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Abstract

A finite element approach to the elastic flow of a curve coupled with a diffusion equation on the

curve is analysed. Considering the graph case, the problem is weakly formulated and approximated

with continuous linear finite elements, which is enabled thanks to second-order operator splitting.

The error analysis builds up on previous results for the elastic flow. To obtain an error estimate for

the quantity on the curve a better control of the velocity is required. For this purpose, a penalty

approach is employed and then combined with a generalised Gronwall lemma. Numerical simulations

support the theoretical convergence results. Further numerical experiments indicate stability beyond

the parameter regime with respect to the penalty term which is covered by the theory.

Keywords: geometric PDE, surface PDE, operator splitting, finite elements, convergence analysis
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1 Introduction

The objective of this article is the convergence analysis of a semi-discrete finite element approximation
to the following problem:

Problem 1.1. Given a spatial interval I := (0, 1) and a time interval (0, T ) with some T > 0 and some
functions f : R → R, u0, c0 : I → R, and ub : ∂I → R, find functions u, c : I × (0, T ) → R such that

ut
Q

= − 1

Q

(

κx
Q

)

x

− 1

2
κ3 + f(c), (1.1)

κ =

(

ux
Q

)

x

, (1.2)

(cQ)t =

(

cx
Q

)

x

, (1.3)
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where
Q(x, t) :=

√

1 + u2x(x, t), (x, t) ∈ I × (0, T ),

with the boundary and initial conditions

u(x, t) = ub(x), κ(x, t) = 0, c(x, t) = 0, (x, t) ∈ ∂I × [0, T ], (1.4)

c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ I. (1.5)

The equations (1.1) and (1.2) are the graph formulation of the elastic flow for the curve {Γ(t)}t∈(0,T ),
Γ(t) := {(x, u(x, t)) |x ∈ I}, with a forcing term f(c) in the direction normal to the curve. This term
depends on a conserved field c on the curve which is subject to the advection-diffusion equation (1.3).
Such type of problems are motivated by applications in soft matter, see [24, 25, 32], and cell biology
([9, 34, 27]).

Numerical methods for solving forth-order geometric equations such as (1.1), (1.2) may be based on
parametric approaches. This work builds up on the graph formulation of the elastic flow (or Willmore
flow for higher dimensional manifolds) and on the results which are presented in [11, 10]. More general
parametric methods for the above or related problems are presented and analysed in [23, 12, 3, 4] for
curves and [1, 19, 38] for surfaces. Often, operator splitting is employed, thus enabling the use of H1

conforming spaces. But also more direct approaches exist, for instance, using finite volume techniques as
in [33], employing methods from isogeometric analysis ([6]), or using C1 conforming finite elements as in
[15, 14]. Alternatively, methods may also be based on interface capturing approaches. This includes level
set representations of the curve or surface ([36, 16], see [7] for a comparison with parametric methods)
and the phase field methodology ([17, 18, 8, 28]. For an overview we refer to [13] but we remark that the
field has seen significant advances since.

The two paradigms of surface representation, parametric approaches versus interface capturing ap-
proaches, also underpin techniques for solving PDEs on moving surfaces. The overview by [22] lists a
variety of methods. These include Lagrange methods using finite elements on triangulated surfaces as in
[20] or generalised spline representations, see [31], diffuse interface approximations ([40, 26]), or Eulerian
approaches based on fixed bulk meshes ([41, 21, 35, 29, 37]).

For coupled problems such as (1.1)–(1.3) we are not aware of any convergence results. Schemes for
curve shortening flow instead of the above elastic flow have been analysed in [39] (semi-discrete) and [2]
(fully discrete). The related work of [30] covers the case of a (weighted) H1 flow instead an L2 flow of
the surface energy. The benefit then is some additional control of the manifold velocity which allows to
show convergence of an isoparametric finite element scheme even in the case of surfaces.

Our numerical approach to Problem 1.1 is based on the method in [11, 10] for the elastic flow of the
curve in the graph case. Operator splitting and piecewise linear H1-conforming finite elements are used
and, in particular, error estimates for the velocity ut, the spatial gradient ux, and the length element Q
are proved. However, the diffusion equation involvesQt, whence some control of uxt is required. Denoting
by h the spatial discretisation parameter, the idea is to add a suitably h-weighted H1 inner product of the
velocity with the test function to the semi-discrete weak problem, see (3.6) and (3.8) below. In principle,
this idea already features in the scheme in [39, equation (3.12)] where, thanks to mass lumping, such a
term with a weighting scaling with h2 is added. For that problem the structure of the geometric equation
could be further exploited in order to derive suitable error estimates for c. In the present case we use
a generalised Gronwall inequality (see Lemma 4.9 below) instead. For this to work we need to assume
strictly smaller than quadratic growth in h. As a result, we can only prove smaller convergence rates
for the geometric fields than in [11]. The slower convergence is also observed in numerical simulations.
However, the scheme turns out to be quite stable even for faster growth of the penalty term in h. In
particular, if it grows quadratically in h then we essentially recover the rates in [11] (where there is no
coupling, i.e., f = 0).

In Section 2 we state Problem 1.1 in a suitable variational form and some assumptions on the contin-
uous solution. The spatial discretisation is presented in Section 3 where we also prove some properties
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of the semi-discrete scheme and state the main convergence result (Theorem 3.3 on page 6). This result
then is proved by a series of Lemmas in Section 4. In Section 5 we present some numerical simulation
results and Section 6 contains some concluding remarks.

2 Variational formulation and assumptions

Instead of working with the scalar curvature κ, we introduce the variable

w := −κQ = −κ
√

1 + ux(x, t)2 = − uxx
(1 + ux(x, t)2)

.

A simple computation gives

− 1

Q

(

κx
Q

)

x

− 1

2
κ3 =

(

1

Q3
wx

)

x

+
1

2

(

w2

Q3
ux

)

x

.

We thus consider the following weak formulation of the system (1.1)–(1.3):

∫

I

ut
Q
ϕdx +

∫

I

1

2
w2 uxϕx

Q3
+
wxϕx

Q3
dx−

∫

I

f(c)ϕdx = 0 ∀ϕ ∈ H1
0 (I), (2.1)

∫

I

w

Q
ψ dx−

∫

I

ux
Q
ψx dx = 0 ∀ψ ∈ H1

0 (I), (2.2)

d

dt

(
∫

I

cQξ dx

)

+

∫

I

cx
Q
ξx dx = 0 ∀ξ ∈ H1

0 (I). (2.3)

Note that if we consider a time dependent test function ξ then the last equation is replaced by

d

dt

(
∫

I

cQξ dx

)

+

∫

I

cx
Q
ξx dx =

∫

I

cQξt. (2.4)

If f = 0 then the system (2.1), (2.2) coincides with [11, (2.4), (2.5)].

Assumption 2.1. We assume that f : R → R is a given continuously differentiable map with

‖f‖L∞(R) ≤ C, ‖f ′‖L∞(R) ≤ C. (2.5)

Moreover, we assume that the initial-boundary value problem (1.1)–(1.5) has a unique solution (u, c)
which satisfies

u ∈ L∞((0, T );W 4,∞(I)) ∩ L2((0, T );H5(I)), (2.6)

ut ∈ L∞((0, T );W 2,∞(I)) ∩ L2((0, T );H3(I)), (2.7)

utt ∈ L∞((0, T );L∞(I)) ∩ L2((0, T );H1(I)), (2.8)

c ∈ W 1,∞((0, T );H1(I)) ∩ L∞((0, T );H2(I)) ∩ L∞((0, T );H1
0 (I)). (2.9)

3 Discretisation and convergence statements

We consider continuous, piecewise linear finite elements on a subdivision 0 = x0 < x1 < · · · < xN = 1 of
the spatial interval:

Xh0 := {uh ∈ C0([0, 1],R) : uh|[xj−1,xj ] ∈ P1([xj−1, xj ]), j = 1 · · · , N, uh(x0) = uh(xN ) = 0}.

3
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Let ϕj , j = 0, . . . , N , denote the nodal basis functions. We set Xh := span{ϕ0, . . . , ϕN} and denote by
Sj the subinterval Sj = [xj−1, xj ] ⊂ [0, 1]. Moreover let hj = |Sj | and h = maxj=1,...,N hj be the maximal
diameter of a grid element. We assume that for some constant C̄ > 0 we have

hj ≥ C̄h for all j = 1, . . . , N. (3.1)

For a continuous function u ∈ C0([0, 1],R) let Ihu ∈ Xh be the linear interpolate uniquely defined by
Ihu(xi) = u(xi) for all i = 0, . . . , N . We shall use the standard interpolation estimates:

‖v − Ihv‖L2(I) ≤ Chk‖v‖Hk(I) for k = 1, 2 , (3.2)

‖(v − Ihv)x‖L2(I) ≤ Ch‖v‖H2(I) . (3.3)

Recall also the inverse estimates for any mh ∈ Xh and j = 1, . . . , N :

‖mhx‖L2(Sj) ≤
C

hj
‖mh‖L2(Sj)

(3.1)
=⇒ ‖mhx‖L2(I) ≤

C

h
‖mh‖L2(I), (3.4)

‖mh‖L∞(Sj) ≤
C
√

hj
‖mh‖L2(Sj)

(3.1)
=⇒ ‖mh‖L∞(I) ≤

C√
h
‖mh‖L2(I). (3.5)

The discrete formulation that we propose entails a regularization term weigthed by a positive function
depending on the parameter h, which is defined by

µ(h) := Cµh
r for some r ∈ [1, 2) and some Cµ > 0. (3.6)

The reason for introducing this term is motivated below in Remark 4.2 after introducing the necessary
notation. The initial data for the discrete problem are denoted by

u0h ∈ Ih(ub) +Xh0, c0h ∈ Xh0, (3.7)

respectively, and will be specified in (4.23) below (see also Lemma 4.1).

