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Abstract
Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the

dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In

skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity

of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head,

a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists;

this information is pivotal for establishing molecular-level connections between structure

and function in intermediate filament proteins. The roles of the head and tail domains in facil-

itating keratin filament assembly and function remain as open questions. To address these,

we report results of molecular dynamics simulations of the entire epithelial human K1/K10

keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the

complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the

chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evi-

dence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of

the residue characteristics that mediate non-covalent contact between the chains in the

dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18

and K5/K14, and to intermediate filament proteins in general.

Introduction
Intermediate filaments (IF) are one of only three types of fibrous proteins in the human body.
Keratins are the most numerous IF and are found in skin (e.g. K1/K10, K5/K14, K8/K18), hair
(e.g. K86/K36, K82/K80, K71/K25) and nails [1,2]. In skin, keratin responds to and redistrib-
utes mechanical stresses across the cell, contributing to the skin’s elastic properties [3,4]. IF
fibers comprise hierarchical assemblies, starting with the fundamental dimer sub-unit that self-
organizes into higher-order sub-units (such as the tetramer and so forth) ultimately leading to
the formation of the filament (Fig Aa in S2 File) [5–12]. Molecular scale insights into the
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interactions that drive and stabilize assembly of the higher-order sub-units are not clearly
established but are much needed.

Experimental evidence confirms that all IF protein dimers have the same tri-domain struc-
ture: a head, a central rod, and a tail domain [7,10] (Fig 1A). However, there remain a number
of questions on the exact details of the dimer structure. These questions remain, despite
advances in experimental characterization techniques, because of the substantive experimental
challenges involved in gaining detailed atomistic-scale models at any level of the sub-unit hier-
archy. Much of this experimental progress has focused on resolving the rod domain structure,
which has extensive regions of coiled-coil structure. One key question regards how the confor-
mation(s) of the largely uncharacterized head and tail domains impact on both the assembly
and functional properties of keratin as a whole. For example, the second stage of hierarchical
filament formation is thought to be the anti-parallel arrangement of dimers into a tetramer,
which then propagate into protofilaments [7,9,13]. Intuitively, the interfacing between the
highly structured rod domains should be the predominant driving force of sub-unit associa-
tion. However, experimental data suggest that without the presence of the head domain, fibers
do not form [14,15]. Experimental evidence further shows that the presence of the tail domain
influences the width of the resultant fiber [16,17], and thus could play a role in fiber compac-
tion. Additionally, experimental evidence indicates that head and tail domains play a critical
role in water retention regarding the elasticity of the fiber [18]. Hence, in the absence of full,
experimentally-derived detailed structural models of the rod, head and tail domains, molecular
simulation can play a complementary role in connecting keratin structure with function.

Keratins form heterodimers; type I and type II keratin proteins intertwine in-parallel and
in-register to give a central rod domain comprising, from the N- to the C-term, the 1A-L1-
1B-L12-2A-L2-2B subdomains. 1A, 1B, 2A and 2B are coiled-coil subdomains, and L1, L12, L2
are the intervening linkers (Fig 1A). The sequence of the central rod domain is highly con-
served amongst epidermal keratins and furthermore, shares a high similarity with other IF’s,
such as the Type III homodimer vimentin. Some experimental data are available for keratin,
however, there is relatively more experimental information available regarding the structure of
the rod domain of vimentin. X-ray crystallographic techniques using a ‘divide and conquer’
approach have suggested that the vimentin rod is principally a left-handed coiled-coil
[7,10,14]. However, the compartmentalized nature of this structure-determination approach
does not rule out that some details, apparent only via studies of the entire dimer structure, may
not have been captured. Furthermore it has highlighted that the 2A subdomain of vimentin
may contain parallel strands rather than the left handed coiled-coil seen elsewhere [19,20]. The
corresponding evidence for keratin is less complete, with crystal structure data available only
for part of the 2B subdomain of K5/K14 [5]. In the absence of conclusive data, molecular simu-
lations may offer a route to further refining the rod structure from the experimental data to
reveal the chirality of the coiled-coil arrangement along the rod-domain, and improve the
interpretation of the impact of this chirality on the higher-order sub-unit assembly and
structure.

In contrast to the rod domain, the sequence of the head and tail domains varies in length
(e.g. the head domains of K1 and K18 comprise 180 and 80 residues, respectively) and identity
between different keratins. These domains are generally longer for the type II keratins (e.g. K1,
K5, K8 etc.) than the type I keratins (K10. K14, K18 etc.). Epithelial keratin sequences typically
possess high numbers of glycine residues and few cysteine residues, while trichocyte keratins
contain relatively greater numbers of cysteine residues. Current understanding on the head
and tail domains indicates that these correspond with intrinsically-disordered regions of the
keratin protein [21]. Nonetheless, the overall size of the dimers, which in mature fibers is
44 nm [7], is thought to be approximately the size of the rod domain (40–50 nm) [9]. This may
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suggest that the head and tail domains are folded back onto the rod domain, as has been experi-
mentally observed for the vimentin dimer head domain [22] while the corresponding tail
domain was found to be flexible [23]. A sub-division of the head- and tail-domains of keratins
has been proposed on the basis of sequence analysis alone [15,24–26], but this analysis has
never been verified via experiment or simulation. This analysis suggested that the head domain
could be divided into three subdomains, denoted as the end subdomain, E1, a variable glycine-
rich subdomain, V1, and, a region of sequence homology close to the rod domain, H1 (see Fig
Ab in S2 File). A second set of homologous residues was later identified in type II keratins [25],
that correspond to the C-term residues of the proposed E1 subdomain. These conserved
residues may thus be important in defining the boundaries of these proposed subdomains.
On the same basis, the tail domain could be similarly sub-divided [15,24,26]. Presently, the

Fig 1. Structural models of the keratin dimer. (A) Schematic of the domain structure of the keratin dimer. (B) The number of residues in each subdomain.
(C) Initial starting arrangements for the head domain, shown projected out of the 1A domain (values refer to the number of truncated/full dimer models
considered). (D) An example of equilibrated dimer structure annotated with the mean principal component dimensions for each major domain and the hinge
angle across the L1 and L12 linker.

doi:10.1371/journal.pone.0132706.g001
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tri-subdomain structure of the head and tail for keratin remains a hypothesis. The evidence
base provided by molecular dynamics simulations of the keratin dimer may refine and charac-
terize this tri-domain structure in the head and tail domains, giving vital clues into the dimer-
level structural arrangement.

