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Automatic Detection and Removal of
Ineffective Mutants for the Mutation Analysis of

Relational Database Schemas
Phil McMinn, Chris J. Wright, Colton J. McCurdy, and Gregory M. Kapfhammer

Abstract—Data is one of an organization’s most valuable and strategic assets. Testing the relational database schema, which protects

the integrity of this data, is of paramount importance. Mutation analysis is a means of estimating the fault-finding “strength” of a test

suite. As with program mutation, however, relational database schema mutation results in many “ineffective” mutants that both degrade

test suite quality estimates and make mutation analysis more time consuming. This paper presents a taxonomy of ineffective mutants

for relational database schemas, summarizing the root causes of ineffectiveness with a series of key patterns evident in database

schemas. On the basis of these, we introduce algorithms that automatically detect and remove ineffective mutants. In an experimental

study involving the mutation analysis of 34 schemas used with three popular relational database management systems—HyperSQL,

PostgreSQL, and SQLite—the results show that our algorithms can identify and discard large numbers of ineffective mutants that can

account for up to 24% of mutants, leading to a change in mutation score for 33 out of 34 schemas. The tests for seven schemas were

found to achieve 100% scores, indicating that they were capable of detecting and killing all non-equivalent mutants. The results also

reveal that the execution cost of mutation analysis may be significantly reduced, especially with “heavyweight” DBMSs like PostgreSQL.

F

1 INTRODUCTION

For many different organizations, including large multi-
national firms such as Google and Facebook, data forms
a strategic asset that must be carefully curated and pro-
tected [1]. Indeed, fields such as healthcare, science, and
commerce often rely on information that is stored in
databases [2]. While non-relational “NoSQL” systems have
been gaining in popularity, relational databases remain
pervasive. For instance, Skype, the widely used video-
call software, uses the PostgreSQL database management
system (DBMS) [3] while Google makes use of the SQLite
DBMS in Android-based phones [4]. Moreover, relational
databases form the backbone of Internet web browsers such
as Chrome1 and Firefox2, mobile applications [5], and even
software powering political campaigns [6].

According to DB-Engines.com, the three most popular
storage systems are relational in nature [7]. Another way
to gauge the popularity of data management technologies
is through an analysis of the tags assigned to questions
posted on the popular Stack Overflow question and answer
web site [8]. Examining the tags attached to the questions
posted to Stack Overflow from January 2008 to August 2016
reveals that, while those about relational databases (e.g.,
“SQL”) are attached to between one and three percent of
all questions on Stack Overflow, only one tag about NoSQL
(i.e., “MongoDB”) is assigned to more than half a percent
of questions. Indeed, the sum of the percentages for the
top tags about relational databases (e.g., “Database”, “Post-
greSQL”, and “SQLite”) are connected with nearly nine
percent of all questions posted during the studied period. In
contrast, the NoSQL tags (e.g., “Cassandra”, “HBase”, and

1. https://www.google.com/chrome/browser
2. http://www.mozilla.org/firefox

“CouchDB”) are attached to less than one percent of Stack
Overflow’s questions. These results clearly indicate that
relational databases, and their schemas that are the subject
of this paper, are a technology that practicing programmers
and database administrators frequently use and discuss.

In addition to being favored because their schema clearly
documents the structure of the data [9], relational databases
are also commonly adopted because a schema protects the
validity and consistency of the stored data through the spec-
ification and enforcement of integrity constraints. Integrity
constraints encode logic ensuring that the data values are:
distinct as dictated by an application (e.g., usernames); not
absent from a database (e.g., a part must have an identifica-
tion number); maintain referential integrity with other data
values (e.g., the identifier in different parts of the schema
must match if they refer to the same entity); and uphold
other domain-specific conditions. Prior work has shown
that real-world schemas are complex and often include
features such as composite keys and multi-column foreign
key relationships [10]. Given the importance of data and
its consistency—and the role that these complex integrity
constraints play in preserving its veracity—testing database
schemas is a recommended industry practice [11]. This has
led to the creation of testing strategies, coverage criteria,
automatic test suite generators, and mutation analysis meth-
ods tailored for database schemas [12], [13], [14], [15].

