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SUMMARY

Multi-arm multi-stage clinical trials compare several experimental treatments with a control treatment,
with poorly performing treatments dropped at interim analyses. This leads to inferential challenges, includ-
ing the construction of unbiased treatment effect estimators. A number of estimators which are unbiased
conditional on treatment selection have been proposed, but are specific to certain selection rules, may
ignore the comparison to the control and are not all minimum variance. We obtain estimators for treatment
effects compared to the control that are uniformly minimum variance unbiased conditional on selection
with any specified rule or stopping for futility.

Some key words: Adaptive seamless design; Drop-the-loser design; Point estimation; Treatment selection.

1. INTRODUCTION

Multi-arm multi-stage clinical trials compare several treatments to a common control treatment in a
single trial with treatments dropped at interim analyses if, based on observed data, they are not sufficiently
promising. Such designs have been used by, for example, MacArthur et al. (2013) and Barker et al. (2014).
The approach can yield sample size reduction and administrative savings relative to running several two-
arm trials, but presents challenges in terms of statistical analysis similar to those of post-model selection
inference (Efron, 2014).

Proposed analysis methods have mainly focused on frequentist hypothesis tests (Thall et al., 1988,
1989; Stallard & Todd, 2003; Stallard & Friede, 2008; Magirr et al., 2012; Wason et al., 2017), with less
work on estimation. Cohen & Sackrowitz (1989) consider two-stage designs with the treatment with the
highest observed stage 1 average continuing to stage 2, with equal variances for the averages for each
treatment in stage 1 and the stage 2 treatment. They derive an estimator of the stage 2 treatment mean that
is uniformly minimum variance conditionally unbiased given the observed ordering of stage 1 treatment
means. Bowden & Glimm (2008) extend the method to allow different variances for the treatment means
and continuation to stage 2 of the s treatments with the largest observed stage 1 means. They provide
expressions for uniformly minimum variance conditionally unbiased estimators for the means for these
s treatment arms, again conditioning on the ordering of the stage 1 averages. Like Cohen & Sackrowitz
(1989), they do not consider estimation relative to a control group.

Kimani et al. (2013), Bowden & Glimm (2014) and Robertson et al. (2016) derive conditionally unbiased
estimators for the difference between selected treatments and a control in multi-arm multi-stage trials.
Kimani et al. (2013) allow for stopping for futility at stage 1 of a two-stage trial assuming common
variances for averages in different arms in stage 1, while Bowden & Glimm (2014) and Robertson et al.
(2016) allow for different variances in different arms and correlation between these respectively. Bowden
& Glimm (2014) also allow for more than two stages. As discussed below, the Kimani et al. (2013) and
Robertson et al. (2016) estimators are conditionally unbiased but not generally minimum variance. We
obtain minimum variance conditionally unbiased estimators in these settings.
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These methods present estimators that are unbiased conditional on selection of the treatment arms
with the largest observed stage 1 averages, possibly with the additional condition that these means are
sufficiently larger than that for the control. In practice, other selection rules may be used, such as in § 3
below. We show how uniformly minimum variance conditionally unbiased estimators may be obtained
for comparisons with the control conditioning on a treatment not being dropped from the trial using any
specified rule for selection or stopping for futility.

2. UNIFORMLY MINIMUM VARIANCE CONDITIONALLY UNBIASED ESTIMATION

2·1. A uniformly minimum variance conditionally unbiased estimator

Consider a multi-arm multi-stage clinical trial with up to r stages where, in stage j, patients are random-
ized to a control treatment, treatment 0, or experimental treatments, labelled i (i ∈ �j), with �1 ⊇ · · · ⊇ �r .
Without loss of generality, label treatments such that �j = {1, . . . , sj} for some sj ( j = 1, . . . , r). Denoting
the total number of experimental treatments, s1, by k , let ri = max{ j : sj � i} (i = 1, . . . , k), so that
treatment i is included in stages 1, . . . , ri, and set r0 = r.

Let Xij denote the stagewise average for treatment i in stage j (i = 0, . . . , k; j = 1, . . . , ri), with
Xi· = (Xi1, . . . , Xiri )

T, X·j = (X0j, . . . , Xsj j)
T and Xj = (X T

·1, . . . , X T
·j )

T. Assume that the Xij are jointly
sufficient for μ0, . . . , μk , with Xij ∼ N (μi, τ

−1
ij ) independent with τij known. Other cases, such as in § 3

below, may use normal approximations or estimated variances. Experimental treatments are selected to
continue, along with the control, to stage j +1 depending on Xj according to some prespecified rule. Some
possible rules are discussed below.

