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Abstract: The built environment is blamed for producing the majority of carbon emissions. While 

policy remains focused on emissions during the operational phase, research demonstrates that 

embodied impacts are a significant proportion of whole life ones. This paper presents a case study of a 

building that integrates low-energy design features. The study was carried out during the construction 

phase enabling superior quality of data to be collected. The cradle-to-grave embodied impacts were 

modelled to the TC350 Standards using an innovative tool, and the operational impacts through 

simulation, incorporating future climate predictions. In spite of the data quality, the study 

demonstrates a high level of uncertainty due to a number of industry-wide issues. This paper identifies 

these issues and concludes that considerable barriers to measuring embodied impacts remain. Key 

recommendations are made for industry and policy, in order to gear up the measurement and 

reduction of embodied impacts of buildings. 
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1 Introduction 

The built environment accounts for approximately 40% of the world’s total energy 

consumption (1). Τhe latest regulations (2) demand that buildings produce zero net 

operational CO2(e) emissions in the near future. Nevertheless, this strategy omits the 

Embodied Energy and Embodied Carbon (EE&EC) which constitute a considerable amount 

of the building total energy and carbon (E&C) of the building (2%-46%) with values up to 

500MJ/m
2
/year (3,4). The inclusion of those burdens is not currently a legislative requirement 

and only voluntary standards, such as the European TC350, “the basis of measuring embodied 

energy and carbon in products and projects” (5) in the UK, exist. On the other hand, there are 

a number of studies of individual buildings, but the inconsistencies and variations make 

comparison between them difficult (6). Also, it has been proved that the error in any typical 

embodied energy analysis may be as high as 20% (7) with 50% incompleteness for the 

process-based method (8). This method is also used by the TC350 standards and is “extremely 

complex and time-consuming” (6). To understand the issues and barriers that arise during the 

calculation process of the embodied energy and carbon, a school building in Cambridge, UK 

was chosen as a case study. There was collaboration and keen interest from all parts, leading –

it would be assumed- to easily accessible data. The “Ecoclassroom” integrates low-energy 

features and makes extensive use of local workforce, environmentally friendly materials and 

sustainable construction methods while it has been designed to withstand 2080 conditions. 
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2 Methodology and results 

The research deployed different methods to answer the questions posed. In the centre lies the 

case study, supported by simulation, observation and interviews. The boundaries of the 

investigation are shown below (Table 1). There are, as expected, limitations such as the future 

decarbonisation of UK mix, which was not accounted for. Also, when information about the 

CO2(e) emissions was unavailable, the CO2 data was used (9).  
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B6 Operational energy use 

B7 Operational water use 

Table 1: The boundaries of the investigation (highlighted) [from BSEN15978:2011 (12)] 

The EE&EC in the infrastructure, fuel processing, power plants and distribution systems was 

not included. The calculation was conducted using an in-house tool due to reasons that have 

been mentioned by others (10).  Concerning operational energy, it was not possible to 

measure it and therefore simulations were run using DesignBuilder, a dynamic simulation 

software, incorporating 2080 climate predictions (11).  

The absolute energy values for the whole lifecycle were within the range reported by other 

studies for low energy buildings (3,4). For operational energy, results were in good proximity 

with those of the building services engineers (8% difference). 

The calculation resulted in a total of 7239GJ primary energy for its lifecycle, equal to 

622MJ/m
2
/year (68 years, till 2080) (Figure 1). The respective values for carbon were 

estimated to rise to 39kgCO2(e)/m
2
/year. The ratio of embodied to operational energy (EE, 

OE) was approximately equal to 1:2 and the respective one for carbon equal to 1:1.5. 
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Figure 1: Total lifecycle carbon dioxide equivalent breakdown (tCO2e/m
2
/y) 

3 Issues faced during the process 

In spite of the data quality, the case study demonstrates a high level of uncertainty for the 

calculation of Embodied Carbon and Energy at each lifecycle stage. The main reasons are 

outlined below: 

