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Abstract

We study the problem of estimating the parameters of an Ornstein-Uhlenbeck
(OU) process that is the coarse-grained limit of a multiscale system of OU pro-
cesses, given data from the multiscale system. We consider both the averaging
and homogenization cases and both drift and diffusion coefficients. By restrict-
ing ourselves to the OU system, we are able to substantially improve the results
in [23, 21] and provide some intuition of what to expect in the general case. In
particular, in the homogenisation case we derive optimal rates of sub-sampling,
proving the conjecture in [23].

Keywords : multiscale diffusions, Ornstein-Uhlenbeck process, parameter estimation,
maximum likelihood, subsampling.

1 Introduction
A necessary step in statistical modelling is to fit the chosen model to the data by in-
ferring the value of the unknown parameters. In the case of stochastic differential
equations (SDE), this is a well studied problem [6, 16, 24]. However, quite often, data
actually comes from a multiscale SDE whilst we want to model its coarse-grain ap-
proximation. This phenomenon has been observed in many applications, ranging from
econometrics [1, 2, 20] to chemical engineering [5] and molecular dynamics [23]. In
this paper, we study how this inconsistency between the coarse-grained model that we
fit and the microscopic dynamics from which the data is generated affects the estima-
tion problem.

The problem of estimating the drift and variance parameters of an Ornstein-Uhlenbeck
(OU) process is a standard one. Statistical inference for diffusions is a well-developed
∗Email: A.Papavasiliou@warwick.ac.uk
†Email: f.zhang.2@warwick.ac.uk
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area and the remaining challenges mainly concern the exact computation of the likeli-
hood. In the case of the OU process, computing the exact likelihood is straight forward.

In the context of the OU process, the problem has been extended to the case where
the differential equation is not exactly a diffusion. For example, in [15], the authors
studied properties of usual drift estimator for scalar OU processes driven by fractional
Brownian motion. Further more detailed studies extended the results to stronger con-
sistency and asymptotics under various assumption: such as in [9], authors discussed
the asymptotics of the drift estimators for an OU process driven by fractional Gaussian
processes, sub-fractional and bi-fractional Brownian motions, with infinite observation
with Hurst parameter H ∈ (0, 1); and [18] studied strong consistency and asymptotic
normality for the usual drift estimator for infinite dimensional fractional OU process,
under the assumption that Hurst parameter H ≥ 1/2.

Another extension the problem was into considering the observation process as
component of a multiscale process, converging in some limit to an OU process. This is
the problem we are interested in. It has also been discussed in several papers. In [3, 4],
the authors compute the bias between the estimators corresponding to multiscale and
approximate Ornstein-Uhlenbeck (OU) process, as a function of the subsampling step
size δ and the scale factor ε. However, their approach is somewhat ad-hoc and limited
to scalar systems.

We consider the case where the multiscale system is an OU process, where the av-
eraging and homogenization principles still hold. We look at the MLE estimators of
both the drift and diffusion coefficients of the limiting system and study their properties
in the case when data comes from the multiscale system. In the averaging case (section
2), we show that the estimators are consistent and asymptotically normal. However, the
homogenisation case (section 3) is much more complicated as estimators are not con-
sistent. To construct consistent estimators, one needs to subsample the data. We show
that the estimators will be consistent in that case. However, proving asymptotic normal-
ity is much more involved and beyond the scopes of this paper. Our approach is similar
to that in [23, 21]. In the first, the authors study a similar problem for slightly more
general models but get weaker results. In the latter, the authors study the behaviour of
the drift likelihood of the limiting system for data coming from the multiscale system.

Finally, let us note that MLE estimators for diffusions are known to have prac-
tical limitations. In particular, the drift estimator requires a long horizon to achieve
satisfactory precision while the diffusion estimator needs very fine scale data. In the
homogenisation case that we study, there is the additional issue of subsampling the data
at a sampling rate that depends on normally unknown separation of scales variable ε.
However, we believe that the behaviour that we observe is inherent to the problem of
mismatch between the model and data and not the estimators and thus have chosen a
set-up where analysis can be done in detail.

We present the exact set-up and main ideas below. Let (Ω,F , {Ft}t>0,P) be a
filtered probability space, and U, V be two independent Brownian motions defined on
this space. We consider multiscale systems of SDEs of the form

dxεt
dt

= a11x
ε
t + a12y

ε
t +
√
q1
dUt
dt

, xε = x0 (1a)

dyεt
dt

=
1

ε
(a21x

ε
t + a22y

ε
t ) +

√
q2

ε

dVt
dt
, yε = y0 (1b)
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or

dxεt
dt

=
1

ε
(a11x

ε
t + a12y

ε
t ) + (a13x

ε
t + a14y

ε
t ) +

√
q1
dUt
dt

, xε = x0 (2a)

dyεt
dt

=
1

ε2
(a21x

ε
t + a22y

ε
t ) +

√
q2

ε2
dVt
dt
, yε = y0 (2b)

where x0, y0 are random variables, (a11, a12, a13, a14, a21, a22) are real constants that
will be required to satisfied certain relationships to be specified later which guarantee
ergodicity and q1, q2 are positive real constants. The variable ε > 0 denotes scale sep-
aration and we will consider the behaviour of the above system in the limit ε→ 0. We
refer to equations (1) and (2) as the averaging and homogenization case, respectively
and we denote by ρε(x, y) their invariant distribution, when this exists. In both cases
and under certain conditions, (xεt)0≤t≤T converges as ε→ 0 to the solution of

dXt

dt
= ãXt +

√
σ
dWt

dt
, (3)

for appropriate ã ∈ R and σ ∈ R+ and in a way to be made precise later, for W
also Brownian motion defined on the probability space. Our goal will be to estimate a
and σ, assuming that we continuously observe (xεt)0≤t≤T from (1) or (2). It is a well
known result (see [6, 19]) that, given (Xt)0≤t≤T , the maximum likelihood estimators
for a is

âT =

(∫ T

0

XtdXt

)(∫ T

0

X2
t dt

)−1

. (4)

If (Xt)0≤t≤T is discretely observed, then the estimator of σ is the discretised Quadratic
Variation

σ̂δ =
1

T

N−1∑
n=0

(
X(n+1)δ −Xnδ

)2
(5)

which converges in L2 to σ as δ → 0. Our approach will be to still use the estimators
defined in (4) and (5), replacing Xt by its xεt approximation coming from the multi-
scale model and then studying their asymptotic properties. In section 2, we discuss the
averaging case while in section 3 we study the homogenization case.

We shall discuss problems in scalars for simplicity of notation and writing. How-
ever, the conclusions can easily be extended to finite dimensions. We will use c to
denote an arbitrary constant which can vary from occurrence to occurrence. Also, for
the sake of simplicity we will sometimes write xεn (or yεn, Xn) instead of xεnδ (resp.
yεnδ , Xnδ). Finally, note that the transpose of an arbitrary matrix A is denoted by A∗.