Define θi = μi − μ0 (i = 1, . . . , k). We wish to estimate θi (i = 1, . . . , sr). In particular, we will obtain
uniformly minimum variance conditionally unbiased estimators of θ1, . . . , θsr conditional on the event,
Q, that treatments 1, . . . , sr are selected to continue to the end of the trial according to the prespecified
selection rule.

Let τi· = (τi1, . . . , τiri )
T, τi = τi1 + · · · + τiri , Zi = X T

i· τi·τ−1
i (i = 0, . . . , k), Z = (Z0, . . . , Zk)

T and
θk+1 = ∑k

i=0 τiμi/
∑k

i=0 τi. The Appendix shows that θk+1 is orthogonal to θi, in that the information matrix
term iθiθk+1 = 0 (Cox & Reid, 1987) (i = 1, . . . , k) and Z is complete and sufficient for θ = (θ1, . . . , θk+1)

T.
Let Yi = Xir − X0r (i = 1, . . . , sr); then Yi is unbiased for θi and, since Yi is independent of Xr−1 and hence
of Q, is also conditionally unbiased for θi given Q. Thus, by the Rao–Blackwell theorem, E(Yi | Z , Q) is
a uniformly minimum variance conditionally unbiased estimator for θi given Q (i = 1, . . . , sr).

Since, given the specified selection rule, the event Q depends only on Xr−1,

E(Yi | Z , Q) =
∫

Q E(Yi | Z , Xr−1)f (Xr−1 | Z) dXr−1∫
Q f (Xr−1 | Z) dXr−1

, (1)

with the integrals taken over the region Q corresponding to those Xr−1 for which treatments 1, . . . , sr will
be selected to continue to stage r. The denominator is the probability of Q given Z , which will be denoted
by pr(Q | Z).

As

⎛
⎜⎜⎜⎝

Xi1

···
Xi,ri−1

Zi

⎞
⎟⎟⎟⎠ ∼ N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

μi

···
···
μi

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ−1
i1 0 · · · 0 τ−1

i

0 τ−1
i2

· · · ··· ···
··· · · · · · · 0

···
0 · · · 0 τ−1

i,ri−1

···
τ−1

i · · · · · · · · · τ−1
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and, for i |= i′ and any j, j′, Xij is independent of Xi′j′ and Zi′ , we have that

f (Xr−1 | Z) =
k∏

i=0

φri−1{(Xi1, . . . , Xiri−1)
T; μ̃i, �̃i}, (2)
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where φn(X ; μ, �) denotes the n-dimensional multivariate normal density with mean μ and variance matrix
�, evaluated at X , with μ̃i = (Zi, . . . , Zi)

T and �̃i having diagonal elements (τ−1
i1 − τ−1

i , . . . , τ−1
i,ri−1 − τ−1

i )

and all off-diagonal elements equal to −τ−1
i . If ri = 1, Xi1 given Z has a degenerate distribution, since

Xi1 = Zi and τi1 = τi.
Since Yi = Xir − X0r and Xir = τ−1

ir (τiZi − ∑r−1
j=1 Xijτij) (i = 0, . . . , sr),

E(Yi | Z , Xr−1) = τ−1
ir τiZi − τ−1

0r τ0Z0 −
r−1∑
j=1

(
τ−1

ir τijXij − τ−1
0r τ0jX0j

)
.

Thus (1) gives

E(Yi | Z , Q) = τ−1
ir τiZi − τ−1

0r τ0Z0 − pr(Q | Z)−1

∫
Q

r−1∑
j=1

(
τ−1

ir τijXij − τ−1
0r τ0jX0j

)
f (Xr−1 | Z) dXr−1. (3)

An important special case arises when the selection rule does not depend on X0·, the observed averages
for the control arm. In the integral over the event Q, the range of integration with respect to Xij (i =
1, . . . , k; j = 1, . . . , ri) then does not depend on X0· and the integration with respect to the elements of X0·,
i.e., X01, . . . , X0,r−1, is over the whole real line. Thus

pr(Q | Z)−1

∫
Q

τ−1
0r

r−1∑
j=1

X0jτ0j f (Xj−1 | Z) dXr−1 = τ−1
0r

r−1∑
j=1

τ0jE(X0j | Z),

and since E(X0j | Z) = Z0 (j = 1, . . . , r − 1), we have

E(Yi | Z , Q) = τ−1
ir τiZi − pr(Q | Z)−1

∫
Q

τ−1
ir

r−1∑
j=1

Xijτij f (Xr−1 | Z) dXr−1 − Z0. (4)

In this case the uniformly minimum variance conditionally unbiased estimator for θi is the difference
between the uniformly minimum variance conditionally unbiased estimator of μi, which can be calculated
ignoring the observed value of X0·, and Z0, the usual uniformly minimum variance unbiased estimator of
μ0, which does not depend on the selection.