Previous work has reported the use of modeling to investigate the structure of IF proteins.
Smith and Parry [27] visualized the three-dimensional arrangement of residues in the rod
domain of the K1/K10, K5/K14 and K35/K85 keratin dimers by directly mapping the keratin
residues onto the experimental structure of the vimentin rod. This analysis allowed a static
assessment of the overall character of each face of the dimer rod, but could not accommodate
for any structural changes due to the chemical differences in residues between keratin and
vimentin. Neither could it provide any details on the head and tail domains. Molecular dynam-
ics (MD) simulation offers an approach to model chemical interactions and can potentially
yield physically-reasonable full structure predictions of IF proteins. Results of such molecular
simulations have been reported previously for both the vimentin homodimer system [28–32],
and recently, the trichocyte keratin heterodimer [33,34] (found in hair). These previous studies
chiefly focused on the mechanical properties of the IF sub-units, rather than the structural
details, and did not report local structural properties of the dimer at the residue level, nor did
they provide any specific details on the structure and behavior of the head or tail domains. Fur-
thermore, the majority of keratins are epidermal keratins; these have relatively little cysteine/
methionine content compared with the trichocyte keratins, and hence the structure of the epi-
dermal keratins relies less on disulfide cross-linking. This makes the structure prediction of
epidermal keratins more challenging; not only are there fewer clues regarding points of contact
in the IF sub-units (as would be indicated by the disulfide bridges in trichocyte keratins), but
also, the sub-unit assemblies are structurally less rigid, owing to the lack of covalent linkages.
Use of MD simulation to predict full structural details of epidermal keratin, including a charac-
terization of the head and tail domain structures, as well as the rod domain chirality, has yet to
be reported.

Here we detail the use of MD simulations to generate multiple, full, molecular structures of
the entire K1/K10 heterodimer, including an analysis of the disordered head and tail domains,
and demonstrate that these results are consistent with the existing data on IF structure. These
keratins are found in the upper epidermal cells in the stratum corneum of human skin. From
our statistical analysis of several structural models, we have elucidated common features of the
keratin dimer, yielding the most probable conformational motifs. Although our simulations
consider the keratin dimer in isolation, our findings aid conceptualization of the arrangement
of essential structural regions of the dimer needed for forming the keratin filament. Key to this
is the prediction of the local helical character along the entire rod domain using these models.
Our results further enable an estimation of the spatial extents of the intrinsically disordered
head and tail domains, which has not yet been achievable experimentally. Also, our results
indicate that the characteristics of the head and tail domains concurs with their being a tri-
subdomain structure, as has been hypothesized solely from sequence analysis. The 3-D shape
and characteristics of these subdomains may aid elucidation of how the head domain confers
interaction between dimers in the fiber assembly process. The tail domain, in comparison,
was found by our models to be less well defined in shape and more conformationally labile, in
agreement with the recent experimental measurements performed on vimentin.

Methods
To generate complete structures for the K1/K10 dimer we performed a total of 25 all-atomMD
simulations using a range of starting configurations. Because of the system complexity, we used
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a mixture of full dimer models (ten simulations), as well as truncated dimer models (fifteen
simulations). The truncated system comprised only the first half of the dimer, spanning the
head-1A-L1-1B domains. Atomistic-level experimental data, obtained for closely-related sys-
tems such as vimentin, provided a crucial basis for the construction our structural models (see
below). While such data for the rod domain are relatively more mature than for the head and
tail domains, very recent electron paramagnetic resonance (EPR) measurements for vimentin
have provided vital clues regarding the arrangement of the head domain[22,23]. These data
help to justify our choice for the initial arrangement of the head and tail domains in our simu-
lations (see below for more details). For the highly structured core rod domain, this central
domain of the dimer was initially configured in a manner as has been observed for a similar IF
(vimentin), and so necessitated only moderate restructuring during simulation. Given that few
details on the head and tail domain structure are known, we considered a range of initial con-
figurations for the head and tail domains, to better sample the available conformations; we sim-
ulated these until stable structures were obtained. We obtained equilibrated structures of
keratin by simulating the dimer in an implicit solvent environment (see Section C in S1 File for
details). For further refinement, eight of the equilibrated dimer structures were then modeled
in an explicit solvent.

Constructing the initial models of the dimer
To model the K1/K10 dimer we constructed several initial starting structures and used these
as a basis for further refinement during equilibration of the MD simulation. Each dimer
was built by first constructing the head, rod and tail domains and then linking these three
domains together to form the dimer (additional details are given in Section A and B in S1 File).

Since detailed structures of key regions of the rod domain (i.e. the coiled-coil domains)
exist for a related IF, vimentin, we used these as a starting point for our model of the K1/K10
dimer. Comparison between vimentin and K1/K10 rod domain sequence shows that there is
a 30% and 90% sequence similarity in amino acid identity and residue type, respectively, and
is suggestive of similar structure. The crystal structures of the vimentin 1A (3G1E.pdb [19]),
1B (3UF1.pdb [20]) and 2A-L2-2B (3KLT.pdb [35] and 1GK4.pdb [36]) coiled-coil subdo-
mains were obtained from the RCSB protein databank (PDB; http://www.rcsb.org/pdb/).

The initial configuration of the coiled-coil rod sub-domain of the K1/K10 dimer was gener-
ated by overlaying the K1/K10 sequence (obtained from the online IF database [37]) onto the
experimentally-determined structure of vimentin (see Section B in S1 File for details) to build
the corresponding K1/K10 1A, 1B and 2A-L2-2B coiled-coil subdomains (see Section B in S1
File for exact procedure). To create the full rod domain structures these coiled-coil subdomains
then needed to be spatially translated, reoriented and then linked in sequential order using
the sequences of the L1 and L12 linker regions as bridges. Each of the L1 and L12 linkers was
constructed in the form of loops (see Section B in S1 File for exact procedure and Fig Ad in
S2 File).

The head and tail domains of the K1/K10 dimer comprise 365 and 275 residues, respec-
tively, making these the second-longest head and tail domains of any keratin. There are little
direct data available on the structure of the head and tail domains of keratin or any other
closely related IFs. However, recent site-directed spin labeling and EPR measurements for
vimentin [22,23] suggest that the head groups are folded back onto the rod domain such that
residue 17 of vimentin (in the head domain) is close to residue 137 (in the 1A subdomain). In
some of our initial structures we assumed that keratin had similarly folded head and tail
domains.

