce.

BBD can be viewed as a trade-time analogue of Amihud’s (2002) measure that sam-

ples price impacts according to intradaily intensities of trading activity. One could instead

construct an Amihud measure with price changes and dollar volumes measured over fixed
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intraday time intervals, e.g., fifteen or thirty minutes. However, such a design assigns equal

weight to each fixed time interval regardless of the level of trading activity, and, importantly,

it can mix different trading conditions. High trading activity over a fixed time interval may

reflect volatile order flow driven by sequential arrivals of large orders on opposite sides that

offset each others’ price impacts. This feature manifests itself in the smaller signed trade im-

balances when volume is higher in a calendar-time interval. By lumping together orders with

opposing price impacts in active markets, calendar-time aggregation may lead to underesti-

mated price impacts. Trade-time aggregation is less prone to such over-aggregation in active

times because it is volume-indexed, and samples price impacts more often in more active

markets. This reduced over-aggregation manifests itself in the large signed trade imbalances

over trade-time intervals in active markets.

To convey why this makes the trade-time cumulative price impacts (absolute returns)

used to construct BBD less noisy proxies of trading costs than price impacts measured

over calendar-time intervals, we develop and simulate a dynamic model of trading. This

model also provides insights into the considerations entering the choice of aggregation hori-

zon. In our model (a) institutional trading drives order flow imbalance, and comprises a

significant portion of trading volume; (b) there is persistence in order size and sign; (c) sup-

ply of liquidity stochastically varies over time; and (d) public information arrival can move

prices. In these simulations, BBD always outperforms Amihud’s measure—and spreads-

based measures—in capturing trading costs.

To underscore that our measures are good proxies of institutional trading costs, we ex-

plore the cross-stock correlations between different liquidity measures and estimates of in-

stitutional trading costs from ITG. We find that BBD and WBBD are highly correlated

with ITG’s ACE (Agency Cost Estimator) estimates of institutional trading costs regardless

of the parent order size. Averaging ACE across all parent order size bins reveals that BBD

and WBBD have very high correlations of 0.82 and 0.83 with this measure of institutional

trading costs that exceed those for other liquidity measures. Relative quoted spread is more

strongly correlated with ACE measures for very small, retail-type, order sizes than are our

measures, but this correlation drops off sharply for larger orders; and the standard Amihud’s
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measure has a marginally higher correlation with ACE for very large and rare order sizes

than do BBD and WBBD, but its correlation is lower for smaller and mid-sized orders.

We then investigate which liquidity measures best explain cross-sections of expected re-

turns and risk-adjusted expected returns among NYSE-listed stocks between 2001 and 2014.

We first establish that most measures, including ours, explain these cross-sections. That

is, consistent with findings for earlier eras (e.g., Amihud and Mendelson (1996), Brennan

and Subrahmanyan (1996), Chordia et al. (2009), Amihud (2002), Hasbrouck (2009)), lower

characteristic liquidity is still associated with larger expected returns: despite the improve-

ments in market quality, measures of expected trading costs still have explanatory power for

expected returns. The estimated premia are economically meaningful: for example, relative

to a perfectly liquid idealized security, the median monthly liquidity premium estimates us-

ing WBBD are 5.3 basis points for expected returns and 2.4 basis points for risk-adjusted

expected returns. These results accord with Asparouhova et al. (2010, 2013)’s finding of

positive liquidity premia for U.S.-based stocks in the 2001–2006 period; although they con-

trast with the finding of Ben-Rephael et al. (2015), who were unable to discern any liquidity

premia on NYSE-listed stocks in recent years.9

We then show that BBD and WBBD better explain cross-sections of (risk-adjusted)

expected returns than do traditional measures. To do this, we first obtain the orthogonal

component of our two measures with each alternative measure (low- and high-frequency Ami-

hud measures, relative quoted and effective spreads, estimates of Kyle’s λ), and vice versa.

We then use these orthogonal components (residuals) separately as the explanatory variable

in an asset pricing framework. The orthogonal component of our measures has additional

explanatory power, whereas those of the other measures do not. The superior performances

of BBD and WBBD vis à vis other measures are quite pronounced in more recent years,

and they are not driven by any single year or two years of observations.

Having established that our measures better capture trading costs and better explain

9Their finding likely reflects the use of a variant of Amihud’s measure constructed at annual frequencies,
and that the measure obtained from a year is used to capture expected trading costs for all monthly return
observations of the following year, resulting in measurement error that biases their estimates toward zero.
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the cross-sections of returns, we explore the evolutions of liquidity premia based on them.

We find that liquidity premia rose significantly during and after the financial crisis, and

remained consistently high in post-crisis years. Concretely, monthly liquidity premia on ex-

pected returns based on WBBD rose from 3.8pb in 2001–2007 to 4.6bp in 2008–2014; but

focusing on the post-crisis years of 2010-2014, we find liquidity premia as large as 6.3bp.

Thus, despite the improvements found in measures of market quality, investors still demand

nontrivial compensation in return for holding less liquidity stocks.

The paper is organized as follows. Section II summarizes the related literature. Sec-

tion III explains explains the notion of trade time and develops our liquidity measures.

Section IV describes the data. Section V details the theoretical and empirical characteristics

of our trade-time measures. Section VI uses these measures in an asset pricing framework.

Section VII concludes. An appendix provides various robustness analyses.

II Related literature

We now relate our contribution to existing research on trade-time methodologies, and to

alternative empirical measures of liquidity.

Trade time. Our methodology contributes to the literature that maps equity market dy-

namics onto trade time space. Dufour and Engle (2000) examine the duration of time between

successive trades, showing that price adjustments are faster when trading intensity is high

(i.e., durations are short). Engle and Russell (1998) and Engle (2000) develop related models

of autoregressive conditional duration (ACD), which provide semi-parametric estimates of

trade intensities based on trade arrival rates. ACD models are designed primarily to estimate

the expected cost and time to execute a single order, submitted within a very short time

frame, rather than the cost of a series of orders submitted over longer periods of time.

Gouriéroux et al. (1999) use the time to sell or buy a predetermined volume or value of

stocks to study time-of-day patterns in liquidity on the Paris Bourse. While Gouriéroux et al.

(1999) and our paper both analyze trade sequences of a given value, the focuses differ: they

focus solely on the durations (trade time) of trade sequences, whereas we focus on the price
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changes that occur over these trade sequences. In addition, to deal with small sample issues,

they study sequences of trades that begin at every transaction. Thus, there is significant

overlap in their trade sequences, whereas our trade sequences are mutually exclusive.

To address temporal dependence of transactions driven by dynamic order-splitting strate-

gies, other researchers have developed alternative trade-time measures. Easley, Lopez de

Pardo, and O’Hara (2012) group consecutive trades across time to obtain a certain number of

fixed-volume groups (e.g., 50) per trading day.10 Within each group, the sign of price changes

over one-minute periods is used to infer buyer- versus seller-oriented trades, creating a mea-

sure of volume “toxicity”, VPIN. Feldhütter (2012) measures trading activity over periods of

time for corporate bonds. He develops a notion of an imputed round-trip trade, based on the

empirical feature that trades in corporate bonds often occur infrequently, but when they do

trade, there are often several trades of the same size in a short period of time. He argues that

these trades are likely linked and should be grouped together when measuring trading costs.

Measures of liquidity. Our study is the first to develop measures of stock liquidity based

some notion of trade time. To further motivate the relevance of trade-time based measures,

we next overview traditional liquidity measures and their use in empirical asset pricing, high-

lighting features that make these measures less informative in modern U.S. equity markets.

Quote-based measures have often been used for asset-pricing purposes. Amihud and

Mendelson (1986) show that when the standard tick size was one-eighth, bid-ask spreads

were priced and were reasonable measures of liquidity. Other quote-based liquidity measures

include effective bid-ask spreads, Roll’s (1984) measure, and Hasbrouck’s Gibbs estimate.11

Researchers have also estimated price impacts using variants of Kyle’s λ (Kyle (1985)) as

measures of liquidity (see Glosten and Harris (1988), Brennan and Subrahmanyan (1996), or

Pástor and Stambaugh (2003)); Bernhardt and Hughson (2002) structurally estimate price

impacts using a model whose equilibrium explicitly incorporates that orders are not pooled.

10Cross-day comparisons/aggregations of such volume buckets may be problematic because daily trading
volumes are highly variable.

11Effective bid-ask spreads measure the spread between the trade price and quote midpoint. Roll (1984)
shows how the tick size induces negative correlation in prices. Hasbrouck (2009) proposes a Bayesian
platform to generate a Gibbs estimate of Roll’s effective trading cost indicator.
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Chordia et al. (2011), Angel et al. (2011), Kim and Murphy (2013), Holden and Jacobsen

(2014), and others have raised questions about the accuracy of existing liquidity measures in

a low-latency trading world with tiny spreads and little depth.12 Today, liquidity concerns

do not revolve around avoiding minimum price ticks, so spreads do not capture liquidity from

that perspective. Algorithmic trading featuring both consumption and provision of liquidity,

and dynamic order-splitting combine to make consecutive trades dependent and complicate

interpretations of estimates of λ. In fact, recent evidence suggests that estimates of λ may not

be consistent with adverse selection interpretations: Collin-Dufresne and Fos (2015) find that

smaller price impacts on days where insiders trade, and Barardehi and Bernhardt (2017) find

that estimates of Kyle’s λ fall both over the trading day, and as trading activity rises.13 One

would expect the opposite if estimates of Kyle’s λ reflected pricing of asymmetric information.

Deuskar and Johnson (2012) propose a liquidity measure that uses information from the

cumulative depth in the limit order book, rather than just the inside quote. However, their

measure imperfectly captures dynamic order splitting, the use of hidden orders makes it

difficult to accurately measure depth, and over 25% of trade occurs off exchange. Today’s

high volume also means that instances of zero returns are rare, precluding their use as a

liquidity measure as in Mazza (2013).

Among low-frequency measures, Amihud’s measure remains widely used to study charac-

teristic and systematic liquidity (risk) in cross-sectional and time series settings.14 Goyenko

et al. (2009) show that Amihud’s measure remains useful post decimalization, in part because

at the aggregate daily level, dynamic order splitting issues are reduced. This advantage comes

at the cost of lost information and reduced accuracy. We regain some of this information and

associated explanatory power, by developing a trade-time analogue to Amihud’s measure.

12Holden and Jacobsen (2014) document realized dollar spreads and share depth of 0.88¢ and 564 shares,
respectively, for a sample of randomly selected stocks in 2008. These quantities have fallen further since then.

13Barardehi and Bernhardt (2017) also find that higher trading activity (shorter time durations of trade
sequences) is, on average, associated with (i) smaller BBD (and WBBD) magnitudes (reduced price
impact measures and return volatility), but (ii) larger average signed trade imbalances, and (iii) larger
average trade sizes. These findings indicate that short-term variations in liquidity provision are the primary
drivers of variations in trading activity and price impacts. They also find that price impacts of fixed-dollar
positions fall steadily over the trading day (by about 50%!), even though trading volume is ∪-shaped.

14See Jones (2002), Chordia, Roll, and Subrahmanyan (2000), Sadka (2006), Acharya and Pedersen
(2005), and Akbas, Armstrong, and Petkova (2011), among others.
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III Trade-time measures of stock specific liquidity

To start, we explain how we measure price impacts of fixed dollar volumes. For each stock,

these price impacts are measured over successive sequences of transactions, with all sequences

corresponding to a roughly fixed dollar volume, but spanning different time horizons due to

variations in trading activity.

First, we define a trade sequence. Each year, we number trades in stock j sequentially,

using index nj. For trade nj, we use τj(nj), Qj(nj) and Pj(nj) to denote respectively, (i)

its time measured in seconds from the beginning of the year, (ii) its size (in shares), and

(iii) its price. A trade sequence consists of consecutive transactions that have an aggregate

value of at least Vj,t for stock j in month t. Thus, a shorter time duration indicates a more

active market. We set Vj,t to be proportional to stock j’s market capitalization at the end

of the previous month, Mj,t−1. The first trade sequence begins with the first trade of the

year, and each subsequent trade sequence begins with the first trade following the previous

sequence. Figure 1 illustrates the patterns of dollar volume, cumulative dollar volume, and

prices, identifying trade sequences for a typical stock.