Yet, it is important to ensure that any tests are sophisti-
cated enough to find flaws in a relational database’s schema.
Although there are several methods for assessing the quality
of a test suite (e.g., measuring how well the tests cover
the entities in the relational schema [12], [16]), many of
them may be limited in their capability to characterize a
test suite’s fault-exposing potential. As an alternative, mu-
tation analysis is a method that estimates the fault-finding

https://www.google.com/chrome/browser
http://www.mozilla.org/firefox
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“strength” of a test suite by generating copies of an artifact
under test and seeding small faults, known as “mutants”,
into those copies [17]. Mutation analysis then repeatedly
runs the test suite against each mutant to see if one or more
of its test cases are capable of distinguishing between the
mutant and the original—that is, whether a test case fails on
the mutant that passed with the original. The intuition here
is that if a test suite cannot reveal the difference between
the mutant and the original then it cannot detect this fault if
it appears in subsequent versions of this artifact [18]. The
percentage of mutants killed is known as the “mutation
score” of the test suite; the higher the mutation score, the
stronger the suite is judged to be at trapping real faults [17].

Nevertheless, mutation analysis can result in the gener-
ation of many mutants that are useless for the purpose of
evaluating a test suite, which we refer to as “ineffective”
mutants in this paper. Mutants may be generated that are
invalid, known as “stillborn” mutants, or are equivalent to
the original artifact or some other generated mutant, called
“equivalent” and “redundant” mutants, respectively [19].
Not only can such mutants reduce the usefulness of the
final mutation score, they also incur an execution time
overhead that is effectively wasted [17]. Moreover, some
ineffective mutants, such as those that are equivalent, also
have an associated human cost: following mutation analysis,
testers often have to manually inspect test cases, mutants,
and the original schema to determine why a mutant is
still alive [17]. In the context of programs, where 45% of
undetected mutants are equivalent, the manual study and
classification of a mutant takes about fifteen minutes [20].
In summary, ineffective mutants have been a long-standing
problem in program mutation [21], and, as this paper shows,
they are also a concern for database schema mutation.

In the context of relational database schema mutation,
ineffectiveness can manifest itself in a variety of ways. For
instance, PRIMARY KEY constraints ensure the uniqueness of
database table rows, which is also a property of UNIQUE

constraints—for example, this fact leads to a source of
equivalent mutants in the SQLite DBMS. In this paper, we
identify a wide range of representative root causes of inef-
fectiveness in the mutants of relational database schemas.
We summarize these root causes into a number of patterns
in database schemas that can be used for ineffective mutant
detection. Not only do we identify sources of stillborn,
equivalent, and redundant mutants (as has been previously
done for program mutants), we find and classify a new
type of ineffective mutant: the “impaired” mutant. Impaired
mutants are similar to stillborn mutants, in that they rep-
resent infeasible database schemas, but are not damaged
to the extent that they are completely invalid and as such
automatically rejected by a DBMS. They are nevertheless of
little worth in mutation analysis as they are always trivially
killed by test cases that attempt to interact with them.

On the basis of these representative patterns, we then
present algorithms that are capable of statically analyzing
mutants, identifying those that are ineffective and removing
them from the mutant pool used in mutation analysis. We
implemented them into our test generation and mutation
analysis tool for database schema testing, the open-source
system called SchemaAnalyst [22], and used it to perform
an empirical study that incorporated 34 database schemas

and three popular and widely used DBMSs—HyperSQL,
PostgreSQL, and SQLite. The experiments focused on the
testing of many real-world schemas, including those used
in the Mozilla Firefox Internet browser and the database
backend of the Stack Overflow web site. For the 34 schemas
in this study, the experiments performed mutation analysis
on a total of 186 tables, 1044 columns, and 590 constraints.