Problem 3.1 (Semi-discrete Scheme). Find functions uh(·, t) ∈ Ih(ub)+Xh0 and wh(·, t), ch(·, t) ∈ Xh0,
t ∈ [0, T ], of the form

uh(x, t) =

N
∑

j=0

uj(t)ϕj(x), ch(x, t) =

N−1
∑

j=1

cj(t)ϕj(x), wh(x, t) =

N−1
∑

j=1

wj(t)ϕj(x),

with uj(t), cj(t), wj(t) ∈ R, t ∈ [0, T ], such that uh(·, 0) = u0h, ch(·, 0) = c0h as defined in (4.23), and
such that for all ϕh, ψh, ζh ∈ Xh0

∫

I

µ(h)uhxtϕhx +
uhtϕh

Qh
dx+

∫

I

1

2
w2

h

uhxϕhx

Q3
h

+
whxϕhx

Q3
h

dx =

∫

I

Ih(f(ch))ϕh dx, (3.8)

∫

I

whψh

Qh
dx−

∫

I

uhxψhx

Qh
dx = 0, (3.9)

d

dt

(
∫

I

chQhζh dx

)

+

∫

I

chxζhx
Qh

dx = 0. (3.10)

Here, µ(h) is defined in (3.6) and Qh denotes the discrete length element,

Qh(x, t) :=
√

1 + u2hx(x, t).
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Note that if we consider a time dependent test function ζh(x, t) =
∑N−1

j=1 ζj(t)ϕj(x) in (3.10) then the
last equation is replaced by

d

dt

(
∫

I

chQhζh dx

)

+

∫

I

chxζhx
Qh

dx =

∫

I

chζhtQhdx. (3.11)

Lemma 3.2. The above system (3.8)–(3.10) has a unique solution on [0, T̃ ] for any 0 < T̃ <∞.

Proof. Fix h > 0. Local existence on some time interval [0, Th) follows from standard ODEs theory.
Since uh(t), wh(t), ch(t) have values in a finite dimensional space (whose dimension depends on h), it is
sufficient to bound (uh, wh, ch) in some norm to obtain existence on [0, T̃ ]. Choosing ϕh = uht in (3.8),
ψh = wh in (3.9)t (i.e. in equation (3.9) after differentiation with respect to time), and combining the
thus obtained equations gives

∫

I

µ(h)u2hxtdx+
u2ht
Qh

dx+
1

2

d

dt

∫

I

w2
h

Qh
dx =

∫

I

Ih(f(ch))uhtdx ≤ C

∫

I

Qhdx+
1

2

∫

I

u2ht
Qh

,

where for the last inequality we have used the boundedness of f (recall (2.5)). Integration in time gives
for any t′ ∈ [0, Th)

µ(h)

∫ t′

0

∫

I

u2hxtdxdt+
1

2

∫ t′

0

∫

I

u2ht
Qh

dxdt+
1

2

∫

I

w2
h

Qh
dx ≤ C(u0h, w0h) + C

∫ t′

0

∫

I

Qhdxdt.

On the other hand, using (3.9) we observe that

d

dt

∫

I

Qhdx =

∫

I

wh
uht
Qh

≤ ǫ

∫

I

u2ht
Qh

dx+ Cǫ

∫

I

w2
h

Qh
dx

so that integration in time gives

∫

I

Qh(t
′)dx ≤ C(u0h) + ǫ

∫ t′

0

∫

I

u2ht
Qh

dxdt+ Cǫ

∫ t′

0

∫

I

w2
h

Qh
dxdt 0 ≤ t′ < Th.

Combining the above inequalities we obtain

µ(h)

∫ t′

0

∫

I

u2hxtdxdt +
1

2

∫ t′

0

∫

I

u2ht
Qh

dxdt+
1

2

∫

I

w2
h

Qh
dx+

∫

I

Qh(t
′)dx

≤ C + Cǫ

∫ t′

0

∫

I

u2ht
Qh

dxdt + Cǫ

∫ t′

0

∫

I

w2
h

Qh
dxdt 0 ≤ t′ < Th,

for some constant C = C(u0h, w0h, T̃ ). Choosing ǫ appropriately and using a Gronwall argument we infer
that

µ(h)

∫ t′

0

∫

I

u2hxtdxdt+

∫ t′

0

∫

I

u2ht
Qh

dxdt+

∫

I

w2
h

Qh
(t′)dx+

∫

I

Qh(t
′)dx ≤ C, 0 ≤ t′ < Th.

Since all norms are equivalent in a finite dimensional space, this implies that Qh(t
′) ≤ C(u0h, w0h, T̃ , h)

uniformly in [0, 1]× [0, Th). Uniform bounds for uh, wh follow immediately.
If we write down explicitly the ODE system for u̇j then we see that

N−1
∑

j=1

(

µ(h)

∫

I

ϕixϕjxdx+

∫

I

ϕiϕj

Qh
dx

)

u̇j = Fi(uh, wh, ch) (i = 1, . . .N − 1)

5
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with |Fi| ≤ C uniformly in time, since f is bounded and since we have uniform bounds on wh and uh.
The (N − 1)× (N − 1) matrix A with real entries Aij(h,Qh(t)) =

∫

I
µ(h)ϕixϕjx +

ϕiϕj

Qh
dx is symmetric,

tri-diagonal, diagonalizable and positive definite. Its positive eigenvalues depend on h but are uniformly
bounded from below with repect to time (since Qh is uniformly bounded from above and below). For
simplicity we show this fact in the special case of a uniform grid and taking µ(h) = h (the general case
is treated in a similar way): for the entries of the matrix A a simple computation gives (using that
1 ≤ Qh(t

′) ≤ C)

Aii = µ(h)
2

h
+

∫

I

ϕ2
i

Qh(t′)
dx ∈

[

2 +
1

C

4h

6
, 2 +

4h

6

]

,

Aii±1 = −µ(h) 1
h
+

∫

I

ϕiϕi±1

Qh(t)
dx ∈

[

−1 +
1

C

h

6
,−1 +

h

6

]

.

It is well known (Gerschgorin theorem) that the eigenvalues λ(t) of A = A(t′) are elements of the set

{z ∈ R : |z −Aii| ≤ |Ai,i+1|+ |Ai,i−1|}

giving that

5 ≥ λ(t) ≥ h

C
, for 0 ≤ t′ < Th.

In conclusion we are able to infer a uniform bound on the u̇j, j = 1, . . . , N − 1 and hence on uhxt (taking
into account that u̇0 = u̇N = 0 due to the boundary conditions).

Next, testing (3.11) with ζh = ch and using the bounds on uh, uht we infer

d

dt

(
∫

I

c2hQh dx

)

+

∫

I

c2hx
Qh

dx =

∫

I

chchtQhdx =
1

2

d

dt

(
∫

I

c2hQh dx

)

− 1

2

∫

I

c2h
uhx
Qh

uhxtdx

≤ 1

2

d

dt

(
∫

I

c2hQh dx

)

+ C

∫

I

c2hdx ≤ 1

2

d

dt

(
∫

I

c2hQh dx

)

+ C

∫

I

c2hQhdx.

With a Gronwall estimate we get ‖ch(t′)‖L2(I) ≤ C = C(u0h, w0h, T̃ , c0h, h) uniformly in 0 ≤ t′ < Th.

The flow can be now extended up to time T̃ . Since h was chosen arbitrarily the claim follows.

We now state our main result which will be proved in the subsequent section by a series of lemmas:

Theorem 3.3. Let f : R → R satisfy (2.5). Assume that (1.1)–(1.5) has a unique solution (u, c) on the
interval [0, T ], which satisfies (2.6)–(2.9). Let (uh, ch) denote the solution of Problem 3.1. Then there is
some h0 > 0 such that for all h ≤ h0

sup
0≤t≤T

‖(u− uh)(t)‖L2(I) + sup
0≤t≤T

‖(w − wh)(t)‖L2(I)

+ sup
0≤t≤T

‖(u− uh)x(t)‖L2(I) ≤ Ch,

∫ T

0

‖(u− uh)t(t)‖2L2(I)dt+

∫ T

0

‖(w − wh)x(t)‖2L2(I)dt ≤ Ch2,

sup
0≤t≤T

‖(c− ch)(t)‖2L2(I) +

∫ T

0

‖(c− ch)x(t)‖2L2(I)dt ≤ Ch2.

Moreover, we have that

∫ T

0

‖(u− uh)tx(t)‖2L2(I)dt ≤ C
h2

µ(h)
= Ch2−r.

with µ(h) defined in (3.6).

6
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4 Error estimates

4.1 Nonlinear Ritz projections

Our error analysis relies strongly on results presented in [11], which are based on suitable nonlinear
Ritz projections for u and w. We recall here their definition and properties. Let ûh be defined by:
ûh − Ih(ub) ∈ Xh0 and

∫

I

ûhxξhx

Q̂h

=

∫

I

uxξhx
Q

∀ξh ∈ Xh0, (4.1)

Q̂h(x, t) :=
√

1 + û2hx(x, t).

Note that time t here is a parameter only. For the error

ρu := u− ûh

we have the following estimates (see [11, § 2] and references given in there; to simplify notation we write
ρux for (ρu)x and so on):

sup
0≤t≤T

‖ρu(t)‖L2(I) + h sup
0≤t≤T

‖ρux(t)‖L2(I) ≤ Ch2, (4.2)

sup
0≤t≤T

‖ρu(t)‖L∞(I) + h sup
0≤t≤T

‖ρux(t)‖L∞(I) ≤ Ch2| log h|, (4.3)

sup
0≤t≤T

‖ρut(t)‖L2(I) ≤ Ch2| log h|2, (4.4)

sup
0≤t≤T

‖ρutx(t)‖L2(I) ≤ Ch. (4.5)

We also define a projection ŵh ∈ Xh0 of w with the help of ûh as follows:

∫

I

E(ûhx)ŵhxϕhxdx =

∫

I

E(ux)wxϕhxdx+
1

2

∫

I

w2

(

ux
Q3

− ûhx

Q̂3
h

)

ϕhxdx ∀ϕh ∈ Xh0 (4.6)

where we set

E(p) :=
1

(1 + p2)
3

2

for p ∈ R. (4.7)

Note that there is some constant C > 0 such that |E(p)−E(q)| ≤ C|p− q| for all p, q ∈ R. The proof of
the following bounds for the error

ρw := w − ŵh

is given in [11, Appendix, Lemma A.1]:

sup
0≤t≤T

‖ρwx(t)‖L2(I) ≤ Ch, (4.8)

sup
0≤t≤T

‖ρw(t)‖L2(I) ≤ Ch2| log h|, (4.9)

sup
0≤t≤T

‖ρwtx(t)‖L2(I) ≤ Ch, (4.10)

sup
0≤t≤T

‖ρwt(t)‖L2(I) ≤ Ch2| log h|2. (4.11)

7
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The equations (2.6), (2.7), (4.3)–(4.5), (4.8)–(4.11) together with interpolation and inverse estimates
imply that

‖ûh‖W 1,∞(I), ‖ûht‖W 1,∞(I), ‖ŵh‖W 1,∞(I), ‖ŵht‖W 1,∞(I) ≤ C (4.12)

uniformly in h and time.