Formally, we iteratively solve for the last trade of the kth trade sequence, k = {1, 2, 3, . . .}, as:

nkj = argmin
n∗


n∗∑

n=nk−1
j +1

PC
j (n)×Qj(n)

∣∣∣∣∣∣∣
n∗∑

n=nk−1
j +1

PC
j (n)×Qj(n) ≥ Vj,t

 , (1)

where n0
j = 0 and the value of aggregate trades is measured using the previous day’s closing

price, PC
j (nj).

15 We use the previous day’s closing price to calculate dollar volumes to ensure

that contemporaneous price movements do not alter identification of trade sequences.16

We construct trade sequences that span two trading days, but exclude them from the

analysis. By calculating overnight trade sequences and then excluding them, we: (1) deliver

a random starting point for the first trade sequence of a given day, precluding any system-

atic bias; (2) circumvent issues associated with overnight price adjustments or information

15The last quoted bid-ask midpoint is used when the closing price is not available.
16Using the previous day’s closing price avoids introducing biases driven by current price movements. For

example, with rapidly increasing prices, using today’s prices can give rise to non-trivially growing dollar
volumes, causing a downward bias in the time duration of the corresponding trade sequence.
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C: Quoted price mid-point
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Figure 1: Illustration of trade sequence construction. Panel A presents the dollar volume
for a mid-sized stock, Acuity Brands Inc. (AYI) on September 22, 2011 over a two hour period.
Panel B shows how we aggregate trades into a trade sequence until cumulative dollar volume Vj,t is
reached. As dollar volumes vary over time in Panel A, durations of the associated trade sequence
vary in Panel B. Panel C shows evolutions of quoted price mid-point associated with transactions.

arrival;17 and (3) avoid combining trading activity levels from near close with those just after

17For instance, we do not need to adjust rj(k) for stock splits or dividend distributions.
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open, which typically differ.

We then obtain the time duration, i.e., trade time, of the kth trade sequence,

durj(k) = τj(n
k
j )− τj(nk−1j + 1), (2)

the corresponding VWAP,

VWAPj(k) =

nk
j∑

n=nk−1
j +1

Pj(n)×Qj(n)∑nk
j

n=nk−1
j +1

Qj(n)
, (3)

return,

rj(k) =
Pj(n

k
j )

Pj(n
k−1
j + 1)

− 1, (4)

volume-weighted return,

wrj(k) =
VWAPj(k)

Pj(n
k−1
j + 1)

− 1, (5)

and dollar value of the sequence,

DV OLj(k) =
∑nk

j

n=nk−1
j +1

PC
j (n)×Qj(n). (6)

The per-dollar price impact for stock j of the kth trade sequence is given by

DIMPj(k) =
|rj(k)|

DV OLj(k)
. (7)

We divide by DV OLj(k) rather than Vj,t because the size of the last trade, nkj , may

marginally exceed the level needed to obtain a total value of Vj,t.

Let Kj,t be the set of eligible trading sequences for stock j in the 3-month period ending

on the last day of month t, and let #Kj,t be the number of trade sequences in this set. Our

simplest trade-time measure of stock-specific liquidity for stock j in month t, is:

BBDj,t =

∑
k∈Ktj

DIMPj(k)

#Ktj

, (8)

i.e., the mean per-dollar price impact for stock j in month t associated with the fixed dollar

position, Vj,t. To capture better the realized cost of trading over the sequence, we also con-

sider the VWAP-based analogue of our per-dollar price impact measure, calculated as the

absolute volume-weighted return of a sequence scaled by its dollar volume:

WDIMPj(k) =
|wrj(k)|

DV OLj(k)
. (9)
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We form our VWAP-based trade-time measure of stock-specific liquidity, WBBDj,t,

by averaging VWAP-based price impacts across all trade sequences for stock j in month t:

WBBDj,t =

∑
k∈Ktj

WDIMPj(k)

#Ktj

. (10)

WBBDj,t modifies BBDj,t to account for the realized cost, relative to the original price, of

participating in trades at the actual trade sizes and prices observed over a trade sequence.

Thus, it picks up components of commonly-used implementation shortfall measures of in-

stitutional trading costs. In this sense, when used in an asset pricing framework, WBBD

captures realized costs and price impact, whereas BBD primarily captures price impact.

In our subsequent analysis, we compare BBD and WBBD to five alternative measures

of stock-specific liquidity:18

1. Amihud: The standard (low-frequency) Amihud measure (AMLj,t) for stock j in

month t is the rolling average of the daily per-dollar price impact (measured as the

absolute value of the stock’s realized daily return divided by its daily dollar volume)

during the 3-month period ending on the last day of month t.

2. High-frequency Amihud: Because AMLj,t aggregates over a trading day, it does not

exploit informative intraday variations in trading activity and prices. This leads us to

consider a high-frequency variant of AML based on observations of price changes and

dollar volumes from thirty-minute intervals, to address possible concerns about exces-

sive temporal aggregation in the low-frequency measure. We denote the high-frequency

(intraday) analogue by AMHj,t. To calculate it, we first compute the per-dollar price

impacts for a stock as the absolute realized returns divided by the corresponding exe-

cuted dollar trading volumes over thirty-minute intervals.19 The high-frequency Ami-

hud measure for stock j in month t is given by the rolling average of the per-dollar

price impacts in the 3-month period ending on the last day of month t.

18In unreported results, we construct various versions of BBD, using observations from different
time-of-day windows (e.g., near market open, middle of the day, and near market close) and trading activity
levels (time duration of a trade sequence is inversely related to trading activity). Each version of BBD
explains variations in expected returns, and all versions deliver qualitatively similar liquidity premia.

19We exclude the very few thirty-minute intervals with zero trading volume.
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3. Percentage bid-ask spreads: Average percentage bid-ask spreads (PSPj,t) are cal-

culated using a time-weighted average of spreads based on the NBBO at a one-second

frequency, on a daily basis. To be consistent with the other measures, the average

percentage spread in month t for stock j, denoted by PSPj,t, is given by the rolling

3-month average of spreads in months t, t− 1 and t− 2.

4. Kyle’s λ: The price impact measure λ based on Kyle (1985) is estimated following the

approach of Hasbrouck (2009).20 For a given stock, λ is estimated as the slope coeffi-

cient from a regression of five-minute stock returns, based on quote midpoints, on the

signed square-root of dollar volume over the corresponding five-minute period. Each

trade is signed using the Lee-Ready approach. For each stock j, we use an average of the

monthly regression coefficients for months t, t− 1, and t− 2 to estimate LAMBDAj,t.

5. Dollar-weighted percentage effective spreads: The effective spread of a trade is

twice the absolute value of the difference between the trade price and the prevailing

NBBO midpoint. Percentage effective spreads scale the effective spread by the mid-

point price.21 Our dollar-weighted percentage effective spreads measure for stock j in

month t, denoted by EPSPj,t, is given by the value-weighted average of percentage

effective spreads across all transactions executed during regular market hours for stock

j in the 3-month period ending the last day of month t.22

We scale the BBD, WBBD, AML, and AMH measures by a million for presentational

purposes. In Appendix D, we show that qualitatively identical findings obtain when we con-

struct measures of stock liquidity using observations from the current month, rather than

using three-month rolling averages.

20See Goyenko, Holden, and Trzcinka (2009) for additional details.
21Effective spreads are obtained using a modified version of the SAS code provided by Professor Craig

Holden on his website (https://kelley.iu.edu/cholden/), following the approach described in Holden
and Jacobsen (2014).

22Similar results obtain using percentage effective spreads, based on simple averages and share-weighted
averages. We also find that trade-time measures outperform dollar effective spreads (calculated based on
simple averages, dollar-weighted averages, or share-weighted averages) in explaining expected returns.
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A Choice of Vj,t

We focus on the time to execute a sequence of trades that for a firm j have an aggregate

value Vj,t equal to θ% of its market capitalization at the end of the previous month, Mj,t−1.

Our base formulation of θ = 0.04 generates a median duration (across stocks and years) of

about 30 minutes. Several considerations enter our base specification: (i) the positions are

large enough to control for dynamic order splitting and division of orders against the book;

(ii) the positions are not so large that a single trade sequence spans different activity levels;

(iii) the proportional specification facilitates cross-stock comparisons, and it accords with

the feature that institutional traders tend to establish larger positions in larger firms (see

Figure 2); (iv) the proportional specification flattens out the distribution of trade time across

market capitalizations (see Figure 3). As a result, trade sequence durations of small market

capitalization stocks are not too much longer, delivering enough observations for our analy-

sis. To verify that θ = 0.04 aggregates sufficiently to control for the positive autocorrelation

induced by dynamic order splitting, we estimate stock-specific return autocorrelations over

successive trade sequences, establishing that the mean autocorrelation is marginally negative

and insignificantly different from zero (see Appendix A).

An unreported robustness analysis verifies that our qualitative findings are not driven by

the choice of θ: similar findings obtain using θ = 0.03, θ = 0.05 or Vj,t = 0.00025Mj,t−1 +

$80, 000.23 To reinforce the fact that our findings are not driven by cross-sectional variation

in market-capitalizations, we also construct liquidity measures based on dollar volumes that

are the same for a group of stocks in a given month. Using the same fixed dollar-amount

based on a medium-sized stock’s market capitalization for all stocks would deliver too few

observations for small-cap stocks, and too many for large-caps. This leads us to create size

portfolios of small, medium and large stocks each month and use Vj,t = 0.0003Mmed
g,t−1 as

the target dollar value, where Mmed
g,t−1 is the median market-cap in size portfolio g in month

t − 1.24 The high correlations of liquidity measures based on this specification with BBD

23The fixed amount of $80,000 captures a minimum institutional parent order size, and ensures that the
positions are large enough to control for dynamic order splitting.

24To do this, we focus on stocks with market capitalization ranks between 101 and 1000, so that large
stocks have rank 101-400, medium stocks have rank 401-700 and small stocks have rank 701-1000. We
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Figure 2: Institutional ownership and firm size. Natural log of average institutional
ownership of top-10 institutional investors against market-cap percentile. Sample includes
common NYSE-listed stocks in 2012, obtained from Thompson Reuters 13-F database.

of 0.90, 0.92, and 0.95 for portfolios of small, mid-sized, and large market-capitalizations

indicate that it is the trade-time approach, and not the variations in market-capitalizations

entering via Vj,t or the choice of θ that drive cross-sectional variations of BBD.

IV Data

Our sample period runs from April 1, 2001 to December 31, 2014. Each year, we construct

a sample of U.S.-based NYSE-listed common shares (CRSP share codes 10 and 11). Our

selection of stock characteristics is similar to those in Amihud (2002) and Ben-Rephael et al.

(2015). We estimate βmktj,t , βsmbj,t , βhmlj,t , and βumdj,t of a four-factor Fama-French model for each

stock j in month t. We regress excess weekly stock returns against the weekly Fama-French

factors, over the previous two-year period (t − 24 to t − 1).25 If a stock is not listed over

the entire previous 24-month period, we employ the longest time period available, requiring

drop the top 100 stocks because they differ so radically in size and daily trading volume that a fixed dollar
volume again delivers too many trade sequences for the largest stocks or too few for the smaller ones.

25Weekly observations on factors are obtained from Kenneth French’s website.
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at least one year of weekly observations. Firm j’s book-to-market ratio, BMj,t−1, is given

by its most recent reported book value per share, obtained from Compustat, divided by its

share price, at the end of month t − 1.26 We measure stock-specific idiosyncratic volatility,

SDj,t−1, using the standard deviation of monthly returns over the preceding sixty months,

requiring at least one year of data.27 We use the dividend yield, DYDj,t−1 over the past

twelve months as a predictor of expected returns. We construct two momentum metrics: the

compound monthly returns over the preceding four months, MOM1−4
j,t−1, and the compound

returns over the eight months before that, MOM5−12
j,t−1 .

We obtain trade prices, quantities, and time stamps from the consolidated trade history,

from January 1, 2001 to December 31, 2014, in the NYSE Monthly TAQ database. We

consider all stock trades on U.S.-based trading venues during regular market hours between

9:30AM and 4:00PM (EST), as well as trades flagged as market-on-close orders (which can be

recorded after 4:00PM). After constructing trade sequences, we exclude those with absolute

(volume-weighted) returns that exceed 10%. We calculate percentage bid-ask spreads using

the National Best Bid and Offer (NBBO) series on WRDS. We merge these three databases

using the variable NCUSIP from CRSP and the variable CUSIP from TAQ and Compustat.

