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We offer new insights and results on the hydrodynamics of solitary waves on inertia-
dominated falling liquid films using a combination of experimental measurements,
direct numerical simulations (DNS) and low-dimensional (LD) modelling. The DNS
are shown to be in very good agreement with experimental measurements in terms
of the main wave characteristics and velocity profiles over the entire range of
investigated Reynolds numbers. And, surprisingly, the LD model is found to predict
accurately the film height even for inertia-dominated films with high Reynolds
numbers. Based on a detailed analysis of the flow field within the liquid film, the
hydrodynamic mechanism responsible for a constant, or even reducing, maximum
film height when the Reynolds number increases above a critical value is identified,
and reasons why no flow reversal is observed underneath the wave trough above a
critical Reynolds number are proposed. The saturation of the maximum film height
is shown to be linked to a reduced effective inertia acting on the solitary waves as
a result of flow recirculation in the main wave hump and in the moving frame of
reference. Nevertheless, the velocity profile at the crest of the solitary waves remains
parabolic and self-similar even after the onset of flow recirculation. The upper limit
of the Reynolds number with respect to flow reversal is primarily the result of
steeper solitary waves at high Reynolds numbers, which leads to larger streamwise
pressure gradients that counter flow reversal. Our results should be of interest in the
optimisation of the heat and mass transport characteristics of falling liquid films and
can also serve as a benchmark for future model development.
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492 F. Denner and others

1. Introduction
Falling liquid films have been a topic of fundamental and applied research for

several decades since the pioneering experiments by Kapitza (1948) and Kapitza
& Kapitza (1949). A falling liquid film is a convectively unstable open-flow
hydrodynamic system with a rich variety of spatiotemporal structures and a sequence
of wave instabilities and transitions that are generic to a large class of hydrodynamic
and other nonlinear systems. Despite their apparent complexity one can still
identify robust coherent structures, i.e. solitary waves, in what appears to be a
randomly disturbed surface. These structures interact continuously with each other as
quasiparticles. Hence, a falling liquid film can serve as a canonical reference system
for the study of spatiotemporal chaos and weak/dissipative turbulence. In addition,
falling liquid films are typically associated with low flow rates, low pressure drops,
small thermal resistances and large contact areas per unit volume. Not surprisingly,
they play a central role in a wide spectrum of engineering applications. Prominent
examples of applications involving falling liquid films are evaporators–condensers,
heat exchangers, chemical reactor columns and cooling devices. Falling liquid films
are also exploited in saltwater desalination plants, in the food processing industry as
well as in coating processes. Furthermore, falling liquid films are found in problems
related to earth science and geophysics, for instance underwater gravity currents, lava
flows and the propagation of bores in rivers. Therefore, an accurate understanding of
the hydrodynamics of falling liquid films is crucial in the design and optimisation
of processes and devices that exploit these flows. The present study focuses on the
hydrodynamic mechanisms that govern solitary waves on inertia-dominated falling
films and, in particular, on flow features that have been shown to improve the heat
and mass transport characteristics of the films.

1.1. Theory and physical aspects
A falling liquid film is unstable to long-wave perturbations above a critical Reynolds
number (Yih 1963) due to an instability mechanism that is mainly driven by shear
stresses acting at the interface (Hinch 1984; Kelly et al. 1989; Smith 1990). In general,
inertia and the streamwise component of gravity destabilise the flow, whereas surface
tension and the cross-stream component of gravity have a stabilising effect. A natural
source of perturbations to a falling film flow is white noise at the inlet, whereby
the resulting instability selects the fastest growing mode of the system followed by
a secondary modulation instability that converts the primary wave field into solitary
waves (Liu, Paul & Gollub 1993; Chang 1994; Kalliadasis et al. 2012). Liu & Gollub
(1994), however, reported regular waves by imposing a monochromatic perturbation at
the inlet in their experimental arrangement. In this case, the instability synchronises
with the inlet forcing frequency (Liu et al. 1993; Chang 1994), provided that the
forcing amplitude is sufficiently large.

At low forcing frequencies, the long-wave instability develops into fast-moving
solitary waves that consist of a primary wave hump preceded by capillary ripples at
the front. These waves are predominantly two-dimensional (2D) structures (Leontidis
et al. 2010), and in the inertia-dominated regime (typically for Reynolds numbers,
Re ' 20–200) the velocity profile can deviate strongly from its originally parabolic
shape (Malamataris, Vlachogiannis & Bontozoglou 2002; Scheid, Ruyer-Quil &
Manneville 2006). In addition, if the inertia of the liquid film is sufficiently high,
the maximum velocity of the fluid exceeds the wave speed of the solitary waves,
leading to a recirculation zone in the moving frame (Maron, Brauner & Hewitt 1989).
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Solitary waves on falling liquid films in the inertia-dominated regime 493

This zone, which appears in the main hump of the solitary waves, can considerably
impact the heat and mass transport in the film due to the enhanced mixing (Roberts &
Chang 2000; Albert, Marschall & Bothe 2014). Previous studies have found that the
wave frequency, the inclination angle of the substrate, as well as viscous dispersion
and capillary effects have a significant influence on the extent of the recirculation
zone (Miyara 2000; Rohlfs & Scheid 2015).

The number of capillary ripples preceding a solitary hump increases with decreasing
forcing frequency, increasing Reynolds number and decreasing viscous dispersion
(Nosoko et al. 1996; Pradas, Tseluiko & Kalliadasis 2011), in order for surface
tension to balance inertia. Capillary ripples propagate at the same speed as the main
hump of the solitary wave (Dietze 2016), since they are continuously compressed
by the main hump. As a result, faster capillary ripples have a larger amplitude
(Dietze 2016), in contrast to freely oscillating capillary waves which exhibit a smaller
phase velocity for increasing initial wave amplitude (Denner, Pare & Zaleski 2017a).
Due to the high interface curvature of the capillary ripples, pressure gradients in
the streamwise direction are significant and may lead to flow separation and local
reversal of the flow direction in the laboratory frame of reference. This phenomenon
was first noted by Portalski (1964) and Massot, Irani & Lightfoot (1966), and was
later investigated in more detail in terms of the underlying mechanisms (Dietze,
Leefken & Kneer 2008; Dietze, Al-Sibai & Kneer 2009) and the influence of inertia,
wave frequency and inclination angle (Malamataris & Balakotaiah 2008; Chakraborty
et al. 2014; Rohlfs & Scheid 2015). Numerical simulations conducted by Kunugi &
Kino (2005) demonstrated a considerable enhancement of the heat and mass transport
characteristics of the film as a result of flow reversal.

1.2. Experimental and numerical methods
From an experimental point of view, a range of optical (typically laser-based)
methods have been developed for the investigation of the instantaneous motion
and spatial extent of unsteady interfacial flows and, specifically, liquid film flows
(Lel et al. 2005; Schlagen et al. 2006). Fluorescence intensity-based measurements
of the instantaneous and local film height have been conducted, for example, in
laminar falling films (Liu & Gollub 1993; Liu et al. 1993), in annular gas–liquid
flows (Alekseenko et al. 2009, 2012) and in gas-sheared liquid flows in a horizontal
rectangular duct (Cherdantsev, Hann & Azzopardi 2014). Liu and co-workers (Liu
& Gollub 1993; Liu et al. 1993) determined the critical Re for the onset of wave
formation as a function of the inclination angle, and a phase boundary which separates
the saturated, finite-amplitude wave regime from the multipeaked solitary wave regime
was identified. In the work of Alekseenko et al. (2009, 2012) and Cherdantsev et al.
(2014), 2D and three-dimensional (3D) film-thickness measurements were used to
scrutinise the topology of large-amplitude disturbance waves as a function of Re,
and to link the generation of ripples forming atop these waves to the mechanisms
of liquid entrainment. Markides and co-workers (Zadrazil, Matar & Markides 2014a;
Charogiannis, An & Markides 2015) used planar laser-induced fluorescence imaging
(PLIF) instead, in order to investigate the coupling between the film-thickness and
velocity-field variations over a 2D domain. In Mathie, Nakamura & Markides (2013)
and Markides, Mathie & Charogiannis (2015), the same technique was employed
alongside infrared thermography (IR), thus allowing for interface-temperature
measurements to be retrieved simultaneously with film-thickness measurements.
Based on this approach, the authors reported significant heat transport enhancements
depending on film topology.
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494 F. Denner and others