2 Averaging
We consider the system of stochastic differential equations described by (1) (averaging
case), where (xεt, y

ε
t ) ∈ X × Y . We may take X and Y as either R or T. We make the

following assumptions:

Assumptions 2.1.
Let (Ω,F , {Ft}t>0,P) be a filtered probability space. We assume that

(i) (Ut, Vt)t≥0 are independent Brownian motions;
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(ii) q1, q2 are positive real constants;

(iii) 0 < ε� 1 is the scale separation variable;

(iv) a22 < 0 and a11 < a12a
−1
22 a21;

(v) x0 and y0 are random variables, independent of U, V and E
(
x2

0 + y2
0

)
<∞.

These assumptions guarantee the ergodicity of system (1). In this case, the averag-
ing limit of the system is given by the following equation (see [14]):

dXt

dt
= ãXt +

√
q1
dUt
dt

(6)

where:
ã = a11 − a12a

−1
22 a21 (7)

2.1 The Paths
In this section, we show that (xεt)0≤t≤T defined in (1) converges in a strong sense to
the solution X0≤t≤T of (6). Our result extends that of [22] (Theorem 17.1) where the
state space X is restricted to T and the averaging equation is deterministic. Assuming
that the system is an OU process, the domain can be extended to R and the averaging
equation can be stochastic. We prove the following lemma first:

Lemma 2.2. Suppose that (xεt, y
ε
t )0≤t≤T solves (1) and Assumptions 2.1 are satisfied.

Then, for finite T > 0 and ε small,

E sup
0≤t≤T

[
(xεt)

2 + (yεt )
2
]
≈ O

(
log

(
1 +

T

ε

))
. (8)

Proof. Since (Ut)t≥0 and (Vt)t≥0 are independent, we can rewrite (1) in vector form
as

dxεt = aεx
ε
tdt+

√
qεdWt (9)

where

xεt =

(
xεt
yεt

)
, aε =

(
a11 a12
1
εa21

1
εa22

)
, qε =

(
q1 0
0 q2

ε

)
and Wt = (Ut, Vt) is two-dimensional Brownian motion. Given the form of aε, it is an
easy exercise to show that its eigenvalues will be of order O(1) and O( 1

ε ). Therefore,
we define the eigenvalue decomposition of aε as

aε = PεDεP
−1
ε with Dε =

(
λ1(ε) 0

0 1
ελ2(ε)

)
,

where λ1(ε), λ2(ε) are both of order O(1). Again, it is not hard to see that if (pε1, p
ε
2)

is an eigenvector, O(pε1) = O(λ(ε)−1
i pε2), for i = 1, 2 depending on the correspond-

ing eigenvector. So, for the eigenvector corresponding to eigenvalue of order O(1), all
elements of the eigenvector will also be of order O(1) while for the eigenvector corre-
sponding to eigenvalue of order O(1/ε), we will have that pε1 ∼ O(1) and pε2 ∼ O(ε).

Now, let us define Σε = P−1
ε qε(P

−1
ε )∗. It follows that

Σε =

(
O(1) O(1)
O(1) O(1/ε)

)
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We apply a linear transformation to the system of equations (9) so that the drift matrix
becomes diagonal. It follows from [10] that

E
(

sup
0≤t≤T

‖xεt‖2
)
≤ C log (1 + maxi(|(Dε)ii|)T )

mini(|(Dε)ii/(Σε)ii|)
, i ∈ {1, 2}.

Since the diagonal elements of Dε and Σε are of the same order and maxi |(Dε)ii| =
O( 1

ε ), we have

E
(

sup
0≤t≤T

‖xεt‖2
)

= O (log(1 + T/ε)) .

The result follows by expanding the vector norm.

Theorem 2.3. Let Assumptions 2.1 hold for system (1). Suppose that (xεt, y
ε
t )0≤t≤T

and (Xt)0≤t≤T are two solutions of (1) and (6) respectively, corresponding to the
same realization of the (Ut)t≥0 process and x0 = X0. Then, (xεt)0≤t≤T converges to
(Xt)0≤t≤T in L2 (Ω, C([0, T ],X )). More specifically,

E sup
0≤t≤T

(xεt −Xt)
2 ≤ c

(
ε2log

(
T

ε

)
+ εT

)
eT

2

.

Note that when the time horizon T is fixed finite, the above bound can be simplified to

E sup
0≤t≤T

(xεt −Xt)
2 = O(ε) .

Proof. The first step in the proof will be to expand the slow variable xεt in (1a) in terms
of ε. In the OU case, we can get the expansion directly by solving for yεt in (1b) and
using the answer to replace yεt in (1a). Note that a more general approach that can be
applied to nonlinear systems is to use Poisson equations (see [22]).

Solving (1b) for yεt gives

yεt = −a−1
22 a21x

ε
t −
√
εa−1

22

√
q2
dVt
dt

+ εa−1
22

dyεt
dt

(10)

and replacing yεt by (10) in (1a) gives

dxεt = ãxεtdt+
√
q1dUt +

√
εa12a

−1
22

√
q2dVt + εa12a

−1
22 dy

ε
t , (11)

where ã is defined in (7). It follows that

xεt = x0 +

∫ t

0

ãxεsds+
√
q1Ut +

√
εa12a

−1
22

√
q2Vt + εa12a

−1
22 (yεt − y0).

Also, from the averaged equation (6), we get

Xt = X0 +

∫ t

0

ãXsds+
√
q1Ut .

Let e(ε)t = xεt −Xt. By assumption, e(ε)0 = 0 and

e(ε)t =

∫ t

0

ãe(ε)sds+
√
εa12a

−1
22

√
q2Vt + εa12a

−1
22 (yεt − y0) . (12)

5



Then,

e(ε)2
t ≤ 3

((
ã

∫ t

0

e(ε)sds

)2

+ ε
(
a12a

−1
22

)2
V 2
t + ε2

(
a12a

−1
22

)2
(yεt − y0)2

)
.

Apply Lemma 2.2, the Burkholder-Davis-Gundy inequality [22], Hölder inequality
and Itô isometry on (12), we get

E
(

sup
0≤t≤T

e(ε)2
t

)
≤ c

(
T

∫ T

0

Ee(ε)2
sds+ ε2 log(

T

ε
) + εT

)

≤ c

(
ε2 log(

T

ε
) + εT + T

∫ T

0

E sup
0≤u≤s

e(ε)2
uds

)
.

By Gronwall’s inequality [22], we deduce that

E
(

sup
0≤t≤T

(e(ε)t)
2

)
≤ c(ε2 log(

T

ε
) + εT )eT

2

.

2.2 The Drift Estimator
Suppose that we want to estimate the drift of the process (Xt)0≤t≤T described by (6)
but we only observe a solution (xεt)0≤t≤T of (1a) for some ε > 0. According to the
previous theorem, (xεt)0≤t≤T is a good approximation of (Xt)0≤t≤T , so we replace
(Xt)0≤t≤T in the formula of the MLE (4) by (xεt)0≤t≤T . In the following theorem, we
show that the error we will be making is insignificant, in a sense to be made precise.