We drop stocks missing this identifying information in all three databases. We use the NYSE

Daily TAQ database to obtain trade and quote information at milli-second frequencies for

the calendar year 2012 in an analysis of intradaily variations in liquidity and trading costs,

featuring estimates of Kyle’s λ, quoted spreads, and effective spreads.28

We apply additional filters in the following order. First, we drop a stock-month obser-

vation if it had a closing price below $1.00 on any trading day in the corresponding year.29

26We exclude observations with negative book values (consequently, negative book-to-market ratios).
27In an unreported robustness analysis, we employ four alternative measures of daily volatility to control

for fundamental volatility. We measure close-to-close daily returns based on both transaction prices and
average bid-ask at close to identify possible contribution of bid-ask bounce. We calculate daily volatility
based on each type of return, once using observations from the previous month and once using observations
from the preceding three months—the latter is more consistent with constructions of BBD and WBBD,
in terms of sampling horizon. Replacing SDj,t−1 with any of these alternative measures has virtually no
impact on our estimates of liquidity premia. These findings are available upon request.

28Holden and Jacobsen (2014) highlight the value added of using sub-second time stamps over one-second
time stamps for such analyses of trading outcomes.

29The average of the closing bid and ask prices is used if a last trade price is not available.
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As in Amihud (2002), we trim the top 1% of observations of the liquidity measure(s) each

month to avoid spurious results driven by the high variability of extreme observations.30 We

also drop observations whose estimates of βmktj,t , βsmbj,t , βhmlj,t , or βumdj,t take extreme values

falling in the top or bottom 0.1% of the monthly cross-sections. Finally, to preserve a simi-

lar composition of stocks over time, each monthly sample comprises the 1,050 largest stocks

based on market capitalization at the end of the previous month—this is the largest monthly

cross-section size that could be maintained over the period studied. The stable sample size

and composition over time facilitates analysis of the temporal evolution of liquidity premia.

Were we, instead, to include all firms in a year with “enough” trade sequences, the sample

size would grow in recent years due to the increases in trading activity, tilting the sample

composition in later years toward less actively traded (and typically smaller) firms.31

Table I presents annual summary sample statistics of the final sample. Median stock

prices largely mimic overall market performance. The median annual number of trade se-

quences rises more that twofold over the sample period, peaking at 5,858 in 2008 due to the

lower market capitalizations after the financial crisis and the higher trading volumes. Even

though median market capitalizations are higher in later years than in 2001 (so the median

Vj,t rises), the median numbers of trade sequences are far higher in later years due to the mas-

sive growth in trading volumes. Median dollar-spreads fall from 7¢ in 2001 to 3.3¢ in 2014.

V Characteristics of Trade-time Measures

We first show how our measure of trading activity—the trade times of trade sequences—

vary over time and with firm size. Figure 3 reveals that trade time and firm size have

a ∪-shaped relationship in any given month. Larger stocks are more actively traded, but

choosing Vj,t to be proportional to market-capitalization offsets much of the heterogeneity in

30Amihud (2002) also trims the bottom 1%; this additional trimming has no qualitative effects on
estimates reflecting the positively-skewed liquidity measure distribution. Similar estimates also obtain with
alternative trimming thresholds (e.g., top 2% or top 5%).

31Also, the sample of firms with “enough” observations shrinks during the 2008–2009 financial crisis
because many firms were delisted or failed to maintain the minimum daily closing price of $1. A varying
sample size would introduce systematic temporal sample selection patterns, complicating analyses and
interpretations of temporal changes in liquidity premia.
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Table I: Year-by-year summary statistics of the final sample. Closing share prices,
book-to-market ratios, and natural log of market capitalizations are reported as the medians
of their monthly values. $-spreads are the median time-weighted dollar bid-ask spread at
the NBBO. The last column reports the median number of trade sequences (each with an
aggregate value of at least Vj,t) in a year across stocks.

Year Share Price Book-to-Market ln(MarketCap) $-spreads # of Sequences
2001 25.80 0.49 20.98 0.070 1829
2002 25.00 0.50 21.03 0.051 2130
2003 24.90 0.52 21.10 0.033 2451
2004 29.76 0.45 21.33 0.030 2669
2005 33.10 0.43 21.51 0.029 2965
2006 35.57 0.40 21.64 0.030 3570
2007 36.77 0.40 21.74 0.029 4518
2008 27.41 0.51 21.52 0.031 5858
2009 22.06 0.66 21.20 0.023 5802
2010 27.42 0.55 21.48 0.020 4962
2011 31.14 0.50 21.67 0.022 4808
2012 32.15 0.51 21.63 0.024 4079
2013 39.10 0.44 21.86 0.028 3795
2014 43.21 0.40 22.05 0.033 3569

trading volumes, flattening the relationship between trade time and market capitalization,

and delivering similar numbers of trade sequences for stocks with different market capital-

izations. The longer trade times for the largest stocks are driven by the large sizes of their

target dollar values. The longer trade times for small stocks reflect their modest trading

activities. Overall, except for the earliest years of the sample, the number of trade sequences

does not vary greatly with market capitalization.

Trade times tend to fall in early years, reflecting increases in trading activity. The average

median trade time for the second size decile of stocks falls from 86 minutes in April 2001 to

30 minutes in December 2014; while that for the largest stocks goes from 56 to 28 minutes.

Trade times are shortest in 2008–2009 due to the lower market valuations in those years.

This highlights the importance of controlling for fixed month effects by calculating a stock’s

relative activity on a monthly basis, instead of targeting a dollar value that is fixed over time.

Does BBD measure liquidity? We begin by providing evidence that BBD and WBBD

18



1
2

3
4

5
6

7
8

9
10

0

20

40

60

80

100

Size decile

A
v

e
ra

g
e

 m
e

d
ia

n
 d

u
ra

ti
o

n
 (

m
in

u
te

s
)

Month

Figure 3: Trading activity by year and by firm size. Average median trade time (in
minutes) of a sequence of trades with a cumulative aggregate value of at least 0.04% of a
firm’s market capitalization. Median durations are calculated on a stock-by-stock basis.
The average is then computed for stocks in a size decile each month. Size decile 1 contains
the smallest firms; decile 10 contains the largest.

do, in fact, measure liquidity. We first document this at the individual stock level. We

show that as trading activity for a given stock rises, i.e., trade times shorten—an indica-

tion of increased liquidity provision for that stock—the levels of price impact measures fall

sharply. We contrast these patterns with their very different calendar-time analogues; and

detail what they mean for trade-time and calendar-time measures of trading costs. We then

develop and simulate a stylized model of trading to provide deeper intuition as to why trade-

time measures of liquidity capture trading costs better than calendar-time measures. We

next establish that correlations in the cross-section between our liquidity measures and trad-

ing cost measures for institutional investors estimated by ITG significantly exceed those for

the commonly-used liquidity measures.32 Finally, we document that the temporal evolutions

of BBD and WBBD over our sample period are very similar to those of other commonly-

used measures of liquidity, such as Kyle’s λ or Amihud’s measure, and that the correlations

32BBD and WBBD also evolve more similarly over time with measures of institutional implementation
shortfall obtained from Abel Noser Solutions’ institutional trades data. We do not report these results
because these data are proprietary, and Abel Noser no longer makes them available to academics.
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between these liquidity measures are quite high.

Our analysis of intraday stock-level trade data begins by showing that variations in the

trade time of a fixed-dollar value capture variations in liquidity provision, and that our cu-

mulative price impact measures strongly and meaningfully vary with extant liquidity. To

measure trading activity, we use the inverse of the time duration of a trade sequence with cu-

mulative dollar value Vj,t—shorter trade times indicate higher trading activity. For each stock

j in month t, we sort trade sequences from longest to shortest (by trade time) into deciles of

trading activity. We then examine how trading outcomes vary with trading activity level.33

For stock j, we calculate the following trading outcomes over each trade sequence k:

• absolute return, |rj(k)|: absolute value of the return realized over a trade sequence.

With roughly fixed dollar volumes across different trade sequences of a stock j in

month t, variations in |rj(k)| are closely related to variations in BBD measure, had

we calculated the measure by trading activity level.

• Transaction size, tsj(k): the average transaction size in a trade sequence.

• Trade imbalance, imbj(k): the proportion of buyer- or seller- initiated dollar volume,

whichever is highest, out of total dollar volume of a trade sequence. We classify trades

using Lee-Ready algorithm.34 Because dollar volumes associated with trade sequences

of a stock are roughly fixed in each month, we use the proportion of buyer- (or seller-)

initiated dollar volume to measure net order flow.

• Quoted spread, spj(k): trade-weighted average of bid-ask spreads at the times of trans-

actions.

• Relative effective spread, epspj(k): trade-weighted average of the absolute difference

between transaction price and the mid-point price at the end of the previous second

relative to the mid-point price.

33We restrict our sample to 2012 to exploit the milli-second time stamps in the Daily TAQ database.
Milli-second time stamps drastically reduce errors in trade classifications from the high levels documented
by Holden and Jacosen (2014) for the Monthly TAQ database.

34In unreported results, we verify that our findings are robust to use of alternative trade classification
algorithms, including those proposed by Ellis et al. (2000) and Chakrabarty et al. (2006).
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We also estimate for each stock j a trade-time version of Kyle’s λ by trading activity

decile. For trade sequence k of stock j, we define net order flow nofj(k) to be the signed

square root of the absolute difference between the proportion of buyer-initiated dollar vol-

ume and 0.5 (which represents perfectly balanced order flow), assigning a positive sign if the

proportion of buyer-initiated dollar volume exceeds 0.5, and a negative sign if the opposite

holds.35 We then regress rmj (k), the return based on the prevailing mid-point prices at the

beginning and end of trade sequence k of stock j, on nofj(k) by trading activity level, control-

ling for month-fixed effects, obtaining an estimate of Kyle’s λ at each trading activity level.

Figure 4 reveals that greater trading activity is associated with more abundant liquid-

ity provision. In particular, higher trading activity is associated with both more aggressive

trading—transaction sizes and signed order trade imbalances both rise—and reduced price

impacts. Concretely, as trading rises from the bottom decile of activity to the top, me-

dian trade imbalance rises from 0.56 to 0.63, median transaction size jumps from 130 to

180 shares, while the median absolute return plunges by almost 50% from 23bp to 13bp.36

This combination indicates that abundant liquidity results in high trading activity, driven

by the endogenous choices of traders to aggressively and quickly consume the liquidity by

submitting larger marketable orders—resulting in short trade sequence time durations, high

signed trade imbalances, large transactions and small price movements. Conversely, when

liquidity is limited, traders respond by relying more on passive orders, trying to establish

positions via providing liquidity rather than consuming it in order to reduce the otherwise

even higher price impacts—resulting in long trade times, small transactions, more balanced

order flow, and large price impacts. Figure 4 also provides the reinforcing evidence that

trade-time estimates of Kyle’s λ drop sharply with trading activity. The steep decline in

estimates of Kyle’s λ reflects that when there is greater liquidity provision (and hence when

trading activity is higher), traders submit larger marketable orders, resulting in less-balanced

(larger) measures of net order flow being associated with smaller price impacts, and hence

35Results are robust if we use levels to calculate net order flow, rather than proportions.
36Barardehi and Bernhardt (2017) thoroughly examine intradaily patterns in trading activity and various

trading outcomes, showing that findings documented here are robust to controlling for time of day and
major informational events such as earnings announcements and analyst recommendations.
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reduced sensitivity of prices to net order flow.

In sum, variations in trading activity reflect variations in extant liquidity, and variations

in the corresponding cumulative price impacts |rj(k)| capture the relevant pricing implica-

tions, underscoring our measure of average per-dollar cumulative price impacts, BBD, as a

measure of stock liquidity.37 Our method samples price impacts over shorter intervals when

liquidity and trading intensity is higher, aligning the sampling of price impacts with the

actual intensity of liquidity consumption—trading costs are realized over shorter horizons

when liquidity is high, and realized over longer horizons in low-liquidity times. In contrast,

calendar-time aggregation approaches that, for example, aggregate over thirty minute peri-

ods weight each observation the same regardless of the level of liquidity. We will show that

our approach delivers more accurate proxies of trading costs.38

Our findings indicate that variations in trade-time returns are distinct from fundamen-

tal volatility. Absolute trade-time returns, i.e, the constituent components of our BBD

measure, are largest when markets are least active, and smallest when markets are most

active. This is the opposite of what should happen were fundamental volatility in the form

of information arrival the driver of BBD. Moreover, Barardehi and Bernhardt (2017) show

that trade-time returns over consecutive trade sequences exhibit reversion in less active mar-

kets, and momentum in more active markets. Reversals in returns when trading activity

is lower indicates that the larger trade-time absolute returns found then do not represent

information-driven price movements; and are distinct from fundamental volatility. Rather,

these reversals in less active times suggest that liquidity providers are being compensated

quickly for their services when markets are less liquid.