4.2 Discrete initial data and first estimates

Let (uh, wh, ch) be the discrete solution on the time interval [0, T ]. Define

C0 := sup
x∈I, t∈[0,T ]

Q(x, t), C1 := sup
x∈[0,1], t∈[0,T ]

|w(x, t)|, (4.13)

C2 := ‖c‖C([0,T ],H1(I)), C3 := ‖c‖L2((0,T ),H1(I)). (4.14)

For the discrete solution we observe that on the time interval [0, t̄] (for t̄ sufficiently small) we have that

sup
x∈I, t∈[0,t̄]

Qh(x, t) ≤ 2C0, sup
x∈I, t∈[0,t̄]

|wh(x, t)| ≤ 2C1, (4.15)

‖ch‖C([0,t̄],L∞(I)) ≤ 2Ĉ(I)C2, ‖ch‖L2((0,t̄),H1(I)) ≤ 2C3 (4.16)

thanks to the choice of initial conditions (see Lemma 4.1 below), the smoothness assumptions on (u, c),
and a continuity argument (here, Ĉ(I) denotes the constant for the embedding H1(I) →֒ L∞(I) which
depends on the length of I; in our case I = (0, 1) one can actually bound Ĉ(I) by one). Define

Th := sup{t̄ ∈ [0, T ] | (4.15), (4.16) hold on [0, t̄]}. (4.17)

We employ the well known strategy to first derive error estimates on the time interval [0, Th) and then
use these bounds to infer that Th = T . Therefore in what follows we shall assume (4.15) and (4.16)
(without specifying this in every statement). We decompose the errors u− uh and w − wh according to

u− uh = (u− ûh) + (ûh − uh) = ρu + eu, where eu := ûh − uh,

w − wh = (w − ŵh) + (ŵh − wh) = ρw + ew, where ew := ŵh − wh.

Sometimes it is convenient to work with the smooth and discrete unit normals

ν =
(−ux, 1)

Q
, ν̂h :=

(−ûhx, 1)
Q̂h

, νh :=
(−uhx, 1)

Qh
.

Note that in [11, (3.4)] it is shown that

|ν̂h − νh| ≤ |(ûh − uh)x| ≤ (1 + sup
I

|ûhx|)Qh|ν̂h − νh|, (4.18)

which leads to

|ν̂h − νh| ≤ |(ûh − uh)x| = |eux| ≤ C|ν̂h − νh|, (4.19)

where the constant C depends on C0 and on the constant appearing in (4.12). Clearly

|Q̂h −Qh| ≤
∣

∣|(ûhx,−1)| − |(uhx,−1)|
∣

∣ ≤
∣

∣(ûhx,−1)− (uhx,−1)
∣

∣ = |ûhx − uhx| = |eux|. (4.20)

In the estimates that will follow we will also use the fact that

|Q−Qh| ≤ |ux − uhx| ≤ |ρux|+ |eux|, (4.21)

|ν − νh| =
∣

∣

∣

∣

(Qh −Q)

Qh

1

Q
(ux,−1) +

1

Qh
(ux − uhx, 0)

∣

∣

∣

∣

≤ C|ρux|+ C|eux|, (4.22)

8
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which easily follow employing the boundedness of Q and Qh.
We pick the following initial values in (3.7):

u0h(x) := û0(x), c0h(x) := Ih(c0)(x), x ∈ Ī , (4.23)

where û0 is the non-linear projection of u0 defined in (4.1).

Lemma 4.1. For the choice of initial data in (4.23) we have that

eu(0) ≡ 0, ‖ew(0)‖L2(I) ≤ Ch.

Proof. The first statement follows directly from the definition. For the error estimate of ew(0), observe
that since ûh(·, 0) = u0h(·) then by (3.9), (4.1), and (2.2)

∫

I

wh(0)ξh
Qh(0)

=

∫

I

u0hxξhx
Qh(0)

=

∫

I

u0xξhx
Q(0)

=

∫

I

w(0)ξh
Q(0)

for any ξh ∈ Xh0. Subtraction gives

∫

I

(

w(0)

Q(0)
− wh(0)

Qh(0)

)

ξh = 0 ∀ ξh ∈ Xh0.

Testing with ξh = Ih(w(0)) − wh(0) gives

∫

I

|w(0) − wh(0)|2
Qh(0)

=

∫

I

w(0)(w(0) − wh(0))
Q(0)−Qh(0)

Q(0)Qh(0)

+

∫

I

(w(0)− wh(0))

Qh(0)
(w(0) − Ih(w(0)))

+

∫

I

w(0)

Q(0)Qh(0)
(Qh(0)−Q(0))(w(0)− Ih(w(0))).

We infer that ‖w(0)−wh(0)‖L2(I) ≤ Ch by a standard ǫ-Young argument, (4.2), (2.6), (3.2), (4.12), and

the boundedness of 1 ≤ Qh(0) ≤ C0 +C‖ρux‖L∞ ≤ 3
2C0 by (4.3), (4.12), and h small enough. The claim

now follows by writing ew(0) = −ρw(0) + (w(0) − wh(0)) and using (4.9).

Remark 4.2. In the discrete formulation of the problem we have introduced a regularization term weigthed
by µ(h). This is motivated by the necessity of finding an error estimate for |(Q − Qh)t| in Lemma 4.8
below (cf. term K1 in the proof). Note that we can write

|(Q −Qh)t| =
∣

∣

∣

∣

uhx
Qh

(uxt − uhxt) + uxt(
ux
Q

− uhx
Qh

)

∣

∣

∣

∣

≤ |ρuxt|+ |euxt|+ C|ν − νh|.

The regularisation helps in deriving an estimate for the “tricky” term |euxt|, see (4.37) below.

4.3 Error estimates for eu and ew

The following error estimates for eu and ew are obtained through appropriate modification of the cor-
responding error estimates shown in [11]. We have used the same notation on purpose so that it will
be easier for the reader to look up the details which are not repeated here for the sake of conciseness.
Moreover we give statements in such a way that it is easy to make a distinction as for which contributions
come from the “new” coupling and regularising terms and those that have a purely geometrical meaning.
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Lemma 4.3. Suppose that F : R → R is twice continuously differentiable and that ζ ∈ H1
0 (I). Then

∫

I

(F (ux)− F (ûhx))ζ dx =

∫

I

ρu
∂

∂x
(ζF ′(ux))dx +R,

where R satisfies |R| ≤ Ch2| log h|‖ζ‖L2(I).

Proof. See [11, Lemma 3.1]. It uses a mean value theorem, the smoothness of F and u (recall (2.6)) and
the bounds (4.2), (4.3), and (4.12).

Lemma 4.4. For every ǫ > 0 there exists Cǫ such that

‖eux(t)‖2L2(I) ≤ ǫ‖ew(t)‖2L2(I) + Cǫ‖eu(t)‖2L2(I) + Ch4| log h|2, 0 ≤ t < Th.

Proof. See [11, Lemma 3.2]. Here one starts from the equation

∫

I

(

ûhx

Q̂h

− uhx
Qh

)

ϕhx dx =

∫

I

(

w

Q
− wh

Qh

)

ϕh dx ∀ ϕ ∈ Xh0,

which follows from (4.1), (2.2), and (3.9), and tests with ϕh = eu.

Lemma 4.5. For 0 ≤ t < Th we have

‖ewx(t)‖2L2(I) ≤ C(‖eux(t)‖2L2(I) + ‖eut(t)‖2L2(I) + ‖ew(t)‖2L2(I) + h4| log h|4)
+ C‖(c− ch)(t)‖2L2(I) + Cµ(h)2‖uhxt(t)‖2L2(I) + Ch2(1 + ‖chx(t)‖2L2(I)).

Proof. The definition (4.6) of ŵh and (2.1) yield

∫

I

ûhtϕh

Qh
+

∫

I

E(ûh)ŵhxϕhx +
1

2

∫

I

ŵ2
h

Q̂3
h

ûhxϕhx

=

∫

I

(ûht − ut)ϕh

Qh
+

∫

I

ut

(

1

Qh
− 1

Q

)

ϕh +
1

2

∫

I

(ŵ2
h − w2)

ûhx

Q̂3
h

ϕhx +

∫

I

f(c)ϕh

for all ϕh ∈ Xh0. Subtracting (3.8) we obtain

∫

I

eutϕh

Qh
+

∫

I

(E(ûhx)ŵhx − E(uhx)whx)ϕhx +
1

2

(

ŵ2
h

Q̂3
h

ûhx − w2
h

Q3
h

uhx

)

ϕhx (4.24)

= −
∫

I

ρutϕh

Qh
+

∫

I

ut

(

1

Qh
− 1

Q

)

ϕh +
1

2

∫

I

(ŵ2
h − w2)

ûhx

Q̂3
h

ϕhx

+

∫

I

(f(c)− Ih(f(ch)))ϕh + µ(h)

∫

I

uhxtϕhx.

After inserting ϕh = ew ∈ Xh0 we derive

∫

I

(E(ûhx)ŵhx − E(uhx)whx)ewx = −
∫

I

eutew
Qh

− 1

2

(

ŵ2
h

Q̂3
h

ûhx − w2
h

Q3
h

uhx

)

ewx −
∫

I

ρutew
Qh

(4.25)

+

∫

I

ut

(

1

Qh
− 1

Q

)

ew +
1

2

∫

I

(ŵ2
h − w2)

ûhx

Q̂3
h

ewx

+

∫

I

(f(c)− Ih(f(ch)))ew + µ(h)

∫

I

uhxtewx.

10
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For the last two terms we observe that
∣

∣

∣

∣

µ(h)

∫

I

uhxtewx

∣

∣

∣

∣

≤ ǫ‖ewx‖2L2(I) + Cǫµ(h)
2‖uhtx‖2L2(I),

and
∣

∣

∣

∣

∫

I

(f(c)− Ih(f(ch)))ew

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

I

(f(c)− f(ch))ew

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

(f(ch)− Ih(f(ch)))ew

∣

∣

∣

∣

≤ C‖c− ch‖2L2(I) + Ch2(1 +

∫

I

|chx|2) + C‖ew‖2L2(I) (4.26)

where we have used (2.5) and (3.2). From now on we argue exactly as in [11, Lemma 3.3]. The error
bound relies on the fact that it can be shown that

∫

I

(E(ûhx)ŵhx − E(uhx)whx)ewx ≥ 1

2
√

1 + 4C2
0

‖ewx‖2L2(I) − C‖eux‖2L2(I).

The estimates for the remaining terms on the right-handside of (4.25) are carefully explained in [11,
Lemma 3.3], hence we do not repeat the arguments here.

Lemma 4.6. For 0 ≤ t < Th we have

µ(h)

2
‖eutx‖2L2(I) +

1

4C0
‖eut‖2L2(I) +

∫

I

(E(ûhx)ŵhx − E(uhx)whx)eutx +
1

2

∫

I

(

ŵ2
h

Q̂3
h

ûhx − w2
h

Q3
h

uhx

)

eutx

≤ − d

dt

∫

I

ut
ux
Q3

euxρu +
1

2

d

dt

∫

I

(ŵ2
h − w2)

ûhx

Q̂3
h

eux + C‖eux‖2L2(I) + Ch4| log h|4

+ C‖c− ch‖2L2(I) + Cµ(h)2 + Cµ(h)h2 + Ch2(1 + ‖chx‖2L2(I)).