Theorem 2.4. Suppose that (xεt, y
ε
t )0≤t≤T solves system (1), satisfying Assumptions

2.1. Let âεT be the estimate we get by replacing Xt in (4) by xεt , i.e.

âεT =

(∫ T

0

xεtdx
ε
t

)(∫ T

0

(xεt)
2dt

)−1

. (13)

Then,
lim
ε→0

lim
T→∞

E(âεT − ã)2 = 0 ,

for ã given by (7).

Proof. We define

I1(T ) =
1

T

∫ T

0

xεtdx
ε
t and I2(T ) =

1

T

∫ T

0

(xεt)
2dt.

By ergodicity, which is guaranteed by Assumptions 2.1 (iii) and (iv)

lim
T→∞

I2(T ) = E
(
(xε∞)2

)
= C 6= 0 a.s.,

where xε∞ is a random variable distributed according to the marginal of invariant dis-
tribution ρε of system (1). This is an O(1) non-zero constant, for all values of the
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parameters under assumptions 2.1. Using the (11) expansion of dxεt in terms of ε, we
get

I1(T ) = ãI2(T ) + (14)

+
√
q1

1

T

∫ T

0

xεtdUt +
√
εa12a

−1
22

√
q2

1

T

∫ T

0

xεtdVt + a12a
−1
22

1

T

∫ T

0

xεtεdy
ε
t .

From Itô isometry and ergodicity, we directly get that

E

(
√
q1

1

T

∫ T

0

xεtdUt

)2

= q1
1

T 2

∫ T

0

E(xεt)
2dt =

c

T

and similarly,

E

(
√
εa12a

−1
22

√
q2

1

T

∫ T

0

xεtdVt

)2

=
εc

T
.

Finally, using (1b), we break the last term of (14) further into

1

T

∫ T

0

xεtεdy
ε
t = − 1

T

∫ T

0

xεt(a21x
ε
t + a22y

ε
t )dt−

√
εq2

T

∫ T

0

xεtdVt

As before, we see that the last term will be of orderO
(
ε
T

)
. By ergodicity, the first term

converges in L2 as T →∞

− 1

T

∫ T

0

xεt(a21x
ε
t + a22y

ε
t )dt→ E (xε∞(a21x

ε
∞ + a22y

ε
∞)) ,

where, as before, (xε∞, y
ε
∞) are random variable distributed according to the invariant

distribution ρε of system (1). We write the above expectation as

E (xε∞(a21x
ε
∞ + a22y

ε
∞)) = E (xε∞E ((a21x

ε
∞ + a22y

ε
∞)|xε∞)) .

Clearly, the limit of ρε conditioned on xε∞ is a normal distribution with mean−a−1
22 a21x

ε
∞.

Thus, we see that
lim
ε→0

E (xε∞(a21x
ε
∞ + a22y

ε
∞)) = 0.

Putting everything together, we see that

lim
ε→0

lim
T→∞

(I1 − ãI2) = 0 in L2

Since the denominator I2 of âεT converges almost surely, the result follows.

2.2.1 Asymptotic Normality for the Drift Estimator

We extend the proof of Theorem 2.4 to prove asymptotic normality for the estimator
âεT . We will show that

√
T
(
âεT − ã+ a12E

(
xε∞(a−1

22 a21x
ε
∞ + yε∞)

))
→ N

(
0, σ2

ε

)
in distribution, as T → ∞ and compute the limit of σ2

ε as ε → 0. We start with
expansion (14). First we apply the Central Limit Theorem to the martingales (see
[11]). We find that

√
T

(
√
q1

1

T

∫ T

0

xεtdUt

)
→ N

(
0, σ(1, 1)2

ε

)
as T →∞

7



where
σ(1, 1)2

ε = q1E[(xε∞)2]

and
√
T

(
√
εa12a

−1
22

√
q2

1

T

∫ T

0

xεtdVt

)
→ N

(
0, σ(1, 2)2

ε

)
as T →∞

where
σ(1, 2)2

ε = εq2(a12a
−1
22 )2E

(
(xε∞)2

)
.

As before, we further expand the last component of the expansion (14) to

J1 = −a12a
−1
22

T

∫ T

0

(a21x
2
t + a22xtyt)dt and J2 = −a12a

−1
22

√
εq2

T

∫ T

0

xtdVt.

Once again, we apply the Central Limit Theorem for martingales to J2 and we find
√
TJ2 → N

(
0, σ(2, 2)2

ε

)
as T →∞

where
σ(2, 2)2

ε = ε(a21a
−1
22 )2q2E

(
(xε∞)2

)
.

Finally, we apply the Central Limit Theorem for functionals of ergodic Markov Chains
to J1 (see [7]). We get

√
T
(
J1 + a12E

(
xε∞(a−1

22 a21x
ε
∞ + yε∞)

))
→ N

(
0, σ(2, 1)2

ε

)
as T →∞, where with

σ(2, 1)2
ε = Var (ξ(xε∞, y

ε
∞)) + 2

∫ ∞
0

Cov (ξ(x0, y0), ξ(xεt, y
ε
t )) dt,

where
ξ(x, y) = −

(
a12a

−1
22 a21x

2 + a12xy
)
.

Putting everything together, we get that as T →∞,
√
T (I1(T )− ãI2(T ))→ Z(1, 1)ε + Z(1, 2)ε + Z(2, 1)ε + Z(2, 2)ε,

in law, where Z(i, j) ∼ N (0, σ(i, j)2
ε), for i, j = 1, 2. Finally, we note that the

denominator I2 converges almost surely as T → ∞ to E
(
(xε∞)2

)
. It follows from

Slutsky’s theorem that as T →∞,
√
T
(
âεT − ã+ a12E

(
xε∞(a−1

22 a21x
ε
∞ + yε∞)

))
→ N (0, σ2

ε ),

where

σ2
ε =

E(Z(1, 1)ε + Z(1, 2)ε + Z(2, 1)ε + Z(2, 2)ε)
2

E ((xε∞)2)
2 .

It remains to compute limε→0 σ
2
ε . We have already seen that σ(1, 2)2

ε ∼ O(ε) and
σ(2, 2)2

ε ∼ O(ε), so we don’t expect Z(1, 2)ε and Z(2, 2)ε to contribute to the limit.
Also,

σ(1, 1)2
ε = q1E

(
(xε∞)2

)
→ q1E

(
X2
∞
)

= − q
2
1

2ã
,

where X∞ is distributed according to the invariant distribution of system (6). To
compute limε→0 σ(2, 1)2

ε , we set ỹ(x, y) = a−1
22 a21x + y. Then, (xεt, ỹ(xεt, y

ε
t )) is

8



also an ergodic process with invariant distribution ρ̃ε that converges as ε → 0 to
N (0, q12ã )⊗N (0, q2

2a22
). Since ξ(x, y) = −a21x · ỹ(x, y), it follows that

lim
ε→0

Var (ξ(xε∞, y
ε
∞)) = a2

12

q1

2ã

q2

2a22
.