Figure 4 also suggests that spread measures fail to capture intradaily variations in liq-

uidity and the corresponding variations in cumulative price impacts. Median quoted spreads

barely vary with trading activity level. In addition, while the third quartile of quoted spreads

37Unreported results confirm qualitatively identical patterns for absolute volume-weighted returns
|wrj(k)| verifying the merits of our WBBD measure.

38Note that a volume-weighted version of a high-frequency Amihud measure would still mix different
trading activity levels within a calendar-time period, and, in active conditions, may not identify relevant
within time-period price movements that our trade-time approach would identify. That is, volume weighting
may not correct for the essential differences between calendar-time and trade-time sampling.
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does decline slightly trading activity rises, the first quartile is essentially fixed at ¢1, reflecting

truncation in the cross-section of quoted spreads due to the minimum penny tick. Moreover,

relative effective spreads are almost uncorrelated with trading activity. This reflects the

systematic increases in transaction sizes (and use of larger marketable orders) as trading

activity rises—that spread measures do not account for.39 When markets are less active, it

takes many more small trades to establish positions, and spread measures do not account for

the cumulative costs of these trades—spread measures do not account for serial correlations

in transactions and prices driven by dynamic order splitting strategies.

To reinforce these arguments, we contrast the patterns presented in Figure 4 with their

calendar-time analogues. We measure trading outcomes over 15-minute intervals, and then

examine how trading outcomes vary with 15-minute dollar volumes, i.e., with calendar-

time measures of trading activity.40 Figure 5 shows that the relationships between trading

outcomes and trading activity in calendar-time differ dramatically from those found in trade-

time. Importantly, trade imbalances over 15-minute intervals decline as calendar-time dollar

volumes rise. This suggests an issue of over-aggregation in more active times that leads to the

lumping together of orders from opposing sides, resulting in balanced order flow estimates

despite high trading activity. We also find that the median 15-minute absolute return, i.e.,

calendar-time volatility, rises with calendar-time dollar volume. As Barardehi and Bernhardt

(2017) highlight, this reflects high trading volumes, rather than large per-unit-trade price

movements, driving the positive association between calendar-time volume and volatility.

That is, calendar-time measures of volatility conflate the distinct impacts of per-unit-trade

price movements with those of trading volumes. The twin facts that price impacts rise with

trading volume, while signed order imbalances fall underlie our next finding that estimates

of Kyle’s lambda, using calendar-time observations, rise with trading volume.41,42

39One manifestation of this is that effective spreads rise slightly when trading is most active. This seems
to reflect that when depth at best prices is very high it tends to be placed slightly further away from the
quote midpoint to protect against adverse moves in the asset value, and the greater costs of sniping.

40For the reasons mentioned earlier, to avoid issues with endogeneity of current dollar volume and
price, we use the closing price on the previous day to calculate dollar-volumes. However, findings are not
qualitatively altered if we use current price to calculate intradaily dollar volumes.

41This can lead to a misplaced conclusion that, because price impacts of order flow rise with trading
volume, variations in trading volumes/activity are primarily information-driven.

42As expected, average transaction size, quoted spreads, and effective spreads vary similarly with trading
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We next present and simulate a dynamic model of liquidity provision and institutional

trade. This model integrates several of the key empirical findings just established in order to

explain why trade-time measures better capture trading costs than calendar-time measures.

The model provides deeper intuition and understanding as to why BBD, which calculates

price impacts over trade-time intervals, better measures trading costs than variants of Ami-

hud’s measure, which calculate price impacts over calendar-time intervals. The model also

provides insight into the tradeoffs that enter the choice of the intervals over which price

impacts are calculated. We show that very short intervals may lead to overestimated trading

costs, but that very long intervals lead to underestimates.

A Trade vs. Calendar-time Measures: a Dynamic Trading Model

In our discrete time, dynamic stochastic Markov limit-order book model, (a) the bid-ask

spread is always at the minimum tick; (b) there is one round lot of retail trade on each side

of the market; (c) order flow imbalances reflect institutional, uninformed trade; (d) order

flow imbalance stochastically moves best prices against order flow in the next period; and

(e) public information arrival may draw institutional trade creating order flow imbalance.

Each period has one retail buy order, and one retail sell order: period order flow is bal-

anced absent institutional trade. Institutional traders enter the market one at a time, and

their trade executions do not overlap. Each institutional “parent” order is split into round

lot “child” orders that are executed in successive periods, creating an imbalance of one round

lot. Parent orders are summarized by an order size and sign pair, (x, s) with x ∈ {0, 1, 2, 5}

denoting size in round lots, and s ∈ {+,−} indexing buy (+) and sell (−) orders. x = 0

indicates that no institutional order arrived. To minimize the number of free parameters,

we suppose that if the previous order size is x, then the current order remains x with prob-

ability αx +
1−αx

4
; and with uniform probability

1−αx

4
, the current order size is x̄ 6= x. Thus,

αx ∈ [0, 1) measures the autocorrelation in order size. A non-zero order has the same sign

as the previous non-zero order with probability β + 1−β
2

, where β ∈ [0, 1) measures the au-

activity regardless of whether one uses calendar- or trade-time measures of activity. These variables primarily
reflect transaction-level information, and not the temporal correlation structures of orders and prices.
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tocorrelation in order sign. Buy and sell orders are equally likely after a parent order of 0.

Thus, the transition matrix on orders is characterized by 5 parameters: α0, α1, α2, α5 and β.

To capture discretionary liquidity provision, we assume that after a positive buy order

imbalance, the bid and ask price may shift up. For simplicity, a single parameter ζ describes

the dynamics of liquidity provision in the two most recent time periods. Order imbalances on

the same side in two successive periods may move quotes by two ticks: liquidity providers fill

in the depth at the existing quotes with probability ζ; but with probability 1−ζ, consecutive

periods of net buy order flows shift the bid and ask up two ticks, and consecutive sells shift

them down two ticks. If order flow is imbalanced only in the most recent period, or order

flow imbalances in the two past periods are in opposite directions, then when liquidity is

withdrawn (with probability 1− ζ), order flow imbalances only shift quotes by one tick.

To allow for the possibility that information arrival may draw institutional trade, we

assume that in periods featuring institutional trade, the fundamental asset value may rise

or fall by ε ticks, each with probability η, or remain unchanged with probability 1− 2η.

We simulate the economy over horizons that span 1,000 units of time, drawing 100 sam-

ples. For each sample, we calculate trading costs, and the analogues of Amihud’s measure,

and BBD at different aggregation horizons. We then calculate the mean and 95% confi-

dence intervals of these three measures using the quantities from the 100 samples. The 1,000

period horizon captures the limited number of trade sequences or time intervals that enter

constructions of measures, which introduces measurement error.

Actual trading costs. The trading cost of an institutional order is given by the total

absolute difference between execution prices of the corresponding round lots and the quote

mid-point at the period in which the trader enters the market, net of the effect of informa-

tion arrival. For example, consider a two round lot parent order, where the first unit traded

caused quotes to shift up two ticks. Then the total trading cost of that order is 2.5 ticks

(half of the bid-ask spread plus the two-tick price impact). During this execution, there

were also four round lots of trade from retail traders that had a net trading cost of zero

(as their trading costs offset). Thus, the 2.5 ticks reflect the trading cost associated with
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six round lots of trading volume, i.e., 0.425 ticks per round lot transaction. In time periods

when institutional trading is absent, trading costs are zero. The measure of trading costs

reflects the volume weighed average across all time units of per round lot trading costs. With

information arrival, both asset values and prices shift up or down, and hence measured price

impacts shift up or down, but trading costs themselves are unaffected.

Comparison with liquidity measures. By construction, the bid-ask spread is always

one tick, regardless of realized trading costs. To contrast estimates of trading costs obtained

using BBD and Amihud’s measures, we compare them at different comparable aggregation

horizons. We first set a time aggregation horizon length, and calculate Amihud’s measure

as the average per-round lot transaction absolute returns based on transaction prices at the

ends of successive aggregation horizons. The BBD measure is given by the average per-round

lot transaction absolute returns based on transaction prices associated with the trading of

the mean calendar-time volume over the time aggregation horizon.43 Because period trading

volumes are either two or three round lots, realized volumes may exceed the target by one

or two round lots.44 One may adjust target volumes downward, so that such “overshooting”

results in realizations of desired average target volumes—but this is difficult due to sampling

variation. Recognizing that this overshooting attenuates our findings, we just note its effect.45

Figure 6 illustrates outcomes in settings without information arrival (η = 0). In the

benchmark Case 1 parameterization, the α parameters are set so that (a) 75% of periods

have institutional trade, (b) the sign of order flow is highly persistent (β = 0.8), and (c)

markets are relatively illiquid (quoted depth refills with probability ζ = 0.2). The figure

highlights the general properties that without information arrival, (1) both measures under-

estimate trading costs; and (2) Amihud’s measure underestimates trading costs by far more

thanBBD for all plausible parameterizations and appropriately-chosen aggregation horizons.

43The mean typically is not an integer, so we probabilistically round the target volume to match it: if
the mean is 15.6, we randomize between targets of 15 and 16 so that the average target volume is 15.6.

44For example, for Case 1 in Figure 6, while targeted trading volume rises from 5.46 to 43.41 round lots
going from the shortest to the longest calendar-time aggregation horizon, the corresponding average realized
trade-time volume goes from 6.05 to 44.11 round lots.

45As Figure 6 shows, BBD is decreasing in target trading volume in the model. Thus, the gap between
BBD and Amihud’s measures would widen were we to adjust for overshooting, re-enforcing our findings.
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Figure 6: Simulation: calendar time versus trade time measures (no information
arrival). The economy is simulated over a time span of 1,000 time units, 100 times. Per round
lot trading costs reflect the sum of differences between transaction prices and the mid-point price
at the period the trader entered the market, divided by the corresponding trading volume. In
each draw, Amihud’s measure is calculated as the average absolute returns (based on transaction
prices) over 2- to 16-unit time intervals. The corresponding BBD measures are based on the
average absolute returns calculated over trade times of target trading volumes, where target
trading volumes are given by the associated mean calendar time trading volumes. The mean and
95% confidence intervals of trading costs, Amihud measures, and BBD using the samples from
the 100 draws are plotted against aggregation horizon.
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.2
.2

5
.3

.3
5

.4
.4

5
T

ra
d
in

g
 c

o
s
ts

 (
ti
c
k
s
 p

e
r 

tr
a
n
s
a
c
ti
o
n
)

2 4 6 8 10 12 14 16

Calendar−time aggregation horizon (units of time)

Trading costs Amihud BBD

.2
.2

5
.3

.3
5

.4
.4

5
T

ra
d
in

g
 c

o
s
ts

 (
ti
c
k
s
 p

e
r 

tr
a
n
s
a
c
ti
o
n
)

2 4 6 8 10 12 14 16

Calendar−time aggregation horizon (units of time)

Trading costs Amihud BBD

Case 3: Modestly-autocorrelated order sign Case 4: High liquidity

α0 = 0.75, α1 = α2 = α5 = 0.2, α0 = 0.75, α1 = α2 = α5 = 0.2,

β = 0.2, ζ = 0.2, η = 0, ε = 4 β = 0.8, ζ = 0.4, η = 0, ε = 4

.2
.2

5
.3

.3
5

.4
.4

5
T

ra
d
in

g
 c

o
s
ts

 (
ti
c
k
s
 p

e
r 

tr
a
n
s
a
c
ti
o
n
)

2 4 6 8 10 12 14 16

Calendar−time aggregation horizon (units of time)

Trading costs Amihud BBD

.2
.2

5
.3

.3
5

.4
.4

5
T

ra
d
in

g
 c

o
s
ts

 (
ti
c
k
s
 p

e
r 

tr
a
n
s
a
c
ti
o
n
)

2 4 6 8 10 12 14 16

Calendar−time aggregation horizon (units of time)

Trading costs Amihud BBD

For instance, in Case 1, Amihud’s measure underestimates trading costs by 16% at the

shortest aggregation horizon, while BBD underestimates by only 8.5%; for aggregation
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horizons 5 and 10, the extents of underestimation are 18% vs. 14% and 24% vs. 21%, re-

spectively. As mentioned before, BBD would underestimate by even less (for a given target

trading volume) were the target adjusted to account for instances of “overshooting”.