Optical velocimetry techniques can broadly be categorised depending on whether
a molecular-tagging or particle-seeding approach is adopted. The photochromic dye
activation (PDA) technique stands as a prime example of the former, allowing for
direct velocity-profile measurements via the generation of thin fluorescing traces
arranged perpendicular to the direction of the flow (Karimi & Kawaji 2000; Moran,
Inumaru & Kawaji 2002). Particle-image velocimetry (PIV) and particle tracking
velocimetry (PTV), instead, allow for 2D as well as 3D velocity-field characterisation
by tracking the motion of seeded particle groups (PIV) or individual particles (PTV).
Examples of the use of micro-PIV include the study of laminar, vertically falling
films (Adomeit & Renz 2000) and the capillary-wave region (Dietze et al. 2008),
while PIV/PTV has been used, for example, in the study of downward co-current
gas–liquid annular flows (Zadrazil, Matar & Markides 2014b), where the presence of
multiple recirculation zones within the disturbance waves was revealed.

In terms of modelling and computational methodologies, a substantial number
of studies have focused on low-dimensional (LD) formulations, which simplify
the governing equations and associated wall and free-surface boundary conditions
considerably. Using the long-wave expansion, a hierarchy of model equations has
been obtained, starting from the so-called Benney equation (Benney 1966) whose
region of validity is restricted to near-critical conditions (Kalliadasis et al. 2012), to
integral-boundary-layer equations which are valid away from criticality and describe
the evolution of both the film height h and the local flow rate q (Shkadov 1967) (see
also the work by Scheid et al. (2006), where different LD models are compared to
each other). Numerical modelling has also received considerable attention, with direct
numerical simulation (DNS) finding increasing application in the study of falling
liquid films. The work of Ramaswamy, Chippada & Joo (1996) was the first DNS
study to conduct a detailed investigation of this problem, focusing on the stability of
falling films as well as on the development and interaction of interfacial instabilities.
Subsequently, Malamataris et al. (2002) showed that the velocity profile of the liquid
film is strongly non-parabolic in solitary waves, whereas studies of Gao, Morley &
Dhir (2003) and Nosoko & Miyara (2004) investigated the dynamics of periodically
perturbed falling films at different forcing frequencies and Reynolds numbers. A
common assumption made in the majority of computational studies is a periodic
computational domain in which the film thickness is conserved, hence increasing the
flow rate at the onset of interface waves (Ramaswamy et al. 1996; Gao et al. 2003)
and imposing a particular wavelength on the instabilities (Kalliadasis et al. 2012). In
reality, however, the system is not closed but open and, therefore, it is not the mean
film thickness but the mean flow rate that is conserved, resulting in a decrease of the
average film thickness for wavy film flows (Chang, Demekhin & Kalaidin 1995; Gao
et al. 2003). Numerical studies using periodic domains are, hence, limited in their
ability to accurately predict spatiotemporally evolving interface instabilities.

1.3. Objectives
Despite the significant number of studies focusing on the hydrodynamics of solitary
waves on falling liquid films, most of which have been conducted in the region of
small-to-moderate Reynolds numbers (Re. 20), a number of open questions regarding
the hydrodynamics of inertia-dominated solitary waves still remain. Previous DNS
studies (Chakraborty et al. 2014; Denner et al. 2016) have reported results in which
the wave height stagnates, meaning it stays approximately constant, or reduces
when increasing the Reynolds number above a critical value. Considering that
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the wavelength of solitary waves increases for larger Reynolds numbers (Denner
et al. 2016), a yet unidentified mechanism must be responsible for the saturation
(stagnation or reduction) of the height of solitary waves. Similarly, with respect to
the flow reversal observed underneath the trough preceding the solitary wave, the
hydrodynamic mechanisms responsible for the upper limit in Reynolds number above
which no flow reversal was observed in simulations of Chakraborty et al. (2014)
have yet to be explained. It is also worth noting that none of the previous studies
included a detailed and systematic comparison between experimental measurements
and numerical results using LD models or DNS. If such a comparison confirms good
agreement, a concurrent application of these methods may provide more detailed
insight into the complex hydrodynamics of solitary waves.

Aiming to provide answers to these open questions, we adopt a synergistic
approach with a combination of experiments, DNS as well as LD modelling. A
direct comparison of experimental and numerical results is instrumental in assessing
the predictive quality of the available computational methods and in analysing the
flow field and wave characteristics in detail. We find that experimental measurements
and DNS results agree very well, in particular with respect to film height and flow
velocity at the interface, while the applied LD model is favourably compared with
both of them. Of particular interest in our study is the flow field within the falling
liquid films and its influence on the dynamics of solitary waves and capillary ripples,
in order to elucidate the mechanisms stabilising the wave height and influencing the
flow separation and reversal at large Reynolds numbers. The presented experimental
and numerical results can also serve as a benchmark for future studies of the
hydrodynamics of falling liquid films.

In § 2 the characterisation of falling liquid films and the associated solitary waves
is discussed. In § 3 we introduce the experimental and numerical methods we adopt
and detail the case studies we undertake. The results are presented and discussed in
§ 4 and conclusions are offered in § 5.

2. Characterisation of falling liquid films
Consider a film flowing down a planar inclined plane forming an angle β with the

horizontal direction, as shown in figure 1. There exists a spatially uniform solution,
often referred to as the Nusselt flat-film solution (Nusselt 1916), with film height

hN =
3

√
3µlqN

ρlg sin β
(2.1)

and average film velocity

uN =
ρlg sin βh2

N

3µl
, (2.2)

where µl and ρl are the dynamic viscosity and the density of the liquid film,
respectively, qN = uNhN is the flow rate per unit span and g is the gravitational
acceleration. Based on this idealised solution, various characteristic scalings can be
formulated.

2.1. Nusselt scaling
Making use of the representative pressure scales of the three major hydrodynamic
mechanisms acting on the falling film (inertia, viscous stresses and surface tension)
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496 F. Denner and others

y

x h(x, t)

g

FIGURE 1. Sketch of the profile geometry for a liquid film on a substrate with inclination
angle β to the horizontal. h(x, t) is the local film thickness with respect to a Cartesian
coordinate system (x, y), with x the streamwise coordinate and y the outward-pointing
coordinate normal to the substrate.

several dimensionless parameters can be defined. The Reynolds number

Re=
ρlhNuN

µl
(2.3)

expresses the relative importance of inertia over viscous effects, the Weber number

We=
ρlhNu2

N

σ
, (2.4)

where σ is the surface tension, represents the relative importance of inertia to surface
tension, and the capillary number,

Ca=
µluN

σ
, (2.5)

a measure of the relative importance of viscous stresses and surface tension. The
Reynolds number Re can also be regarded as the dimensionless flow rate. These
non-dimensional numbers are related to each other by We = Re Ca and are often
referred to as Nusselt scaling in the context of falling liquid films, because they
are based directly on the Nusselt flat-film solution. Numerical results presented by
Denner et al. (2016) suggest that the capillary number is not suitable to characterise
inertia-dominated solitary waves.