Proof. Choosing ϕ = eut ∈ Xh0 in (4.24) and using (4.15) we obtain

∫

I

e2ut
2C0

+

∫

I

(E(ûhx)ŵhx − E(uhx)whx)eutx +
1

2

(

ŵ2
h

Q̂3
h

ûhx − w2
h

Q3
h

uhx

)

eutx

≤ −
∫

I

ρuteut
Qh

+

∫

I

ut

(

1

Qh
− 1

Q̂h

)

eut +

∫

I

ut

(

1

Q̂h

− 1

Q

)

eut +
1

2

∫

I

(ŵ2
h − w2)

ûhx

Q̂3
h

ϕhx

+

∫

I

(f(c)− Ih(f(ch)))eut + µ(h)

∫

I

uhxteutx =: I + II + III + IV + V + V I.

The terms I, II, III, IV are treated and estimated as in [11, Lemma 3.4]. Again we refrain from giving
details here since the original paper gives all argument in detail. For the fifth term we proceed as in
(4.26) but with an ǫ weight and obtain that

∣

∣

∣

∣

∫

I

(f(c)− Ih(f(ch)))eut

∣

∣

∣

∣

≤ Cǫ‖c− ch‖2L2(I) + 2ǫ‖eut‖2L2(I) + Cǫh
2(1 +

∫

I

|chx|2).

For the last term we compute using integration by parts (recall that eut = 0 on ∂I)

V I = µ(h)

∫

I

uhtxeutx = µ(h)

(
∫

I

(uhtx − ûhtx)eutx +

∫

I

(ûhtx − utx)eutx +

∫

I

utxeutx

)

= −µ(h)‖eutx‖2L2(I) − µ(h)

∫

I

ρutxeutx − µ(h)

∫

I

utxxeut

≤ −µ(h)‖eutx‖2L2(I) +
µ(h)

2
‖eutx‖2L2(I) +

µ(h)

2
Ch2 + ǫ‖eut‖2L2(I) + Cǫµ(h)

2,

11
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where we have used (4.5) and (2.7). An appropriate choice of ǫ together with the estimates for the terms
I–V I gives the claim.

Lemma 4.7. For 0 ≤ t < Th we have

1

2

d

dt

∫

I

e2w
Qh

− 1

2

∫

I

e2w
Q2

h

Qht −
∫

I

ŵh

(

Q̂ht

Q̂2
h

− Qht

Q2
h

)

ew −
∫

I

(E(ûhx)ûhtx − E(uhx)uhtx)ewx

≤ ǫ‖ewx‖2L2(I) + Cǫ(‖eux‖2L2(I) + ‖ew‖2L2(I)) + Cǫh
4| log h|4.

Proof. See [11, Lemma 3.5]: the main idea is to take equation (2.2) together with the definition of ûh
(recall (4.1)) to infer

∫

I

wξh
Q

=

∫

I

uxξhx
Q

=

∫

I

ûhxξhx

Q̂h

∀ξh ∈ Xh0,

and from which differentiation with respect to time gives

∫

I

wtξh
Q

−
∫

I

wξh
Q2

Qt −
∫

I

E(ûhx)ûhtxξhx = 0 ∀ξh ∈ Xh0. (4.27)

Differentiation with respect to time of (3.9) gives

∫

I

whtξh
Qh

−
∫

I

whξh
Q2

h

Qht −
∫

I

E(uhx)uhtxξhx = 0 ∀ξh ∈ Xh0. (4.28)

The claim now follows by taking the difference of (4.27), (4.28), and testing with ξh = ew.

It follows now from Lemma 4.6 and Lemma 4.7 that

µ(h)

2
‖eutx‖2L2(I) +

1

4C0
‖eut‖2L2(I) +

1

2

d

dt

∫

I

e2w
Qh

+
1

2

∫

I

(

ŵ2
h

Q̂3
h

ûhx −
w2

h

Q3
h

uhx

)

eutx − 1

2

∫

I

e2w
Q2

h

Qht −
∫

I

ŵh

(

Q̂ht

Q̂2
h

− Qht

Q2
h

)

ew

+

∫

I

(E(ûhx)ŵhx − E(uhx)whx)eutx −
∫

I

(E(ûhx)ûhtx − E(uhx)uhtx)ewx

≤− d

dt

∫

I

ut
ux
Q3

euxρu +
1

2

d

dt

∫

I

(ŵ2
h − w2)

ûhx

Q̂3
h

eux + Cǫh
4| logh|4

+ ǫ‖ewx‖2L2(I) + Cǫ(‖eux‖2L2(I) + ‖ew‖2L2(I))

+ C‖c− ch‖2L2(I) + Cµ(h)2 + Cµ(h)h2 + Ch2(1 + ‖chx‖2L2(I)). (4.29)

The terms appearing is the second and third line are dealt with as in [11, p34–37] where the lengthy
calculations are presented in detail. We thus only list the relevant results. Precisely one finds that (see
[11, (3.15), (3.18), (3.19)])

1

2

∫

I

(

ŵ2
h

Q̂3
h

ûhx −
w2

h

Q3
h

uhx

)

eutx − 1

2

∫

I

e2w
Q2

h

Qht −
∫

I

ŵh

(

Q̂ht

Q̂2
h

− Qht

Q2
h

)

ew (4.30)

≥ 1

2

d

dt

∫

I

ŵ2
h

{

1

2

Qh

Q̂2
h

|ν̂h − νh|2 −
1

QhQ̂2
h

(Q̂h −Qh)
2

}

− C(‖ew‖2L2(I) + ‖eux‖2L2(I)),

12
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as well as
∫

I

(E(ûhx)− E(uhx))(ûhtx − uhtx)ŵhx (4.31)

≥ d

dt

∫

I

((

Qh

Q̂h

− 1

)

(ν̂h − νh)−
1

2

Qh

Q̂h

|ν̂h − νh|2ν̂h
)

· (ŵhx, 0)
t − C‖eux‖2L2(I),

and
∣

∣

∣

∣

∫

I

(E(ûhx)− E(uhx))ûhtxewx

∣

∣

∣

∣

≤ ǫ‖ewx‖2L2(I) + Cǫ‖eux‖2L2(I). (4.32)

Observing that

(E(ûhx)ŵhx − E(uhx)whx)eutx − (E(ûhx)ûhtx − E(uhx)uhtx)ewx

= (E(ûhx)− E(uhx))(ûhtx − uhtx)ŵhx − (E(ûhx)− E(uhx))ûhtxewx,

and inserting (4.30), (4.31), (4.32) into (4.29) we obtain

µ(h)

2
‖eutx‖2L2(I) +

1

4C0
‖eut‖2L2(I) +

1

2

d

dt

∫

I

e2w
Qh

≤− d

dt

∫

I

ut
ux
Q3

euxρu +
1

2

d

dt

∫

I

(ŵ2
h − w2)

ûhx

Q̂3
h

eux

− 1

2

d

dt

∫

I

ŵ2
h

{

1

2

Qh

Q̂2
h

|ν̂h − νh|2 −
1

QhQ̂2
h

(Q̂h −Qh)
2

}

− d

dt

∫

I

((

Qh

Q̂h

− 1

)

(ν̂h − νh)−
1

2

Qh

Q̂h

|ν̂h − νh|2ν̂h
)

· (ŵhx, 0)
t

+ Cǫh
4| log h|4 + ǫ‖ewx‖2L2(I) + Cǫ(‖eux‖2L2(I) + ‖ew‖2L2(I))

+ C‖c− ch‖2L2(I) + Cµ(h)2 + Cµ(h)h2 + Ch2(1 + ‖chx‖2L2(I)).

Integration with respect to time for some t̄ ∈ (0, Th), application of Lemma 4.4 and Lemma 4.5, (4.12),
(4.19), (4.15), (4.16), (4.2), and using the approximation order of the initial data (recall Lemma 4.1)
yields

∫ t̄

0

µ(h)‖eutx‖2L2(I)dt+

∫ t̄

0

‖eut‖2L2(I)dt+ ‖ew(t̄)‖2L2(I)

≤ C‖ew(0)‖2L2(I) + C‖eux(t̄)‖L2(I)(‖ρu(t̄)‖L2(I) + ‖ew(t̄)‖L2(I) + ‖eux(t̄)‖L2(I))

+ C‖eux(0)‖L2(I)(‖ρu(0)‖L2(I) + ‖ew(0)‖L2(I) + ‖eux(0)‖L2(I))

+ Cǫh
4| log h|4 + ǫ

∫ t̄

0

‖ewx‖2L2(I)dt

+ Cǫ

∫ t̄

0

(‖eux‖2L2(I) + ‖ew‖2L2(I))dt+ C

∫ t̄

0

‖c− ch‖2L2(I)dt

+ Cµ(h)2 + Cµ(h)h2 + Ch2(1 +

∫ t̄

0

‖chx‖2L2(I)dt)

≤ ǫ

(

‖ew(t̄)‖2L2(I) +

∫ t̄

0

‖eut‖2L2(I)dt

)

+ ǫCµ(h)2
∫ t̄

0

‖uhxt‖2L2(I)dt

13
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+ Cǫ

(

‖eu(t̄)‖2L2(I) + h4| log h|4 +
∫ t̄

0

(‖eu‖2L2(I) + ‖ew‖2L2(I))dt

)

+ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Cµ(h)2 + Cµ(h)h2 + Ch2. (4.33)

Thanks to (4.12) and as µ(h) ≤ 1 for all h ≤ h0 with some sufficiently small h0 we have that

ǫCµ(h)2
∫ t̄

0

‖uhxt‖2L2(I)dt

≤ ǫCµ(h)2
∫ t̄

0

(‖eutx‖2L2(I) + C)dt ≤ ǫCµ(h)

∫ t̄

0

‖eutx‖2L2(I)dt+ ǫCµ(h)2. (4.34)

Moreover, using that eu(0) = 0 we obtain that

‖eu(t̄)‖2L2(I) =

∫ t̄

0

d

dt

∥

∥eu(t)
∥

∥

2

L2(I)
dt =

∫ t̄

0

∫

I

2eueutdxdt ≤ ǫ

∫ t̄

0

‖eut‖2L2(I)dt+ Cǫ

∫ t̄

0

‖eu‖2L2(I)dt.