Structure of a Keratin Dimer
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To generate these folded initial configurations of the head domain, the primary sequence of
each chain was built as a β-strand, protruding from the N-term of the 1A coiled-coil subdo-
main in the direction of the long-axis of the rod domain (y-axis of the simulation cell). Each
chain of the head domain was looped back onto the rod domain using a hairpin turn of nine
residues (ϕ = −162.5°, ψ = 162.5° and ω = 180°, see Section D in S1 File for definitions of these
dihedral angles). The folded initial configurations of the tail domain, which protrudes from the
C-term of the 2B coiled-coil subdomain, were generated in a similar way as the head domain to
fold back on to the rod domain. Finally, the head and tail domains (details described below)
were added to the rod domain to produce the full initial structure of the K1/K10 dimer, like
that seen in Fig Af in S2 File.

In our models we have made no allowance for the existence of disulfide bonds between cys-
teine residues, but instead allowed the sidechains to interact purely via non-bonded interac-
tions. The K1/K10 dimer has a total of seven cysteine residues (specifics are given in Section H
in S1 File) and are not highly conserved amongst keratins. In the rod and tail domains there
are no suitable pairings for disulfide bonding, whereas the head domain contains a total of four
cysteines. We did not explicitly include disulfide pairs in our models because there is currently
a lack of atomistic-scale structural information to guide our selection of which pairs to link.
Without such guidance, our selection of disulfide pairs might unduly bias the resulting struc-
tures generated from our simulations.

Initial model configurations of the head and tail domains
The most challenging parts of the dimer to model, due to the unavailability of detailed experi-
mental data, are the intrinsically disordered head and tail domains. To better sample the range
of folded conformations of these domains we considered 25 different models, varying the initial
configuration of these domains. In ten of our models we simulated the full dimer; for these we
built the tail domain in the same configuration as the head domain. In our remaining fifteen
simulations, we considered a truncated model, where we cleaved the dimer at the C-terminal
end of the 1B coiled-coil subdomain and terminated each chain with a COOH group. To
ensure that this artificial termination of the dimer did not cause the 1B coiled-coil subdomain
to unravel during the simulation, a harmonic restraint was applied between the between the
Cα atoms of the C-terminal residues in each truncated keratin chain (i.e. residues K1:328 and
K10:296). A force constant of 1000 kcal (Å mol)−1 and an equilibrium distance of 14.37 Å (the
distance measured in the initial model of the full dimer), were used for the restraint.

There are a multitude of possible ways that each head/tail chain can be folded back on to the
rod domain. The construction of our initial models of each head and tail model was based on
two key degrees of freedom: (1) the direction of the turn relative to the rod domain of the
dimer, and (2) the position of the turn along the sequence of the head/tail domain of each
chain. Five plausible folding directions were chosen for folding the head and tail chains back
on to the rod domain which covered the entire range of possible orientations for the two
chains. These were to fold: (A) both chains towards the K1 face of the rod domain; (B) both
chains towards the K10 face of the rod domain; (C) each chain onto the opposite chain face of
the rod (e.g. K1 onto K10 and vice versa); (D) each chain onto its own chain face of the rod;
and, (E) fully extended away from the rod domain (i.e. not folded). A schematic of these differ-
ent initial configurations is presented in Fig 1C for the example of the head domain.

Another possible variable in our set-up of the head and tail domains was the initial position
of the hairpin turn as a function of location along the chain length. We explored up to six dif-
ferent positions of the hairpin turn for each of the orientations (A-E). Hypothesizing that the
head domain of keratin may be folded as far back as vimentin, we started by placing the hairpin
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turn across the residues K1:103–111 and K10:86–94 (such that the equivalent keratin residues
were next to each other as seen for vimentin from the EPR measurements [22,23]) for the head
domain, and across the residues K1:534–542 and K10:498–506 of the tail domain. We then
shifted the position of the hairpin turn on all the chains by an additional n residues (denoted as
n-shift) towards the rod domain (where n = −5, 0, 3, 5 or 10). The combinations of different
orientation and n-shift values produced the 25 different models. An overview of the 25 combi-
nations used for the dimer models is given in Fig Ae in S2 File. To limit the complexity, in our
full dimer models we have configured the hairpin of both the head and tail domains such that
they were folded in the same direction. It was assumed that since the head and tail domains are
located a sufficient distance apart, they cannot influence one another, and can be treated
independently.

Atomistic simulation of models using implicit solvent
We performed MD simulations using the NAMD simulation package [38]. The protein was
modeled using the CHARMM27 all-atom protein forcefield with cmap terms included [39].
Since we considered the keratin in liquid water at ~ pH = 7, histidine was left unprotonated.
The long aspect ratio of the protein and the extended initial configurations meant it was not
practical to equilibrate the structure using an explicit description of the solvent. Instead, the
Generalized Born Implicit Solvent model [40] was used. The solvent dielectric was set to 78
(that of water). No counter-ions were needed, as infinite boundary conditions were applied.
The cutoff used for calculating the Born radii was 14 Å. The pair list distance was 17.5 Å
and non-bonded interaction cutoff at 16 Å, with a switching function applied from 15 Å.

We took two approaches to initiating the implicit solvent simulations. In the first approach,
the entire structure was energy minimized using the steepest descent algorithm. The velocities
were then initialized to the thermostat temperature of 305 K before proceeding to the MD. In
the second approach, the backbone atoms were fixed during the energy minimization. A sec-
ond minimization was then performed with only the backbone Cα atoms restrained. Next, with
these restraints still present, MD was performed for 30000 steps from initially at-rest mole-
cules, using the same Langevin thermostat. Finally, from this point, full unconstrained MD was
carried out.

Each dimer model was simulated for 100 ns and was determined as equilibrated, with a sta-
ble structure, when the root mean square displacement (RMSD) in residue positions had pla-
teaued (see Section C in S1 File). From the equilibrated data, the final 20 ns of trajectory data
for each model were used for the analysis.

Simulation of models in explicit solvent
Following equilibration in implicit solvent, eight representative, equilibrated models (both
the full and truncated dimer models) were solvated with 250,000–300,000 TIP3P [41] water
molecules using the VMD [42] solvate tool. The system was charge-neutralized by randomly
replacing 14 water molecules with sodium ions using the VMD autoionize tool. The dimer was
placed in a cuboid periodic cell, with the long-axis of the dimer oriented with the cell y-axis,
and the remaining volume filled with water, such that the cell dimensions extended 20 Å in the
y-direction and 10 Å in the other directions on either side of the protein.