The integrals in (3) generally cannot be evaluated using standard functions. A numerical approach is
Monte Carlo integration with rejection sampling, simulating Xr−1 from (2), its conditional distribution
given Z , accepting those in Q for the specified selection rule. This approach can be used for any selection
rule with treatments proceeding to stage j + 1 dependent on Xj.

2·2. Selection of the best-performing treatment in a two-stage trial

Much previous work on conditionally unbiased estimation in clinical trials with treatment selection
has focused on the special case of r = 2 and s2 = 1, with the experimental treatment having the largest
observed stage 1 mean continuing along with the control to stage 2. Thus Q is the event X11 > m with
m = max(X21, . . . , Xk1). As Q is independent of X0·, the uniformly minimum variance conditionally
unbiased estimator for θ1 is (4). Since treatments 2, . . . , k are observed in stage 1 only, we have Zi =
Xi1 (i = 2, . . . , k) so that the numerator and denominator in the fractional term in (4) are respectively
τ−1

12 τ11

∫ ∞
m X11 f (X11 | Z1) dX11 and pr(X11 > m | Z1). As X11 | Z1 ∼ N (Z1, v1) with v1 = τ−1

11 − τ−1
1 , this

integral and probability are Z1{1 − �(Z̃1)} + v1/2
1 φ(Z̃1) (Todd et al., 1996) and 1 − �(Z̃1) respectively,

where Z̃1 = (m − Z1)v
−1/2
1 . Thus E(Y1 | Z , Q) = Z1 − Z0 − τ11τ

−1
12 v1/2

1 φ(Z̃1)/{1 − �(Z̃1)}, confirming
this to be the difference between the uniformly minimum variance conditionally unbiased estimator for μ1

ignoring the control treatment given by Bowden & Glimm (2008) and Z0.
Kimani et al. (2013) consider a similar two-stage trial in which treatment 1 is selected if X11 > m but

continues to the second stage only if X11 > X01 + c for some specified c, the trial otherwise stopping
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498 N. STALLARD AND P. K. KIMANI

early. In this case, Q is the event X11 > max(m, X01 + c). Since this depends on X01, the form (3) must
be used rather than (4) to give the uniformly minimum variance conditionally unbiased estimator of θ1.
The integral in (3) is taken over X11 and X01, but may be rewritten in terms of X11 and (X11 − X01),
noting that

(
X11

X11 − X01

) ∣∣∣∣ Z ∼ N

{(
Z1

Z1 − Z0

)
,
(

v1 v1

v1 v2

)}

with v1 as above and v2 = v1 + τ−1
01 − τ−1

0 . Since Q is the rectangular region {X11 > m, (X11 − X01) > c},
(3) is a truncated bivariate normal expectation and can be evaluated using Rosenbaum (1961) to obtain the
uniformly minimum variance conditionally unbiased estimator

τ1τ
−1
12 Z1 − τ11τ

−1
12 E(X11 | Z , Q) − τ0τ

−1
02 Z0 − τ01τ

−1
02 E(X01 | Z , Q),

where E(X11 | Z , Q) = v1/2
1 A + Z1 and E(X01 | Z , Q) = v1/2

1 A − v1/2
2 B + Z0 with

A = φ(a){1 − �(b̃)} + ρφ(b){1 − �(ã)}
U (a, b; ρ)

, B = ρφ(a){1 − �(b̃)} + φ(b){1 − �(ã)}
U (a, b; ρ)

;

where a = (m − Z1)v
−1/2
1 , b = (c − Z1 + Z0)v

−1/2
2 , ã = (a − ρb)(1 − ρ2)−1/2, b̃ = (b − ρa)(1 − ρ2)−1/2,

ρ2 = v1/v2 and U (a, b; ρ) = pr(u1 > a, u2 > b) for (u1, u2)
T standard bivariate normal with correlation

ρ. This is not the estimator proposed by Kimani et al. (2013), which is conditionally unbiased but not
minimum variance.