Using this and (4.34) with ǫ small enough in (4.33) yields

∫ t̄

0

µ(h)‖eutx‖2L2(I)dt+

∫ t̄

0

‖eut‖2L2(I)dt+ ‖ew(t̄)‖2L2(I) + ‖eu(t̄)‖2L2(I)

≤ C

∫ t̄

0

(‖eu‖2L2(I) + ‖ew‖2L2(I))dt+ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Cµ(h)2 + Cµ(h)h2 + Ch2. (4.35)

A Gronwall argument and using that µ(h) ≤ Ch for all h ≤ h0 (after eventually reducing h0) finally
yields

‖ew(t̄)‖2L2(I) + ‖eu(t̄)‖2L2(I) ≤ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Ch2, t̄ ∈ [0, Th), (4.36)

from which also conclude that

µ(h)

∫ t̄

0

‖eutx‖2L2(I)dt+

∫ t̄

0

‖eut‖2L2(I)dt ≤ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Ch2, t̄ ∈ [0, Th). (4.37)

4.4 Error estimate for (c− ch)

In order to proceed we need to analyse the error between c and ch. We here basically follow the lines of
[39], Lemma 4.2. But we need to provide all details as the treatment of the terms with the time derivative
of the length element is different here.

Lemma 4.8. We have that for any t̄ ∈ [0, Th)

‖c(t̄)−ch(t̄)‖2L2(I) +

∫ t̄

0

‖cx − chx‖2L2(I)dt

≤ C‖eux(t̄)‖2L2(I) + C

∫ t̄

0

‖c− ch‖2L2(I)dt+ C

∫ t̄

0

‖eux‖2L2(I)dt+ C

∫ t̄

0

‖eut‖2L2(I)dt

+ C

∫ t̄

0

‖eux‖2L2(I)‖eutx‖2L2(I)dt+ Ch2
∫ t̄

0

‖eutx‖2L2(I)dt+ Ch2.

14
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Proof. The difference between the continuous (2.4) and the discrete version (3.11) reads

∫

I

(cQ− chQh)tζh dx +

∫

I

(cx
Q

− chx
Qh

)

ζhx dx = 0

for all test functions ζh(x, t) of the form ζh =
∑N−1

j=1 ζj(t)ϕj(x). Choosing

ζh = Ih(c)− ch = c− ch + Ih(c)− c

a calculation (cf. [39, Lemma 4.2]) yields that

d

dt

(

∫

I

1

2
(c− ch)

2Qh dx
)

+

∫

I

|(c− ch)x|2
Qh

dx

=

∫

I

(

c(Qh −Q)
)

t
(c− ch) dx−

∫

I

1

2
(c− ch)

2Qht dx

+
d

dt

(

∫

I

(cQ− chQh)(c− Ih(c)) dx
)

−
∫

I

(cQ − chQh)
(

c− Ih(c)
)

t
dx

+

∫

I

(c− ch)x(c− Ih(c))x
Qh

dx

+

∫

I

cx
(c− ch)x√

Qh

Q −Qh√
QhQ

dx+

∫

I

cx(Ih(c)− c)x
Q−Qh

QhQ
dx

=

7
∑

j=1

Kj . (4.38)

For the first term we can write

−K1 =

∫

I

ct(Q −Qh)(c− ch) dx+

∫

I

c(Q − Q̂h)t(c− ch) dx+

∫

I

c(Q̂h −Qh)t(c− ch) dx

=: K1,0 +K1,1 +K1,2.

Using (4.21), the smoothness assumptions on c (recall (2.9)) and (4.2) we infer immediately that

|K1,0| ≤ C‖c− ch‖L2(I)(‖ρux‖L2(I) + ‖eux‖L2(I)) ≤ C‖c− ch‖2L2(I) + C‖eux‖2L2(I) + Ch2.

Next we write using (4.5), (4.12), the fact that |ν − ν̂h| ≤ C|ρux| and (4.2)

|K1,1| =
∣

∣

∣

∣

∫

I

c(Q− Q̂h)t(c− ch)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

c(c− ch)(
ux
Q

− ûhx

Q̂h

)ûhtx +

∫

I

c(c− ch)
ux
Q

(utx − ûhtx)

∣

∣

∣

∣

≤ C‖c− ch‖L2(I)‖ν − ν̂h‖L2(I) + C‖c− ch‖L2(I)‖ρutx‖L2(I)

≤ Ch‖c− ch‖L2(I) ≤ C‖c− ch‖2L2(I) + Ch2.

15
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For the last term we observe using partial integration that

K1,2 =

∫

I

c(Q̂h −Qh)t(c− ch) =

∫

I

c(c− ch)

(

ûhx

Q̂h

ûhtx − uhx
Qh

uhtx

)

=

∫

I

c(c− ch)ûhtx

(

ûhx

Q̂h

− uhx
Qh

)

+

∫

I

c(c− ch)

(

uhx
Qh

− ux
Q

)

(ûhtx − uhtx)

+

∫

I

c(c− ch)
ux
Q

(ûhtx − uhtx)

=

∫

I

c(c− ch)ûhtx

(

ûhx

Q̂h

− uhx
Qh

)

+

∫

I

c(c− ch)

(

uhx
Qh

− ux
Q

)

(ûhtx − uhtx)

−
∫

I

∂

∂x

(

c(c− ch)
ux
Q

)

(ûht − uht).

Therefore we infer using (4.12), (4.19), (4.22), (4.2), and embedding theory that

|K1,2| ≤ C‖c− ch‖L2(I)‖eux‖L2(I) + C‖eut‖L2(I)(‖c− ch‖L2(I) + ‖(c− ch)x‖L2(I))

+ C‖c− ch‖L∞(I)‖ν − νh‖L2(I)‖eutx‖L2(I)

≤ C‖c− ch‖2L2(I) + C‖eux‖2L2(I) + ǫ‖(c− ch)x‖2L2(I) + Cǫ‖eut‖2L2(I)

+ C‖c− ch‖H1(I)(h+ ‖eux‖L2(I))‖eutx‖L2(I)

≤ C‖c− ch‖2L2(I) + C‖eux‖2L2(I) + ǫ‖(c− ch)x‖2L2(I) + Cǫ‖eut‖2L2(I)

+ Cǫ‖eux‖2L2(I)‖eutx‖2L2(I) + Cǫh
2‖eutx‖2L2(I).

Putting all previous estimate together we infer that

|K1| ≤C‖c− ch‖2L2(I) + C‖eux‖2L2(I) + ǫ‖(c− ch)x‖2L2(I) (4.39)

+ Cǫ‖eut‖2L2(I) + Cǫ‖eux‖2L2(I)‖eutx‖2L2(I) + Cǫh
2‖eutx‖2L2(I) + Ch2.

The term K2 can be estimated as follows using integration by parts, the fact that ‖c − ch‖L∞ is
bounded (thanks to (4.16)), (4.12), and (4.4):

|K2| =
∣

∣

∣

∣

1

2

∫

I

(c− ch)
2Qht

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

2

∫

I

(c− ch)
2Qt

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2

∫

I

(c− ch)
2(Qht −Qt)

∣

∣

∣

∣

≤ C‖c− ch‖2L2(I) +

∣

∣

∣

∣

1

2

∫

I

(c− ch)
2
[

(
uhx
Qh

− ux
Q

)uhtx +
ux
Q

(uhtx − utx)
]

∣

∣

∣

∣

≤ C‖c− ch‖2L2(I) + ‖c− ch‖L∞(I)

∣

∣

∣

∣

1

2

∫

I

(c− ch)(
uhx
Qh

− ux
Q

)(uhtx − ûhtx)

∣

∣

∣

∣

+ ‖c− ch‖L∞(I)

∣

∣

∣

∣

1

2

∫

I

(c− ch)(
uhx
Qh

− ux
Q

)ûhtx

∣

∣

∣

∣

+

∣

∣

∣

∣

1

2

∫

I

∂

∂x

(

(c− ch)
2 ux
Q

)

(uht − ut)

∣

∣

∣

∣

≤ C‖c− ch‖2L2(I) + C‖c− ch‖L∞(I)‖νh − ν‖L2(I)‖eutx‖L2(I) + C‖νh − ν‖2L2(I)

+ ǫ‖(c− ch)x‖2L2(I) + Cǫ‖eut‖2L2(I) + Cǫh
4| log h|4.

The second term in the last line of above inequality can be treated as the same term appearing in K1,2,
so that we obtain

|K2| ≤C‖c− ch‖2L2(I) + C‖eux‖2L2(I) + ǫ‖(c− ch)x‖2L2(I) (4.40)

+ Cǫ‖eut‖2L2(I) + Cǫ‖eux‖2L2(I)‖eutx‖2L2(I) + Cǫh
2‖eutx‖2L2(I) + Cǫh

2.
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The remaining terms K3, . . . ,K7 are estimated as in [39, Lemma 4.2]. Precisely: For K3 we note that
by (2.9), (4.15), (3.2), (4.21), and (4.2)

∣

∣

∣

∫

I

(cQ − chQh)(c− Ih(c)) dx
∣

∣

∣

=
∣

∣

∣

∫

I

(c− ch)Qh(c− Ih(c)) dx +

∫

I

c(Q−Qh)(c− Ih(c)) dx
∣

∣

∣

≤ ε̂

∫

I

(c− ch)
2Qh dx+ C

∫

I

(Q −Qh)
2 dx+ Cε̂h

4‖c‖2H2(I)

≤ ε̂

∫

I

(c− ch)
2Qh dx+ C‖eux‖2L2(I) + Cε̂h

2 (4.41)

with ε̂ > 0 that will be picked later on. We will refer to this estimate later on when integrating (4.38)
with respect to time.

For the term K4 we infer from (3.2), (4.15), (2.9), (4.21), and (4.2), that

|K4| =
∣

∣

∣

∫

I

c(Q −Qh)(ct − Ih(ct)) dx+

∫

I

(c− ch)(ct − Ih(ct))Qh dx
∣

∣

∣

≤ C

∫

I

(Q −Qh)
2 dx+ C

∫

I

(c− ch)
2Qh dx+ C‖ct‖2H1(I)h

2

≤ C‖c− ch‖2L2(I) + C‖eux‖2L2(I) + Ch2.

By the interpolation estimates (3.2), (3.3), embedding theory, (2.9), (4.21), and (4.2) we have the following
estimates for the terms involving spatial gradients (for ǫ > 0 arbitrarily small):

|K5| ≤ ǫ

∫

I

|(c− ch)x|2
Qh

dx+ Cǫ

∫

I

|(c− Ih(c))x|2
Qh

dx

≤ ǫ

∫

I

|(c− ch)x|2
Qh

dx+ Cǫ‖c‖2H2(I)h
2,

|K6| ≤ ǫ

∫

I

|(c− ch)x|2
Qh

dx+ Cǫ‖eux‖2L2(I) + Cǫh
2,

|K7| ≤ C‖c‖2H2(I)h
2 + C‖eux‖2L2(I) + Ch2.