In addition, as ε→ 0, the process ỹ(xεt, y
ε
t ) decorrelates exponentially fast. Thus

lim
ε→0

Cov (ξ(x0, y0), ξ(xεt, y
ε
t )) = a2

12Cov (X0, Xt) lim
ε→0

Cov (ỹ(x0, y0), ỹ(xεt, y
ε
t )) ≡ 0

for all t ≥ 0. As t → ∞, the process (xεt, ỹ(xεt, y
ε
t )) also converges exponentially fast

to a mean-zero Gaussian distribution and thus the integral with respect to t is finite. We
conclude that the second term of σ(2, 1)2

ε disappears as ε→ 0 and thus

lim
ε→0

E(Z(2, 1)2
ε) = a2

12

q1q2

4ãa22
.

Finally, we show that
lim
ε→0

E(Z(2, 1)εZ(1, 1)ε) = 0.

Clearly, Z(1, 1)ε is independent of ỹ(xεt, y
ε
t ) in the limit, since it only depends on the

processes {xεt}t>0 and {Ut}t>0. So,

lim
ε→0

E(Z(2, 1)εZ(1, 1)ε) = lim
ε→0

E (E(Z(2, 1)εZ(1, 1)ε|xεt, t > 0))

and
lim
ε→0

E (E(Z(2, 1)|xεt, t > 0)) = 0

for the same reasons as above. Thus

lim
ε→0

σ2
ε =

4ã2

q2
1

(
− q

2
1

2ã
+ a2

12

q1q2

4ãa22

)
.

We have proved the following

Theorem 2.5. Suppose that (xεt, y
ε
t )0≤t≤T is a solution of system (1) satisfying As-

sumptions 2.1. Let âεT be as in (13). Then,
√
T (âεT − ã− µε)→ N (0, σ2

ε ),

where
µε → 0 and σ2

ε → −2ã+ a2
12

ãq2

a22q1
as ε→ 0.

Remark 2.6. Note that in the case where the data comes from the multiscale limit and
for ε → 0, the asymptotic variance of the drift MLE is larger than that the asymptotic
variance of the drift estimator where there is no misfit between model and data. The
asymptotic variance of the drift MLE with data coming from the averaged system, (4),
is given by −2ã.
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Figure 1: The asymptotic variance of the drift estimator is constructed by plotting the
distribution of the time adjusted errors

√
T (âεT − E(âεT )) for the following choice of

parameters: a11 = a21 = a22 = −1, a12 = 1, q1 = q2 = 2 and ε = 2−9. Also,
T is sampled from 21 to 28. The blue lines are the theoretical bounds as described in
Theorem 2.5, the red lines are the 2.5 and 97.5 percentiles from the simulated samples.

2.3 The Diffusion Estimator
Suppose that we want to estimate the diffusion parameter of the process (Xt)0≤t≤T
described by (6) but we only observe a solution (xεt)0≤t≤T of (1a). As before, we
replace Xt in the formula of the MLE (5) by xεt . The following theorem states that the
estimator is still consistent in the limit.

Theorem 2.7. Suppose that (xεt, y
ε
t )0≤t≤T is the solution of system (1) satisfying As-

sumptions 2.1. We set

q̂εδ =
1

T

N−1∑
n=0

(
xε(n+1)δ − xεnδ

)2

(15)

where δ ≤ ε is the discretization step and T = Nδ is fixed. Then, for every ε > 0

lim
δ→0

E(q̂εδ − q1)2 = 0 .

In addition, and in distribution

δ−
1
2 (q̂εδ − q1)

D→ N (0,
2q2

1

T
) as δ → 0 .

The proof of the theorem is the standard proof of quadratic variation converging
to the diffusion coefficient, as in the averaging case, the diffusion coefficient remains
unaltered in the limit.

In Figure 2, we show an example of the distributions of the errors of the diffusion
estimator as δ → 0.

10
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Figure 2: The asymptotic variance of the diffusion estimator is constructed by plotting
the distribution of δ adjusted errors δ

1
2 (q̂εδ − E(q̂εδ)) for the following choice of param-

eters: a11 = a21 = a22 = −1, a12 = 1, q1 = q2 = 2 and ε = 2−9. Also, δ sampled
from 2−9 to 2−17. The blue and red lines correspond to the theoretical and simulated
95% confidence intervals.

3 Homogenization
We now consider the system of stochastic differential equations described by (2), for
the variables (xεt, y

ε
t ) ∈ X ×Y . We may take X and Y as either in R or T. Our interest

remains in data generated by the (xεt)0≤t≤T process.

Assumptions 3.1.
We assume that Let (Ω,F , {Ft}t>0,P) be a filtered probability space. We assume that

(i) (Ut, Vt)t≥0 are independent Brownian motions;

(ii) q1, q2 are positive real constants;

(iii) 0 < ε� 1 is the scale separation variable;

(iv) Constants a11, a12, a13, a14, a21, a22 are all real valued and the system’s drift
matrix (

1
εa11 + a13

1
εa12 + a14

1
ε2 a21

1
ε2 a22

)
only has negative real eigenvalues when ε is sufficiently small;

(v) a21 6= 0;

(vi) x0 and y0 are random variables, independent of U, V . Moreover, E
(
x2

0 + y2
0

)
<

∞.

Remark 3.2. Assumption 3.1(iv) guarantees the ergodicity of the whole system (2) for
ε is sufficiently small. This condition can be decomposed to a22 and a13 − a14a

−1
22 a21

being negative real numbers and a11 − a12a
−1
22 a21 = 0, which ensures that the fast

scale term in (2a) vanishes.

11



Remark 3.3. Assumption 3.1(v) is necessary in our setup. However, for the discussion
of the case where a21 = 0 is zero, see [8].

The corresponding homogenized equation is given by (see [14]):

dXt = ãXt +
√
q̃dWt (16)

where
ã = a13 − a14a

−1
22 a21 (17)

and
q̃ = q1 + a2

12a
−2
22 q2 (18)

and for (Wt)t>0 Brownian motion.
Below, we will show that, similar to the averaging case, the paths of the slow pro-

cess converge to the paths of the corresponding homogenized equation. However, we
will see that in the limit ε→ 0, the likelihood of the observations is different depending
on whether we observe a path of the slow process generated by (2a) or the homogenized
process (16) (see also [21, 22, 23]).

3.1 The Paths
The following theorem extends Theorem 18.1 in [22], which gives weak convergence
of paths on T. By limiting ourselves to the OU process, we extend the domain to R
and prove a stronger mode of convergence.

Lemma 3.4. Suppose that (xεt, y
ε
t )0≤t≤T solves (2) and Assumptions 3.1 are satisfied.

Then, for fixed finite T > 0 and small ε,

E sup
0≤t≤T

(
(xεt)

2 + (yεt )
2
)

= O
(

log(1 +
T

ε2
)

)
. (19)

Proof. We look at the system of SDEs as,

dxεt = aεx
ε
tdt+

√
qεdWt (20)

where,

xεt =

(
xεt
yεt

)
, aε =

(
1
εa11 + a13

1
εa12 + a14

1
ε2 a21

1
ε2 a22

)
and qε =

(
q1 0
0 1

ε2 q2

)
.