3.1 Lack of a data collection method for stages A1-A5 

There was no standard method for the collection of data concerning the type, number and 

specifications of components used in a building, their transport to the site, the construction 

energy, the waste and their destination. The collection of data depended on personal 

relationships and the time since completion of the project. The speed and quality of data 

collection was hampered by the subcontracting culture leading to missing data, estimated by 

the author to be as high as 10-30% on both EE&EC. For the product stage, the study followed 

a number of successive ways to gather accurate and complete data, including the use of 

delivery tickets and drawings, contractor estimations and interviews, correspondence with 

manufacturers and site visits. Despite the effort, a number of components were: not identified 

at all; identified but out of scope; identified but not calculated because of their size or 

complexity; identified but not calculated due to the lack of information or identified but 

roughly estimated. It was calculated that if the calculation had been based only on the initial 

list given to the authors by the contractor, the EE values for stages A1-3 and A4 would have 

been underestimated by 33% and 50%. The respective underestimation for the replacement 

stage would have been 32%. These changes have impacts on the construction and demolition 

EE&EC too through the calculation of waste materials. The total underestimation would have 

been 30% and 25% for EE and EC, respectively.  

Concerning transport, most components were either manufactured in the UK or imported 

from Europe. Some suppliers provided information concerning the means of transport and the 

route followed. The distance from the factories to the distribution centres and the final site 

was calculated using Google Maps. When information was not available for the means of 
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transport, the most reasonable approach was followed. The transportation of the construction 

equipment to and from the site was also included, although this was a very small amount. 

Finally, the Construction module A5 was given by the following components: 

Production and transportation of materials lost or damaged during construction. The 

contractor was unable to specify the exact quantities thrown to waste and the waste 

management company was reluctant to share any information. There are different approaches 

on how to calculate the impact [e.g. (13,14)]. In this research, it was calculated as the fraction 

of the mass of waste to the total mass of initial materials, multiplied by the total E&C 

contribution of the A1-4 stage. 

Construction Energy. Energy was consumed mainly at three sources: the diesel consumed on 

site, the school electricity consumption and the manufacturers. For the first, a crude 

estimation was provided by the contractor and for the second the consumption for the 

previous and next year were compared with that of the construction year (2012). Only the 

timber-frame subcontractor was able to provide approximated data corresponding to the off-

site construction. 

Waste (downstream):  

The final on-site construction waste volume was calculated indirectly through the number of 

skips used but, their exact composition and mass were unknown and therefore were calculated 

based on pro-rata values by two reports (15,16). Only the transport of the muck-away 

(uncontaminated soil) and the on-site construction waste to the final site was included in the 

calculation. Neither the waste processing nor the disposal was included due to limited data.  

For the off-site waste, information was requested from the factories but -again- only the 

timber factory management could provide some information. 

3.2 Lack of published figures for embodied impacts of components 

The actual environmental impacts could only be calculated for a limited number of 

components as there is currently no established culture for the creation of Environmental 

Product Declarations (EPDs). The calculation of the EE&EC impacts of the components was 

conducted using inventories (9,17) and a few EPDs (only 5 out of almost 200 products 

identified). For some composite components, it was necessary to approximate the contribution 

of the constituent materials, when this was not available from the manufacturer. The transport 

factors used were taken from a tool (17) that uses UK and European values that have been 

adapted to include the empty return journey. When information on the method of transport 

was not available for short distances, the rigid heavy-goods vehicle was chosen to provide a 

good approximation. The mean of transport for the construction equipment was assumed to be 

the “articulated Heavy Goods Vehicle”. 

3.3 Uncertainties for post-construction stages 

The calculation of the Use stage was based on approximations that might over-/underestimate 

the contribution of an element. If the life expectancy of the component was small, a 
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replacement was assumed to be carried out. Replacement factors have been suggested [e.g 

(19)] but, they refer to assemblies rather than components. Instead, the authors used a report 

by the NAHB (20), few product specifications and design team estimates to calculate the 

component life expectancy. This report however, is intended for residential buildings and the 

replacement values might be underestimated for a classroom. The production and 

transportation was assumed to be similar to modules A1-4, while the construction energy was 

equated to the fraction of the energy and carbon impact of the specific component in the A1-3 

stage to the total impact of stage A1-3, multiplied with the total construction energy A5. The 

impacts of excessive materials used during replacement were not included, as there was no 

relevant data. The total mass of waste was equal to the replaced components and only 

transport was included.  