Summarizing all these estimates and using (4.15) we obtain from (4.38) that

d

dt

(

∫

I

1

2
|c− ch|2|Qh| dx

)

+

∫

I

|cx − chx|2
Qh

dx

≤ ǫC

∫

I

|cx − chx|2
Qh

dx

+
d

dt

(

∫

I

(c− ch)Qh(c− Ih(c)) dx+

∫

I

c(Q−Qh)(c− Ih(c)) dx
)

+ C

∫

I

|c− ch|2Qh dx+ Cǫ‖eux‖2L2(I) + Cǫ‖eut‖2L2(I)

+ Cǫ‖eux‖2L2(I)‖eutx‖2L2(I) + Cǫh
2‖eutx‖2L2(I) + Cǫh

2.

Integrating with respect to time from 0 to t̄, using (4.41), (4.15), and embedding theory we get for ǫ small

17
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enough that
∫

I

|c(t̄)−ch(t̄)|2 dx+

∫ t̄

0

∫

I

|cx − chx|2 dxdt

≤ C

∫

I

|c0 − c0h|2 dx+

∫

I

|(c0Q(0)− c0hQh(0))(c0 − Ih(c0))| dx

+ Cε̂

∫

I

|c(t̄)− ch(t̄)|2 dx+ C‖eux(t̄)‖2L2(I)

+ C

∫ t̄

0

∫

I

|c− ch|2 dxdt + C

∫ t̄

0

‖eux‖2L2(I)dt+ C

∫ t̄

0

‖eut‖2L2(I)dt

+ C

∫ t̄

0

‖eux‖2L2(I)‖eutx‖2L2(I)dt+ Ch2
∫ t̄

0

‖eutx‖2L2(I)dt+ Cε̂h
2.

Note that thanks to our choice of the discrete initial data (4.23)
∫

I

|c0 − c0h|2 dx =

∫

I

|c0 − Ih(c0)|2 dx ≤ C‖c0‖2H1(I)h
2.

Moreover with the arguments used to estimate K3, and using the fact that ‖eux(0)‖2L2(I) = 0 (recall

Lemma 4.1) we get that
∫

I

|(c0Q(0)− c0hQh(0))(c0 − Ih(c0))| dx ≤ C‖c0‖2H1(I)h
2 + Ch2 + C‖eux(0)‖2L2(I) ≤ Ch2.

Choosing ε̂ small enough and using the above estimates for the initial data finishes the proof.

4.5 Proof of the main Theorem

From Lemma 4.8 and Lemma 4.4, and then using (4.36) and (4.37) we infer for t̄ ∈ [0, Th) that

‖(c−ch)(t̄)‖2L2(I) +

∫ t̄

0

‖(c− ch)x‖2L2(I)dt

≤ Cǫ‖ew(t̄)‖2L2(I) + Cǫ‖eu(t̄)‖2L2(I) + C

∫ t̄

0

‖c− ch‖2L2(I)dt

+ C

∫ t̄

0

(

ǫ‖ew‖2L2(I) + Cǫ‖eu‖2L2(I)

)

dt+ C

∫ t̄

0

‖eut‖2L2(I)dt

+ C

∫ t̄

0

(

ǫ‖ew‖2L2(I) + Cǫ‖eu‖2L2(I) + Ch4| log h|2
)

‖eutx‖2L2(I)dt

+ Ch2
∫ t̄

0

‖eutx‖2L2(I)dt+ Ch2

≤ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Ch2 + Ch2
∫ t̄

0

‖eutx‖2L2(I)dt

+ C

∫ t̄

0

(
∫ t

0

‖(c− ch)(s)‖2L2(I)ds

)

‖eutx(t)‖2L2(I)dt

≤ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Ch2 + Ch2
∫ t̄

0

‖eutx‖2L2(I)dt

+ C

(

∫ t̄

0

‖(c− ch)(t)‖2L2(I)dt

)(

∫ t̄

0

‖eutx(t)‖2L2(I)dt

)
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≤ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Ch2 + C
h2

µ(h)

(

∫ t̄

0

‖c− ch‖2L2(I)dt+ h2

)

+ C
1

µ(h)

(

∫ t̄

0

‖c− ch‖2L2(I)dt

)(

∫ t̄

0

‖c− ch‖2L2(I)dt+ h2

)

.

Using that µ(h) ∼ hr with r ∈ [1, 2) and the Cauchy-Schwarz inequality we finally obtain for any t̄ ∈
[0, Th) that

‖(c−ch)(t̄)‖2L2(I) +

∫ t̄

0

‖(c− ch)x‖2L2(I)dt

≤ C

∫ t̄

0

‖c− ch‖2L2(I)dt+ Ch2 +
C

µ(h)

∫ t̄

0

‖(c− ch)‖4L2(I)dt. (4.42)

We now employ the following generalized Gronwall lemma, whose proof can be found in [5, Prop. 6.2]:

Lemma 4.9. Suppose that the nonnegative functions a and yi, i = 1, 2, 3 with y1 ∈ C([0, T̄ ]), y2, y3 ∈
L1(0, T̄ ), a ∈ L∞(0, T̄ ), and the real number A ≥ 0 satisfy

y1(T
′) +

∫ T ′

0

y2(t)dt ≤ A+

∫ T ′

0

a(t)y1(t)dt+

∫ T ′

0

y3(t)dt

for all T ′ ∈ [0, T̄ ]. Assume that for some B ≥ 0, some β > 0, and every T ′ ∈ [0, T̄ ], we have that

∫ T ′

0

y3(t)dt ≤ B

(

sup
t∈[0,T ′]

yβ1 (t)

)

∫ T ′

0

(y1(t) + y2(t))dt.

Set E := exp(
∫ T̄

0
a(t)dt) and assume that

8AE ≤ 1

(8B(1 + T̄ )E)1/β
. (4.43)

We then have

sup
t∈[0,T̄ ]

y1(t) +

∫ T̄

0

y2(t)dt ≤ 8AE = 8A exp(

∫ T̄

0

a(t)dt).

In our situation we take T̄ = t̄, y1(t) = ‖(c − ch)(t)‖2L2(I), A = Ch2 where C is the constant from

(4.42) (which depends on u, c, T but not on h or Th), a(t) = C, B = C
µ(h) , y3 = C

µ(h)y
2
1 , β = 1, y2 = 0.

For 0 < t̄ < Th ≤ T we see that 8AE = 8Ch2 exp(Ct̄) ≤ 8Ch2 exp(CT ) and that

1

(8B(1 + T̄ )E)1/β
=

µ(h)

8C(1 + t̄) exp(Ct̄)
≥ µ(h)

8C(1 + T ) exp(CT )
.

With our choice (3.6) for µ(h) where r < 2 we get that (4.43) is satisfied for all h ≤ h0 if

8Ch20 exp(CT ) ≤
Cµh

r
0

8C(1 + T ) exp(CT )
⇔ h2−r

0 ≤ Cµ

64C2(1 + T ) exp(2CT )
.

Thus we infer that for h ≤ h0 and any t̄ ∈ [0, Th) (and, by continuity, in fact up to time Th)

‖(c−ch)(t̄)‖2L2(I) +

∫ t̄

0

‖(c− ch)x‖2L2(I)dt ≤ Ch2. (4.44)
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Plugging this result back into (4.36), (4.37), and using Lemma 4.4, we obtain for any t̄ ∈ [0, Th] that

‖ew(t̄)‖2L2(I) + ‖eu(t̄)‖2L2(I) + ‖eux(t̄)‖2L2(I) +

∫ t̄

0

‖eut(t̄)‖2L2(I)dt+ µ(h)

∫ t̄

0

‖eutx‖2L2(I)dt ≤ Ch2. (4.45)

Now that we have achieved error estimates on the time intervall [0, Th] with a constant C that does
not depend on h or Th we are able to show that in fact it must be Th = T for all h sufficiently small.
Indeed, observe that by (4.21), (4.3), (3.5), (4.45), we get

‖Qh(t̄)‖L∞(I) ≤ C0 + ‖(Q−Qh)(t̄)‖L∞(I) ≤ C0 + ‖ρux(t̄)‖L∞(I) + ‖eux(t̄)‖L∞(I)

≤ C0 + Ch| log h|+ C
h√
h
≤ 3

2
C0

provided that h ≤ h0 (after decreasing h0 if required). Similarly, by (4.9), (3.5), (3.2), (4.45), and (4.44),
we obtain

‖wh(t̄)‖L∞(I) ≤ ‖ew‖L∞(I) + ‖ŵh − Ihw‖L∞(I) + ‖Ihw‖L∞(I)

≤ C
h√
h
+

C√
h
‖ŵh − Ihw‖L2(I) + C1

≤ C1 + C
h√
h
+

C√
h
(‖ρw‖L2(I) + ‖w − Ihw‖L2(I)) ≤

3

2
C1,

‖ch(t̄)‖L∞(I) ≤ ‖Ihc(t̄)‖L∞(I) + ‖(ch − Ihc)(t̄)‖L∞(I)

≤ ‖c‖C([0,T ],L∞(I)) +
C√
h
‖(ch − Ihc)(t̄)‖L2(I)

≤ Ĉ(I)‖c‖C([0,T ],H1(I)) +
C√
h
(‖(ch − c)(t̄)‖L2(I) + ‖(c− Ihc)(t̄)‖L2(t̄))

≤ Ĉ(I)C2 +
C√
h
(h+ h‖c‖C([0,T ],H1(I))) ≤

3

2
Ĉ(I)C2,

‖ch‖L2((0,Th),H1(I)) ≤
3

2
C3,

for all h ≤ h0 independently of Th (after decreasing h0 if required). If we had that Th < T then we
could establish (4.15) and (4.16) on the time intervall [0, Th + δ] for some δ > 0 which would contradict
the maximality of Th. Hence Th = T . The first three error estimates stated in Theorem 3.3 follow from
(4.45), (4.44), (4.2), (4.4), (4.9), Lemma 4.5, (4.16), (4.34), and (4.8). The last statement in Theorem 3.3
follows from (4.45) and (4.5).

5 Numerical simulations

We now aim for assessing and supporting our theoretical convergence results by some numerical simula-
tions. We prescribe functions (u,w, c) and ensure that they solve (1.1)–(1.5) by accounting for suitable
source terms su, sc : I → R for u and c, respectively.