We want to characterize the magnitude of the eigenvalues of aε. Using existing
results regarding the eigenvalues of a perturbed matrix (see [12], p. 137, Theorem 2),
we find that the eigenvalues will be of order O(1) and O(1/ε2). Therefore, we can
decompose aε as

aε = PεDεP
−1
ε with Dε =

(
λ1(ε) 0

0 1
ε2λ2(ε)

)
where Dε is the diagonal matrix, for which λ1 ∈ R and λ2 ∈ R are diagonal entries
of order O(1). Following exactly the same approach as in lemma 2.2, we get the
result.

12



Theorem 3.5. Let Assumptions 3.1 hold for system (2). Suppose that (xεt, y
ε
t )0≤t≤T

and (Xt)0≤t≤T are realisations of the solution to (2) and (16) respectively, with (Ut, Vt)t≥0

and (Wt)t≥0 the corresponding realisation of the driving Brownian motion, where

Wt = q̃−
1
2

(√
q1Ut − a12a

−1
22

√
q2Vt

)
, (21)

for q̃ defined in (16). We also assume that x0 = X0. Then (xεt)0≤t≤T converges to
(Xt)0≤t≤T in L2. More specifically,

E sup
0≤t≤T

(xεt −Xt)
2 ≤ c

(
ε2 log(

T

ε
) + ε2T

)
eT

2

.

When T is fixed and finite, the above bound will be of order O(ε2 log(ε)).

Proof. We rewrite (2b) as

(a−1
22 a21x

ε
t + yεt )dt = ε2a−1

22 dy
ε
t − εa−1

22

√
q2dVt . (22)

We also rewrite (2a) as

dxεt =
1

ε
a12(a−1

22 a21x
ε
t + yεt )dt+ a14(a−1

22 a21x
ε
t + yεt )dt

+(a13 − a14a
−1
22 a21)xεtdt+

√
q1dUt

=

(
1

ε
a12 + a14

)
(a−1

22 a21x
ε
t + yεt )dt+ ãxεtdt+

√
q1dUt ,

where ã is defined in (17). Replacing (a−1
22 a21x

ε
t + yεt )dt above by the right-hand-side

of (22), we get

dxεt = ε(a12 + εa14)a−1
22 dy

ε
t − a12a

−1
22

√
q2dVt − εa14a

−1
22

√
q2dVt

+ãxεtdt+
√
q1dUt

= ãxεtdt+ ε(a12 + εa14)a−1
22 dy

ε
t +

√
q̃dWt − εa14a

−1
22

√
q2dVt .

Thus

xεt = x0 +

∫ t

0

ãxεsds+
√
q̃Wt + (23)

ε(a12 + εa14)a−1
22 (yεt − y0)− εa14a

−1
22

√
q2Vt .

Recall that the solution to the homogenized equation (16) is given by

Xt = X0 +

∫ t

0

ãXsds+
√
q̃Wt . (24)

Let e(ε)t = xεt − Xt. Subtracting the previous equation from (23) and using the
assumption X0 = x0, we find that

e(ε)t = ã

∫ t

0

e(ε)sds+ ε
(
(a12 + εa14)a−1

22 (yεt − y0)− a14a
−1
22

√
q2Vt

)
.

Applying Lemma 3.4, we find an ε-independent constant C, such that

E
(

sup
0≤t≤T

(yεt )
2

)
≤ C log(

T

ε
) .

13



By Cauchy-Schwarz,

E
(

sup
0≤t≤T

e(ε)2
t

)
≤ c

(
T

∫ T

0

Ee(ε)2
sds+ ε2 log(

T

ε
) + ε2T

)
. (25)

By the integrated version of the Gronwall inequality [22], we deduce that

E
(

sup
0≤t≤T

e(ε)2
t

)
≤ c

(
ε2 log(

T

ε
) + ε2T

)
eT

2

. (26)

When T is finite, we have

E
(

sup
0≤t≤T

e(ε)2
t

)
= O

(
ε2 log(ε)

)
.

This completes the proof.

3.2 The Drift Estimator
As in the averaging case, a natural idea for estimating the drift of the homogenized
equation is to use the maximum likelihood estimator (4), replacing Xt by the solution
xεt of (2a). However, in the case of homogenization we do not get asymptotically
consistent estimates. To achieve this, we must subsample the data: we choose ∆ (time
step for observations) according to the value of the scale parameter ε and solve the
estimation problem for discretely observed diffusions (see [21, 22, 23]). The maximum
likelihood estimator for the drift of a homogenized equation converges after proper
subsampling. We let the observation time interval ∆ and the number of observations
N both depend on the scaling parameter ε, by setting ∆ = εα and N = ε−γ . We find
the error is optimized in the L2 sense when α = 1/2. We will show that âN,ε converges
to ã only if ∆

ε2 →∞, in a sense to be made precise later.

Theorem 3.6. Suppose that (xεt, y
ε
t )t≥0 solves the system (2) satisfying Assumptions

3.1. Let âN,ε be the estimate we get by replacing Xt in (4) by xεt and discretizing the
integrals, i.e.

âN,ε =

(
1

N∆

N−1∑
n=0

xεn
(
xεn+1 − xεn

))( 1

N∆

N−1∑
n=0

(xεn)2∆

)−1

(27)

Then,

E(âN,ε − ã)2 = O(∆2 +
1

N∆
+

ε2

∆2
)

where ã as defined in (17). Consequently, if ∆ = εα, N = ε−γ , α ∈ (0, 1), γ > α,

lim
ε→0

E(âN,ε − ã)2 = 0 .

Furthermore, α = 1/2 and γ ≥ 3/2 optimize the error.

Before proving Theorem 3.6, we first note that the magnitude of the increment of
yε over a small time interval ∆ will be of orderO(

√
∆
ε ), coming from the discretization

of the martingale part. By definition ∆ = εα. Thus, we conclude that

E(yεn+1 − yεn)2 = O(εmax(α−2,0)) , (28)

taking into account the fact that, by ergodicity, this will never be more than O(1).
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Proof. Define I1 and I2 as

I1(ε) =
1

N∆

N−1∑
n=0

(xεn+1 − xεn)xεn , I2(ε) =
1

N

N−1∑
n=0

(xεn)2

By ergodic theorem, and since N = ε−γ , we have

lim
ε→0

I2(ε) = E
(
X2
)

= C 6= 0

which is a non-zero constant. Hence, it is sufficient to prove that

E
(
(I1(ε)− ãI2(ε))2

)
= O(∆2 +

1

N∆
+

ε2

∆2
) .

We use the rearranged equation (23) of (2a) to decompose the error:

I1(ε)− ãI2(ε) = J1(ε) + J2(ε) + J3(ε) + J4(ε) , (29)

where

J1(ε) =
ã

N∆

N−1∑
n=0

(∫ (n+1)∆

n∆

xεsds− xεn∆

)
xεn,

J2(ε) =
1

N∆

N−1∑
n=0

(√
q̃

∫ (n+1)∆

n∆

xεndWs

)
,

J3(ε) =
ε

N∆

N−1∑
n=0

(a12 + εa14)a−1
22

∫ (n+1)∆

n∆

xεndy
ε
s,

J4(ε) =
ε

N∆

N−1∑
n=0

a14a
−1
22

√
q2

∫ (n+1)∆

n∆

xεndVs.