The explicit solvent simulations were initiated by energy minimizing the system with the
protein backbone atoms held fixed in space. Next the backbone Cα atoms were restrained and
MD performed for 3000 steps, from initially at-rest molecules, in the NVT ensemble using the
same Langevin thermostat as for the implicit simulations. Next, a NPT simulation was per-
formed for 5000 steps with restraints still placed on the Cα atoms. Finally, all restraints were
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removed for the remainder of the simulation. Here a Langevin piston was used, with a target
pressure of 1 bar, a time period of 100 fs and decay of 50 fs. Group pressure was used. The
inter-particle forces were calculated using a switching distance of 10 Å, a cut-off distance of
12 Å and pair list distance of 14 Å. Particle mesh Ewald with a grid spacing of 1 Å was used to
treat the long-ranged electrostatic interactions calculation. Simulations were run to obtain
25 ns of equilibrated trajectory data.

Analysis
In the study we use statistical analysis over all of our 25 structural models to gain insight into
the most likely structural features for the keratin dimer. In this sense, we have classified the
frames taken from our trajectories based on a range of geometric criteria as detailed below, and
we then used these classifications to essentially coarse-grain the underlying potential energy
landscape of these keratin dimer systems.

Properties of the coiled-coil subdomains. The structural properties of the coiled-coil sub-
domains were calculated using the same procedure as outlined in previous studies on the
experimental crystal structure data of vimentin [19,35,36]. The central axis of the coiled-coil
was determined using the method given in Strelkov and Burkhard [43]. In this procedure, the
path pN(i) of the central axis of the α-helix of each peptide chain was calculated first (where N
indicates which of the K1 or K10 chains is being considered, and i is the relative residue num-
ber to the N-terminus of the subdomain), with each pN(i) calculated from the Cα positions of
four conservative residues with positions i − 1, i, i + 1 and i + 2 in the α-helical chain. The
path of the central axis of the coiled-coil P(i) is then the mean of the paths of the two α-helices,
i.e. P(i) = (pK1(i) + pK10(i))/2.

The local radius, R(i), of the coiled-coil can then be calculated as half the separation distance
between the centers of the two peptide chains at residue i, i.e. R(i) = (|pK1(i) − P(i)| + |pK10(i) −
P(i)|)/2. Next, a dihedral angle,C, made between the two vectors that connect the center of the
α-helix of a given chain (e.g K1 or K10) to the central path of the coiled-coil, at i − 1 and i,
around the path vector of the central axis between these (as given in Strelkov and Burkhard
[44]). Calculation of the dihedral angle was repeated between i and i + 1 to produce four esti-
mates (two each from K1 and K10). An average of these estimates then defines the local change
in radial angle of each peptide chain at residue i. The local pitch, λ(i), was estimated from the
change in distance along the central path, from i − 1 to i + 1, and the change in dihedral angle
C, using lðiÞ ¼ 1

2
jPðiþ 1Þ � PðiÞj þ jPðiÞ � Pði� 1ÞjÞ ðC=2pÞð .

The vector of the major axis of each coiled-coil was defined as the normalized displacement
vector between the positions of the central axis at the 2nd residue and 3rd to last residue of the
subdomain. The hinge angle, defined as that between coiled-coil subdomains, can then be cal-
culated from 2p� cos�1ð~u:~vÞ, where~u and~v are the vectors of the major-axes of the two
subdomains.

Globule axial displacement and radial orientation calculation. To calculate the axial dis-
placement, d, and the radial orientation, θr, of the V1 globule subdomain of a given chain (K1
or K10), we first defined its center-of-mass using the Cα atom positions of the chain found

within the V1 globule. We then defined a vector, ~V, between the V1 center-of-mass and the N-
term of the 1A subdomain. The latter was defined as the 2nd residue position of the major axis
of the 1A coiled-coil (as defined in the previous subsection). Second, we defined a normalized

vector, ~M, that pointed along the 1A coiled-coil major axis. We defined the axial displacement,

d, as the projection of ~V onto ~M, i.e. ~V � ~M (Fig 2B).
To calculate the radial orientation of the chain’s V1 subdomain, θr, we constructed a plane

C, defined as perpendicular to the 1A major-axis ~M and we considered the two N-termini (of
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K1 and K10) of the 1A subdomain to lie on this plane C. We also defined a normalized vector,
~O, between the center-of-position of the K1/K10 N-termini of the 1A subdomains, and the N-

terminus of the K1 1A domain (Fig 2B). From this we constructed a vector, ~P, defined as the

normalized projection of ~V onto plane C and thus calculated θr as the angle between the vec-

tors ~P and ~O, i.e. cos�1ð~P:~OÞ (Fig 2B).
This procedure was repeated for the tail globule (substituting the residues of the V1 subdo-

main for those of V2 subdomain residues), and using the positions of the 3rd to last residue of
the 2B subdomain as reference, see Fig 3B for how these definitions map onto the tail domain.

Finally, the position and orientation of the end termini of the head and tail domains were
calculated using the above procedure and substituting the residues of the V1 subdomain for
either the N-term or C-term residue of the head or tail domain, respectively (see Figs 2E and
3E for schematics).

Head and tail measurements. The radius of gyration was defined as the root mean square
of the distances between individual backbone atoms of the head, tail domain or V1 subdomain
and their center of mass. The end-to-end distance of the head and tail domains was defined as
the distance between the Cα atom of the K1 (or K10) chain terminal residue (e.g. first or last
residue, respectively) and the center of the N-term or C-term of the 1A and 2B subdomains,
respectively.

Measurement of distance between pairs of residues. From each model the distance
between the Cα atoms of a pair of residues was sampled uniformly in time and considered for
analysis only if this distance was less than 12 Å. Residue pairs were classed into three types of

Fig 2. Positioning of the head domain. (A) Three exemplar positional preferences of the head domain. (B and E) Schematics of 1A and head domain
showing key measurements made on V1 and E1 head domains (definitions of vectors are given in Methods). (C and F) plots of the occurrence of the
positions taken by the V1 globule and N-term of the E1 head domain, respectively, with annotations referring to the examples. (D) top down diagrams
illustrating the radial positioning of the head domain and the heptad positions of the 1A rod domain (the N-termini of the 1A starts at the e-heptad position and
then runs clockwise into the page).

doi:10.1371/journal.pone.0132706.g002

Structure of a Keratin Dimer

PLOS ONE | DOI:10.1371/journal.pone.0132706 July 16, 2015 9 / 22



interaction based on the chains involved: K1-K1; K10-K10; K1-K10. These were then used to
calculate the frequency that a particular pair of residues are found to be close in these models.
The results were normalized to account for the differences in residue numbers between trun-
cated and full dimers.