The time discretisation of Problem 3.1 is based on uniform time steps δ = h2. This choice turned out
small enough to ensure that the errors that we report on below are purely due to the spatial discretisation.
An upper index will indicate values at the time t(m) := mδ in the following, m = 0 . . . ,M := T/δ. We
use a simple order-one IMEX-scheme which linearises the problem in each time step and decouples the
solution of the geometric equation from the solution of the equation on the curve:
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Problem 5.1 (Fully discrete scheme). Find functions u
(m)
δh ∈ Xh and w

(m)
δh , c

(m)
δh ∈ Xh0, m = 0, . . . ,M ,

of the form

u
(m)
δh =

N
∑

j=0

u
(m)
j ϕj(x), c

(m)
δh =

N−1
∑

j=1

c
(m)
j ϕj(x), w

(m)
δh =

N−1
∑

j=1

w
(m)
j ϕj(x),

with u
(m)
j , c

(m)
j , w

(m)
j ∈ R such that

u
(m)
δh − Ih(ub) ∈ Xh0 ∀m = 1, . . . ,M, u

(0)
δh = û0, c

(0)
δh = Ih(c0),

and such that

∫

I

µ(h)
u
(m)
δhx − u

(m−1)
δhx

δ
ϕhx +

(u
(m)
δh − u

(m−1)
δh )ϕh

δQ
(m−1)
δh

+
1

2
(w

(m−1)
δh )2

u
(m)
δhxϕhx

(Q
(m−1)
δh )3

+
w

(m)
δhxϕhx

(Q
(m−1)
δh )3

dx

=

∫

I

Ih(f(c
(m−1)
δh ) + s(m)

u )ϕh dx, (5.1)

∫

I

w
(m)
δh ψh

Q
(m−1)
δh

− u
(m)
δhxψhx

Q
(m−1)
δh

dx = 0, (5.2)

∫

I

c
(m)
δh Q

(m)
δh ζh + δ

c
(m)
δhxζhx

Q
(m)
δh

dx =

∫

I

c
(m−1)
δh Q

(m−1)
δh ζh + δIh(s

(m)
c )ζh, (5.3)

for all ϕh, ψh, ζh ∈ Xh0 and for m = 1, . . . ,M . Here, Q
(m−1)
δh denotes the discrete length element,

Q
(m−1)
δh =

√

1 + (u
(m−1)
δhx )2, and µ(h) = Cµh

r for some r ∈ [1, 2) and Cµ ≥ 0 (as defined in (3.6)).

In the test examples further below we monitored the following errors:

Eu(L∞, L2) := ‖u− uδh‖2L∞(J,L2(I)), Eu(L∞, H1) := ‖ux − uδhx‖2L∞(J,L2(I)),

Eu(H1, L2) := ‖ut − uδht‖2L2(J,L2(I)), Eu(H1, H1) := ‖utx − uδhtx‖2L2(J,L2(I)),

Ew(L∞, L2) := ‖w − wδh‖2L∞(J,L2(I)), Ew(L2, H1) := ‖wx − wδhx‖2L2(J,L2(I)),

Ec(L∞, L2) := ‖c− cδh‖2L∞(J,L2(I)), Ec(L2, H1) := ‖cx − cδhx‖2L2(J,L2(I)), (5.4)

where J = (0, T ) and uδh has been extended by linearly interpolating on each time interval so that, for

instance, uδht = (u
(m)
δh − u

(m−1)
δh )/δ for t ∈ (t(m−1), t(m)). We used sufficiently accurate quadrature rules

on each rectangle [t(m−1), t(m)]× [xj−1, xj ].
In a first example, let T = 1 and

f(c) =
1− 2c

10
,

and consider

u(x, t) =
5

2
cos(2πt)(x − 1)3x5,

c(x, t) =
1

10
sin(7πx) sin(4πt).

(5.5)

The source functions su(x, t) and sc(x, t) are picked such that the above functions solve (1.1)–(1.5). Note
that then ub = 0. We remark that the function u has also been considered in [11].

For varying values of N (h = 1/N , δ = h2) the errors and corresponding EOC’s are displayed in
Table 1 for the choice µ(h) = 40h, i.e., r = 1. For most errors we observe EOCs close to two (those for
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N Eu(L∞, L2) EOC Eu(L∞,H1) EOC Eu(H1, L2) EOC Eu(H1,H1) EOC

61 5.454e-06 – 5.701e-05 – 8.398e-05 – 9.160e-04 –
81 3.258e-06 1.7910 3.389e-05 1.8080 5.271e-05 1.6193 5.696e-04 1.6516

101 2.155e-06 1.8524 2.236e-05 1.8637 3.600e-05 1.7087 3.870e-04 1.7315
131 1.310e-06 1.8967 1.357e-05 1.9042 2.258e-05 1.7777 2.417e-04 1.7941
161 8.779e-07 1.9283 9.081e-06 1.9334 1.544e-05 1.8306 1.649e-04 1.8426
201 5.683e-07 1.9490 5.874e-06 1.9524 1.018e-05 1.8680 1.085e-04 1.8771

N Ew(L∞, L2) EOC Ew(L2, H1) EOC Ec(L∞, L2) EOC Ec(L2, H1) EOC

61 6.840e-04 – 7.722e-02 – 2.492e-06 – 2.027e-02 –
81 4.060e-04 1.8129 4.361e-02 1.9864 7.992e-07 3.9536 1.141e-02 1.9971

101 2.677e-04 1.8660 2.796e-02 1.9908 3.299e-07 3.9647 7.306e-03 1.9984
131 1.624e-04 1.9055 1.657e-02 1.9938 1.165e-07 3.9690 4.324e-03 1.9991
161 1.087e-04 1.9341 1.095e-02 1.9958 5.108e-08 3.9693 2.855e-03 1.9995
201 7.030e-05 1.9530 7.013e-03 1.9970 2.108e-08 3.9668 1.827e-03 1.9997

Table 1: Errors (5.4) and EOCs for the first test problem (5.5) described in Section 5 with µ(h) = 40h.

N Eu(L∞, L2) EOC Eu(L∞,H1) EOC Eu(H1, L2) EOC Eu(H1,H1) EOC

61 1.233e-05 – 1.289e-04 – 1.731e-04 – 1.882e-03 –
81 4.828e-06 3.2587 5.019e-05 3.2795 7.588e-05 2.8672 8.146e-04 2.9105

101 2.155e-06 3.6146 2.236e-05 3.6239 3.600e-05 3.3417 3.870e-04 3.3350
131 7.925e-07 3.8129 8.215e-06 3.8164 1.390e-05 3.6256 1.514e-04 3.5777
161 3.517e-07 3.9128 3.646e-06 3.9124 6.336e-06 3.7851 7.033e-05 3.6923
201 1.455e-07 3.9556 1.509e-06 3.9517 2.674e-06 3.8666 3.067e-05 3.7192

N Ew(L∞, L2) EOC Ew(L2, H1) EOC Ec(L∞, L2) EOC Ec(L2, H1) EOC

61 1.591e-03 – 8.962e-02 – 2.499e-06 – 2.027e-02 –
81 6.053e-04 3.3586 4.604e-02 2.3152 8.008e-07 3.9557 1.141e-02 1.9971

101 2.677e-04 3.6552 2.796e-02 2.2345 3.299e-07 3.9738 7.306e-03 1.9984
131 9.802e-05 3.8299 1.585e-02 2.1631 1.160e-07 3.9849 4.324e-03 1.9991
161 4.344e-05 3.9198 1.023e-02 2.1088 5.064e-08 3.9913 2.855e-03 1.9995
201 1.796e-05 3.9589 6.442e-03 2.0733 2.077e-08 3.9947 1.827e-03 1.9997

Table 2: Errors (5.4) and EOCs for the first test problem (5.5) described in Section 5 with µ(h) = 4000h2.

N Eu(L∞, L2) EOC Eu(L∞,H1) EOC Eu(H1, L2) EOC Eu(H1,H1) EOC

61 5.165e-06 – 5.399e-05 – 7.989e-05 – 8.725e-04 –
81 2.369e-06 2.7091 2.467e-05 2.7229 3.906e-05 2.4876 4.262e-04 2.4905

101 1.257e-06 2.8391 1.307e-05 2.8478 2.152e-05 2.6705 2.358e-04 2.6524
131 5.856e-07 2.9120 6.078e-06 2.9174 1.037e-05 2.7845 1.146e-04 2.7491
161 3.172e-07 2.9525 3.290e-06 2.9557 5.728e-06 2.8573 6.402e-05 2.8056
201 1.634e-07 2.9729 1.694e-06 2.9746 2.998e-06 2.9009 3.402e-05 2.8334

N Ew(L∞, L2) EOC Ew(L2, H1) EOC Ec(L∞, L2) EOC Ec(L2, H1) EOC

61 6.469e-04 – 7.675e-02 – 2.492e-06 – 2.027e-02 –
81 2.942e-04 2.7391 4.229e-02 2.0722 7.980e-07 3.9581 1.141e-02 1.9971

101 1.556e-04 2.8533 2.668e-02 2.0632 3.289e-07 3.9725 7.306e-03 1.9984
131 7.236e-05 2.9189 1.557e-02 2.0532 1.157e-07 3.9805 4.324e-03 1.9991
161 3.917e-05 2.9559 1.019e-02 2.0439 5.060e-08 3.9850 2.855e-03 1.9995
201 2.017e-05 2.9746 6.466e-03 2.0363 2.078e-08 3.9872 1.827e-03 1.9997

Table 3: Errors (5.4) and EOCs for the first test problem (5.5) described in Section 5 with µ(h) = 300h3/2.
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N Eu(L∞, L2) EOC Eu(L∞,H1) EOC Eu(H1, L2) EOC Eu(H1,H1) EOC

61 3.516e-06 – 3.686e-05 – 5.601e-05 – 6.201e-04 –
81 2.664e-06 0.9642 2.773e-05 0.9900 4.363e-05 0.8680 4.742e-04 0.9325

101 2.155e-06 0.9507 2.235e-05 0.9649 3.599e-05 0.8624 3.870e-04 0.9104
131 1.679e-06 0.9503 1.738e-05 0.9586 2.862e-05 0.8729 3.048e-04 0.9091
161 1.377e-06 0.9544 1.424e-05 0.9594 2.381e-05 0.8874 2.521e-04 0.9150
201 1.111e-06 0.9596 1.149e-05 0.9629 1.947e-05 0.9011 2.052e-04 0.9229

N Ew(L∞, L2) EOC Ew(L2, H1) EOC Ec(L∞, L2) EOC Ec(L2, H1) EOC

61 4.375e-04 – 7.418e-02 – 2.489e-06 – 2.026e-02 –
81 3.312e-04 0.9674 4.271e-02 1.9185 7.984e-07 3.9525 1.141e-02 1.9970

101 2.677e-04 0.9539 2.796e-02 1.8988 3.299e-07 3.9604 7.305e-03 1.9984
131 2.084e-04 0.9537 1.709e-02 1.8752 1.167e-07 3.9596 4.323e-03 1.9991
161 1.708e-04 0.9577 1.164e-02 1.8478 5.138e-08 3.9522 2.854e-03 1.9995
201 1.378e-04 0.9627 7.764e-03 1.8181 2.133e-08 3.9389 1.827e-03 1.9997

Table 4: Errors (5.4) and EOCs for the first test problem (5.5) described in Section 5 with µ(h) = 4h1/2.

ut and utx are a bit smaller but still increasing). This corresponds to linear convergence as predicted in
Theorem 3.3 except for utx. In that case we only could show a rate of 2 − r = 1 but observe a better
convergence behaviour. Regarding the error of c in the norm L∞((0, T ), L2(I)) we also observe faster
(here quadratic) convergence.