Robertson et al. (2016) also consider two-stage trials with early stopping for futility, though they do not
assume equal variances and consider ranking by standardized observed stage 1 treatment effect estimates,
Ri = (Xi1 − X01)(τ

−1
i1 + τ−1

01 )−1/2, assuming treatment 1 is selected if R1 > max{R2, . . . , Rk , c} for specified
c. In constructing their estimators, they condition on statistics based on the observed treatment effects,
Xij − X0j (i = 1, . . . , k; j = 1, 2). Since these may not be sufficient, for example in the case of normal data
with a common control, their estimator is also conditionally unbiased but not minimum variance; indeed
they show that in the common variance case it has larger variance than the estimator proposed by Kimani
et al. (2013).

3. NUMERICAL EXAMPLE

The ADVENT trial (MacArthur et al., 2013) was a two-stage study comparing 125 mg, 250 mg and
500 mg doses of crofelemer with a placebo in noninfectious chronic diarrhoea in HIV-seropositive patients.
The primary endpoint was clinical response, defined as at most two watery stools per week during at least
two of four weeks of treatment. At the end of stage 1, based on data from 200 patients randomized
equally between the four treatment arms, a single dose of crofelemer would continue with the control
to stage 2, with a further 150 patients randomized equally between these two groups. In the absence of
safety concerns, the dose selected would be the lowest dose with an observed clinical response rate within
two percentage points of the best-performing dose. Although not explicitly stated by MacArthur et al.
(2013), we assume that the trial would have stopped at the first stage if the best-performing dose did
not have observed clinical response rate at least two percentage points above the placebo. The trial was
analysed using the method of Posch et al. (2005) to control the familywise Type I error rate, but apparently
no attempt was made to obtain unbiased estimators of the treatment effect for the selected dose. The
U.S. Food and Drug Administration (2012) report gives results of the two stages of the study. In stage 1,
50, 44, 54 and 46 patients received the placebo and the three doses respectively, with 1, 9, 5 and 9 patients
in these groups showing clinical response. In stage 2, 88 and 92 further patients received the placebo and
125 mg crofelemer respectively, with 10 and 15 demonstrating clinical response. A naive estimate of the
effect of the 125 mg dose relative to placebo is thus 24/136 − 11/138 = 0·097.
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Table 1. Simulated probability of selection and bias (with root mean squared error in paren-
theses), with all values multiplied by 100, for the estimator given by (3) and the naive
estimator for θi conditional on selection of treatment i (i = 1, . . . , 3) for a range of μ values

(μ0 = 0·02 in all cases)
(μ1, μ2, μ3) pr(selected) Estimator from (3) Naive estimator

1 2 3 θ1 θ2 θ3 θ1 θ2 θ3

(0·02, 0·02, 0·02) 8 5 4 −0·2 (1·5) −0·2 (1·5) −0·1 (1·5) 1·6 (2·0) 1·7 (2·2) 1·9 (2·3)

(0·02, 0·02, 0·2) <1 <1 99 −0·4 (1·3) −0·4 (1·4) −0·7 (3·9) 1·7 (2·1) 1·7 (2·1) −0·4 (3·7)

(0·02, 0·1, 0·2) <1 14 86 −0·2 (1·5) −0·7 (3·3) −0·6 (3·9) 2·0 (2·6) 1·4 (3·1) 0·0 (3·6)

(0·02, 0·2, 0·2) <1 61 39 −0·2 (0·9) −0·7 (4·1) −0·5 (4·2) 2·1 (2·4) 0·5 (3·6) 1·2 (3·7)

(0·1, 0·2, 0·2) 5 58 37 −0·6 (3·3) −0·7 (4·1) −0·5 (4·2) 2·4 (3·6) 0·6 (3·6) 1·2 (3·7)

(0·2, 0·2, 0·2) 46 31 23 −0·7 (4·2) −0·5 (4·2) −0·5 (4·3) 1·0 (3·6) 1·5 (3·8) 1·9 (3·9)

For illustrative purposes, we treat estimated event rates as asymptotically normally distributed
with variances based on the observed responses in each group and stage and set (X01, . . . , X31) =
(0·02, 0·2045, 0·0926, 0·1956), (τ01, . . . , τ31) = (2551, 270·4, 642·1, 292·3), (X02, X12) = (0·1136,
0·1630) and (τ02, τ12) = (873·7, 674·2). Based on these results, we obtained an estimate from (3), calcu-
lating the integrals using 100 000 simulations conditional on 125 mg being the lowest dose with observed
clinical response rate within two percentage points of the best-performing dose, giving an estimate of 0·114.