The results of the experimental study show that, in
practice, the presented algorithms are capable of detecting
and removing large numbers of ineffective mutants. Exclud-
ing ineffective mutants from the mutant pool means that
mutation scores obtained for test suites become more useful,
because, for instance, mutants that are the same as the orig-
inal artifact—and thus cannot be killed—no longer prevent
test suites from achieving 100% mutation scores. Removing
ineffective mutants also ensures that redundant mutants are
not double counted. In this paper’s study, we found that all
but one of the schemas we studied had a test suite that expe-
rienced a change in mutation score following ineffective mu-
tant removal. The test suites for the one remaining schema
always killed all mutants, and as such had already attained
a “perfect” mutation score that could not be improved upon.
While only 15% of the schemas that we studied had at least
one test suite with a perfect score before removing ineffec-
tive mutants, a further 21% of schemas had test suites—
previously thought to have suboptimal scores—that achieve
100% scores after discounting ineffective mutants, primarily
due to the elimination of equivalent mutants.

We also investigated the efficiency of mutation analysis
following the removal of ineffective mutants by the pre-
sented algorithms, finding that key parts of the analysis
become significantly faster to run. In particular, eliminating
stillborn mutants using our algorithms is always an order
of magnitude faster than relying on the DBMS to “throw
out” invalid schemas during the mutation analysis process.
The improved efficiency of mutation analysis for other types
of mutant depends on the numbers of that type of mutant
involved, and whether the upfront time needed to detect
and remove them is recouped by not having to consider
them during mutation analysis. For instance, the time taken
to identify and eliminate redundant mutants is rarely re-
couped, since the algorithms need to compare every mutant
against every other mutant. While savings were indeed
possible for several schemas, the overall process took longer
for others. Nevertheless, the benefit in these cases is still, as
discussed earlier in this section, the increased usefulness of
the mutation score. These results also varied depending on
the DBMS with which mutation analysis was performed.
For fast, lightweight, and in-memory DBMSs, like SQLite,
savings are harder to achieve, since tests can be processed
quickly. Yet, for an enterprise, disk-based DBMS, such as
PostgreSQL, significant time savings are often realizable.
Therefore, the important contributions of this paper are:

1) A study and taxonomy of ineffective mutants for rela-
tional database schemas—mutants that do not make a
useful contribution during mutation analysis, because
they are “stillborn” (i.e., invalid), equivalent to the
original schema, equivalent to some other mutant, (i.e.,
“redundant”), or fall into a new class of mutants, those
that are “impaired”. The study presents a collection
of root causes that lead to ineffectiveness in database
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schema mutants, explicated as a series of 10 representa-
tive patterns common to mutant schemas (Section 3).

2) A family of algorithms that statically analyze relational
database schemas and remove ineffective mutants (Sec-
tion 4) and are implemented as a part of our open-
source testing tool called SchemaAnalyst (Section 5).

3) The results of an empirical study, incorporating 34 di-
verse schemas and three well-known and representa-
tive DBMSs, that both evaluates the efficiency and effec-
tiveness of the methods for detecting and removing the
four types of ineffective mutants and reveals how their
removal influences the final mutation score for a rela-
tional database schema’s test suite. The study includes a
manual analysis of the generated mutants that discerns
whether any of those not detected by the automated
methods are actually still ineffective (Section 6).

This paper is organized as follows. We begin by detailing
key background to database schemas, testing methods, and
mutation analysis in Section 2. Then, Section 3 introduces
a taxonomy of mutant types and a series of root causes
and patterns that lead to a mutant schema being ineffective.
Following this, Section 4 presents algorithms to detect each
pattern of ineffectiveness, allowing these mutants to be
removed from the mutant pool used in mutation analysis.
Section 6 then presents the results of the empirical study,
showing how the presented technique can detect large num-
bers of ineffective mutants, and how their removal increases
the usefulness of mutation scores while potentially decreas-
ing the execution costs of mutation analysis. Finally, we
discuss related work in Section 7 and close with concluding
remarks and avenues for future work in Section 8.

2 BACKGROUND

This section details the form and structure of relational
database schemas, and the integrity constraints that form
part of their definition. Since integrity constraints encode
vital logic designed to protect the validity and authenticity
of database data, it is important that they are tested. To this
end, we discuss coverage criteria that have been previously
proposed for this purpose, and further explain techniques
for the automatic generation of a database-aware test suite.
Finally, we introduce mutation analysis, initially in the con-
text of program mutation, showing how it may be applied
to relational database schemas for the purpose of estimating
the “strength” of the tests used to exercise them.