We also measured the time average number and types of residue sidechain contacts present
in each dimer model. Each specific side chain contact was classified depending on the pair of
residue types present (as defined by the residue pairing matrix in Fig Fc in S2 File). To avoid
double counting, only one type of interaction was measured for each sidechain pairing, which
potentially involved two or more types of interactions. At any sample time contacts were said
to be present if the distance between a pair of sidechain reference atoms was less than contact-
type-dependent cutoff distance (these values are given in Fig Fc in S2 File) and added to a
count. The probability of occurrence of a pairing was then determined by the total count
divided by the total number of samples. For the pairings between the four polar residues, Ser,
Thr, Gln and Asn, both potential side-chain sites for hydrogen bonding were checked. The
average total number of contacts were calculated by summing up the probabilities over the
K1-K1, K1-K10 and K10-K10 contacts. The values from these results were used to determine
the coiled-coil side chain contact map.

Results
In general, the equilibrated dimer structures had high aspect ratios, with mean principal com-
ponents of 43.6 nm × 7.4 nm × 11.8 nm (Fig 1D), which are consistent with experimental val-
ues. Measurements of the average hinge angle made between the neighboring axes of the
coiled-coil rod domains (see Fig Db in S2 File) indicated that the linkers L1 and L2 acted like
flexible hinges, leading to deviation away from linearity for the dimer, with average angles

Fig 3. Positioning of the tail domain. (A) Exemplar positional preferences of the tail domain. (B and E) schematics of 2B and tail domain showing key
measurements made on V2 and E2 head domains (definitions of vectors are given in Methods). (C and F) plots of the occurrence of the positions taken by the
V2 globules and C-term of the E2 tail domain, respectively. (D) bottom down diagrams showing the radial positioning of the tail domain and the heptad
positions of the 2B rod domain.

doi:10.1371/journal.pone.0132706.g003
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between the 1A and 1B subdomains of 107°, and 1B and 2A subdomains of 137°. In all cases
the head domain formed a single large globule, with a mean radius of gyration ~25 Å, (Fig Dd
in S2 File and Methods). The average end-to-end distance of the chains of the head domain
(see Methods for details) was found to be ~50 Å (Fig De in S2 File). The tail domain, in con-
trast, had a mean radius of gyration ~22 Å, and a mean end-to-end distance of ~45 Å (Fig Dd
and De in S2 File). Herein, we detail results of our simulations with respect to the chirality of
the rod-domain, the inter-chain interactions that drive association within the rod domains,
and details on the domain structure(s) of the head and tail domains.

Chirality of the rod domain
Since the rod domain is the most extensively experimentally studied part of IF dimer structure
our analysis of the rod domain was conducted so as to be compatible with existing studies.
First, we measured the local helical properties of the major coiled-coil subdomains of the rod
domain, because these can be directly compared with the available experimental crystal struc-
ture data of K5/K14 [5] and vimentin [20,35,43]; these are the key metrics reported in these
studies.

In our models the behavior of the coiled-coil local helical pitch and radius (Fig 4B and 4C)
was overall convergent across our models. In Fig 4B we show the analysis from the dimer mod-
els in implicit water. For purposes of model evaluation, the solid line in Fig 4B indicates the
local pitch and radius of the initial profile for the model prior to MD simulation. The difference
between this and the final structures (dashed lines) demonstrates that our structural models
were able to restructure to more appropriate forms for keratin.

In Fig 4C we provide a comparison of the further refined models of K1/K10 in explicit water
(solid lines) and overlaid these with the experimental data for vimentin and keratin K5/K14
(dotted lines). Fig 4C shows that our model data agrees closely with both the vimentin data (as
used to develop the initial model) and the more closely related keratin. This figure demon-
strates the closeness between structures of the rod domain for the family of IF dimers with key
properties in the coils-coil maintained, such as an average radius of 5 Å [20], a pitch of 170 Å
[27] along with structural features in coiled-coil behavior, such as the three-residue stutter in
the 2B subdomain (indicated by the increase in pitch of the models around residue K10:400).
These features are highly conserved in IFs [7,43]. Also indicated on these figures is the reten-
tion of the 2B domain C-term splay (around K10:449), leading to an increase in both pitch and
radius [35].

In Fig 4C we further compare the pitch and radius of the coiled-coils of four dimer models
obtained using explicit solvation instead of implicit solvation. Re-solvating the models in
explicit liquid water did not significantly alter the form of these coiled-coils: there were some
differences in the more sensitive coiled-coil pitch (discussed below), but not the radius, com-
pared with our implicit solvent data.

The pitch and radius of the 1A and 1B subdomains, and majority of the 2B subdomain,
were consistent with a left-handed coiled-coil. The interface across the 2A, L2 and 2B subdo-
mains has been challenging to experimentally characterize [20,35]; our structures showed that
this region exhibited considerable variability (e.g. flexibility) in coiled-coil pitch and radius
(around K10:340–360) both between models, and at different times for the same model. We
identified the 2A and L2 subdomains as right-handed and parallel-chained (indicated by the
high pitch values), respectively. This arrangement appeared to be enforced by the presence of
the first two cross-chain pairings of internally-faced aromatic residues located after the L12
linker, at K10:325 and 339–340, that helped kept the chains parallel in this region. The parallel-
chained coiled-coil continued from the L2 subdomain into the first few residues of the 2B
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subdomain. At K10:354–356 our models exhibited a range of radii for the coiled-coil, and an
uncertain pitch value. Visual inspection of the structure confirmed that this region corre-
sponded to a kink in the coiled-coil (as seen in Fig 4A), consistent with a similar feature
observed experimentally in vimentin [20]. We identified the sequence stretches in the kink (e.g.
K10:DNNI and K1:GRHG); the α-helical propensities for these motifs are unfavorable [20],
and the heptad repeat of the coiled-coil places a basic residue in the d-heptad position (acid res-
idues in similar positions were also shown to lead to such a kink [45]). These features may
weaken the coiled-coil, causing the kink.