To understand the economics, it is first useful to recognize that both measures underes-

timate trading costs by large amounts over long aggregation horizons because long horizons

tend to lump buy- and sell-driven order flow together. The result is that the net signed price

impact over the entire interval sharply underestimates actual trading costs. BBD is far

more accurate than Amihud’s measure for shorter aggregation horizons. This reflects that

calendar-time aggregation places the same weight on all time periods regardless of trading ac-

tivity. Trade-time aggregation, however, is volume indexed, and samples more often in more

active conditions. As a result, BBD can better proxy price movements driven by variations in

economic activity, which in our model is driven by institutional order flow. Importantly, time

aggregation results in far greater volatility in trading activity across observations—under-

aggregating in low activity times, and over-aggregating in high. This especially matters

when time aggregation bundles together moments of very high trading activity, sometimes

grouping large trades in opposing directions in the same window, resulting in offsetting price

impacts. Bundling of large offsetting trades is far less with trade time aggregation because

high trading volume is likely to result in hitting the volume target, causing subsequent large

trades in the opposing direction to be allocated to a different trade sequence. In the data,

as Figure 4 and 5 reveal, with trade-time aggregation, order flow becomes increasingly un-

balanced as trading activity rises, indicating that aggregation of offsetting trades is modest;

but with calendar-time aggregation, order flow becomes more balanced, suggesting extensive

aggregation of offsetting trades. Our stylized model captures this.

To underscore this, we show how stochastic temporal autocorrelation in trading volume

drives the relatively poor performance of calendar-time measures. Parameters in Case 1 are

selected so that periods featuring order flow imbalance (due to non-zero institutional orders)

are three times more frequent than periods with balanced order flow. Case 2 illustrates

the impact of temporal autocorrelation in volume, which delivers variation in trading vol-

ume across calendar-time windows even though our stylized model keeps this variation in
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a period to a single round lot. Case 2 parameters are set so that periods with order flow

imbalance are only twice as frequent as those with just retail trade—instances of balanced

order flow are more persistent. Figure 6 shows how trade-time measures accommodate the

increased persistence because the sampling windows adjust to equate trading volume, but

the performance of calendar-time measures falls off sharply.

Case 3 reveals that, as one would expect, weaker positive correlations in signs of parent

orders cause both measures to underestimate trading costs by more because the aggregation

windows are more likely to aggregate trades of opposing signs, but the qualitatively superior

performance of trade-time based measures is unaffected.

Case 4 makes the point that with binding minimum ticks, spread-based measures fail to

Figure 7: Simulation: calendar time versus trade time measures (information arrival).
The economy is simulated over a time span of 1,000 time units, 100 times. Per round lot trading
costs reflect the sum of differences between transaction prices and the mid-point price at the
period the trader entered the market, divided by the corresponding trading volume. In each draw,
Amihud’s measure is calculated as the average absolute returns (based on transaction prices) over
2- to 16-unit time intervals. The corresponding BBD measures are based on the average absolute
returns calculated over trade times of target trading volumes, where target trading volumes are
given by the associated mean calendar time trading volumes. The mean and 95% confidence
intervals of trading costs, Amihud measures, and BBD using the samples from the 100 draws are
plotted against aggregation horizon.
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capture trading costs. Case 4 shows that improving liquidity from ζ = 0.2 to 0.4—so that

liquidity providers are more likely to refill removed liquidity at best prices—reduces actual

and estimated trading costs. Both calendar- and trade-time estimates of trading costs signif-

icantly respond to changes in liquidity. However, because the penny tick always binds, the

bid-ask spread does not vary with the level of liquidity: both the half-quoted and effective

spreads remain half a tick, regardless of liquidity.

Cases 5 and 6 in Figure 7 show the effect of introducing information arrival. Information

arrival has only modest effects on the difference between BBD and Amihud’s measure at

different aggregation horizons, but because information has price impacts unrelated to trad-

ing costs, it shifts these measures up relative to trading costs. As a result, trading costs are

best captured by an intermediate aggregation horizon that accounts for the non-trading cost

component of price impacts, but is not so long as to aggregate excessively.

B Comparing trade-time vs. standard liquidity measures

Returning to our empirical analysis, we now show that our measures of liquidity do a better

overall job of capturing cross-stock variations in trading costs than do other measures. To es-

tablish this, we calculate the cross-stock correlations between each liquidity measure used in

our paper and estimated trading costs provided by Investment Technology Group’s Agency

Cost Estimator (ITG ACE).46 ITG uses these trading costs estimates to highlight the execu-

tion services that ITG provides its institutional clients, detailing the relationships between

order sizes, trading strategies, and expected trading costs. The trading costs of each stock

are estimated according to order sizes. ACE considers 32 order size bins: the first bin features

orders of 100 shares and smaller, the 10th bin contains orders of about 12% of median daily

trading volume, the 20th bin contains orders that are about 66% of median daily volume, and

46ITG (2007) provides detailed descriptions of the estimator. The ITG estimates build on ideas set out
in Almgren and Chriss (2001). According to Almgren and Chriss (1999), “ACE computes the expected cost
of executing a basket of securities along the multivariate optimal liquidation path... [using] a proprietary
parameterization of the temporary and permanent impact functions to compute transaction costs...” For
more details see Borkovec and Heidle (2010).
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the 32nd bin features massive orders that on average are ten times median daily volume.47 We

focus on ACE’s output based on ITG’s optimal execution strategy for a risk-neutral client in

2011–2013, averaging the per-share estimated trading cost of each stock in each month across

order size bin groups. We focus on bins 2-31, dropping the smallest bin that may reflect

retail orders, and the largest bin of extremely large and rare institutional orders. We group

the remaining bins into five equally-sized groups. ACEtot
jt represents the overall average

across the thirty order size bins, ACEb1
jt captures the average cost of small orders (bins 2–6),

ACEb2
jt represents the average cost of medium-small orders (bins 7–12), ACEb3

jt captures the

average cost of medium orders (bins 13–18), ACEb4
jt captures the average cost of medium-

large orders (bins 19–24), and ACEb5
jt captures the average cost of large orders (bins 25–31).

We calculate the cross-stock correlation coefficients between each liquidity measure and the

six versions of ACE estimates each month, and then compute the cross-month average.

Table II: Cross-stock correlations between liquidity measures and ITG ACE, 2011–
2013. Pairwise cross-stock correlations of trade-time based liquidity measures (BBD and
WBBD), the low frequency Amihud measure (AML), the high frequency Amihud measure
(AMH), percentage bid-ask spreads (PSP ), estimated Kyle’s λ (LAMBDA), and dollar-weighted
percentage effective spreads (EPSP ) with each version of ITG’s estimated trading costs (ACEtot,
ACEb1, ACEb2, ACEb3, ACEb4, and ACEb5) are calculated every month. The table reports the
cross-month averages of the correlation coefficients.

ACEtot ACEb1 ACEb2 ACEb3 ACEb4 ACEb5

BBD 0.82 0.82 0.81 0.79 0.76 0.74
WBBD 0.83 0.84 0.83 0.80 0.77 0.75
AML 0.80 0.78 0.80 0.81 0.79 0.77
AMH 0.71 0.74 0.71 0.67 0.62 0.58
PSP 0.82 0.88 0.81 0.74 0.68 0.65
LAMBDA 0.78 0.80 0.77 0.74 0.71 0.69
EPSP 0.75 0.80 0.74 0.67 0.62 0.59

Table II reveals that all liquidity measures covary with ITG’s trading cost estimates,

but that the trade-time based liquidity measures, BBD and WBBD, do a somewhat better

overall job of matching cross-sectional variations in trading costs. On average, trade-time

47The massive dispersion of sizes in larger bins reflects the fact that very large order sizes are rare, even
though such orders account for a comparable share of dollar volume. As such, a wider range of observations
is required to maintain statistical power.
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based liquidity measures are more strongly correlated with ACEtot, i.e., with average trading

cost estimates over all parent order sizes. The high average (across stock) correlations of

0.82–0.83 of BBD and WBBD with ACEtot exceed the correlations of ACEtot with other

liquidity measures. More importantly, the correlation of trade-time measures with trading

costs is high regardless of the sizes of parent orders being considered. In contrast, decompos-

ing estimated trading costs by order size reveals that while the mean correlation of PSP with

the trading costs of small orders ACEb1 is 0.88, the correlation between PSP and trading

costs drops sharply with order size, falling to 0.65 for the bin group containing the largest

orders. This finding suggests that percentage spreads are a viable proxy of trading costs

for small retail transactions, but not for large institutional orders. Conversely, correlations

with the low-frequency Amihud measure slightly exceed those for trade-time based measures

for large parent orders whose executions may span multiple days; but correlations with low-

frequency Amihud measure are distinctly lower for smaller parent orders. Overall, BBD

and, especially, WBBD reveal themselves to be reliable proxies for cross-stock variations in

trading costs, regardless of the size of the institutional orders.

As a final piece of evidence establishing that BBD and WBBD capture liquidity, we

show that they are highly correlated with the other standard liquidity measures. Table III

shows the averages of the month-by-month pairwise correlation coefficients between variables

used in our analysis.48 Correlations of BBD and WBBD with other liquidity measures are

all high—uniformly exceeding 0.6—indicating that they capture similar phenomena.

Figure 8 presents the month-by-month evolution of the medians of these liquidity mea-

sures. It shows that BBD and WBBD, and other commonly-used measures of liquidity for

a typical stock display close co-movements over time, falling sharply prior to the financial

crisis, rising steeply during the crisis, before returning roughly to the lower pre-crisis levels.

Anand et al. (2013) show in their Figure 1 that these common measures of liquidity are, in

turn, highly correlated with average implementation shortfalls of institutional orders, a mea-

sure of institutional traders’ price impacts—which means that our measures are also highly

48For each pair of variables, we estimate the correlation coefficient every month, and then find the average
of 165 monthly estimates.
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Figure 8: Monthly median values of different liquidity measures over time. The
month-by-month medians of the trade-time based liquidity measures (BBD and WBBD), the
low frequency Amihud measure (AML), the high frequency Amihud measure (AMH), percentage
bid-ask spreads (PSP ), estimated Kyle’s λ (LAMBDA), and dollar-weighted percentage effective
spreads (EPSP ) are presented.

correlated with average implementation shortfalls. Comparing the patterns in Figure 8 for

all liquidity measures with the temporal patterns in trading activity in Figure 3 confirms

that increased trading activity is associated with improvements in liquidity of typical stocks.

VI Cross-sections of returns and liquidity premia

We begin by describing the asset pricing models that we use to investigate the role of stock

liquidity in explaining cross-sections of expected returns and risk-adjusted expected returns.

Our models exploit variations in systematic risk factor loadings and stock characteristics,

including liquidity, to explain variations in returns.

Model I (returns). We first use a standard specification, similar to that used by Amihud

(2002), Ben-Rephael et al. (2015) and others, to establish the existence of characteristic liq-

uidity premia and to explore their temporal evolution. Model I regresses monthly returns,
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Rj,t, on factor loadings and stock characteristics from the previous month, as follows:

Rj,t = λ0 + λ1β
mkt
j,t−1 + λ3β

smb
j,t−1 + λ2β

hml
j,t−1 + λ4β

umd
j,t−1 + λ5BMj,t−1 + λ6 ln(Mj,t−1)

+ λ7MOM1−4
j,t−1 + λ8MOM5−12

j,t−1 + λ9DYDj,t−1 + λ10SDj,t−1 (11)

+ λ11LIQj,t−1 +
T∑

m=1

λm12Dumm + λ13∆(Y IR)j,t + εj,t,

where LIQ ∈ {BBD,WBBD,AML,AMH,PSP,LAMBDA,EPSP} denotes the liquid-

ity measure; ∆(Y IR)j,t denotes the change (from month t− 1) in the difference between the

industry and the sample’s average return;49 and Dumm = 1 if j is observed in month m and is

0 otherwise.50 The monthly dummies capture any common variation in returns resulting, for

example, from temporal changes in the trading environment. The liquidity measures, factor

loadings and stock characteristics are all lagged to avoid any impacts of contemporaneous

covariations between returns and independent variables that could complicate inference.