Previous research concerning the demolition, waste processing and loads and benefits beyond 

the building lifecycle is limited (18). For the End of life stage, the authors used the values of 

Moncaster and Symons (17) for the calculation of the deconstruction/demolition phase (C1), 

as it is recent and UK-relevant. The demolition waste was assumed equal to the original mass 

of components and only its transport was included in the final impact. 

Carbon Sequestration was commented separately and was not included in the final carbon bill. 

It was equal to 5.9% of the whole life carbon. This was only related to wasted timber from all 

stages and none of its by-products. Since some building components were only 70% certified, 

a common approach of 70% sustainable timber was followed. The calculation was based on a 

paper by Symons et al. (21) who assume removal and storage of 1.8kgCO2/kg-wood from the 

atmosphere. The total burden or benefit depends on the final destination of this timber. It was 

assumed that 33.3% was sent to Landfill and that the rest 66.6%, was reused/recycled. The 

mass wasted at the timber-frame factory was all recycled. 

3.4 Varied boundaries, multiple calculation methods 

Existing standards present differences in the method they follow, the boundaries, and the 

contribution and responsibility of each industry sector (10). For example, had this study been 

based on stages A1-3 only, as advised by some standards and the government (5,12), the 

embodied impacts would have been underestimated by approximately 50%. Furthermore, a 

common approach is missing in terms of the assemblies and components included in the 

calculation (22). Also, TC350 standards have inherent weaknesses (e.g. process-based 

method, omission of the impacts of the designer’s offices, infrastructure, etc) that should be 

considered. 

3.5 Limited knowledge dissemination 

The strategic decisions of clients, designers and contractors affect not only the current but 

also the future EE&EC of a building. Despite the fact that the shareholders for this case study 

were all informed on the importance of EE&EC, most of the industry is not and their 

understanding is mostly based on the initial stages (A1-3) and common perception.  
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4 Conclusion and discussion 

Five important difficulties were faced in the process of calculating the EE&EC of this 

classroom. To overcome these, it is vital to create a digital database for the collection of post-

construction information on EE&EC that will give each building an “Identification” and boost 

research. Existing databases should be enriched and updated to include more materials and 

especially composite components. These should be publicly available and protected from 

industry interests, leading to a UK National database. EPDs should be obligatory and include 

all lifecycle stages since the relative impact of these changes within the building lifecycle and 

more research should be conducted for post construction stages (i.e. use, end-of-life and 

beyond the building lifecycle stage). Moreover, there should be an agreement on the standard, 

the boundaries and the method used for the calculation of EE&EC and similar measures to the 

ones taken to decrease operational energy and carbon should be launched. It also needs to be 

clear which assemblies will be used in calculations across the UK to allow direct comparison 

amongst studies conducted using the same standards. Finally, all parties involved in 

construction should be well informed on embodied impacts ahead of the project initiation.  

More than a third of the whole life energy expenditure & carbon emissions are likely to come 

from the embodied energy and embodied carbon (EE&EC), based on this study. Current 

standards and policies only encourage and do not regulate the calculation of a part of these. 

With the development of EU and global standards defining the methodology for measuring 

EE&EC, and increasing evidence that it is a significant proportion of the whole life impacts 

for a building, it is now time for the calculation of cradle-to-grave/cradle EE&EC impacts to 

be legislated. There are many alternatives for how this could become reality by, for example, 

creating a system similar to the one used by SAP and SBEM where a “standard” building is 

compared with the actual one. Another way forward would be to agree on an absolute value, 

depending on the type of the building. This will put considerable pressure on the industry to 

accelerate changes towards becoming more sustainable. This target/limit could also lead to a 

complete building rating system for E&C as some of the most advanced systems 

(e.g.BREEAM) include EE&EC impacts for a number of components but omit other, 

extremely important ones, such as building services. 
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