Denner et al. (2016) recently proposed an ‘inertia-corrected scaling’ for the
characterisation of solitary waves on falling liquid films based on the driving Nusselt
velocity u∗N = uN sin β. Using this velocity scale, the Reynolds and Weber numbers
are redefined as Re∗ = Re sin β and We∗ =We(sin β)2, respectively, which was shown
to lead to a self-similar characterisation of the shape and dispersion of solitary waves
on falling water films for a given inclination angle of the substrate and forcing
frequency.

Unlike the dimensionless numbers above, which depend on the flow rate, the
Kapitza number

Ka=
σ

ρlν
4/3
l (g sin β)1/3

=
Re2/3

31/3Ca
, (2.6)

where νl = µl/ρl is the liquid kinematic viscosity, depends only on the properties of
the liquid and inclination angle β. Hence, for a fixed liquid and β, the Kapitza number
is fixed and the only free parameter is the Reynolds number.
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2.2. Shkadov scaling
Following the scaling introduced by Shkadov (1977), a reduced Reynolds number

δ = 3Re 3
√

3Ca (2.7)

and the viscous dispersion number

η=
3
√

9Ca2 (2.8)

can be obtained. This reduced Reynolds number δ compares inertia and viscous
effects at the length scale imposed by surface tension and gravity. On the other hand,
the viscous dispersion number η appears along with every second-order streamwise
viscous term in the momentum equation and has a dispersive effect on the speed of
linear waves (Pradas et al. 2011; Kalliadasis et al. 2012). The Shkadov scaling is
particularly useful for the characterisation of LD models, as further discussed with
respect to the applied LD model in § 3.3.

Based on the reduced Reynolds number δ, Ooshida (1999) identified two regimes:
the drag-gravity regime for δ . 1 and the drag-inertia regime for δ & 1. In the drag-
gravity regime, the flow is similar to that of the Nusselt flat-film solution, with both
inertia and surface tension playing effectively a perturbative role (Kalliadasis et al.
2012). In the drag-inertia regime on the other hand, inertia and surface tension are no
longer corrections to the Nusselt flow, the cross-stream velocity component becomes
significant and the velocity profile of the film flow can become strongly non-parabolic
(Malamataris et al. 2002). Recent studies (Chakraborty et al. 2014; Rohlfs & Scheid
2015) found the transition between the drag-gravity and drag-inertia regimes to occur
at 1 . δ . 6. Additional effects – for example, shear-thinning and non-Newtonian
behaviour – can lead to complex behaviour in the vicinity of this transition (such as
hysteresis) (Pradas et al. 2014).

3. Methods
3.1. Experimental methodology

The experimental apparatus and methodologies developed to generate the film
thickness and velocity data have been described extensively in our previous
publications (Charogiannis et al. 2015, 2017), and therefore only a summary is
presented here for the sake of clarity and completeness. A schematic of the
experimental arrangement, itself an evolution of a previously developed set-up (Mathie
et al. 2013; Markides et al. 2015), is depicted in figure 2. The apparatus consists
of a main test section over which film flows develop, and a closed loop via which
the liquid circulates. Prior to entering a flow-preparation distribution box, the flow
is split into a steady supply Q and a pulsating supply Q′. The latter is generated
by an oscillator valve that allows accurate control of the forcing frequency and
amplitude to be achieved, selectively triggering the rapid growth of fully developed
wave regimes within the confines of our test section. The instantaneous flow rate into
the distribution box is calculated from the output signal of an ultrasonic flowmeter.
The role of the distribution box is to create a well-characterised uniform flow with
low noise levels, and to introduce this over the test section with uniform thickness.
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LIF camera

Test section

PIV camera

Glass substrate

Laser sheet optics

Nd:YAG laser

FIGURE 2. (a) Schematic of the test section and part of the flow loop. (b) Test section
arrangement showing the position of the cameras and illuminated region of the film
(Charogiannis et al. 2015, 2017).

3.1.1. Test section and imaging arrangement
The test section comprises a thin soda-lime glass plate with 0.7 mm thickness,

mounted on an aluminium support frame and inclined at 20◦ to the horizontal.
The Reynolds number can be evaluated at the flow inlet using the mean flow-rate
measurement per unit width of the channel Q, as

Rebox =
DUbox

ν
=

Q
ν
, (3.1)

where Ubox is the bulk velocity inside the box and D is the channel depth. A
frequency-doubled Nd:YAG laser (532 nm) is used to illuminate the flow, which is
seeded with Rhodamine B dye for PLIF and glass-hollow-sphere particles for PIV, at a
sampling rate of 100 s−1. Sheet optics are employed in forming a thin (approximately
0.1 mm) laser sheet extending along the (streamwise) length of the substrate, while a
pair of LaVision HS 500 CMOS cameras equipped with Sigma 105 mm f/2.8 Macro
lenses are employed to achieve the desired magnification (between 28.0 µm and
29.7 µm per pixel depending on Ka). Excitation of the dye-doped liquid and imaging
of the emitted fluorescence is performed from underneath (unwetted side), in order
to avoid spatially and temporally non-uniform beam stirring and lensing in the first
instance, and to limit image distortions in the latter. The imaging planes of the two
cameras are mapped using a calibration graticule target immersed inside the liquid
solution. Optical distortion corrections are performed using the same arrangement,
and a pinhole model available in LaVision DaVis.

3.1.2. PLIF/PTV data acquisition and processing
A sample PLIF frame after correction for perspective distortion is depicted in

figure 3(a). Near the solid–liquid interface, reflections from the substrate blur the
PLIF signal locally, while the fluorescence emitted by the illuminated liquid volume
is reflected about the liquid–gas interface and back to the camera. The location of
the solid–liquid interface is obtained using an edge-detection algorithm, while for
the gas–liquid interface, intercepts between linear fits to maximum signal gradients
and reflection intensity profiles are employed as estimates of the liquid boundaries.
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FIGURE 3. (a) PLIF image from a flow with Re= 62, Ka= 350 and f = 10 s−1, following
corrections for refractive-index and perspective distortions, and (b) binarised PLIF image
after removal of out-of-plane reflections. (c) Particle image from a flow with Re = 24,
Ka = 85 and f = 10 s−1 after corrections for refractive-index and perspective distortions,
and (d) masked-particle image using its processed PLIF counterpart.

The processed profiles are then used to mask out the reflection regions and to produce
binarised images (see figure 3b), where a signal intensity of unity corresponds to the
film domain and a signal intensity of zero is ascribed to the rest of the image.

The binarised images are used to mask out reflections from the glass surface
underneath the liquid domain and about the gas–liquid interface in the raw particle
images (see figure 3c,d). A four-pass cross-correlation algorithm is implemented
on the masked-particle-image sequences in order to generate 2D velocity-vector
maps (PIV calculation). Following this step, individual particles are tracked (PTV
calculation) by employment of the obtained PIV results as reference estimators of the
velocity field. There are a number of reasons for employing PTV rather than PIV in
this study. To begin with, PTV offers an eight-fold increase in the spatial resolution
of the velocity measurement based on the selected velocity-vector calculation settings
(which are determined based on the optical set-up, the size of imaged region of
the flow and the employed particles). A second reason is that PIV suffers from
large bias errors in the presence of strong velocity gradients, as the motion of
particle groups is averaged within the PIV interrogation window. Along a smooth
film region and near the gas–liquid interface this effect is of little consequence, and
PTV and PIV produce similar results. Near the wall, however, as well as between
the wave crests and troughs, and along the capillary-wave regions, where the velocity
varies strongly over a limited spatial domain, PIV falls short of providing credible
quantitative results. It should finally be noted that the presence of particle-image
reflections within the masked liquid domain constitutes a commonly encountered error
source affecting the PTV velocity data (Kaehler, Scholz & Ortmanns 2006; Kaehler,
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FIGURE 4. (a) Reference and average-wave profiles for a film with Re= 26.9, Ka= 85
and a 10 s−1 forcing frequency. (b) Average PTV-derived velocity field corresponding to
the average film-thickness profile in (a).