With good agreement between the model rod-domain profile and experimental data we
next investigated the internal structure of the rod domains by quantifying the inter-chain side-
chain contacts of the rod domain. Overall, coiled-coils were maintained by an inter-chain
(K1-K10) interdigitation of hydrophobic residues. As a theoretical maximum, an ideal coiled-
coil rod domain for keratin K1/K10 would involve 228 inter-chain side-chain interactions link-
ing between the a- and d-heptad helical positions of the K1 and K10 chains. In practice, our
simulations revealed on average 214 such contacts; of these, 80% (172 in total) were hydropho-
bic, with 12 of these due to aromatic ring contacts. Nine further contact pairs were found
between acid and basic sidechains. This contrasts with the intra-chain sidechain interactions of
the α-helical chains, where each have twice the number of electrostatic attractions (compared
with the inter-chain case), given there are 19 out of the 197 observed K1-K1 interactions and
19 out of the 192 observed K10-K10 interactions (see Section F in S1 File for details). We pro-
filed these sidechain interactions across the rod domains and compared these against the
vimentin and K5/K14 crystal structures (using the same methods). Fig 4D shows a comparison
between the 2A-L2-2B domain of the K1/K10 model and the K5/K14 experimental data. Here
for the K1/K10 model we only show the side-chain contacts that occurred at least 50% of the
time in our models. Despite some sequence differences between the two keratins, clear similari-
ties in the internal structure can be seen.

Head domain structure
A key aim of our work was to obtain a comprehensive picture of the spatial extent and subdo-
main structure of the head and tail domains, generated via statistical analysis of their structure
obtained from our 25 simulations. To indicate the detailed structure of the head domain, from
each model we identified contacting pairs of residues (based on a distance cut-off between key
atoms in the sidechains of the residue pair, see Methods) and produced composite plots of
chain contacts, which colored each residue pairing by the overall probability of their occur-
rence in the equilibrated dimer models (Fig 5). For clarity, the residue pairs in our contact plots
of Fig 5 were separated into three types of dimer interaction: two plots of intra-chain contacts
e.g. K1-K1; K10-K10; and a plot of inter-chain contacts e.g. K1-K10. In these plots a region
with high probability indicates a common feature in the dimer models.

We initially divided the contact plots by the experimentally known domain structure of the
head and rod (e.g. Head, 1A, L1 and 1B subdomains), as marked by the black dashed lines and
the black domain labels in Fig 5A. The statistical characteristics of the contacts within the head
domain suggested a tri-subdomain structure (labelled on Fig 5 as E1, V1, and H1) that was con-
sistent with the assignment implied from past sequence analyses of keratin [9]. To highlight

Fig 4. Rod domain structure. (A) Example final dimer structures with secondary structure shown on the left and residue type shown on the right. (B) Local
radius and pitch of the coiled-coil subdomains 1A (left), 1B (center) and 2A-L2-2B (right) obtained from simulations using implicit solvent. (C) The same plot
showing a comparison of four dimer models obtained using implicit solvent or explicit solvent and experimental crystal structure data of vimentin and keratin
K5/K14. (D) comparison of the side chain contacts of the 2A-L2-2B rod domain, between our models of keratin K1/K10 in explicit water and the K5/K14
crystal structure. For clarity only contacts with at least a 0.5 probability of occurrence in the models are shown.

doi:10.1371/journal.pone.0132706.g004
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these similarities we have taken the same sub-domain labeling of the head domain as has been
previously proposed [9]. These subdomains were indicated by the less extensive contact seen
between the V1 subdomain and the two other subdomains H1 and E1.

Our contact plots showed that residues K1:61–153 and K10:31–137 were typically in close
contact and indicated these residues were part of a globular subdomain V1. This sub-domain
encapsulates both the glycine loop motif (the spatial extents are indicated by the red box in Fig
5A), discussed below, plus further flanking residues that lay sequentially either side. In particu-
lar, integral to the V1 subdomain is a highly-conserved set of residues in K1, noted and defined
in the sequence analyses as perhaps part of the H1 domain of K1, which were found to contrib-
ute a large number of the hydrophobic interactions associated with the head domain (totals

Fig 5. Head domain structure. (A) Combined contact plots for the head domain and part of the rod domain showing the probability of the Cα atoms of a pair
of residues being separated by less than 12 Å. The dashed-lines show the boundaries between the head domain and rod subdomains, and dotted-lines
indicate changes in the characteristics of the primary sequence (see Section E in S1 File). The letter annotations show which residues correspond to the rod
subdomains 1A, L1 and 1B and our proposed head subdomains (H1, V1, E1). The red box indicates the residues that make up glycine loop motifs. (B)
Snapshot of the head domain showing the aromatic and glycine loops contained within. (C) Snapshot of the head domain highlighting the acidic (red) and
basic residues (blue) interacting between the rod and head domains. The rectangle indicates the location of acid and base pairing between the 1A rod
domain and H1 head domain.

doi:10.1371/journal.pone.0132706.g005
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shown in Fig F in S2 File). The high levels of K1-K10 interactions within this region indicates
that the V1 globule could be considered as one unified structure, rather than two separate co-
located chain folds formed from K1 and K10 separately.

The dominant feature of the contact plots is the V1 globule, featuring a 36% (107 residues)
glycine content, which has been hypothesized to confer a ‘glycine loop’ structure [46]. Glycine
loops are characterized by polyglycine repeats punctuated intermittently (every 3–6 residues in
the head domain) by aromatic residues [46]. Glycine loop structures are thought to form via π-
stacking of aromatic rings that are neighboring (but not sequentially adjacent) in the sequence
[46]. Glycine loops have been attributed to a role in adhesion, arising from a ‘molecular velcro’
behavior [46], and could play a critical role in conferring the elastic properties of the keratin
fiber. In contrast to the notion of ‘neighbor-only’ (in sequence) rings forming separate π-stacks,
the regions highlighted by rectangles in Fig 5A indicate a more complex hierarchical 3-D
arrangement of loop structures.

We identified the types of sidechain interactions in the head domain (see Section F in S1
File and Fig F in S2 File); on average each ring interacted with two of its aromatic neighbors,
suggesting the aromatic residues are interlocked in loop-like structures. Furthermore, most
hydrogen bonds in the head domain were found between backbone atoms, suggesting that the
poly-glycine stretches were folded in close proximity (the distribution of the number of hydro-
gen bonds within the dimer are given in Fig G in S2 File and Section G in S1 File). A represen-
tative arrangement of glycine and aromatic residues is shown in Fig 5B.