Properties of the estimator (3) were assessed in a realistic setting via simulations based on the ADVENT
trial. For a range of μ values, for each of 100 000 simulated trials, we simulated Bi1 ∼ B(50, μi) (i =
0, . . . , 3), adding or subtracting 1 if Bi1 = 0 or 50 to enable variance estimation. We then set Xi1 = Bi1/50
and τ−1

i1 = Xi1(1 − Xi1)/50 (i = 0. . . . , 3). For I = min{i ∈ {0, . . . , 3} : Xi1 � maxi′=0,...,3{Xi′1} − 0·02},
the trial was assumed to stop at the end of stage 1 if I = 0; otherwise, we simulated Bi2 ∼ Bi(75, μi)

(i = 0, I ), again adding or subtracting 1 if Bi2 = 0 or 75, and set Xi2 = Bi2/75 and τ−1
i2 = Xi2(1 − Xi2)/75.

The estimate from (3) for θI , conditional on treatment I being selected, was obtained using 10 000 Monte
Carlo simulations to evaluate the integrals, and was compared with the naive estimator (BI1 + BI2)/125 −
(B01 + B02)/125. Table 1 gives simulated selection probabilities and the bias and root mean squared error
for the naive estimator and estimator (3). Bias estimates have standard error of at most 0·0002, with the
exception of those for θ1 when μ = (0·02, 0·02, 0·2, 0·2)T and for θ3 when μ = (0·02, 0·2, 0·2, 0·2)T, with
standard errors of 0·04 and 0·03 respectively, and estimators for treatments selected with a probability of
less than 0·01. Recall that if observed differences between treatments are small, the selection rule favours
treatments with the lowest indices, explaining the differences in selection probabilities for treatments with
the same mean.

The naive estimator is conditionally biased, overestimating the true effect. The bias is relatively small,
but in some cases it is, like the difference between the naive and new estimates for the ADVENT data
reported above, close to the difference in clinical response rates of two percentage points considered
important in the trial design. Only settings with μ = (0·02, 0·02, 0·02, 0·2)T and (0·02, 0·02, 0·1, 0·2)T,
where the highest dose is nearly always selected, have bias near zero. The estimator (3) has bias near
zero, though given that the derivation is based on assumed normality with known variance, it may not be
unbiased; the simulated bias is negative in all cases, suggesting that the true treatment effect is slightly
underestimated. The root mean squared errors of the two estimators are similar, though with some sug-
gestion that the naive estimator has slightly smaller mean squared error in situations in which it has larger
bias, consistent with theoretical results in settings in which the single most promising treatment is selected
(Stallard et al., 2008; Bauer et al., 2010). Given the simulation results, it is interesting that the estimate
from (3) using the observed ADVENT trial data is larger than the naive estimate. This appears to be due to
the large difference between X01 and X02, the placebo arm means in the two stages. A full analysis might
involve investigation of possible causes for this difference.

The estimators proposed by Kimani et al. (2013) and Robertson et al. (2016) were not included in the
simulations as they are not applicable for the selection rule used. We conducted 106 additional simulations
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with r = k = 2 and Xij ∼ N (0, 1) (i = 0, 1, 2; j = 1, 2), selecting the treatment with the largest Xi1

to continue to stage 2 provided Xi1 − X01 > c, when the Kimani et al. (2013) estimator is conditionally
unbiased and has smaller mean squared error than that of Robertson et al. (2016). If c → −∞, so there
is no stopping for futility, the Kimani et al. (2013) estimator and (3) correspond, with root mean squared
error of 1·08. For c = 0, the two estimators have root mean squared error of 1·23 and 1·21 respectively,
with these increasing to 1·34 and 1·31 respectively for c = 2. The probabilities of stopping for futility in
these two cases are 0·64 and 0·87.