Scharnowski & Cierpka 2012). In our experiments, a spatial extent corresponding
to only approximately 5 %–7 % of the examined films is strongly affected by such
artefacts, and consequently, the impact on bulk velocity measurements is minimal.

For a detailed examination of the velocity distributions underneath the waves,
the practice of averaging PTV maps corresponding to the same spatial region is
adopted. The procedure is initialised by selecting a reference film-thickness profile
pertaining to the desired topology, and cross-correlating it with all thickness traces
from the same data set. Signal pairs satisfying a maximum displacement condition
are then repositioned and averaged (a typical result is shown in figure 4a). The
same translation values are used to rearrange and average out the corresponding
instantaneous PTV velocity maps, producing averaged velocity fields such as the one
displayed in figure 4(b).

3.1.3. Validation
Independent experiments are conducted in order to assess the validity and accuracy

of the combined optical methodology. Film thicknesses from flat films (Ka= 14) are
compared to predictions from the Nusselt flat-film solution and direct micrometre-
stage measurements. In both cases the mean relative-deviation amounts to below 1 %.
The same uncertainty value is believed to apply to wave-locked average measurements
of mean film thickness; however, thinner films ensue in that case, and consequently
a worst-case uncertainty of 2 % is a more representative estimate. An estimate of the
film-thickness measurement noise is obtained by calculating standard deviations over
a wide range of flat-film datasets. This amounts to <30 µm, and therefore, a mean
relative error of 2.5 % is quoted for the instantaneous film-thickness measurements.

Relative deviations are also calculated between PTV-derived interfacial and bulk
velocities, and corresponding analytical results of the Nusselt flat-film solution, with
average relative deviations corresponding to 3.2 % for both velocities. Standard
deviations of local velocity in flat films (conservative estimates of PTV measurement
noise) are observed to decrease with increasing distance from the wall; at the
gas–liquid interface, they typically amount to less than 1 % of the local mean value,
while halfway across the film thickness they amount to approximately 5 %–6 % of
the mean value.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 O

pe
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
09

 Ja
n 

20
18

 a
t 1

1:
52

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
86

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.867


Solitary waves on falling liquid films in the inertia-dominated regime 501

3.2. DNS methodology
The applied DNS methodology is based on a general-purpose finite-volume framework
for interfacial flows (Denner & van Wachem 2014a), which resolves the dynamics of
the full two-phase system, i.e. the liquid film, the gas–liquid interface and the gas
phase. The flow, which is assumed to be incompressible and isothermal, is governed
by the momentum equations

ρ

(
∂ui

∂t
+∇ · (uu)

)
=−∇p+∇ ·µ[∇u+ (∇u)T] + ρg+ f σ (3.2)

and the continuity equation
∇ · u= 0, (3.3)

where t represents time, u is the velocity, p is the pressure, ρ is the density, µ
is the dynamic viscosity, g is the gravitational acceleration and f σ represents the
contribution of the surface tension.

3.2.1. Numerical framework
The primitive variables are obtained using a coupled, implicit finite-volume

framework with collocated variable arrangement (Denner & van Wachem 2014a).
The momentum equations (3.2) are discretised using a second-order backward Euler
scheme for the transient term, while the convection, diffusion and pressure terms are
discretised using central differencing. The continuity equation (3.3) is discretised using
a balanced-force implementation of the momentum-weighted interpolation method, as
proposed by Denner & van Wachem (2014a), which couples pressure and velocity.

The volume-of-fluid (VOF) method (Hirt & Nichols 1981) is adopted to capture
the gas–liquid interface. In the VOF method the local volume fraction in each cell is
represented by the colour function γ , defined as γ = 0 in fluid a and γ = 1 in fluid b.
Hence, the interface is located in mesh cells with a colour function value of 0<γ < 1.
The colour function is advected by the linear advection equation

∂γ

∂t
+ u · ∇γ = 0, (3.4)

which is discretised using a compressive VOF methodology (Denner & van Wachem
2014b). Assuming surface tension is a volume force acting in the interface region,
the surface force per unit volume is described by the continuum surface force (CSF)
model (Brackbill, Kothe & Zemach 1992) as f σ = σκ∇γ , where κ represents the
interface curvature. The artificial viscosity model for interfacial flows of Denner et al.
(2017b) is also applied to mitigate the impact of parasitic and spurious flow features
on the numerical solution.

3.2.2. Simulation set-up
The applied two-dimensional computational domain, illustrated in figure 5, has the

dimensions Lx × Ly, where Ly = 4hN and the domain length Lx = 0.256 m + 50hN
is chosen to allow a direct comparison with the corresponding experimental results
at the experimental measurement point xm = 0.256 m downstream from the inlet.
The additional domain length of 50hN is taken to be sufficiently long so as to
ensure that the outlet of the computational domain does not affect the flow field
and interface instabilities in the measurement region. The computational domain is
represented by an equidistant Cartesian mesh with a resolution of 10 cells per film
height hN . The time step 1t satisfies a Courant number of Co= |u|1t/1x 6 0.25 as
well as the capillary time-step constraint derived by Denner & van Wachem (2015).
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y

x
h(x, t)

g

FIGURE 5. Schematic illustration of the numerical domain with dimensions (Lx×Ly). The
liquid film with height h(x, t) flows from the left to the right on an inclined substrate.

The properties of the liquid film are directly taken from the experimental measure-
ments (see § 3.4) and the gas phase is assumed to be air with density ρg =

1.205 kg m−3 and viscosity µg = 1.82× 10−5 Pa s.
At the bottom (liquid-side) wall a no-slip condition is enforced and at the top (gas-

side) boundary a free-slip wall is applied. A monochromatic forcing is imposed at
the domain inlet by periodically changing the mass flow at a given frequency f and
amplitude A from the mean. A semiparabolic velocity profile is prescribed for the
liquid phase at the inlet

u(x= 0, 0 6 y 6 hN)=
3
2
[1+ A sin(2πft)]

(
2

y
hN
−

y2

h2
N

)
uN (3.5)

and a spatially invariant velocity is prescribed at the inlet of the gas phase, given as

u(x= 0, hN < y 6 4hN)=
3
2 [1+ A sin(2πft)]uN . (3.6)

The co-flow in the gas phase is applied to prevent backflow at the domain outlet,
which can significantly affect the computational performance as well as the accuracy
of the results, but has a negligible effect on the evolution of the film flow, since
the momentum of the gas phase is approximately three orders of magnitude smaller
than the momentum of the liquid film. A constant film height h(x = 0) = hN is
prescribed at the inlet. An open boundary condition is applied at the domain outlet,
as previously used for instance by Nosoko & Miyara (2004) and Demekhin et al.
(2007) (Kalliadasis et al. (2012, appendix F3) gives details on how to apply an outlet
boundary condition).