2.1 Relational Schemas and Integrity Constraints

The schema of a relational database defines the structure
and type of data that will reside within it, declaring any rela-
tionships between pieces of data that may exist. A relational
database is composed of two-dimensional tables. Tables are
organized by columns, each of which have a specified data
type. The schema may also include further restrictions on
what data can be added to the database, expressed as one
or more integrity constraints. There are five common types
of constraints expressed in a schema [2]. PRIMARY KEY con-
straints ensure that the values in the given column(s) are
unique, such that they individually identify each row. As
only one PRIMARY KEY can be declared per table, UNIQUE con-
straints can also enforce additional row-uniqueness proper-
ties. A NOT NULL constraint specifies that a NULL value cannot

be stored in a specific column. FOREIGN KEYs enforce that
each row in one table must have a matching row in another
table, connected according to the values in one or more
corresponding pairs of columns. Lastly, CHECK constraints
provide a means of defining arbitrary predicates that each
row must satisfy. These can include boolean algebra oper-
ators like conjunction, disjunction, and negation, as well as
relational operators and database operations, such as “x IS

NULL”, “x > y” and “x IN (y, ...)”.
Figure 1 shows fragments of three different database

schemas, highlighting each of the main five types of in-
tegrity constraints, and showing differences in declaration
style. A segment of the relational database schema of the
popular WordNet database, a large online lexical database
of words in the English language3, is shown by Figure 1(a).
The snippet involves four tables (i.e., lexlinkref, linkdef,
synset, and word) each declared by a separate CREATE TABLE

SQL statement. Within each table declaration appear the
definition of different columns (e.g., synsetid and word1id

for the lexlinkref table). Each column is specified with a
datatype (e.g., varchar(80), representing a variable length
character string containing up to 80 characters).

The segment also shows a variety of integrity constraints
declared by the relational database schema, which Fig-
ure 1 also highlights. These include several NOT NULL con-
straints and a PRIMARY KEY for each table. For instance, the
lexlinkref table has a primary key that involves all of its
columns, meaning that the combination of values for every
row must be unique. Alternatively, the word table defines
the uniqueness of its rows through the wordid column.

Data is inserted into relational database tables through
SQL INSERT statements. Given the integrity constraints de-
fined for the lexlinkref table, the following INSERT state-
ment would be initially accepted by the DBMS for an empty
database (i.e., the DBMS would admit the data); however, it
would be rejected by the DBMS (i.e., the values would not
be admitted) if it were attempted a second time, as the set
of column values would no longer be unique:

(1) INSERT INTO lexlinkref

(synset1id, word1id, synset2id, word2id, linkid)

VALUES (0, 0, 0, 0, 0, 0);

Instead, a distinct set of values would be needed, such as in
the following INSERT statement:

(2) INSERT INTO lexlinkref

(synset1id, word1id, synset2id, word2id, linkid)

VALUES (0, 0, 0, 0, 0, 1);

A database table can only have one primary key, so where
further constraints are necessary to enforce distinctness of
certain values for certain columns, the UNIQUE constraint can
be used. For example, in the WordNet schema of Figure 1(a),
a UNIQUE is defined on the lemma column in the word table.
As such, following INSERT statement 3, INSERT statement 4
will be rejected since the value of lemma is repeated:

Accepted?

(3) INSERT INTO word(wordid, lemma)

VALUES (1, ‘x’); 3

(4) INSERT INTO word(wordid, lemma)

VALUES (2, ‘x’); 7

3. https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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CREATE TABLE "lexlinkref" ( CREATE TABLE artists (

"synset1id" decimal(9,0) NOT NULL "artist_id" text PRIMARY KEY

"word1id" decimal(6,0) NOT NULL );

"synset2id" decimal(9,0) NOT NULL

"word2id" decimal(6,0) NOT NULL CREATE TABLE similarity (

"linkid" decimal(2,0) NOT NULL "target" text,

PRIMARY KEY ("word1id","synset1id", "similar" text,

"word2id","synset2id","linkid") FOREIGN KEY("target") REFERENCES artists("artist_id"),

); FOREIGN KEY("similar") REFERENCES artists("artist_id")

);