4. DISCUSSION

The method proposed gives uniformly minimum variance conditionally unbiased estimators in multi-arm
multi-stage clinical trials. Estimators are obtained for treatment effects relative to the control for treatments
continuing to the end of the trial conditional on the event, Q, that these treatments are selected to do so. The
conditioning event is weaker than that considered by Bowden & Glimm (2008) and Cohen & Sackrowitz
(1989), who condition on the ordering of stage 1 treatment means. We consider conditioning on Q to
be appropriate since decisions regarding effectiveness of treatments are likely to depend on treatments
continuing to the end of the trial but not on the ordering of continuing treatments at earlier analyses.
The conditionally unbiased estimators are identical for a two-stage design with only the best-performing
treatment continuing along with the control to stage 2, as shown in § 2·2 above.

We have considered the total number of treatments and selection rule to be specified in advance. Others
have proposed more flexible approaches, such as in the STAMPEDE trial (Sydes et al., 2012), where
treatment arms were added during the trial. Our method might not yield conditionally unbiased estimators
in such a trial. In a fully flexible approach, it is not clear that it is even possible to define the bias, as this
would be an expectation over an unspecified sample space.
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APPENDIX

Construction of sufficient statistics for θ1, . . . , θk+1

Let θk+1 be orthogonal to θi, that is, the information matrix term iθiθk+1 = 0 (i = 1, . . . , k) (Cox & Reid,

1987), and write μ0 = ∑k+1
j=1 djθj for some dj ( j = 1, . . . , k + 1). Since we may scale θk+1 arbitrarily and

retain orthogonality, set dk+1 = 1 to get μ0 = ∑k
j=1 djθj + θk+1 and

μi =
k∑

j=1

djθj + θk+1 + θi (i = 1, . . . , k). (A1)

Let X = (X T
0·, . . . , X T

k·)
T; then E(X ) = 	θ where 	 is a (

∑k
i=0 ri) × (k + 1) matrix with blocks

of ri rows equal to (d1, . . . , dk , 1) + 1i (i = 0, . . . , k); here 1i denotes the (k + 1) row vector with
element i equal to 1 (i = 1, . . . , k) and other elements equal to 0, and 10 = (0, . . . , 0)T. We have
var(X ) = T , diagonal with elements (τ−1

01 , . . . , τ−1
0r0

, . . . , τ−1
k1 , . . . , τ−1

krk
). The likelihood is proportional to

exp
{
(X − 	θ)TT −1(X − 	θ)

} = g(X )h(θ) exp
(−2X TT −1	θ

)
, for some g(X ) and h(θ). Thus X TT −1	

is complete and sufficient for θ (Lehmann & Romano, 2005, § 4.3). Denoting X TT −1	 by (W1, . . . , Wk+1)
T,

we have Wk+1 = ∑k
i=0 X T

i· τi· = ∑k
i=0 Ziτi and

Wi = di

k∑
i′=0

X T
i′·τi′· + X T

i· τi· = di

k∑
i′=0

Zi′τi′ + Ziτi (i = 1, . . . , k). (A2)
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For orthogonality (∂	θ/∂θi)T −1(∂	θ/∂θk+1) = di
∑k

i′=0 τi′ + τi = 0, so di = −τi/
∑k

i′=0 τi′ and, from
(A1) and (A2), θk+1 = ∑k

i=0 τiμi/
∑k

i=0 τi, Wk+1 = ∑k
i=0 Ziτi and Wi = τiZi − τi

∑k
i′=0 Zi′τi′/

∑k
i′=0 τi′

(i = 1, . . . , k), so Z is complete and sufficient.
With no selection, i.e., sr = k , Zi and Zi − Z0 are the usual uniformly minimum variance unbiased

estimators for μi and θi (i = 1, . . . , k). By the factorization theorem, sufficient statistics are the same for
the conditional and unconditional likelihoods, so Z is also sufficient in this case.

REFERENCES

BARKER, K. L., JAVAID, M. K., NEWMAN, M., LOWE, C. M., STALLARD, N., CAMPBELL, H., GANDHI, V. & LAMB, S.
(2014). Physiotherapy rehabilitation for osteoporotic vertebral fracture (PROVE): Study protocol for a randomised
controlled trial. Trials 15, 22.

BAUER, P., KÖNIG, F., BRANNATH, W. & POSCH, M. (2010). Selection and bias — two hostile brothers. Statist. Med. 29,
1–13.

BOWDEN, J. & GLIMM, E. (2008). Unbiased estimation of selected means in two-stage trials. Biomet. J. 50,
515–27.

BOWDEN, J. & GLIMM, E. (2014). Conditionally unbiased and near unbiased estimation of the selected treatment mean
for multistage drop-the-loser trials. Biomet. J. 56, 332–49.