3.3. LD modelling
We adopt the LD formulation corresponding to the two-field second-order model
derived by Ruyer-Quil & Manneville (1998), a set of two coupled nonlinear equations
for the evolution of the interface thickness h(x, t) and local flow rate q(x, t):

δ
∂q
∂t
=

5
6

h−
5
2

q
h2
+ δ

(
9
7

q2

h2

∂h
∂x
−

17
7

q
h
∂q
∂x

)
+

5
6

h
∂3h
∂x3

+ η

[
4

q
h2

(
∂h
∂x

)2

−
9
2h
∂q
∂x
∂h
∂x
− 6

q
h
∂2h
∂x2
+

9
2
∂2q
∂x2

]
, (3.7)

∂h
∂t
=−

∂q
∂x
, (3.8)
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where the Shkadov scaling (Shkadov 1977) has been used, giving rise to the reduced
Reynolds number δ defined in (2.7) and the viscous dispersion number η defined
in (2.8). The above model is obtained by combining the long-wave expansion up
to second order with a weighted residual technique based on a Galerkin projection
in which the velocity field is expanded onto a basis with polynomial test functions
(Ruyer-Quil & Manneville 1998, 2000, 2002) (this formulation was extended to 3D
in the study by Scheid et al. (2006)). It is worth remarking that the model contains
the second-order viscous dispersion terms (those gathered in the second line of (3.7)),
which are controlled by η, often neglected in thin-film studies. These terms affect both
the amplitude and frequency of the capillary ripples at the front of solitary waves
(Ruyer-Quil & Manneville 2000). The first-order model, obtained by setting η = 0
in the second-order one already corrects the shortcomings of the first-order model
obtained by Shkadov (1967), with the principal one being an erroneous prediction of
the instability onset, while the second-order model is in good agreement with Orr–
Sommerfeld for a sufficiently large region of Re.

Also, as was demonstrated by Pradas et al. (2011), who developed a coherent-
structure theory for falling films, the second-order terms play an important role in the
interactions between solitary pulses precisely because they affect both the amplitude
and frequency of the front-running capillary ripples, and hence they are crucial for
an accurate description of pulse interaction. So their influence is in fact linear, but
they can have profound consequences on the nonlinear dynamics of the film and
the wave-selection process in the spatiotemporal evolution. This is because solitary
waves interact through their tails which overlap, i.e., the capillary ripples and their
amplitude and frequency will affect the separation distance between the pulses: for
instance, smaller-amplitude ripples will allow for more overlaps between the tails of
neighbouring solitary waves, thus decreasing their separation distance. This in turn
will affect the average separation distance between the waves when the system reaches
its permanent quasiturbulent regime, and hence the density of the solitary waves.

Equations (3.7) and (3.8) are solved numerically by making use of a variable time-
step Runge–Kutta method with a central finite difference technique in space. A typical
time step is 1t= 0.0025 and the domain [0, L] with L= 150 is discretised into 2000
intervals. At the inlet of the system we impose an inflow boundary condition, given as

q(0, t)= 1
3 [1+ A sin(2πft)], (3.9)

h(0, t)= 1, (3.10)

and like with our DNS we impose an open-soft boundary condition at the outlet
of the system to minimise any reflections (again, appendix F3 in Kalliadasis et al.
(2012) gives details on how to do this). The initial condition is given as the flat-film
solution with h(x, 0)= 1.

3.4. Investigated case studies
We consider cases with Reynolds numbers in the range Re = 5.1–77 and Kapitza
numbers in the range Ka= 14–346 with the relevant parameters given in table 1. The
working fluid for the experiments is an aqueous glycerol solution with three different
glycerol concentrations (by weight) Xg:

Cases A: Xg=82 %, ρl=1214 kg m−3, µl=7.49×10−2 Pa s and σ =0.0623 N m−1,

Cases B: Xg= 65 %, ρl= 1169 kg m−3, µl= 1.84× 10−2 Pa s and σ = 0.0587 N m−1,

Cases C: Xg= 45 %, ρl= 1113 kg m−3, µl= 6.42× 10−3Pa s and σ = 0.0597 N m−1.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 O

pe
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
09

 Ja
n 

20
18

 a
t 1

1:
52

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
86

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.867


504 F. Denner and others

X1 X2 X3 X4

0.75 d
dd

FIGURE 6. Schematic illustration of the positions at which profiles of velocity and
pressure gradients are analysed. Position X2 is located at the crest of the solitary wave
and position X4 is located at the trough preceding the solitary wave.

Case f (s−1) Re We δ η

A1 5 5.1 0.75 11.7 0.58
A2 7 5.2 0.76 11.8 0.58

B1 7 7.5 0.24 10.3 0.21
B2 7 11.7 0.49 17.6 0.25
B3 7 20.6 1.26 35.0 0.32
B4 10 26.9 1.98 48.8 0.37

C1 7 12.4 0.13 11.8 0.10
C2 10 28.5 0.53 32.7 0.15
C3 7 45.1 1.15 57.3 0.18
C4 7 65.1 2.11 89.9 0.21
C5 10 65.7 2.09 89.2 0.21
C6 7 77.0 2.79 110.3 0.23

TABLE 1. Forcing frequency and non-dimensional parameters of the analysed cases.

The corresponding Kapitza numbers are Ka= 14 for cases A, Ka= 85 for cases B
and Ka= 346 for cases C. In all cases the inclination angle of the substrate is β= 20◦
with respect to the horizontal. The film is perturbed with a monochromatic, periodic
change of the flow rate, with frequency f and amplitude A, applied at the inlet of the
test domain. The applied forcing frequencies are well above the critical frequency,
as reported by Argyriadi, Serifi & Bontozoglou (2004), below which parasitic pulses
prevent the development of a regular wave train. Based on the classification of
Ooshida (1999), all considered cases are situated in the drag-inertia regime, δ & 1.

To allow a direct comparison of the experimental and numerical results, all cases are
analysed at downstream distance xm = 0.256 m from the inlet of the test domain, as
dictated by the employed experimental arrangement. The experiments are conducted
first by choosing the amplitude of the monochromatic inlet forcing so that fully
developed, quasistationary interface waves are obtained at the measurement position
xm = 0.256 m. Subsequently, the numerical simulations are conducted using the
measured fluid properties and flow rate as well as the imposed monochromatic
forcing frequency and forcing amplitude in the experiments, thus establishing a direct
comparison under the same conditions. The presented velocity profiles are taken at
the positions illustrated in figure 6, where d is the distance between the crest of the
solitary wave and its preceding trough.

Figures 7 and 8 show the spatial development of the film height and the streamwise
velocity at the interface for cases A2 and C6, respectively, obtained with DNS. The
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FIGURE 7. Spatial development of the film height h/hN and the streamwise velocity at the
interface uΣ/uN for case A2 (Re= 5.2), obtained with DNS. The minimum and maximum
values at the measurement position (xm=0.256 m) are shown as a reference by the dashed
grey lines.
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FIGURE 8. Spatial development of the film height h/hN and the streamwise velocity at the
interface uΣ/uN for case C6 (Re=77.0), obtained with DNS. The minimum and maximum
values at the measurement position (xm=0.256 m) are shown as a reference by the dashed
grey lines.

figures reveal that in the studied range of Reynolds numbers the solitary waves
are fully developed at the measurement position xm. Furthermore, in both cases the
difference in wave speed at the trough and the crest of the solitary wave is <0.1 %,
indicating that the waves have stopped growing.