CREATE TABLE "linkdef" ( (b) Million Song
"linkid" decimal(2,0) NOT NULL

"name" varchar(50), CREATE TABLE Station (

"recurses" char(1) NOT NULL, ID INTEGER PRIMARY KEY,

PRIMARY KEY ("linkid") CITY CHAR(20),

); STATE CHAR(2),

LAT_N INTEGER NOT NULL

CREATE TABLE "synset" ( CHECK (LAT_N BETWEEN 0 and 90),

"synsetid" decimal(9,0) NOT NULL LONG_W INTEGER NOT NULL

"pos" char(1), CHECK (LONG_W BETWEEN SYMMETRIC 180 AND -180)

"categoryid" decimal(2,0) NOT NULL );

"definition" text,

PRIMARY KEY ("synsetid") CREATE TABLE Stats (

); ID INTEGER REFERENCES STATION(ID),

MONTH INTEGER NOT NULL CHECK (MONTH BETWEEN 1 AND 12),

CREATE TABLE "word" ( TEMP_F INTEGER NOT NULL CHECK (TEMP_F BETWEEN 80 AND 150),

"wordid" decimal(6,0) NOT NULL RAIN_I INTEGER NOT NULL CHECK (RAIN_I BETWEEN 0 AND 100),

"lemma" varchar(80) NOT NULL UNIQUE, PRIMARY KEY (ID, MONTH)

PRIMARY KEY ("wordid") );

);

(a) WordNet (c) NistWeather

Fig. 1. Fragments of different real-world relational database schemas, showing differences in declaration style and highlighting different integrity
constraint types (e.g., a CHECK constraint in the Station table, a FOREIGNKEY in the Similarity or Stats tables, a NOTNULL in the synset

or word tables, a PRIMARYKEY in the lexlinkref or linkdef tables, and a UNIQUE in the word table). Note that the creators of these schemas
declared some of the columns and tables with quotation marks surrounding the variable name, which is permitted by the SQL standard.

Figure 1(b) shows a schema fragment from the freely
available Million Song dataset [23], which contains 280GB
of data. This fragment involves two tables, artists and
similarity, that contain three integrity constraints. There is
a single PRIMARY KEY, defined on the artists table—and in
a different style to primary keys declared for the WordNet
schema, as this time it is declared inline with the column
definition for artist_id. The schema also contains two
FOREIGN KEY constraints designed to ensure that each target

and similar value in the “source” table, similarity, refer
to an existing artist_id value in the “referenced” table,
artists. With these constraints, the following INSERT state-
ments 5 and 6 would be accepted into a empty database,
while statement 7 would be rejected. Accepted statement 6
uses a value for both target and similar that has already
been inserted for artist_id in the artists table. Yet, re-
jected statement 7 uses a value for similar that does not
refer to an existing artist_id value in the referenced table:

Accepted?

(5) INSERT INTO artists(artist_id)

VALUES (‘x’); 3

(6) INSERT INTO similarity(target, similar)

VALUES (‘x’, ‘x’); 3

(7) INSERT INTO similarity(target, similar)

VALUES (‘x’, ‘y’); 7

Finally, Figure 1(c) shows the NistWeather database
schema, a part of the NIST SQL conformance test suite [24].
This schema also contains a FOREIGN KEY, although declared
inline to the ID column of the Stats table. This particular
schema features a number of CHECK constraints. For example,
the MONTH column of the Stats table has a CHECK constraint
defined on it that ensures an integer MONTH value can only be
between 1 and 12. Any INSERTs involving values for MONTH

outside of this legal range will be rejected by the DBMS.

2.2 Mistakes Leading to Faults in Database Schemas

Given that integrity constraints encode important logic used
to protect the validity and consistency of data in a database,
it is also important that these constraints are properly tested,
in accordance with industry advice [11]. Broadly speaking,
a database designer may make mistakes when specifying a
relational database schema in two different ways.

Different DBMSs have different implementations of the
SQL standard and, additionally, may offer features not
specifically required by the standard. A programmer mov-
ing from one DBMS to another is therefore open to making
mistakes when specifying schemas, since the behavior of
DBMSs varies greatly, as will be further demonstrated in
Section 3. This is increasingly the case when an engineering
team uses a different DBMS for development, in-house
testing, and deployment. For example, programmers may
prefer the speed and flexibility of a DBMS like SQLite for
development, but choose a robust enterprise DBMS, such as
PostgreSQL, for use with the deployed application.