By independence, Itô isometry and ergodicity, we immediately have

E
(
J2(ε)2

)
= E

( √
q̃

N∆

N−1∑
n=0

∫ (n+1)∆

n∆

xεndWs

)2

=
q̃

N2∆2
E

(
N−1∑
n=0

∫ (n+1)∆

n∆

xεndWs

)2

≤ q̃

N2∆2
NE

(∫ (n+1)∆

n∆

dWs

)2

E
(
(xεn)2

)
≤ q̃

N2∆2
N∆E

(
(xεn)2

)
= O(

1

N∆
) ,

and, similarly,

E
(
J4(ε)2

)
≤ O(

ε2

N∆
) .
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By Hölder inequality, and (28), we have,

E
(
J3(ε)2

)
= E

( εC

N∆

N−1∑
n=0

∫ (n+1)∆

n∆

xεndy
ε

)2
 = E

( εC

N∆

N−1∑
n=0

xεn(yεn+1 − yεn)

)2


≤ ε2

N2∆2
E

(N−1∑
n=0

(yεn+1 − yεn)

)2
E

(
(

N−1∑
n=0

xεn)2

)

≤ ε2C

N2∆2
N(εmax(α−2,0))NE

(
(xεn)2

)
= O(

ε2

∆2
) .

It remains to get an estimate for J1(ε). We use the integrated form of equation (23) on
time interval [n∆, s] to replace xεs

E
(
J1(ε)2

)
=

ã2

N2∆2
E

(N−1∑
n=0

∫ (n+1)∆

n∆

(xεs − xεn)xεnds

)2
 (30)

=
ã2

N2∆2
E

(
N−1∑
n=0

(K
(n,ε)
1 +K

(n,ε)
2 +K

(n,ε)
3 +K

(n,ε)
4 )

)2

(31)

(32)

where,

K
(n,ε)
1 = ã

∫ (n+1)∆

n∆

∫ s

n∆

xεn∆x
ε
ududs ,

K
(n,ε)
2 = ε(a12 + εa14)a−1

22

∫ (n+1)∆

n∆

∫ s

n∆

xεn∆dy
ε
uds ,

K
(n,ε)
3 =

√
q̃

∫ (n+1)∆

n∆

∫ s

n∆

xεn∆dWuds ,

K
(n,ε)
4 = εa14a

−1
22

√
q2

∫ (n+1)∆

n∆

∫ s

n∆

xεn∆dVuds .

We immediately see that

E
(
J1(ε)2

)
=

ã2

N2∆2
E

N−1∑
n=0

(
4∑
i=1

K
(n,ε)
i

)2
 (33)

+
ã2

N2∆2
E

∑
m6=n

(
4∑
i=1

K
(n,ε)
i

) 4∑
j=1

K
(m,ε)
j

 (34)

Remark 3.7. Under the vector valued problem, we use the exact decomposition of
E‖J1(ε)‖2 by using (33) and (34). This is essential in order to obtain more optimized
subsampling rate for the drift estimator. For general Lp bound for the error, Holder’s
inequality leads to an optimal subsampling rate of α = 2/3, and achieves an over
all L1 error of order O(ε1/3) [23]. However, this magnitude of overall error is not
optimal in L2. We will show later that the optimal L2 error can be achieved at the
order of O(ε1/2), using the exact decomposition shown above.
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By Cauchy-Schwarz inequality, we know for line (33),

E

N−1∑
n=0

(
4∑
i=1

K
(n,ε)
i

)2
 ≤ N−1∑

n=0

4∑
i=1

E
((

K
(n,ε)
i

)2
)
.

Using first order iterated integrals, we have

E
(

(K
(n,ε)
1 )2

)
= E

(∫ (n+1)∆

n∆

∫ s

n∆

xεn∆x
ε
ududs

)2


≤ C∆

∫ (n+1)∆

n∆

E
(∫ s

n∆

(xεu)2duds(xεn∆)2

)
≤ C∆

∫ (n+1)∆

n∆

(s− n∆)2ds

= O(∆4) .

Using (28), we have

E
(

(K
(n,ε)
2 )2

)
= E

(
εC

∫ (n+1)∆

n∆

∫ s

n∆

xεn∆dy
ε
uds

)

≤ Cε2E

(∫ (n+1)∆

n∆

xεn∆(yεs − yεu)ds

)2


≤ Cε2∆E

(∫ (n+1)∆

n∆

(yεs − yεu)2ds(xεn∆)2

)

≤ Cε2∆

∫ (n+1)∆

n∆

(e−
s−n∆

ε2 − 1)ds

= O
(
ε4(e−

∆
ε2 − 1)

)
.

For K(n,ε)
3 , we have,

E
(

(K
(n,ε)
3 )2

)
= E

(∫ (n+1)∆

n∆

∫ s

n∆

√
q̃xεn∆dWuds

)2


≤ C∆

∫ (n+1)∆

n∆

E

((∫ s

n∆

dWu

)2
)
ds

≤ C∆

∫ (n+1)∆

n∆

(s− n∆)ds

= O(∆3) .

Since K(n,ε)
4 is similar to K(n,ε)

3 , we have

E
(

(K
(n,ε)
4 )2

)
= O(ε2∆3) .
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Thus, for line (33), the order of the dominating terms are,

E

N−1∑
n=0

(
4∑
i=1

K
(n,ε)
i

)2
 = O(N∆4 +Nε4(e−

∆
ε2 − 1) +N∆3) .

For line (34),

E

∑
m 6=n

(

4∑
i=1

K
(n,ε)
i )(

4∑
j=1

K
(m,ε)
j )

 ≤ ∑
m 6=n

E

(
4∑
i=1

K
(n,ε)
i

)
E

 4∑
j=1

K
(m,ε)
j

 .

We know,

E(K
(n,ε)
1 ) = E

(
C

∫ (n+1)∆

n∆

∫ s

n∆

xεududs

)

≤ C

(∫ (n+1)∆

n∆

(s− n∆)ds

)
= O(∆2) .

Similarly, we have

E
(
K

(n,ε)
2

)
= εCE

(∫ (n+1)∆

n∆

(yεs − yεn∆)ds

)
= O(ε∆) .

Since the integral of Brownian motions is Gaussian

E
(
K

(n,ε)
3

)
= CE(

∫ (n+1)∆

n∆

∫ s

n∆

dWuds)

= CE(

∫ (n+1)∆

n∆

(Ws −Wn∆)ds)

= CE(

∫ (n+1)∆

n∆

Wsds−Wn∆∆) = 0

and

E
(
K

(n,ε)
4

)
= CεE(

∫ (n+1)∆

n∆

∫ s

n∆

dVuds)

= CεE(

∫ (n+1)∆

n∆

Vsds− Vn∆∆) = 0.