Our primary empirical approach is generalized least squares (GLS) panel estimation with

stock fixed effects in the error term. This estimation strategy helps identify differences in

expected returns caused by unobserved temporally-constant firm attributes; it also allows

for specification of firm clusters. Such clusters allow us to estimate robust standard errors in

the presence of firm-specific serial correlations in the error term.51 Petersen (2009) highlights

the merits of this estimation strategy in terms of avoiding biasing estimated standard errors

downward. We discuss the error-term structure and alternative estimation approaches in

detail in the appendix. In addition to clustering standard errors, we use ∆(Y IR) to control

for industry-time-specific error term autocorrelations—i.e., to control for common industry

shocks that could lead to contemporaneously correlated errors for stocks in the same industry.

Liquidity premia obtained using GLS are given by the product of the characteristic

liquidity coefficient and the cross-month average of month-specific median liquidity. The

resulting quantities measure the estimated monthly return premia that investors demand for

49We exclude stock j when computing the return of the industry to which stock j belongs.
50Our sample period begins in April 2001, due to our 3-month rolling window construction.
51For example, because we use observations from the preceding three months to construct liquidity

measures, liquidity is necessarily serially-correlated at the stock level. Use of stock-specific clusters
addresses this. In Appendix D, we show that qualitatively identical findings obtain when we only use
observations from the previous month to construct our (now noisier) liquidity measures.
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establishing a position in a typical stock versus a hypothetical perfectly-liquid stock.

We report results for the commonly-used Fama-MacBeth estimation strategy in the ap-

pendix. These estimates support the findings derived from GLS estimates.52 We do not focus

on the Fama-MacBeth results for a few reasons. First, the Fama-MacBeth approach presumes

that the factor loadings, i.e., the βjs, are constant over time—they help serve as substitutes

for stock fixed-effects. However, the stock-specific factor loadings that we estimate using

time-series data vary substantially from month to month, creating “Errors-In-Variables”

(EIV) issues for the Fama-MacBeth approach. Common approaches to circumventing EIV

concerns are to use portfolios as test assets (Black, Jensen, and Scholes (1972) and Fama and

MacBeth (1973)) or to estimate factor loadings from portfolios of stocks (Fama and French

(1992)). We cannot employ such approaches because our goal is to identify the role of stock

specific characteristics. EIV is not an issue for the GLS fixed-effects estimator; as such, it

facilitates explaining expected returns using stock characteristics. The Fama-MacBeth ap-

proach also assumes that the cross-sectional samples are realizations of an i.i.d. process. Vio-

lations of this assumption in our relatively short time-series give rise to incorrect inferences.53

Model II (risk-adjusted returns). We also consider an alternative, more conservative,

estimation approach that uses stock characteristics to explain variations in expected risk-

adjusted returns. To deal with the EIV issues in Fama-MacBeth estimation when individual

stocks serve as test assets, Brennan et al. (1998) propose moving the errors-in-variables to

the left-hand side. In the three-step procedure, the risk-free rate and products of risk factors

and factor loadings are used to construct risk-adjusted returns. Stock characteristics are

then used to explain the variations in expected risk-adjusted returns. We estimate

R∗j,t = δ0 + δ2BMj,t−1 + δ3 ln(Mj,t−1) + δ4MOM1−4
j,t−1 + δ5MOM5−12

j,t−1 + δ6DYDj,t−1

+ δ7SDj,t−1 + δ8LIQj,t−1 +
T∑

m=1

δm9 Dumm + δ10∆(Y IR)j,t + εj,t, (12)

52We also present results for the Asparouhova et al. (2010, 2013) modification of Fama-MacBeth to deal
with potential cross-sectional correlation between liquidity and microstructure noise. Qualitatively identical
findings obtain.

53Due to the violations of the i.i.d. premise, when implementing the Fama-Macbeth approach, we rely on
Newey-West standard errors with two lags to partially account for any heteroskedasticity in the error terms.
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where R∗j,t is given by

R∗j,t = Rj,t −Rf
t − βmktj,t−1(r

mkt
t − rft )− βhmlj,t−1HMLt − βsmbj,t−1SMBt − βumdj,t−1UMDt. (13)

Here, Rf
t is the interest rate on one-month T-Bills, and the monthly Fama-French factors

capture systematic risk.54 We estimate Model II using both GLS and Fama-MacBeth ap-

proaches.

Table IV shows that for all liquidity measures, except EPSP , characteristic liquidity still

significantly explains variations in expected returns. In Model I, estimated monthly liquid-

ity premia vary between 0.5 and 6.3 basis points depending on the liquidity measure used.

BBD and WBBD deliver large monthly liquidity premia of 5.2 and 5.3bp, respectively, i.e.,

annual liquidity premia of 62.3 and 64.2bp.55 Estimates of Model II yield liquidity premia for

expected risk-adjusted returns that are roughly half of those for expected returns.56 These

lower estimates reflect that Model II imposes more restrictions on how risk factors enter

than Model I, essentially assuming that the four-factor model is “correct” and inflating error

terms when it is not. An indication of such inflation is that the within R2s for Model II are

only one-fifth of those for Model I.

Our findings of significant and economically meaningful liquidity premia in the 2001–2014

sample that obtain—regardless of the liquidity measure used—contrast with Ben-Rephael

et al. (2015)’s failure to find significant liquidity premia in the post decimalization period.

Differences in the construction of liquidity measures likely underlie why we uncover liquidity

premia, but they do not. Importantly, our liquidity measures are updated each month, so

changes in liquidity are incorporated on a month-by-month basis as they occur. In contrast,

because Ben-Rephael et al. (2015) must use daily observations for their historical analysis

54Model II also helps address the possibility that liquidity may be correlated with systematic risk factors
or factor loadings; for example, Table III shows that the correlation between BBD (or WBBD) and
βsmb is 0.24. By employing risk-adjusted expected returns as the dependent variable, Model II offers very
conservative estimates of liquidity premia.

55For each model, coefficients of “non-liquidity” characteristics are stable, not varying with the different
characteristic liquidity measures. We verify that they remain stable in the rest of our analysis, so we only
report estimates of the coefficients on characteristic liquidity.

56Monthly liquidity premia estimated by Fama-MacBeth using BBD and WBBD as liquidity measures
are, respectively, 4.4bp and 4.1bp for expected returns, and 4.9bp and 4.6bp for expected risk-adjusted
returns.
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(which goes back decades), they measure key independent variables, including stock liquidity,

at annual frequencies. Thus, they use liquidity measures from the preceding year to explain

the monthly cross-section of returns: they use the same liquidity measurement for a stock

in all 12 months of a given year. This limits the variation of these independent variables,

and it amplifies measurement error that biases their coefficients toward zero. Moreover,

by assuming no adjustment in investors’ assessments of stock-specific liquidity over a year,

Ben-Rephael et al. may mix fixed-year effects with those of cross-stock liquidity. These

observations, however, do not undermine their central finding that liquidity premia are now

far lower than in earlier eras, and, in particular, are lower post-decimalization.

Liquidity premia based on BBD and WBBD exceed those based on standard measures

other than estimates of Kyle’s λ. To identify which estimates of liquidity premia one should

rely on, one wants to uncover which measures best reflect liquidity considerations of in-

vestors. We previously argued that BBD and WBBD, which aggregate to account for the

cumulative nature of trading costs, also better account for the fact that trading costs may

realize over shorter/longer horizons due to variations in liquidity. We then showed that BBD

and WBBD are more highly correlated with trading cost estimates, suggesting that they

better proxy for trading costs. We now establish that BBD and WBBD better explain the

cross-sections of both expected returns and expected risk-adjusted returns, suggesting that

they better capture liquidity concerns of investors, especially in more recent years.

We first use BBD and an alternative liquidity measure in the same pricing model to es-

timate the importance of liquidity for cross-sections of both expected returns and expected

risk-adjusted returns. Table V presents estimation results, revealing that using data for the

entire sample period, the coefficient on BBD is positive and significant in presence of any

other standard liquidity measure; similar results obtain when we instead use WBBD along

with other measures. In contrast, the coefficient on the standard liquidity measure is either

negative or insignificant, regardless of the alternative liquidity measure considered.

Decomposing the sample into sub-samples of early versus late years reveals that much

of the better performance of our measures is realized in later years. BBD, when included

along with AML or LAMBDA, remains positively and significantly correlated with ex-
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pected returns in both subsamples; whereas estimated coefficients on AML and LAMBDA

become negative. When included along with the spread measures PSP and EPSP , co-

efficients on BBD become significantly positive in the later years of the sample; whereas

PSP and EPSP are positively and significantly correlated with expected returns in earlier

years. Similar results obtain when we estimate the base Model I formulation and Model II,

where we employ stock characteristics, including liquidity, to explain expected risk-adjusted

returns.57 These results suggest that (i) standard transaction-based liquidity measures be-

came noisier measures as algorithmic trading and, more generally, high frequency trading

exploded, increasing the temporal dependence in individual trades and increasing the volatil-

ity in trading volumes; and (ii) spread-based measures grew noisier as the penny tick became

an increasingly-binding constraint on bid-ask spreads, and individual trade sizes and depth

fell dramatically. As a result, trade-time liquidity measures now better measure liquidity

than traditional measures and hence better capture liquidity concerns.

When interpreting results in Table V, one should recall the strong pairwise correlations

between the liquidity measures: pricing regressions that include BBD and another liquid-

ity measure have multicollinearity issues. To address this, we decompose each measure F ∈

{WBBD,AML, AMH,PSP, LAMBDA,EPSP} into two linearly-orthogonal components

with respect to BBD. We first estimate the residuals z
F

j,t and z̃
F

j,t by fitting (14) and (15):

BBDj,t = α̂1 + α̂2Fj,t + z
F

j,t (14)

Fj,t = α̂′1 + α̂′2BBDj,t + z̃
F

j,t. (15)

We then estimate Models I and II using z
F

j,t or z̃
F

j,t as the liquidity measure, LIQt,j. This

approach isolates the information content in one measure that is not in the other measure

since, by construction, Cov(z
F

j,t, Fj,t) = Cov(z̃
F

j,t, BBDj,t) = 0.58

Table VI reveals that BBD better explains the cross-section of returns than do the stan-

dard measures: After filtering out the commonality between BBD and each alternative

57In unreported analyses, we exclude the years 2008 and 2009 from the sub-sample of later years, verifying
that our findings are not sensitive to the inclusion of data from financial crisis period.

58We adopt the orthogonal decomposition in a way that is consistent with the estimation method and the
sample horizon. For GLS estimation, equations (14) and (15) are estimated using OLS given the data in the
sub-sample of interest. For Fama-MacBeth, we fit (14) and (15) and store the residuals month by month.
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measure, what remains (i.e., the BBD residual, z
F

t−1) is positively and significantly corre-

lated with expected returns; but the converse is not true. The better performance is more

pronounced in recent years, suggesting that BBD better captures stock liquidity in modern

markets. In contrast, in the 2001–2007 period, PSP and EPSP outperform BBD. We also

find that WBBD outperforms BBD in the overall sample period as well as in the later 2008–

2014 period—the coefficient on the residual information in WBBD (but not BBD) is signifi-

cant and positive, explaining both expected returns and expected risk-adjusted returns. This

finding suggests that because WBBD accords with VWAP-based measures of price impacts

that institutional investors seek to minimize, it more closely reflects their considerations.

This latter result leads us to conduct an analogous orthogonal decomposition analysis

for WBBD. Table VII shows that WBBD outperforms the alternative measures in the

2001–2014 period as well as in more recent years; but, as with BBD, both PSP and EPSP

perform better than WBBD in the earlier 2001–2007 period. WBBD consistently performs

slightly better than BBD. For example, only WBBD significantly outperforms AMH in ex-

plaining expected risk-adjusted returns (Model II). These results highlight the practical value

of using WBBD rather than BBD to examine cross-sectional variations in stock liquidity,

and are consistent with our earlier findings regarding cross-sectional correlations between

liquidity measures and ITG’s estimates of institutional trading costs.