One instance of differences in DBMS behavior con-
cerns how PRIMARY KEY constraints are handled by the Post-
greSQL and SQLite DBMSs. With PostgreSQL, PRIMARY KEY
constraints reject NULL values (as well as ensuring column
values are distinct). Yet, for SQLite, NULL values may be
admitted for primary key columns. As such, a programmer
familiar with PostgreSQL may reasonably expect that the
specification of a primary key in SQLite will defend the
database against NULL values for the key. However, unless
they remember to also additionally specify NOT NULL con-
straints on the columns of the key, this will not be the case.
Thus, the behavior of the database schema must be tested to
ensure it is consistent with what the developer intended.

There are other ways in which a programmer may
misunderstand SQL dialects. For instance, the treatment of
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NULL values in columns denoted as UNIQUE operates in one
way for PostgreSQL, SQLite, and HyperSQL and in another
manner for the MS SQL Server DBMS, which only allows
one instance of a NULL value in a UNIQUE column, on the basis
that it is not distinct from other NULL values. Yet, the three
other aforementioned DBMSs treat NULL values as meaning
“unknown” and therefore still distinct from one another. As
such, PostgreSQL, SQLite, and HyperSQL permit multiple
instances of NULL in columns constrained by a UNIQUE.

Instead of misunderstanding the dialect of SQL that a
DBMS supports, a developer may also make mistakes when
specifying the schema by, for example, forgetting to add a
PRIMARY KEY or UNIQUE constraint on a field for usernames
that controls a system’s login. If the database designer
omits a PRIMARY KEY constraint on the username column in
a database table, then the DBMS hosting this table would
allow INSERT statements to create two users who have the
same name. Or, if the designer of a schema neglects to add
CHECK constraints on fields such as prices or product stock
levels to ensure they can never be negative, then it may
be possible for INSERT or UPDATE statements to corrupt the
database’s state. Finally, a designer could specify constraints
on the wrong columns, thus, for instance, leading to a
database table having the wrong PRIMARY KEY column.

2.3 Database Schema Testing

It is important to perform testing to identify the two broad
categories of faults described in Section 2.2. The goal of prior
work has been to create a test case that consists of a sequence
of SQL INSERT statements that aim to fulfill a test adequacy
criterion [13]. The first work on testing integrity constraints,
due to Kapfhammer et al. [12], introduced a search-based
technique that automatically generates data for composing
tests of INSERTs that exercise a database’s schema. A test case
“passes” when its INSERTs are accepted by the DBMS, as
expected, and the data is admitted into the database since it
satisfies the constraints of the relational schema. A test case
may also pass when its INSERTs are, as anticipated, rejected
by the DBMS because the data was generated with the goal
of violating the schema’s integrity constraints.

Coverage Criteria

McMinn et al. [13] followed up the work in [12] by defining
a family of coverage criteria for testing relational database
schema integrity constraints. Organized into subsumption
hierarchies, these criteria range from simple measures with
few coverage goals to more intricate criteria with substan-
tially more test requirements. Each criterion centers on the
reformulation of the integrity constraints of a database table
as a boolean predicate, referred to as the acceptance predicate
for the table. This is because the predicate evaluates to true
when the data in an INSERT statement will be accepted for
the table by a particular DBMS (i.e., the data is admitted
into the database). Conversely, an INSERT statement will
be rejected by a DBMS if the data within it causes the
acceptance predicate to evaluate to false. “Acceptance Pred-
icate Coverage” (APC), therefore, requires the acceptance
predicate for each table to have been exercised as true and
false by the test suite. As such, each table should have had
data in an INSERT statement admitted to it at least once, and
have had an INSERT statement rejected at least once [13].

int max(int x, int max(int x, int max(int x,

int y) { int y) { int y) {
if (x > y) if (x < y) if (x >= y)

return x; return x; return x;

else else else

return y; return y; return y;

} } }

(a) Original Function (b) Mutant (c) Equivalent Mutant

Fig. 2. An example of program mutation. This figure highlights the
fact that equivalent mutants cannot be distinguished from the original
program as there is no input to the max function for the mutant in part
(c) that will produce a different output to the original program in part (a).
Additionally, part (b) of this figure highlights a non-equivalent mutant in
the max function that is semantically different from the original program.