Thus,

E

(
4∑
i=1

K
(n,ε)
i

)
= O(∆2 + ε∆) ,

immediately we have for line (34),

E

∑
m 6=n

(

4∑
i=1

K
(n,ε)
i )(

4∑
j=1

K
(m,ε)
j )

 = O(N2∆4 +N2ε2∆2) .
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Putting all terms for J1 together, we keep the dominating terms, and by assumption
N∆→∞, and α < 2 since e−

∆
ε2 → 0,

E
(
J1(ε)2

)
≤ C

N2∆2
(N∆4 +Nε4(e−

∆
ε2 − 1) +N∆3)

+
C

N2∆2
(N2∆4 +N2ε2∆2)

= O(
∆2

N
+

ε4

N∆2
(e−

∆
ε2 − 1) +

∆

N
+ ∆2 + ε2)

= O(
ε4

N∆2
+ ∆2 + ε2) .

Therefore, putting Ji(ε)’s, i ∈ {1, 2, 3, 4}, together, we have,

E
(
(I1(ε)− ãI2(ε))2

)
≤

4∑
i=1

E
(
J(ε)2

i

)
= O(

ε4

N∆2
+ ∆2 + ε2)

+O(
1

N∆
) +O(

ε2

∆2
) +O(

ε2

N∆
)

= O(∆2 +
1

N∆
+

ε2

∆2
)

We rewrite the above equation using ∆ = εα and N = ε−γ ,

E
(
(I1(ε)− ãI2(ε))2

)
= O(ε2α + εγ−α + ε2−2α) .

It is immediately seen that α = 1
2 and γ ≥ 3/2 optimize the error, and α ∈ (0, 1), the

order of the error is
E
(
(I1(ε)− ãI2(ε))2

)
= O(ε) .

This completes the proof.

In Figure 3, we show an example of the L2 error of the drift estimator with various
scaling parameter ε and subsampling rate α. We see that the error is minimized around
α = 1/2 as in Theorem 3.6.

3.3 The Diffusion Estimator
Just as in the case of the drift estimator, we define the diffusion estimator by the maxi-
mum likelihood estimator (5), where X is replaced by the discretized solution of (2a).
More specifically, we define

q̃εN,∆ =
1

N∆

N−1∑
n=0

(xεn+1 − xεn)2 (35)

where xεn = xεn∆ is the discrete observation of the process generated by (2a) and ∆ is
the observation time interval.
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Figure 3: This is a colormap plot of the L2 norm of the errors from the drift estimator
âN,ε at different subsampling rates. Simulations are done through exact solution of the
multiscale OU system. Each path is subsampled with N = ε1.5 number of observa-
tions, at time increment of ∆ = εα, with α ∈ [0.1, 1]. We take ε from choices of 2−4

to 2−12. Each estimate is based on 100 paths. The initial condition is (x0, y0) = (0, 0)
and the parameter values are a11 = a12 = a13 = a21 = a22 = −1, a14 = 1,
q1 = q2 = 2.

Theorem 3.8. Suppose that (xεt)t>0 is the projection to the x-coordinate of a solution
of system (2) satisfying Assumptions 3.1. Let q̂ε be the estimate we get by replacing X
in (5) by xε, i.e.

q̂ε =
1

T

N−1∑
n=0

(xεn+1 − xεn)2 .

Then

E
(
(q̂ε − q̃)2

)
= O

(
∆ + ε2 +

ε4

∆2

)
where q̃ as defined in (18). Consequently, if ∆ = εα, fix T = N∆, and α ∈ (0, 2), then

lim
ε→0

E
(
(q̂ε − q̃)2

)
= 0 .

Furthermore, α = 4/3 optimizes the error.

We first define

√
∆ηn =

∫ (n+1)∆

n∆

dWt .

Proof. We now prove Theorem 3.8. Using the integral form of equation (23),

xεn+1 − xεn =

∫ (n+1)∆

n∆

√
q̃dWs (36)

+ R̂1,ε + R̂2,ε + R̂3,ε
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where

R̂1,ε = ã

∫ (n+1)∆

n∆

xεsds

R̂2,ε = εa14a
−1
22

√
q2

∫ (n+1)∆

n∆

dVs

R̂3,ε = ε(a12 + εa14)a−1
22

∫ (n+1)∆

n∆

dy(s)

We rewrite line (36) as ∫ (n+1)∆

n∆

√
q̃dWs =

√
q̃∆ηn (37)

where ηn are N (0, 1) random variables.
For ∆ and ε sufficiently small, by Cauchy-Schwarz inequality

E

(c∫ (n+1)∆

n∆

xεsds

)2
 ≤ cE

(∫ (n+1)∆

n∆

(xεs)
2ds

∫ (n+1)∆

n∆

ds

)

≤ c∆E

(∫ (n+1)∆

n∆

(xεs)
2ds

)

≤ c∆2E

(
sup

n∆≤s≤(n+1)∆

(xεs)
2

)
= O(∆2)

Therefore,
E
(

(R̂1,ε)
2
)

= O(∆2)

By Itô isometry
E
(

(R̂2,ε)
2
)

= O(ε2∆)

Then we look at R̂3,ε,

E
(

(R̂3,ε)
2
)

= ε2CE
(
(yεn+1 − yεn)2

)
By (28), we have

E
(

(R̂3,ε)
2
)

= O(εmax(α,2)) (38)

We substitute (xεn+1 − xεn) into the estimator q̂ε in Theorem 3.8. We decompose
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the estimator’s error as follows,

q̂ε − q̃ = q̃(
1

N

N−1∑
n=0

η2
n − 1)

+
1

T

N−1∑
n=0

3∑
i=1

(
R̂2
i,ε

)
+

2

T

N−1∑
n=0

3∑
i=1

R̂i,ε
√
q̃∆ηn

+
1

T

N−1∑
n=0

∑
i 6=j

R̂i,εR̂j,ε


= Rε

Then we bound the mean squared error using Cauchy-Schwarz inequality.

E
(

(q̂ε − q̃)2
)
≤ Cq̃2E

(
(

1

N

N−1∑
n=0

η2
n − 1)2

)
(39)

+ C

3∑
i=1

E

( 1

T

N−1∑
n=0

R̂2
i,ε

)2
 (40)

+ C

3∑
i=1

E

( 1

T

N−1∑
n=0

R̂i,ε
√
q̃∆ηn

)2
 (41)

+ C
∑
i6=j

E

( 1

T

N−1∑
n=0

(
R̂i,ε ⊗ R̂j,ε

))2
 (42)

By law of large numbers, line (39) is of order O(∆).
In line (40), for i ∈ {1, 2}, we have

E

( 1

T

N−1∑
n=0

R̂2
i,ε

)2
 =

1

T 2
N

N−1∑
n=0

E
(

(R̂2
i,ε)

2
)
.