Temporal evolution of liquidity premia. We next investigate the evolution of liquidity

premia. To do this, we first explore how the cross-stock dispersion of liquidity, based on dif-

ferent measures, evolves over time, separately exploring transaction-based measures (BBD,

WBBD, AML, and AMH) and quote-based measures (PSP , LAMBDA, and EPSP ). We

calculate the inter-quartile ratio of each measure (i.e., the ratio of the 75th to 25th percentiles)

to obtain a standardized metric with which to assess the month-by-month evolution of the

dispersion in these measures.59 Figure 9 shows the evolution of these ratios. The ratios for

the two Amihud measures fall by about 50% in the earlier years of the sample, suggesting

that the standard transaction-based measures of expected trading costs converged across

59Findings are robust to the use of alternative percentile ratios (e.g., 85th to 15th).
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stocks. In contrast, the ratios for both BBD and WBBD and the spread-based measures60

are all fairly stable over the entire sample period, with peak-to-trough differences that are

less than half of those for the Amihud measures. These results suggest that despite all of the

radical market microstructure changes in U.S. equity markets, relative trading costs in the

cross-section of stocks remained fairly stable over time—but that standard transaction-based

liquidity measures began to underestimate cross-stock differences in expected trading costs.
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Figure 9: Monthly 75th to the 25th percentile ratios of different liquidity measures

over time. The month-by-month 75th to the 25th percentile ratios of the trade-time based
liquidity measure (BBD), the low frequency Amihud measure (AML), the high frequency
Amihud measure (AMH), estimates of Kyle’s λ (LAMBDA), average percentage quoted
bid-ask spreads (PSP ), and average percentage effective spreads (EPSP ).

Having established the superior performances of trade-time based liquidity measures, es-

pecially in more recent years, we next investigate the temporal evolution of liquidity premia

estimated using these measures, recognizing that shorter windows lead to higher standard

errors. We find that the liquidity premia demanded by investors rise over our sample period.

The financial crisis years (2008–2009) do not seem responsible for the increased liquidity

premia; indeed, liquidity premia are highest in post-crisis years.

Table VIII shows the estimated characteristic liquidity coefficients and the corresponding

liquidity premia for the sub-samples of early and late years. BBD and WBBD explain vari-

60Save for the spike in the inter-quartile ratio for LAMBDA during the financial crisis, its ratio is stable.
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Table VIII: Characteristic liquidity premia by sub-sample. The table reports
liquidity coefficient estimates from panel estimates of Model I (returns, equation (11))
and Model II (risk-adjusted returns, equation (12)) using the BBD and WBBD liquidity
measures. Month dummies capture common variation caused by market condition changes,
i.e., by common variation in risk-adjusted returns over time. Standard error estimates
are reported in parenthesis. Standard errors are clustered at the stock level, and stock
fixed effects capture any fixed heteroskedasticity in the error term. Symbols ∗, ∗∗, and ∗∗∗

denote significance at 10%, 5%, and 1% levels, respectively. For each liquidity measure, the
liquidity premium in basis points (presented in bold font) is the product of the liquidity
coefficient and the sample average of the monthly median liquidity measure.

Model LIQ Apr 2001–Dec 2007 Jan 2008–Dec 2014 Jan 2008–Dec 2009 Jan 2010–Dec 2014

M
o
d
e
l

I

BBDt−1 0.071∗∗ 0.148∗∗∗ 0.087 0.295∗∗∗

(0.035) (0.045) (0.057) (0.067)

3.441 4.612 4.496 6.796

WBBDt−1 0.127∗∗ 0.247∗∗∗ 0.150 0.453∗∗∗

(0.057) (0.074) (0.095) (0.107)

3.844 4.642 4.656 6.326

M
o
d
e
l

II

BBDt−1 0.008 0.060 0.005 0.189∗∗∗

(0.816) (0.158) (0.934) (0.004)

0.408 1.871 0.248 4.358

WBBDt−1 0.024 0.106 0.018 0.301∗∗∗

(0.060) (0.070) (0.095) (0.105)

0.729 2.003 0.570 4.202

ations in expected returns both in early and later years. Estimated characteristic liquidity

premia rise by about two basis points in the last five years of our sample—the financial

crisis years (2008–2009) is not responsible for the increased liquidity premia. For example,

liquidity premia on expected returns based on BBD goes from 3.4bp in 2001–2007 to 4.6bp

in 2008–2014. Segmenting the latter time period into “crisis” and “post-crisis” years yields

a statistically insignificant premium of 4.5bp in 2008–2009 (likely due to the small sample

size) versus a statistically significant premium of 6.8bp in the 2010–2014 period. BBD and

WBBD only significantly explain variations in expected risk-adjusted returns in later sam-

ple periods. In each sub-period, estimated liquidity premia are much higher when estimated

using expected returns (Model I) than with using expected risk-adjusted returns (Model

II). As discussed previously, the four-factor model used to estimate expected risk-adjusted

returns imposes more structure on the risk factors, presuming that the four-factor model is
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“correct”, which inflates error terms and lowers estimated liquidity premia when it is not.
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Figure 10: Evolution of liquidity premia for NYSE-listed stocks. Model I (returns, equa-
tion (11)) and Model II (risk-adjusted returns, equation (12)) are estimated using data from eleven
four-year rolling periods, with BBD and WBBD serving as LIQ. Each four-year period starts at
the beginning of a year. Each period, liquidity premium and the associated 95% interval are defined
as the product the characteristic liquidity coefficient (and the associated 95% percentile-t bootstrap
confidence interval limits) and the cross-month average of the month-specific median BBD. Stan-
dard errors are clustered at stock level, and stock-fixed effects control for any fixed heteroskedas-
ticity. Black squares are estimated liquidity premia, and bars span the 95% confidence intervals.

To refine these observations, we explore the temporal evolution of liquidity premia at

finer frequencies. To identify the incremental periodic changes in the size and significance

of liquidity premia, we employ rolling four-year estimation periods that commence at the
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beginning of each year.61 We estimate Models I and II using data from each four-year period.

We use these estimates to calculate the liquidity premium and the implied 95% confidence

interval for each rolling period. To avoid making restrictive assumptions about the sampling

distributions of test statistics, we construct the percentile-t bootstrap confidence intervals

given random samples with replacement of 1000 stocks per month and 999 replications. Fig-

ure 10 presents results for both BBD and WBBD.

Figure 10 reinforces that liquidity premia have not fallen over the post-decimalization pe-

riod. Instead, they are close to zero and insignificant in early years, before jumping sharply

around 2007, and then remaining positive. The non-overlapping confidence intervals for the

2001–2004 and 2011–2014 periods for both models (i.e., for both expected returns and ex-

pected risk-adjusted returns) indicate statistically significant increases in liquidity premia.62

VII Conclusion

The nature of liquidity provision has changed. Today, quotes are tiny, fleeting, and have

little depth. As a result, quote-based measures of liquidity have become not only practi-

cally challenging to construct accurately, but also less relevant to institutional investors who

often employ algorithmic order-splitting strategies. These strategies give rise to temporally-

dependent transactions, complicating the statistical properties of liquidity measures that rely

on trade-by-trade information. Designs of other commonly-used measures, such as Amihud’s

(2002) measure, do not reflect that investors time trades according to available liquidity, ren-

dering them noisier proxies of trading costs.

The use of noisier liquidity measures might lead researchers to underestimate the value

investors place on liquidity. Our first contribution is to develop simple measures of stock liq-

uidity that control for intradaily variations in liquidity provision and trading activity by mea-

suring the average per-dollar price impacts of fixed-dollar volumes. We show that trade times

of such fixed-dollar volumes reflect variations in available liquidity, implying that the cor-

61The first “four-year” period spans April 2001–December 2004, and contains less than four years of data.
62Qualitatively identical results obtain for three- and five-year rolling periods.
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responding trade-time price impacts capture the feature that trading costs may realize over

short or long horizons depending how fast trading takes place. We show that our measures

of liquidity are more strongly related to measures of institutional trading costs estimated by

ITG, a leading provider of trade execution services, than are traditional liquidity measures.

We find that our liquidity measures better explain the cross-sections of both expected

returns and risk-adjusted expected returns of NYSE-listed common stocks in the 2001–2014

period, especially in more recent years. Over this period, we find monthly liquidity premia

estimates of 5.3 basis points for expected returns and 2.4 basis points for risk-adjusted ex-

pected returns. Estimated liquidity premia increase significantly around the years of financial

crisis, and remain high thereafter. This highlights how, despite the improvements in mea-

sures of market quality post-decimalization, investors still demand non-trivial compensation

for holding less liquid stocks.

We conclude by highlighting the broad value of trade-time approaches. The inverse of

trade time of a fixed-dollar volume measures stock-specific trading activity. One can use

these trade-time intervals in Autoregressive Conditional Duration models (Engle and Rus-

sell (1998)) to retrieve an i.i.d. error term structure that is violated by today’s temporally-

dependent trades. Barardehi, Bernhardt, and Ruchti (2017) show that when one uses the

same fixed-dollar value target for each stock in a portfolio, one can test the microstructure

invariance hypothesis of Kyle and Obizhaeva (2016) at the stock level. They use this ap-

proach to highlight the importance of systematic risk for invariance theories. Barardehi and

Bernhardt (2017) use trade-time measures to investigate how trading outcomes vary with

the intensity of trading activity, after controlling for time of day; and how outcomes vary

with expected vs. unexpected trading activity. So, too, one can shed light on the dynamics of

trading—uncovering how trading outcomes vary at a given level of trading activity according

to how trading activity evolves to reach that level. For example, conditional on reaching a

given level of trading activity, increases in activity are associated with momentum in returns,

and decreases in activity are associated with reversion.
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Gourièroux, C., J. Jasiak, and G. Le Fol (1999). Intra-day market activity. Journal of

Financial Markets (2): 193–226.

Goyenko, R.Y., C.W. Holden, C.A. Trzcinka (2009). Do liquidity measures measure liquid-

ity? Journal of Financial Economics 92(2), 153–181.

Hasbrouck, J. (2009). Trading costs and returns for U.S. equities: Estimating effective costs

from daily data. Journal of Finance 64(3), 1445–1477.

Hasbrouck, J. and G. Saar (2013). Low-latency trading. Journal of Financial Markets (16),

646–679.

54



Hendershott, T., C.M. Jones, A.J. Menkveld (2011). Does algorithmic trading improve

liquidity? Journal of Finance 66(1), 1–33.

ITG Inc. (2007). ITG ACE–Agency Cost Estimator: A model description. ITG Inc. White

Paper.

Holden, C.W., S.E. Jacobsen (2014). Liquidity measurement problems in fast, competitive

markets: Expensive and cheap solutions. Journal of Finance 69(4), 1747–1785.

Jones, C.M. (2002). A century of stock market liquidity and trading costs. Working paper,

Columbia University.

Jones, C.M., M.L. Lipson (2001). Sixteenths: direct evidence on institutional execution

costs. Journal of Financial Economics 59(2), 253–278.

Kim, S., D. Murphy (2013). The impact of high-frequency trading on stock market liquidity

measures. Working paper.

Kyle, A.S. (1985). Continuous auctions and insider trading. Econometrica 53(6), 1315–1335.

Kyle, A.S., A. Obizhaeva (2016) Market Microstructure invariance: a dynamic equilibrium

model. Working paper. University of Maryland.

Lesmond, D.A., J.P. Ogden, C.A. Trzcinka (1999). A new estimate of transaction costs.

Review of Financial Studies 12(5), 1113–1141.

Mazza P. (2015). Rethinking Zero Returns in the Liquidity Puzzle of a Limit Order Market,

Finance 36, 7–36.

O’Hara, M. (2015). High frequency market microstructure. Journal of Financial Economics

116(2), 257–270.

O’Hara, M., C. Yao, and M. Ye (2014). What’s not there: odd-lots and market data. Journal

of Finance 69(5): 2199–2236.
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IX Appendix

A Temporal dependence of trade-time returns

Our approach demands that we adequately aggregate trades to address the temporal de-

pendence of trades (and returns) driven by dynamic order splitting. We now show that the

returns measured over trade-time intervals are barely serially-correlated for a typical stock.

To do this we estimate a simple AR(1) of trade-time returns of stock j, rj(k), every month—

note that the structure that allows fixed-month effects accounts for the fact that Vj,t is

updated on a monthly basis. Thus, each month, we estimate rj(k) = ρ0j +ρ1jrj(k− 1) + ej(k)

for each stock j: the autocorrelation coefficient ρ̂1j measures the temporal dependence in

returns over trade-time intervals. Figure 11 shows that the first order autocorrelation of

trade-time returns (of fixed-dollar positions) is very close to zero, and seems to be indepen-

dent of general market conditions. This indicates that we aggregate sufficiently to address

the temporal dependence of transactions in modern markets.

B Fama-MacBeth estimates

We present Fama-MacBeth estimation results for the April 2001–December 2014 sample that

includes 165 monthly cross-sections. Table IX presents Fama-MacBeth estimates of Model

I and Model II. These results are consistent with those of fixed-effects GLS (see Table IV).