We have also carried out computations with µ(h) = 4000h2 for comparison. Recall that this case
r = 2 is not covered by the theory but we didn’t observe any issues with solving the discrete problems.
The results are displayed in Table 2. We notice faster (quadratic) convergence of all errors except for
Ew(L2, H1) and Ec(L2, H1) where linear convergence is measured. We also see that Ec(L∞, L2) and
Ec(L2, H1) barely change.

For further comparison, we chose µ(h) = 300hr with an intermediate growth rate of r = 3
2 and with

r = 1
2 , see Tables 3 and 4 for the results, respectively. The findings are consistent in the sense that

the EOCs for all fields except for Ew(L2, H1), Ec(L∞, L2), and Ec(L2, H1) are close to three or one now,
indicating convergence orders of 3

2 or 1
2 , respectively. Again, the errors of c are very close to those in

the other two simulation test series. In the case r = 1
2 we even observe an impact on the EOCs for

Ew(L2, H1), namely a dip away from two.
The super-convergence of Eu(L∞, H1) for r > 1 is a bit surprising. The fact that the errors of c

barely depends on the scaling of µ in h indicates that the geometric error has a smaller influence than
the approximation of the diffusion term and the data for c. In order to investigate these findings a bit
further we consider a second example with a more oscillating geometry and less oscillations in the field
on the curve.

Keeping T = 1 and f(c) as before consider

u(x, t) =
5

2
cos(2πt)(x− 1)3x5 sin(4πx),

c(x, t) =
1

10
sin(2πx) sin(πt),

(5.6)

and choose the source terms again as appropriate to ensure that this is a solution to (1.1)–(1.5).
The errors for µ(h) = 40h are displayed in Table 5 whilst those for µ(h) = 4000h2 are in Table 6.

We now indeed observe EOCs of around two for both Eu(L∞, H1) and Eu(H1, H1) as expected. The
behaviour of the other errors is as before.
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N Eu(L∞, L2) EOC Eu(L∞,H1) EOC Eu(H1, L2) EOC Eu(H1,H1) EOC

61 9.579e-07 – 4.753e-05 – 1.923e-05 – 1.019e-03 –
81 4.014e-07 3.0228 2.497e-05 2.2366 8.069e-06 3.0185 5.157e-04 2.3688

101 2.089e-07 2.9259 1.529e-05 2.1989 4.203e-06 2.9231 3.085e-04 2.3021
131 1.006e-07 2.7857 8.679e-06 2.1582 2.029e-06 2.7745 1.714e-04 2.2405
161 5.824e-08 2.6327 5.588e-06 2.1207 1.181e-06 2.6078 1.088e-04 2.1881
201 3.337e-08 2.4959 3.504e-06 2.0913 6.824e-07 2.4579 6.737e-05 2.1483
251 1.966e-08 2.3706 2.209e-06 2.0665 4.064e-07 2.3225 4.203e-05 2.1149
301 1.298e-08 2.2758 1.520e-06 2.0490 2.710e-07 2.2230 2.870e-05 2.0906

N Ew(L∞, L2) EOC Ew(L2, H1) EOC Ec(L∞, L2) EOC Ec(L2, H1) EOC

61 6.560e-04 – 2.516e+00 – 1.648e-08 – 1.362e-04 –
81 2.936e-04 2.7936 1.417e+00 1.9946 5.259e-09 3.9698 7.650e-05 2.0067

101 1.691e-04 2.4735 9.080e-01 1.9969 2.176e-09 3.9538 4.890e-05 2.0050
131 9.330e-05 2.2666 5.375e-01 1.9981 7.756e-10 3.9328 2.891e-05 2.0038
161 5.971e-05 2.1489 3.549e-01 1.9988 3.446e-10 3.9065 1.907e-05 2.0029
201 3.746e-05 2.0891 2.272e-01 1.9992 1.451e-10 3.8756 1.220e-05 2.0023
251 2.369e-05 2.0531 1.454e-01 1.9995 6.166e-11 3.8359 7.805e-06 2.0018
301 1.635e-05 2.0335 1.009e-01 1.9996 3.088e-11 3.7920 5.418e-06 2.0015

Table 5: Errors (5.4) and EOCs for the second test problem (5.6) described in Section 5 with µ(h) = 40h.

N Eu(L∞, L2) EOC Eu(L∞,H1) EOC Eu(H1, L2) EOC Eu(H1,H1) EOC

61 1.118e-06 – 4.969e-05 – 1.912e-05 – 1.024e-03 –
81 4.591e-07 3.0951 2.553e-05 2.3150 8.466e-06 2.8317 5.183e-04 2.3686

101 2.089e-07 3.5271 1.529e-05 2.2974 4.203e-06 3.1380 3.085e-04 2.3251
131 7.790e-08 3.7608 8.543e-06 2.2185 1.783e-06 3.2668 1.705e-04 2.2594
161 3.482e-08 3.8779 5.477e-06 2.1409 8.950e-07 3.3211 1.080e-04 2.1986
201 1.448e-08 3.9317 3.436e-06 2.0892 4.234e-07 3.3541 6.680e-05 2.1546
251 5.983e-09 3.9616 2.172e-06 2.0545 1.987e-07 3.3892 4.161e-05 2.1215
301 2.897e-09 3.9768 1.499e-06 2.0347 1.065e-07 3.4197 2.837e-05 2.1007

N Ew(L∞, L2) EOC Ew(L2, H1) EOC Ec(L∞, L2) EOC Ec(L2, H1) EOC

61 1.248e-03 2.581e+00 1.696e-08 1.362e-04
81 4.060e-04 3.9038 1.429e+00 2.0542 5.329e-09 4.0250 7.650e-05 2.0067

101 1.691e-04 3.9251 9.080e-01 2.0336 2.176e-09 4.0130 4.890e-05 2.0050
131 5.997e-05 3.9514 5.343e-01 2.0211 7.608e-10 4.0065 2.891e-05 2.0038
161 2.629e-05 3.9705 3.517e-01 2.0133 3.313e-10 4.0037 1.907e-05 2.0029
201 1.081e-05 3.9813 2.246e-01 2.0087 1.356e-10 4.0026 1.220e-05 2.0023
251 4.441e-06 3.9883 1.436e-01 2.0056 5.552e-11 4.0021 7.805e-06 2.0018
301 2.144e-06 3.9923 9.966e-02 2.0037 2.676e-11 4.0019 5.418e-06 2.0015

Table 6: Errors (5.4) and EOCs for the second test problem (5.5) described in Section 5 with µ(h) =
4000h2.
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6 Conclusion and outlook

We analysed the semi-discrete scheme (3.8)–(3.10) and quantified convergence to the solution of (2.1)–
(2.3), see Theorem 3.3 on page 6. In order to be able to derive an error estimate for ch a better control
of the velocity uht was required. For this purpose we augmented the geometric equation (2.1) in the
semi-discrete scheme with a penalty term, which is a weighted H1 inner product of the velocity with the
test function. The weight µ(h) ∼ hr, r ∈ [1, 2) has an impact on the convergence rates. In turn, the
scheme proved quite stable for penalty terms beyond the regime that was analysed. In particular, when
r = 2 was chosen then maximal convergence rates were obtained as one may expect them for the choice
of finite elements. This case is not covered by the analysis as then the argument with the generalised
Gronwall lemma 4.9 fails. On the other hand, the restriction r ≥ 1 is clearly motivated by the inequality
(4.35). It was observed in simulations that choosing r < 1 indeed destroys the order of convergence
proved in Theorem 3.3.

We make a few remarks on the context of the problem and possible generalisations of the results:

• Well-posedness and regularity of the above problem is, to our knowledge, an open problem. We
have decided not to address this issue here but to leave it for future studies and to focus on the
numerical analysis of an approximation scheme. Assumption 2.1 was made for this purpose.

• The choice of the boundary conditions (1.4) has been made in order to keep the presentation as
simple as possible. Prescribing non-zero Dirichlet boundary condition for c does not change the
analysis. For boundary data ub depending on time we also expect similar results. On the contrary,
different conditions for κ present difficulties as already noted and briefly discussed previously [11,
Remark 2.3].

• In [11] a different choice for the initial values u0h is made which improves the order of convergence:
Let û0h be given through (4.1) at time t = 0, and ŵ0h through (4.6). Define u0h by u0h−Ihub ∈ Xh0

and
∫

I

u0hx
Q0h

ϕhxdx =

∫

I

ŵ0h

Q̂0h

ϕh ∀ϕh ∈ Xh0. (6.1)

Here Q0h =
√

1 + |u0hx|2, Q̂0h =
√

1 + |û0hx|2. Then for eu(0) = û0h−u0h and ew(0) = ŵ0h−w0h

we have the estimate

‖eu(0)‖H1(I) + ‖ew(0)‖L2(I) ≤ Ch2| log h|.

The proof is sketched in [10]. However, this choice of initial values is not effective in our analysis as
that higher order is not achieved with regards to the other terms in our case of a coupled problem.

• Lemma 4.6 corresponds to [11, Lemma 3.4] where the coefficient 1/4C0 has been corrected.
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[6] A. Bartezzaghi, L. Dedè, and A. Quarteroni, Isogeometric analysis of geometric partial differ-
ential equations, Computer Methods in Applied Mechanics and Engineering, 311 (2016), pp. 625–647.
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[30] B. Kovács, B. Li, C. Lubich, and C. A. Power Guerra, Convergence of finite elements on an
evolving surface driven by diffusion on the surface, Numerische Mathematik (online), (2017), pp. doi
10.1007/s00211–017–0888–4.

[31] U. Langer, S. E. Moore, and M. Neumüller, Space–time isogeometric analysis of parabolic
evolution problems, Computer Methods in Applied Mechanics and Engineering, 306 (2016), pp. 342–
363.

[32] M. Mercker, A. Marciniak-Czochra, T. Richter, and D. Hartmann, Modeling and com-
puting of deformation dynamics of inhomogeneous biological surfaces, SIAM Journal on Applied
Mathematics, 73 (2013), pp. 1768–1792.
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