4. Results
4.1. Comparison of experimental and numerical results

The experimental measurements and numerical predictions of the film height h and
streamwise interface velocity uΣ as a function of downstream distance x are shown
in figures 9 and 10 for selected cases. The DNS results are generally in very good
agreement with the experimental ones, both in terms of film height and interface
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FIGURE 9. Instantaneous film height h, normalised with the Nusselt flat-film height hN ,
for selected cases as a function of downstream distance x.
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FIGURE 10. Instantaneous streamwise interface velocity uΣ , normalised with the Nusselt
velocity uN , for selected cases as a function of downstream distance x. The wave speeds
measured in the experiments, cExp, and the DNS, cDNS, are given as well.

velocity, similar to previously reported comparisons between experiments and DNS
by Dietze & Ruyer-Quil (2013), using the open-source software GERRIS, and by
Doro & Aidun (2013) and Rohlfs, Pischke & Scheid (2017), using the open-source
software OPENFOAM. The LD model is also in very good agreement with both
experimental and DNS results provided that δ. 12, but fails to capture the amplitude
and frequency of the front-running capillary ripples for δ > 12 (which in turn affect
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FIGURE 11. Maximum film height hmax/hN (a), minimum film height hmin/hN (b) and
wave speed c/uN (c) as a function of Re for cases with f = 7 s−1. Results obtained with
the LD model are omitted in the interest of clarity.

the separation distances between the solitary waves) even though it includes the
second-order viscous dispersion effects. In particular, both the DNS and experimental
results show fewer capillary ripples with increasing inertia than the LD model
(compare, for example, cases C1 and C6 in figure 9). Such a deviation is nevertheless
expected since cross-stream inertia is not negligible for δ� 1 (Kalliadasis et al. 2012),
thus violating one of the main assumptions in the boundary-layer approximation
invoked to obtain the LD formulation. Interestingly, however, the LD solution
captures very well the primary solitary hump, including the maximum and minimum
film heights, in all studied cases (δ = 10.3–110) – a fact not previously reported
in the literature.

The maximum film height hmax, minimum film height hmin and wave speed c
obtained from the experiments and DNS, shown in figure 11 for all considered cases
with forcing frequency f = 7 s−1, are generally in satisfactory agreement with each
other. In particular, the same trends can be extracted with respect to the change in
film height and wave speed as Re increases. An increase in Re causes initially an
increase in wave height, irrespective of the Kapitza number Ka, both with respect
to the Nusselt flat-film height hN and the film height in the preceding trough hmin.
Eventually, the normalised maximum film height shown in figure 11(a) reaches a
maximum with respect to Re. Increasing Re further ensues a decrease in maximum
film height, as already noted in previous studies (Chakraborty et al. 2014; Denner
et al. 2016). Interestingly, the observed trend persists for the wide range of Kapitza
numbers Ka considered in this study, with Ka = 14–346 in figure 11, both in the
experimental measurements as well as the DNS results. The minimum film height
hmin shows a similar yet inverse behaviour compared to the maximum film height
as far as the influence of Re is concerned, similar to the observations reported by
Denner et al. (2016) for falling water films.

Figure 12 compares the profiles of the dimensionless streamwise velocity u/uN

in the liquid film at different positions in the solitary wave, for selected cases.
The agreement between experimental measurements and DNS results is in general
very good, especially for the small Reynolds numbers, cases A1 (Re = 5.1) and
B1 (Re = 7.5). At larger Reynolds numbers the flow field is strongly dependent on
the local wave shape and can vary rapidly in space, as shown by the experimental
measurements of Charogiannis et al. (2017) for instance. Hence, in particular at the
front of the solitary wave (see figure 12c), small differences in local film height
and measurement position can lead to noticeable differences in the velocity profile.
Note that the velocity profile is parabolic in the tail and underneath the crest of the
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FIGURE 12. Comparison of the experimental and DNS velocity profiles in the tail, at
the crest and at the front of the solitary wave for selected cases, normalised with the
corresponding Nusselt flat-film velocity uN and the local film thickness h(x). (a) In the tail
of the solitary wave, see position X1 in figure 6. The circular dots indicate a semiparabolic
velocity profile. (b) At the crest of the solitary wave, see position X2 in figure 6. The
circular dots indicate a semiparabolic velocity profile. (c) At the front of the solitary wave,
see position X3 in figure 6.

solitary wave, even for the case with the highest Reynolds number (case C6, Re= 77).
This agrees with previously reported numerical results (Malamataris et al. 2002;
Gao et al. 2003; Malamataris & Balakotaiah 2008) and experimental measurements
(Adomeit & Renz 2000; Moran et al. 2002; Charogiannis et al. 2015). Interestingly,
the self-similarity of the velocity profile in the laboratory frame of reference is
unaffected by the onset of a recirculation region in the moving frame when the
maximum flow velocity exceeds the wave speed (for instance, in case C6). Moving
further downstream to the front of the solitary wave, position X3, the velocity profile
increasingly departs from the parabolic one that is observed for the tail and the crest
of the solitary wave, as clearly seen in figure 12(c). The limitations of the applied
PIV/PTV method to measure the velocity fields in our experimental arrangement
prohibit a direct comparison of the velocity profiles obtained experimentally with
those from DNS in the trough of the solitary wave (position X4).

In summary, carefully conducted experiments and DNS using state-of-the-art
methods show good agreement when predicting harmonically excited solitary waves
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on falling liquid films in the inertia-dominated regime and not only for flows with
small Reynolds numbers reported in previous studies (for example, Gao et al. (2003),
Dietze & Ruyer-Quil (2013)). Note that this comparison of experiments and DNS is
more detailed than previously published comparisons (notably Dietze & Ruyer-Quil
(2013), Doro & Aidun (2013), Rohlfs et al. (2017)), as it comprises the film height,
film velocity at the interface, the velocity profile in the liquid film at different
positions, and the wave speed, across a range of Reynolds and Kapitza numbers.
This allows one to draw conclusions based collectively on both the experimental
measurements and the DNS results. And although the LD model is applied outside
what is usually considered to be its range of validity (δ. 10), its predictive accuracy
with respect to the maximum and minimum film height, and consequently the wave
height, is impressive and somewhat unexpected. This might be explained by the
predominantly parabolic velocity profile in the tail and underneath the crest of the
solitary wave, which accounts for the largest part of the solitary wave, even after the
onset of flow recirculation.

4.2. Mechanism for stabilising the wave height
A reduction of the maximum film height with increasing Re is observed in figure 11(a)
in the experimental measurements as well as the DNS results. Chakraborty et al.
(2014) also reported a reducing maximum film height in their DNS results of a
liquid film (Ka = 193–10 000) with a single solitary wave on a vertical substrate,
for sufficiently high reduced Reynolds numbers δ. Similarly, Denner et al. (2016)
reported a stagnation of the maximum film height for sufficiently high Reynolds
numbers on substrates with different inclination angles β = 45◦–90◦ and using fluids
with different surface tension coefficients. Extending the balance of gravity and
viscous stresses (which forms the basis of the Nusselt flat-film solution) to wavy
films, the film height is related to the Reynolds number as h∼ 3

√
Re. Thus, the wave

height should increase with increasing Reynolds number, instead of stagnating or
even reducing, as suggested by the presented numerical results and experimental
measurements. Surface tension stabilises the wave, yet the absolute value of the
interface curvature of the main wave hump is decreasing for increasing Reynolds
number once the wave height does not further increase, since the wavelength of the
solitary wave is λ∼

√
Re sin β (Denner et al. 2016). Hence, the surface tension acting

on the solitary wave decreases with increasing Re. Consequently, there must be an
alternative mechanism acting to stabilise the height of the solitary wave against the
destabilising effect of the increased inertia.