Relative Position and Orientation of the Head and Tail Domains
Having identified a sub-domain structure to the head domain where the K1/K10 chains are
largely globular rather than extended, we next determined whether the head domain pointed
towards the rod domain (and hence interacted with the rod) or extended away from the rod
domain (and hence would be expected to be more mobile). We investigated the positional and
orientational preferences of the head domain relative to the rod, and identified from the models
three categories of head domain spatial position, depending on the statistical location of the
head domain relative to the 1A subdomain of the rod (examples of each category are shown in
Fig 2A): Category I–with the head domain projected out along the long axis of the dimer,
beyond the N-terminal end of the 1A subdomain; Category II–with the head domain at right
angles to the top corner of 1A; or Category III–with the head domain folded down onto 1A. To
determine if the V1 globule showed any positional preference, we measured the axial displace-
ment, d, and the radial orientation, θr, of the chain’s center of mass of the V1 subdomain (see
Methods). A positive value of d indicates the globule is positioned above the N-term of the 1A
domain (Category I); similarly, a negative value of d indicates the globule is located at a point
below the N-term of the 1A domain (Category III, Fig 2B). In terms of radial orientation, θr =
0° indicates the globule is positioned on the K1 side of the dimer, while θr = 180° indicates the
globule is positioned on the K10 side of the dimer. Similarly, values of θr = ±90°, indicate the
globule is positioned between the K1 and K10 chains (Fig 2D). In Fig 2C we plot the occurrence
of θr vs. d for the V1 subdomain by superimposing the data from K1 and K10.

The most likely values of d and θr (Fig 2) show that the K1/K10 models favors the head
domain to be positioned roughly at right angles with the rod domain (Category II), with the V1
subdomain resting between K1 and K10, and anchored to the rod via the H1 subdomain (also
see Fig D in S2 File). This anchoring of the head domain followed the establishment of electro-
static sidechain interactions between N-term of 1A domain and charged residues in the H1
subdomains, shown in Fig 5C. In contrast, for instances when the axial displacement of V1
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globule corresponded to Category I, no orientational preference was featured (a wide range of
θr values were supported).

To identify whether the termini of the head domain (e.g residues 1 of K1 and K10) were
anchored onto the rod or were free to move, we calculated preferences for d and θr, for the N-
term residue of the E1 subdomains in K1 and K10 (Fig 2F). Unlike V1, these residues showed
no radial preference but did show a preference for the N-term of the head domain to be folded
back towards the rod domain, suggesting a loose association. The contact between E1 and the
rod (details given in Fig F in S2 File) showed a variety of contact types, with a large contribu-
tion from electrostatic interactions. This variety, and thus redundancy, of residue-contact types
may be essential to maximize opportunities for establishing non-covalent contact between E1
and the rod.

The tail domain presented the same types of questions on its structure as the head domain
and thus we conducted similar statistical analyses as was done (see above) for the head domain,
which is shown in Fig 6. Superficially, the visual appearance of the tail domain of K1/K10
appeared analogous to the tri-subdomain head domain. Fig 6A shows the residue pair contact
plots corresponding to the rod and tail domains 2B-H2-V2-E2. Black dashed-lines demarcate
the 2B rod domain and tail domain structure. We divided the tail into three subdomains (H2,
V2, E2) based on characteristics of the primary sequence (Figs A and E in S2 File). Again, sub-
domain labeling was chosen to match previous sequence analyses studies of keratin. The con-
tact plots of Fig 6A and the measured absence of K1-K10 intra-chain contacts suggest that the
final seven residues of each chain of the 2B rod subdomain rather belong in the tail domain.
This is because there is less structural coherence here than for the rest of the rod, further indi-
cated by the lower probabilities in contact pairing found in H2 than the coiled-coil 2B rod
domain (see Fig 6A). At this point in the sequence there are multiple glycines, potentially
increasing the backbone flexibility relative to elsewhere in the rod. Previously, this sequence
stretch had been described as a 7–10 residue splay in the C-term of the 2B rod domain [7].
Instead, our data suggests these residues are described as part of an H2 subdomain (residues
K1:487–497 and K10:453–460).

The central V2 globule subdomain of the tail (K1:497–607 and K10:461–558), consists
chiefly of glycine loop motifs, with 6–12 mainly glycines between pairs of aromatic residues.
Analysis of the sidechain interactions within the tail showed that each aromatic residue is on
average paired with one other (Fig F in S2 File), supporting fewer and much larger glycine
loops in the tail, in contrast with the more complex arrangements in the V1. The hydrophobic
patch of residues, K1:497–513, (previously described as the H2 domain in K1) appeared in the
contact plot to be better described as part of the V2 subdomain. There are fewer interactions in
the tail domain than in the head domain (see Sections F and G in S1 File). This may explain
why the size and shape of the tail domain exhibited far more structural variability compared
with the head domain. Experimentally this has been shown to be the case for vimentin [23].

In Fig 3B and 3C we show the positioning and orientational preferences for each chain of
the V2 globule subdomain, as a function of the radial angle, θr, and the axial displacement, d, of
the V2 center-of-mass relative to the second to last residue of the 2B coiled-coil (see Methods).
The position of the tail domain is less well defined than that of the head domain. This, along
with representative snapshots of the tail structures (Fig 3A), suggests that the two chains form
distinctly separate globular structures that are in contact with one another, in contrast to the
single, unified globule as seen for the head domain. The spatial positioning of the V2 subdo-
main showed more variability (i.e. lower probabilities) compared with that for V1, and with a
preference for both globules favoring either the K1 side or the K10 side (Fig 3D) centered
about the end of the rod domain. Similar analysis for the C-termini of the E2 subdomain (Fig
3E and 3F) showed that the C-termini had a preference to be positioned at or below the C-term
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of the 2B subdomain and on the K10 side (θr = 120°), i.e. at the tip of the rod rather than folded
back. The greater variability in this distribution, relative to E1, further supports the notion that
the E2-termini are held more loosely to the rod compared with E1.