COHEN, A. & SACKROWITZ, H. B. (1989). Two stage conditionally unbiased estimators of the selected mean. Statist.
Prob. Lett. 8, 273–8.

COX, D. & REID, N. (1987). Parameter orthogonality and approximate conditional inference (with Discussion). J. R.
Statist. Soc. B 49, 1–39.

EFRON, B. (2014). Estimation and accuracy after model selection. J. Am. Statist. Assoc. 109, 991–1007.
KIMANI, P., TODD, S. & STALLARD, N. (2013). Conditionally unbiased estimation in phase II/III clinical trials with early

stopping for futility. Statist. Med. 32, 2893–910.
LEHMANN, E. & ROMANO, J. (2005). Testing Statistical Hypotheses. New York: Springer, 3rd ed.
MACARTHUR, R. D., HAWKINS, T. N., BROWN, S. J., LAMARCA, A., CLAY, P. G., BARRETT, A. C., BORTEY, E., PATERSON,

C., GOLDEN, P. L. & FORBES, W. P. (2013). Efficacy and safery of crofelemer for noninfectious diarrhea in HIV-
seropositive individuals (ADVENT trial): A randomized, double-blind, placebo-controlled, two-stage study. HIV
Clin. Trials 14, 261–73.

MAGIRR, D., JAKI, T. & WHITEHEAD, J. (2012). A generalised Dunnett test for multi-arm, multi-stage clinical studies
with treatment selection. Biometrika 99, 494–501.

POSCH, M., KOENIG, F., BRANSON, M., BRANNATH, W., DUNGER-BALDAUF, C. & BAUER, P. (2005). Testing
and estimation in flexible group sequential designs with adaptive treatment selection. Statist. Med. 24,
3697–714.

ROBERTSON, D. S., PREVOST, A. T. & BOWDEN, J. (2016). Unbiased estimation in seamless phase II/III trials with unequal
treatment effect variances and hypothesis-driven selection rules. Statist. Med. 35, 3907–22.

ROSENBAUM, S. (1961). Moments of a truncated bivariate normal distribution. J. R. Statist. Soc. B 23, 405–8.
STALLARD, N. & FRIEDE, T. (2008). A group-sequential design for clinical trials with treatment selection. Statist. Med.

27, 6209–27.
STALLARD, N. & TODD, S. (2003). Sequential designs for phase III clinical trials incorporating treatment selection.

Statist. Med. 22, 689–703.
STALLARD, N., TODD, S. & WHITEHEAD, J. (2008). Estimation following selection of the largest of two normal means.

J. Statist. Plan. Infer. 138, 1629–38.
SYDES, M. R., PARMAR, M. K. B., MASON, M. D., CLARKE, N. W., AMOS, C., ANDERSON, J., DE BONO, J., DEARNALEY,

D. P., DWYER, J., GREEN, C. et al. (2012). Flexible trial design in practice - stopping arms for lack-of-benefit and
adding research arms mid-trial in STAMPEDE: A multi-arm multi-stage randomized controlled trial. Trials 13,
168.

THALL, P. F., SIMON, R. & ELLENBERG, S. S. (1988). Two-stage selection and testing designs for comparative clinical
trials. Biometrika 75, 303–10.

THALL, P. F., SIMON, R. & ELLENBERG, S. S. (1989). A two-stage design for choosing among several experimental
treatments and a control in clinical trials. Biometrics 45, 537–47.

TODD, S., WHITEHEAD, J. & FACEY, K. M. (1996). Point and interval estimation following a sequential clinical trial.
Biometrika 83, 453–61.

U.S. FOOD AND DRUG ADMINISTRATION (2012). Application Number 202292Orig1s000 Statistical Review.
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202292Orig1s000StatR.pdf. Accessed 1 Feb 2017.

WASON, J., STALLARD, N., BOWDEN, J. & JENNISON, C. (2017).A multi-stage drop-the-losers design for multi-arm clinical
trials. Statist. Meth. Med. Res. 26, 508–24.

[Received on 13 September 2017. Editorial decision on 7 January 2018]

Downloaded from https://academic.oup.com/biomet/article-abstract/105/2/495/4913762
by guest
on 05 June 2018

https://www.accessdata.fda.gov/drugsatfda{protect LY1	extunderscore }docs/nda/2012/202292Orig1s000StatR.pdf