Figure 13 shows the maximum film height hmax, normalised by the Nusselt height
hN , alongside the corresponding maximum flow rate qmax, normalised by the Nusselt
flow rate qN , for cases with Ka = 346 (cases C) and f = 10 s−1, in the Reynolds
number range Re = 10–85, obtained with DNS. The instantaneous local flow rate is
defined as

q(x)=
∫ h(x)

0
u(x) dy, (4.1)

where h(x) and u(x) are the local film height and flow velocity, respectively. Both
hmax/hN and qmax/qN exhibit a clear maximum with respect to the Reynolds number
at Rec ≈ 50, and decrease for further increasing Reynolds number Re > Rec, as is
evident in figure 13. A similar behaviour is observed comparing hmax/hN and qmax/qN
of a water film falling on a vertical substrate, as previously considered by Denner
et al. (2016), shown in figure 14. Charogiannis et al. (2017) recently established a
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FIGURE 13. Maximum film height hmax (a) and maximum flow rate qmax (b), normalised
by the corresponding Nusselt solution, as a function of Reynolds number Re for case C
with f = 10 s−1, obtained with DNS.

linear relationship between local flow rate and local film height for a given solitary
wave, with a slope that corresponds to the wave speed. Hence, the simultaneous
increase and decrease of hmax/hN and qmax/qN observed in figures 13 and 14 is to
be expected. Moreover, the shape of the solitary wave is governed by the balance
of inertia, represented by the dynamic pressure pdyn = ρu2/2, and surface tension,
represented by the capillary pressure pσ = σ/hN (Denner et al. 2016). The relevant
characteristic parameter is, thus, the Weber number We= 2pdyn/pσ (see (2.4)), which
can be rewritten with respect to position x as

We(x)=
ρlq(x)2

σh(x)
(4.2)

based on the local flow rate given in (4.1). Since the density ρl and surface tension
coefficient σ are assumed to be constant, a change in flow rate leads to a change in
film height at a given Weber number. Note that the dynamic pressure pdyn represents
the (streamwise) translational kinetic energy Eu=mu2/2 per unit volume of the liquid
film, where m is the fluid mass.

A plot of the maximum film height against the maximum flow rate, presented
in figure 15(a), confirms the correlation between hmax/hN and qmax/qN established
above, but it also shows a reduction of the maximum flow rate corresponding to a
given maximum film height for Re > Rec. This difference between qmax at a given
hmax for Re < Rec and the corresponding qmax for Re > Rec suggests a reduction of
the effective inertia acting on the solitary wave for Re > Rec, with Rec ≈ 50 for the
conditions analysed in figure 15(a). Interestingly, this reduction of effective inertia
coincides with the development of flow recirculation in the main wave hump with
respect to the moving frame of reference when the maximum flow velocity surpasses
the wave speed, umax > c, as observed in figure 15(b). The flow recirculation in
the moving frame of reference increases the angular velocity Ω and, as a result,
increases the angular kinetic energy EΩ = IΩ2/2, where I is the moment of inertia.
Due to the conservation of energy, the increase of angular kinetic energy EΩ reduces
the translational kinetic energy Eu. This transfer of energy leads to the observed
reduction in effective inertia of the film flow. It is worth noting that the increase in
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FIGURE 14. Maximum film height hmax (a) and maximum flow rate qmax (b), normalised
by the corresponding Nusselt solution, as a function of Reynolds number Re for a falling
water film on a vertical substrate, as previously considered in Denner et al. (2016),
obtained with DNS.
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FIGURE 15. (Colour online) Maximum flow rate qmax (a) and relative velocity umax− c (b),
normalised by the corresponding Nusselt solution, as a function of maximum film height
hmax for case C with f = 10 s−1 in the range Re= 10–85, obtained with DNS. The colour
scale represents the Reynolds number.

Ω corresponds to an increase in vorticity ω= 2Ω (assuming incompressible flow and
neglecting high-order contributions). However, an analysis of the vorticity distribution
in the solitary waves of the considered cases has not provided conclusive evidence
that the increase in viscous dissipation plays a significant part in the observed
reduction of the effective inertia acting on the solitary wave. Note that for the flow
conditions studied in figure 15, a theoretical criterion derived by Rohlfs & Scheid
(2015) predicts the onset of flow recirculation for Recirc ≈ 20, which is in reasonable
agreement with the observed onset of flow recirculation at Recirc ≈ 25. A possible
explanation for this difference in Recirc is the reduced bulk velocity compared to the
Nusselt solution for increasing wave height reported by Charogiannis et al. (2017),
that shifts the critical local flow rate for the onset of flow recirculation to a higher
Reynolds number.
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FIGURE 16. (Colour online) Cross-stream velocity v, normalised by the Nusselt velocity
uN , of case C with f = 10 s−1 for Re ∈ {10, 30, 60}, obtained with DNS. No flow
recirculation in the moving frame of reference is observed for Re = 10 (c > umax), but
flow recirculation is present for Re = 30 and Re = 60 (c < umax). Note that the limits
of the colour scale (−0.01 > v/uN > 0.01) do not represent the min/max values of the
cross-stream velocity.

Aside from the reduction of (streamwise) translational kinetic energy, the onset
of flow recirculation in the moving frame of reference also leads to a downward
motion (in the wall direction) of the flow in the main wave hump. Before the onset
of flow recirculation, the propagation of the solitary wave with c> umax leads to an
upward motion (away from the wall) downstream of the wave crest, as observed in
figure 16(a). However, after the onset of flow recirculation (c< umax), the flow moves
downwards under the crest and upwards in the tail of the solitary wave, as observed
in figure 16(b,c) and as a consequence of the flow recirculation. This change in
cross-stream motion contributes to the observed saturation of the film height after the
onset of flow recirculation. In general, this effect is similar to the long-wave instability
mechanism that generates the solitary waves; at the onset of the instability, the phase
difference between vorticity and the instability wave is destabilising if c> umax, yet it
is stabilising if c< umax (Kelly et al. 1989). This mechanism suggests that, in general,
the fluid motion in the bulk phase has a stabilising effect when c < umax (i.e. flow
recirculation in the moving frame of reference), as confirmed by the presented results.

In summary, the presented results show that the flow recirculation in the moving
frame of reference is responsible for the stabilisation, or even reduction, of the height
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of the solitary waves at large Reynolds numbers. The flow rate and the maximum
velocity in the film exhibit their highest values at (approximately) the same Reynolds
number at which the film height reaches its maximum. With respect to the link
between film height and flow rate, this is to be expected based on the recent study
of Charogiannis et al. (2017), reporting a linear relationship between film height
and flow rate. However, the connection of the film height (and flow rate) with the
maximum flow velocity and the recirculation in the moving frame of reference has
not been reported before. This finding is of particular interest for the optimisation of
the heat and mass transport characteristics of wavy falling liquid films, which has
previously been shown to be critically dependent on the characteristics of the solitary
waves (Mathie et al. 2013; Markides et al. 2015) and with flow recirculation in the
moving frame of reference typically improving the heat and mass transfer within the
liquid film (Roberts & Chang 2000; Albert et al. 2014).

4.3. Flow reversal
Flow reversal is driven by a strong positive streamwise pressure gradient that results
from the rapid change in interface curvature between a solitary wave and its preceding
capillary ripple (Dietze et al. 2008, 2009) or its preceding solitary wave (Doro &
Aidun 2013). Furthermore, previous studies (Dietze et al. 2008, 2009; Doro & Aidun
2013; Rohlfs & Scheid 2015) found that a larger magnitude of the interface curvature
in the trough and at the preceding capillary ripple, as well as a higher inclination
angle of the substrate, favour the onset of flow separation and reversal. However,
Chakraborty et al. (2014) reported that flow reversal is limited by lower and upper
limits with respect to the (reduced) Reynolds number.

The profiles of velocity and streamwise pressure gradient for cases B4 and C2, with
a Reynolds number of Re= 26.9 and Re= 28.5, respectively, and a forcing frequency
of f = 10 s−1, are shown in figure 17. The higher inertia relative to surface tension
of case B4 (We = 1.98) compared to case C2 (We = 0.53) means the high pressure
gradient is concentrated near the interface in case B4, whereas in case C2 the region
of high pressure gradient extends to the wall. As a result, flow reversal is observed in
case B4 but not in case C2. This happens although the curvature of the trough in cases
B4 and C2 is comparable, with κmin = −860 m−1 in case B4 and κmin = −878 m−1

in case C2, and the difference in surface tension between the two cases is merely
2 %. Hence, the interface curvature can be ruled out as the source of the observed
differences, indicating that the larger influence of inertia compared to surface tension
of case B4 (higher We) is the dominating factor. A similar behaviour can be observed
in figure 17 for cases B2 (We = 0.49) and C1 (We = 0.13), which have a Reynolds
number of Re= 11.7 and Re= 12.4, respectively, where flow reversal is observed in
case C1 but not in case B2.