Discussion
Our results suggest that the K1/K10 dimer features a kinked central rod domain with a com-
plex helical twist and is capped by a head domain that is folded back down the rod and a tail
domain folded more loosely to the side. Based on our findings, we propose model structures
for the head and tail domains of K1/K10. The head domain, Fig 7A, comprises a conserved
core surrounded by polar and aromatic residues, with a base-rich face projecting out of the

Fig 6. Tail domain structure. (A) Combined contact plots for part of the rod domain and tail domain showing for the probability of the Cα atoms of a pair of
residues being separated by less than 12 Å. The dashed-lines show the standard boundaries between the rod domain and tail subdomains, and dotted-lines
indicate changes in the characteristics of the primary sequence (see Section E in S1 File). The letter annotations show which residues correspond to the rod
subdomains 2B and our proposed head subdomains (H2, V2, E2). (B) Snapshot of the tail domain showing the aromatic (in green) and glycine loops (yellow
ribbon) contained within. (C) Snapshot highlighting the acid (red) and basic residues (blue) interacting between the rod and tail domains (inside box).

doi:10.1371/journal.pone.0132706.g006
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lower surface towards the rod domain, and a charged face capping the rod. The tail domain,
Fig 7B, features less electrostatic attraction, fewer glycine loops, and is much less structured. At
the base of these globules is a set of conserved residues that lead to the charged end of the rod.
These contrasts in head and tail structure emphasizes their different roles in filament assembly,
where the head domain may act as an anchor, through which two keratin dimers might co-
locate in registry, while the tail may help align the rod domains of the two dimers.

Aggregation of aromatic residues as seen in our models, via π-stacking, may be important
for maintaining and restoring the globular nature of these head and tail domains, when not
under mechanical strain. Such behavior is also seen in available crystal structures of the tail
domain fragments of the IF proteins lamin (1IFR.pdb) and in blood fibrin (3H32.pdb). Unique
to the K1/K10 dimer is the large number of glycine residues present in the head and tail
domains. These may be required to give keratin sufficient elastic properties that allow these
domains to expand when under tension. Such sequences are also present to a lesser extent in
the K5/K14 and K8/K18 keratins, which are also found in the skin, but not in trichocyte kera-
tins (as found in hair) or other IF proteins which may not have such such high elasticity
requirements. Another feature that is not conserved amongst the IF proteins, but is present in
K1/K10, is the overall basic character of the head and tail domains. In other IF proteins the
head and tail domains are highly charged, but their characters range between basic (including
many of the keratin head domain), acidic and mixed charge, suggesting that these are specific
for the IF.

Our models of the rod domain indicate several kinks and stutters in the coiled-coil structure.
These occur when the internal structure is disrupted from the interdigitation of an ideal coiled-
coil. For example, in the 1B domain there are several places where a pair of opposing IF con-
served, charged sidechains occupy the a- or d-heptad position of each chain (located at K10:
266, 245, 290 and the equivalent in K1). These features may be necessary for providing areas of
interfacial registry between two dimers, through interlocking of the dimer rod profiles, which
then induces the correct staggering of dimers within the tetramer structure.

In a keratin fiber, several dimers must hierarchically associate such that the central rods of
neighboring dimers align. Experimental evidence suggests four arrangements of dimer pairs
[7], denoted A11, A22, A12 and ACN. Filaments are thought to exhibit a right-handed supertwist
in the protofilaments, which are formed from tetramers [7,13] and thus suggest a rope-like
hierarchical structure, like that proposed by Utiu et al. [47] Therefore, the dimer pairs could be

Fig 7. Proposed structural models. (A and B) Models of the head (A) and tail (B) domains with annotations indicating the local electrostatic polarity. (C)
Proposed form for the A11 tetramer. (D) Proposed stutter-twisted form for the protofilament.

doi:10.1371/journal.pone.0132706.g007
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right-hand twisted to maximize interfacial contact area, analogous to the coiled-coils in the
dimer [44]. If such a twisted structure was present, then participation by the parallel chains in
the 2A subdomain would seem unlikely. Moreover, the bulky head and tail domains found
adjacent to the 2A subdomain in the ACN tetramer and hexamer (combining A11, A22 and
ACN) structure would also seem unsuitable candidates for such twisting. Thus, for such a
model to be plausible, we suggest that this region must feature a break from the twisting
between dimers, allowing the head and tail to interface (Fig 7D), as seen in our models around
the 2A-L2 domain. Such a stutter in the twisting may also necessitate a kink at the beginning of
the 2B subdomain (as seen in our models), as the profile of the dimer would need to abruptly
change from being non-helical in the 2A-L2 subdomains back to helical in the 2B subdomain
(if the A22 interface is also in a twisted profile). A similar kink is not required between either
the 1B and 1A, or 1B and 2A subdomains (Fig 7D) as the more flexible L1 and L12 linkers can
perform this role. Experiment shows that when flexibility is removed from the L1 linker, by
modifying to an α-helix, then fiber hierarchy cannot extend beyond the unit-length filament
and ACN end-to-end dimer association is disrupted [14].

In the keratin filament, it was previously observed that the head lies adjacent to the L12
linker [7,15], an acidic region of the sequence. At neutral pH, the head carries an overall charge
+15e, mostly located in highly mobile E1 subdomain, but also in part of the V1 subdomain (see
Fig 7A). In the fiber, our dimer model would allow these regions of the head domain to support
substantial electrostatic interactions with L12 of a neighboring dimer (see also Kreplak et al [9]
regarding vimentin) while allowing the bulk globule of the head domain to align with the 2A
domain. In our model the end-to-end distance of the head is largely determined by the few N-
term residues in E1 that are not in the V1 globule; the head domain is found to extend up to 50
Å back along the rod domain, sufficient to align the lower segment of the 1A subdomain with
L12. Thus, by forming a non-covalent anchor between the head domain of one dimer and the
L12 linker of the second dimer, the 1B rod domains of both dimers are able to align in an anti-
parallel fashion, as in the A11 interface (see Fig 7C). Full alignment of the rods may then be sat-
isfied viamutual twisting.

In summary, our MD simulations provide the basis for a more detailed and complete atom-
istic structure of the K1/K10 dimer, and suggest details for the unstructured head and tail
domains that have thus far remained elusive to direct experimental characterization. Our mod-
els provide a useful reference structure of the dimer, in particular a complete profile of the core
rod domain, for future experimental studies, while agreeing well with existing studies in the lit-
erature. It is anticipated that the structural models provided in our study will provide a valuable
foundation for future experimental investigations of keratin structure at the atomistic level. In
particular, application of x-ray crystallographic techniques (along the lines of the ‘divide and
conquer’ strategy used previously for vimentin) would be extremely valuable for comparison
with our predicted structures for the K1/K10 rod domain, while EPR measurements, alongside
our predictions, would be enormously helpful in resolving likely structures of the head and tail
domains. The good level of overall residue conservation found within all IFs means that our
approach and findings will translate to give detailed insights into the dimer structures of IFs in
general, particularly of the rod domain. Additionally for keratins, as several sections of the
sequence of the head domain are conserved within keratins, our models suggest that these
regions are key to defining the emergent sub-domain structure.
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