Since E
(

(R̂1,ε)
2
)

= O(∆2), we have

E

( 1

T

N−1∑
n=0

R̂2
1,ε

)2
 = O

(
N2(∆2)2

)
= O

(
∆2
)

;

since E
(

(R̂2,ε)
2
)

= O(ε2∆), we have

E

( 1

T

N−1∑
n=0

R̂2
2,ε

)2
 = O

(
N2(∆ε2)2

)
= O(ε4).
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The estimate is different for E

( 1
T

N−1∑
n=0

R̂2
3,ε

)2
. By (28), we have

E

( 1

T

N−1∑
n=0

R̂2
3,ε

)2
 =

Cε4

T 2
E

(N−1∑
n=0

(
yεn+1 − yεn

)2)2


≤ Cε4N

N−1∑
n=0

E
((
yεn+1 − yεn

)4)
= O

(
ε4+2 max(0,α−2)

∆2

)
= O

(
εmax(4,2α)

∆2

)
Adding up all terms for line (40), we have,

3∑
i=1

E

( 1

T

N−1∑
n=0

R̂2
i,ε

)2
 = O

(
∆2 + ε4 +

εmax(4,2α)

∆2

)
. (43)

In line (41), for i ∈ {1, 2}, we have

E

( 1

T

N−1∑
n=0

R̂i,ε
√
q̃∆ηn

)2
 ≤ CN2∆E

((
R̂i,εηn

)2
)

= CNE
(

(R̂i,ε)
2
)

Since E
(

(R̂1,ε)
2
)

= O(∆2), we have

E

( 1

T

N−1∑
n=0

R̂1,ε

√
q̃∆ηn

)2
 = O(N∆2) = O(∆);

since E
(

(R̂2,ε)
2
)

= O(ε2∆), we have

E

( 1

T

N−1∑
n=0

R̂2,ε

√
q̃∆ηn

)2
 = O(Nε2∆) = O(ε2) .

Again, it is different for E

( 1
T

N−1∑
n=0

R̂3,ε

√
q̃∆ηn

)2
 due to correlation between

R̂
(n)
3,ε and ηn. Using the expression from (37) by only considering the dominating

terms, we have

E

( 1

T

N−1∑
n=0

R̂3,ε

√
q̃∆ηn

)2


= E

(
1

T

N−1∑
n=0

R̂2
3,ε

(√
q̃∆ηn

)2
)

+ E

 1

T 2

∑
m 6=n

R̂
(m)
3,ε R̂

(n)
3,ε

∫ (m+1)∆

m∆

√
q̃dWs

∫ (n+1)∆

n∆

√
q̃dWs


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By computing the order of the dominating terms and the martingale terms, when
m = n,

E

(
1

T

N−1∑
n=0

R̂2
3,ε

(√
q̃∆ηn

)2
)

=
1

T

N−1∑
n=0

∆E
(
R̂2

3,εq̃η
2
n

)
=

1

T
E(R̂2

3,εη
2
n)

= O
(
εmax(α,2)

)
and when m < n,

E

 1

T 2

∑
m 6=n

R̂
(m)
3,ε R̂

(n)
3,ε

∫ (m+1)∆

m∆

√
q̃dWs

∫ (n+1)∆

n∆

√
q̃dWs


≤ CN2ε2E

(
(yεn+1 − yεn)(yεm+1 − yεm)

×
∫ (n+1)∆

n∆

dWs

∫ (m+1)∆

m∆

dWs

)

≤ CN2ε2E

(
(yεn+1 − yεn)

∫ (n+1)∆

n∆

dWs

× E

(
(yεm+1 − yεm)

∫ (m+1)∆

m∆

dWs|Fm∆

))

Using the expansion in (37), and using the dominating terms only,

E

(
(yεm+1 − yεm)

∫ (n+1)∆

n∆

dWs|Fm∆

)
= E

((
(e−

∆
ε2 − 1)yεm

+
1

ε2

∫ (m+1)∆

m∆

e−
(m+1)∆−s

ε2 xεsds

+
1

ε

∫ (m+1)∆

m∆

e−
(m+1)∆−s

ε2 dVs

)∫ (m+1)∆

m∆

dWs|Fm∆

)
= O(ε(e−

∆
ε2 − 1))

Therefore, when m < n, we have,

E

 1

T 2

∑
m 6=n

R̂
(m)
3,ε R̂

(n)
3,ε

∫ (m+1)∆

m∆

√
q̃dWs

∫ (n+1)∆

n∆

√
q̃dWs


= O(

ε4

∆2
(e−

∆
ε2 − 1)2)

= O(ε4−2α+2 max(α−2,0))

= O(εmax(0,4−2α))
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In the case m > n, the result is identical due to symmetry. Adding up all terms for line
(41),

5∑
i=1

E

( 1

T

N−1∑
n=0

R̂i,ε
√
q̃∆ηn

)2


= O
(

∆ + ε2 + εmax(α,2) + ε2 max(0,2−α)
)

(44)

In line (42), we have

∑
i 6=j

E

(N−1∑
n=0

R̂i,εR̂j,ε

)2
 ≤ NE

(
(Ri,ε)

2E(Rj,ε)
2
)

Substituting in the L2 norms of each R̂i,ε, i ∈ {1, 2, 3}, we have for line (42),

∑
i 6=j

E

(N−1∑
n=0

R̂i,εR̂j,ε

)2


= O
(

∆2ε2 + ∆εmax(α,2) + ε2+max(α,2)
)

(45)

Aggregating bounds (43), (44) and (45) for equation lines from (39) to (42) respec-
tively, we have

E
(
(q̂ε − q̃)2

)
= O(∆)

+ O
(

∆2 + ε4 +
εmax(4,2α)

∆2

)
+ O

(
∆ + ε2 + εmax(α,2) + ε2 max(0,2−α)

)
+

(
∆2ε2 + ∆εmax(α,2) + ε2+max(α,2)

)

It is clear that when α < 2,

E
(
(q̂ε − q̃)2

)
= O(∆ + ε4−2α + ε2).

The error is minimized when α = 4/3, which is of order

E
(
(q̂ε − q̃)2

)
= O

(
ε

4
3

)
.

It is easy to see when α > 2, the error explodes. This completes the proof.

In Figure 4, we show an example of the L2 error of the diffusion parameter with
various scaling parameter ε and subsampling rate α. We see that the error is minimized
around α = 4/3 as in Theorem 3.8.

25



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

3

4

5

6

7

8

9

10  

 HOMOGENIZATION: DIFFUSION ESTIMATOR L2 ERRORS

Subsampling rate α
 

−
lo
g
2
(ǫ
)

0.5

1

1.5

2

2.5

3

3.5

Figure 4: This is a colormap of the L2 norm of (q̂ε − q̃) for different ε and α. Each
path is generated over a fixed total time horizon of T = 1, at a very fine resolution with
δ = 2−20, with available number of observations N = 220. Each estimate is based
on 100 paths. We test the scale parameter ε from 2−2 to 2−9.5, and test the diffusion
estimator at a sequence of subsampling rates α over each path at rates [0.1, 2]. The
system’s parameter values are a11 = a12 = a13 = a21 = a22 = −1, a14 = 1,
q1 = q2 = 2.
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