Interestingly, the magnitude of the flow reversal region as well as the size of the
separation eddy are considerably larger in case C2 than in case C1, although the
forcing frequency and the Froude number Fr =

√
3Re/ cot β, which is Fr = 3.7 for

case C1 and Fr= 5.6 for case C2, mean flow separation should be less likely in case
C2, based on findings of previous studies (Chakraborty et al. 2014; Rohlfs & Scheid
2015).
The front of the main wave hump in case C2 (d/hN = 4.79) is significantly steeper
than in case C1 (d/hN = 7.55), also seen in figure 18, leading to a considerable
increase in negative streamwise pressure gradient immediately upstream of the wave
trough, which generally counteracts flow separation. However, the shorter wavelength
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FIGURE 17. DNS profiles of the streamwise velocity u/uN (a) and the streamwise pressure
gradient (b), normalised with the streamwise component of gravity gx, at the trough
preceding the solitary wave, position X4, for cases B2 (Re= 11.7, f = 7 s−1), B4 (Re=
26.9, f = 10 s−1), C1 (Re= 12.4, f = 7 s−1) and C2 (Re= 28.5, f = 10 s−1), obtained with
DNS.

Case C1

–14

–35 20

13

100

0–20

Pressure (Pa)(a)

Pressure (Pa)

–10

Case C2

(b)

FIGURE 18. (Colour online) Pressure contours and isocontours of the streamwise velocity
u/uN ∈ {0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2} in the liquid film of cases C1 and C2, obtained
with DNS. In both cases a streamwise section of 0.04 m is shown.

combined with the higher Reynolds number of case C2 (λ/hN = 39.7, Re = 28.5)
compared to case C1 (λ/hN = 52.3, Re = 12.4), leads to larger capillary waves for
case C2. As a result, the pressure underneath the first capillary ripple is noticeably
higher in case C2 than in case C1, as observed in figure 18, which results in a larger
streamwise pressure gradient between the trough preceding the main wave hump and
the crest of the first capillary ripple, and, consequently, promotes flow separation
and reversal. The effect of the pressure changes in the streamwise direction on
the velocity underneath the trough can clearly be seen by the strongly curved and
clustered isocontours of the streamwise velocity in figure 18.

In the above cases, the low-pressure region underneath the wave trough cannot
extend to the low-velocity region near the wall in cases where inertia is high
compared to surface tension, limiting the high streamwise pressure gradients to the
close vicinity of the interface. Hence, the substantially reduced streamwise pressure
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gradient near the wall is not able to initiate flow separation, i.e. the direction of the
flow remains unchanged. In addition, the front of the solitary wave becomes steeper
as the Reynolds number increases (Denner et al. 2016), which increases the curvature
of the wave trough and leads to a larger streamwise pressure gradient underneath the
trough that promotes flow reversal. Yet, the steeper front of the solitary wave also
increases the pressure difference between the main hump and the wave trough, as
observed in figure 18. Thus, flow reversal is eventually arrested when the Reynolds
number is sufficiently high, because the (negative) pressure gradient upstream of
the wave trough dominates the (positive) pressure gradient downstream of the wave
trough. As a consequence, the parameter space in which flow reversal occurs is
governed by a non-trivial interplay of a variety of parameters, including inclination
angle and frequency, as suggested by previous studies (Chakraborty et al. 2014;
Rohlfs & Scheid 2015), as well as wave steepness, the size of capillary ripples and
the balance of inertia and surface tension.

5. Conclusions

Falling liquid films exhibit rich spatiotemporal dynamics governed by a complex
interplay between inertia, viscosity, surface tension and gravity. Despite several
decades of intensive research, this interplay is not fully understood and important
aspects of falling film dynamics, especially for inertia-dominated falling films,
have not yet been resolved. In this study we undertook a systematic investigation
comprising advanced computations and experimentation aimed at addressing open
questions associated with the inertia–capillary interactions that govern the shape and
propagation of solitary waves on falling liquid films in the inertia-dominated regime.

The overall agreement between experiments and DNS is very good for all quantities
of interest, such as film thickness, velocity profile and interface velocity, and within
the expectations based on the experimental tolerances and the numerical assumptions.
The applied LD model also performs very well and shows excellent agreement with
experiments and DNS for reduced Reynolds numbers δ. 12. For higher δ the results
of the LD model increasingly deviate from the experimental measurements and DNS
results, which can be attributed to the boundary-layer approximation on which the LD
model is founded; for instance, LD models are not able to predict the pressure fields
shown in figure 18 that also include a significant hydrodynamic (due to the complex
flow field) contribution. Nevertheless, the LD model is able to predict accurately the
maximum and minimum film heights even for inertia-dominated flows with δ � 12,
a previously unknown, very useful and interesting feature of LD models. A possible
explanation for this behaviour of LD models is the parabolic velocity profile in most
parts of the film, in particular under the crest of solitary waves (and even in the inertia-
dominated regime and after the onset of flow recirculation).

Careful interrogation of the wave characteristics shows a stagnation/reduction of
the maximum film height at high Reynolds numbers. While in the present study, as
well as in the previous study of Denner et al. (2016), this stagnation/reduction of the
maximum film height has been observed for trains of travelling solitary waves with
constant forcing frequency, a similar behaviour was reported by Chakraborty et al.
(2014) for a single solitary wave travelling on an otherwise flat film (corresponding to
an infinite wavelength). The presented results reveal that this reduction in maximum
film height coincides with a reduction in the maximum flow rate and suggest that a
reduction of the effective inertia acting on the solitary wave hump is responsible for
the stagnation/reduction of the height of solitary waves at high Reynolds numbers.
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This reduction of effective inertia is found to be the result of flow recirculation in
the main wave hump in the moving frame of reference. The observed maximum in
flow rate at a critical Reynolds number, which coincides with the maximum film
height, is an important finding as far as exploitation of falling liquid films for heat
and mass transfer applications is concerned, since previous studies (Roberts & Chang
2000; Mathie et al. 2013; Albert et al. 2014; Markides et al. 2015) suggested a
significant impact of the film height, the flow rate and the recirculation on the heat
and mass transfer characteristics of film flows. Regardless of the Reynolds number
and regardless of whether or not flow recirculation in the moving frame is present,
the velocity profile in the tail of the solitary waves and underneath the wave crest is
found in both the experiments and DNS to have a parabolic, self-similar shape.

At the trough preceding the solitary wave, the velocity profile is strongly influenced
by the low-pressure region underneath the trough, due to the convex shape of the
interface and the resulting positive pressure gradient downstream of the trough. If
the conditions are favourable, the flow underneath the trough preceding the solitary
wave separates from the wall and flow reversal ensues. However, for sufficiently high
inertia, the streamwise pressure gradient from the convex interface shape cannot reach
the low-velocity region near the wall; thus, the magnitude of the streamwise pressure
gradient is insufficient to initiate flow separation and flow reversal. This agrees with
the observation of an upper limit for the flow reversal with respect to the Reynolds
number reported, albeit without studying the underlying mechanism in detail, by
Chakraborty et al. (2014). In addition to inertia, our results also confirm that the
pressure resulting from the curvature of the first capillary ripple is a dominant
factor for the flow separation observed in front of the solitary wave, as initially
proposed by Dietze et al. (2008). The change in flow direction associated with the
flow reversal occurring underneath the wave trough may enhance the heat and mass
transport characteristics and, hence, understanding the reasons underpinning the upper
(and lower) limit of flow reversal with respect to the Reynolds number is of direct
practical relevance.
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