Table X presents the Fama-MacBeth estimation results of the orthogonal decomposition

exercise, comparing BBD against other measures. As expected, and consistent with the

fixed-effects GLS estimation results, only WBBD seems to perform better than BBD.
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Figure 11: Cross-stock median of trade-time return auto-correlation. Each month,
rj(k) = ρ0j + ρ1jrj(k − 1) + ej(k) is estimated stock-by-stock. Monthly cross-stock medians
of ρ̂1j are plotted against month of observation.

Table X: Fama-MacBeth estimates of characteristic liquidity coefficients for
orthogonally-decomposed measures with respect to BBD. Characteristic liquidity
coefficients on z

F

tj or z̃
F

tj for subsamples April 2001 to December 2014 using Model I (returns,
equation (11)) and Model II (risk-adjusted returns, equation (12)). The orthogonal decomposition
is carried out on a month-by-month basis to fit the Fama-MacBeth routine. Numbers in the
parenthesis are estimated Newey-West standard errors given two lags. Symbols ∗, ∗∗, and ∗∗∗

denote significance at 10%, 5%, and 1% levels, respectively.

Model I (returns)
LIQ WBBD AML AMH PSP LAMBDA EPSP
zF −0.266 0.278∗∗∗ 0.262∗∗∗ 0.180∗∗∗ 0.216∗∗∗ 0.164∗∗∗

(0.314) (0.061) (0.069) (0.052) (0.073) (0.056)

z̃F 0.673 −0.175∗∗ −0.023∗∗ −0.007 −0.130 0.169
(0.504) (0.086) (0.011) (0.007) (0.100) (0.835)

Model II (risk-adjusted returns)
LIQ WBBD AML AMH PSP LAMBDA EPSP
zF −0.341 0.296∗∗∗ 0.292∗∗∗ 0.190∗∗∗ 0.199∗∗∗ 0.193∗∗∗

(0.340) (0.071) (0.079) (0.056) (0.068) (0.062)

z̃F 0.810 −0.158 −0.027∗∗ −0.005 −0.108 0.288
(0.546) (0.104) (0.013) (0.008) (0.102) (0.870)

To obtain liquidity premia from Fama-French estimates, we follow Ben-Rephael et al.

(2015). The Fama-MacBeth approach fits the model month-by-month, and draws statistical
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inference using the empirical distributions of coefficients.63 Each month, we multiply the

estimated liquidity coefficient by the liquidity measure of each stock (LIQj,t−1) to obtain

month-stock-specific liquidity premia. The liquidity premium is then given by the sample-

wide average of the month-specific medians of these premia.

We find that the extent of liquidity premia obtained from Fama-MacBeth estimates are

barely affected by microstructure noise. Asparouhova et al. (2010, 2013) argue that potential

cross-sectional correlation between liquidity and microstructure noise, e.g., bid-ask bounce,

may cause OLS estimates to be biased upwards, i.e., estimated liquidity premia may be

biased upward. They propose a set of corrections for cross-sectional OLS estimates of stock

and portfolio returns. They propose Weighted-OLS rather than OLS, to fit the first-stage

monthly cross-sectional regressions in the Fama-MacBeth approach. A commonly-used cor-

rection weighs stock j’s observation in month t by this stock’s return in the previous month,

(1 + rj,t−1). Table XI shows that our qualitative findings are robust to adjustments for

microstructure noise: estimated premia only decline marginally vis à vis those reported in

Table IX.64 This finding is expected because (i) our sample consists of very liquid NYSE-

listed stocks, and (ii) we focus on the post decimalization era where drivers of microstructure

noise, e.g., tick size, have fallen sharply.

C Error Structure

We impose a robust standard error structure with clustering at the firm level. Our approach

follows Petersen (2009) and accounts for potential cross-firm and cross-time correlations

that might be present in the panel data error terms. Failure to account for these correlations

would lead to underestimated standard errors. To account for common fixed firm and time

63Obviously, month dummies are dropped in the Fama-MacBeth approach.
64The corrections proposed by Asparouhova et al. (2010, 2013) were only investigated in cross-sectional

settings; and not in panel data settings, where autocorrelation in error terms is likely. In panel settings
the lagged gross returns that serve as weights in this correction may be temporally-correlated. This may
introduce complications when calculating clustered standard errors if the extent of temporal correlations in
error terms is related to lagged gross returns. With this caveat, we nonetheless implement their proposed
correction in our weighted-GLS panel estimation approach, recognizing that the extent to which it impacts
clustered standard errors has not been established. In these unreported results, we find that, as with the
Fama-MacBeth estimates, there are no meaningful changes in estimates of liquidity premia and clustered
standard errors when we correct for microstructure noise in this way.
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effects, we estimate a fixed-effect model using GLS and include month dummies. The other

potential error term correlations in either time or cross-section dimensions are non-fixed time

and non-fixed firm effects. Non-fixed firm effects are those causing temporal autocorrelations

in a given firm’s error term. Non-fixed time effects make error terms of different firms related

in a given period of time while the correlation differs for different pairs of firms (see Petersen

(2009) or Cameron, Gelbach, and Miller (2008)).

Many potential sources of non-fixed time and firm effects exist. For example, non-fixed

time effects can arise when industry-specific shocks affect most firms in an industry similarly,

while leaving firms in other industries unaffected; and non-fixed firm effects can arise when

a shock to stock j persists (e.g., the effect of a technology shock on stock’s j’s performance,

which decays over time).

Alternative approaches in finance try to deliver reliable standard errors. Fama and Mac-

Beth (1973) adjust for non-fixed time effects by running cross-sectional regressions period by

period. Different point estimates from different cross-sections give the empirical distributions

of parameters of interest. Further statistical inference is based on the averages and standard

deviations of empirical distributions; and to be valid, this requires temporal independence of

cross-sectional point estimates to obtain unbiased estimates. Unfortunately, time dependence

in our sample makes the Fama-MacBeth approach problematic in our setting.65 In addition,

Fama-MacBeth technique was originally designed to deal with portfolios as test assets over

long time series; our focus was on stocks as test assets over a relatively short time horizon.

Some estimation strategies call for multi-dimensional clustering when a researcher sus-

pects errors to autocorrelate in multiple dimensions (see Cameron, Gelbach, and Miller

(2008)). To the best of our knowledge, however, estimation techniques that allow for multi-

dimensional and non-nested clustered error terms have been developed only for ordinary

least squares (OLS) estimation. OLS estimation using panel data is equivalent to pooling

the information content of different periods about a given individual. Such aggregation is

not appropriate here.

65Petersen (2009) identifies downward biases in Fama-MacBeth estimated standard errors in the presence
of firm effects.
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It is inappropriate to try to control for non-fixed time effects by clustering by time when

we employ fixed-effects GLS, since the unbalanced nature of the panel makes the clusters

non-nested. Most significantly, the set of stocks in our sample varies non-trivially over time,

e.g., due to mergers and acquisitions. With non-nested clusters it is not clear which peri-

ods’ cross-stock error term autocorrelations may cause upward biases in estimated standard

errors. These concerns lead us to control for non-fixed time effects by introducing industry-

specific shocks. This allows us to account for non-fixed time effects associated with shocks

that affect firms within an industry similarly.

Using four-digit GIC industry codes, we identify about 65 industries per month. For each

firm j, we compute the associated average industry returns on a monthly basis excluding its

own return. To de-trend, we find the excess industry return against the equally weighted

monthly average return. The first difference of the monthly industry excess return is em-

ployed as proxy of non-fixed time effects (∆Y IR). Adding this variable to the model does

not qualitatively alter our findings.66

An alternative approach to dealing with non-fixed time effects is to model the serial corre-

lation of error terms parametrically. Accordingly, we estimated the model given error terms

that follow an AR(1) process, εj,t = ρεj,t−1 +νj,t−1, with νit ∼ iidN(0,Σ2
ν). More specifically,

we performed a two stage estimation of standard errors, while equations (11) and (12) are

estimated based on a fixed-effects GLS strategy. As when we cluster at the firm level, the

autoregressive specification of errors does not affect point estimates. The model is estimated

using the fixed-effects GLS strategy, residuals are used to estimate ρ, and the covariance ma-

trix is estimated accordingly. When we do so, we find that regardless of the liquidity measure

employed, the associated standard errors are slightly smaller than those reported in Table IV.

This analysis supports our allowance in the model for firm clustering, along with stock

fixed effects and time dummies. These assumptions are designed to reduce the downward

biases in estimated standard errors. Note that it is not necessary to cluster in the time

66Nichols and Schaffer (2007) note that with differently-sized clusters, inference could be problematic.
This is the case in our sample; however, by clustering at the firm level we get a large number of clusters, so
asymptotic properties should hold.
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dimension since the inclusion of both time dummies and ∆Y IR presumably capture most

of the commonalities in the time variation of stock returns.

D Robustness to construction horizons of liquidity measures

In Section III, we described that measures of stock liquidity in each month are constructed

using observations from the past three months. This design was employed to provide enough

data to estimate accurate low-frequency Amihud measures. However, it also makes our liq-

uidity measures serially-correlated. We can and do address this in our regression analysis:

we cluster error terms at the stock level to account for any stock-specific unobserved auto-

correlation. As an additional robustness check, we now replicate the entire analysis using

liquidity measures that are constructed using observations from the previous month, rather

than from the previous three months. This exercise verifies that our findings are robust to

the backward-looking horizon employed to construct measures of stock liquidity.

When liquidity measures are constructed based on the prior month’s observations, the

results are almost identical to those obtained when measures are constructed based on the

three-month rolling moments (presented throughout the paper).67 Comparisons of estimates

in Table XII and Table IV show that most coefficient estimates change marginally when we

use liquidity measures based on observations from the previous month.

The remainder of the analyses is also robust. In unreported results, we confirm that BBD

and WBBD outperform the other measures regardless of whether we construct measures us-

ing observations from the previous month or the previous three months. Consistent with our

previous findings, Table XIII shows how liquidity premia rises over time and that the increase

in the size and statistical significance of premia are not driven by the years of financial crisis.

67Results available upon request.
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Table XIII: Characteristic liquidity premia by sub-sample. The table reports liquidity
coefficient estimates from panel estimates of Model I (returns, equation (11)) and Model
II (risk-adjusted returns, equation (12)) using the BBD and WBBD liquidity measures.
Measures of liquidity are constructed using observations from the previous month. Month
dummies capture common variation caused by market condition changes, i.e., by common
variation in risk-adjusted returns over time. Standard error estimates are reported in
parenthesis. Standard errors are clustered at the stock level, and stock fixed effects capture
any fixed heteroskedasticity in the error term. Symbols ∗, ∗∗, and ∗∗∗ denote significance
at 10%, 5%, and 1% levels, respectively. For each liquidity measure, the liquidity premium
(presented in bold font) is the product of the liquidity coefficient and the sample average
of the monthly median liquidity measure.

Model LIQ Apr 2001–Dec 2007 Jan 2008–Dec 2014 Jan 2008–Dec 2009 Jan 2010–Dec 2014

M
o
d
e
l

I

BBDt−1 0.030 0.146∗∗∗ 0.085∗ 0.202∗∗∗

(0.029) (0.044) (0.052) (0.059)

1.430 4.497 4.436 4.526

WBBDt−1 0.059 0.250∗∗∗ 0.159∗ 0.256∗∗∗

(0.046) (0.072) (0.086) (0.094)

1.745 4.655 4.937 3.491

M
o
d
e
l

II

BBDt−1 −0.023 0.058 −0.014 0.162∗∗∗

(0.029) (0.041) (0.052) (0.058)

−1.096 1.798 −0.730 3.635

WBBDt−1 −0.020 0.108∗ −0.006 0.214∗∗

(0.045) (0.066) (0.087) (0.092)

−0.587 2.015 −0.183 2.908
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Dramatic microstructure changes in equity markets have made standard liquidity
measures less accurate proxies of trading costs. We develop trade-time based liquidity
measures that reflect per-dollar price impacts of fixed-dollar volumes. Our measures
better capture institutional trading costs and better explain the cross-section of re-
turns than do standard measures, especially in recent years. Despite improvements in
measures of market quality, expected trading costs still have explanatory power for the
cross-section of expected returns: we obtain monthly liquidity premium estimates of
5.3bp for expected returns and 2.4bp for risk-adjusted returns. Estimated premia rise
after the financial crisis and remain high thereafter.

JEL Classification: G12, G14.
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