APC does not, then, require that each particular in-
tegrity constraint has been properly exercised, because the
INSERT statement may be rejected by the violation of just
one of the integrity constraints defined for the table. “Active
Integrity Constraint Coverage” (AICC) addresses this limi-
tation. For this criterion, a test case is required that satisfies
the acceptance predicate (i.e., all integrity constraints are
satisfied), followed by tests that exercise the portion of the
predicate corresponding to each integrity constraint as false,
while ensuring the rest of the predicate evaluates to true (i.e.,
each integrity constraint is violated in isolation). “Clause-
Based Active Integrity Constraint Coverage” (ClauseAICC)
takes this further, requiring that each individual clause of
the acceptance predicate be exercised as false [13]. A clause
could correspond to a single aspect of a particular integrity
constraint, for example the uniqueness of a column as part
of a multi-column PRIMARY KEY constraint.

Further criteria defined by McMinn et al. include “Active
Unique Column Coverage” (AUCC), which requires that
test cases be produced that exercise each column of each
table with unique and non-unique values, while maintain-
ing satisfaction of the acceptance predicate. Finally, “Active
Null Column Coverage” (ANCC) requires that test cases
be produced that exercise each column of each database
table with NULL and non-NULL values, while also maintaining
satisfaction of the acceptance predicate [13].

Automatic Test Case Generation

Kapfhammer et al. [12] presented an extension of Korel’s
Alternating Variable Method (AVM) [25] for the automatic
generation of data for INSERT statements that form part of
test cases for schemas. McMinn et al. [13] extended this
approach to generate test suites according to their coverage
criteria. In that paper and the remainder of this one, a test
suite is a collection of test cases, each of which contains
its own INSERT statements designed to fulfill a testing
objective. The paper also introduced a random approach,
referred to as Random+, that utilizes constants mined from
the database schema’s definition. An empirical study con-
ducted by McMinn et al. revealed that the AVM tends to
reliably generate database-aware test suites that provide full
coverage of the criteria, while Random+ is more erratic and
cannot guarantee such high levels of test coverage [13].

2.4 Mutation Analysis of Schema Integrity Constraints

Mutation analysis is a useful method for estimating the
“strength” of a test suite—that is, its potential fault-finding
capability [17]. The process of mutation works by producing
copies of the artifact under test—traditionally a program—
and making minor changes to them so as to simulate
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CREATE TABLE t ( CREATE TABLE t (

x INT, x INT,

y INT, y INT,

PRIMARY KEY(x) PRIMARY KEY(x, y)

); );

(a) Original Schema (b) Mutant

Fig. 3. An example of a relational database schema integrity constraint
mutant. As seen in part (b), the PRIMARYKEY on the table is mutated
from the original schema (part (a)) to include the column y as well as x.

faults. The altered copies of the original artifact are called
“mutants”. Figure 2 shows two examples of mutants for
a max function implemented in the syntax of a Java-like
programming language. Part (b) of this figure shows how
the relational operator in the conditional statement of the
original function in part (a) is changed, resulting in the
predicate being mutated from “if x > y” to “if x < y”.

If a test suite can distinguish between the original artifact
and the mutant (i.e., a test case fails on the mutant that
previously passed on the original), then the mutant is said to
be “killed”, else it is “live” [17]. For instance, the mutant in
part (b) of Figure 2 is easily distinguished from the original.
A test case with the inputs x=1, y=2 gives the output 2 with
the original program and 1 with the mutant, and so the test
case kills the mutant. A test case with the inputs x=1, y=1

would not kill the mutant, however, since the result is 1 for
both versions of the program. The percentage of mutants
killed by a test suite is compiled into a metric known as its
“mutation score”. The higher the mutation score a test suite
has, the stronger it is estimated to be. A test suite is said to be
mutation-adequate if it kills all mutants, that is, it achieves
a “perfect” mutation score of 100% [17]. Intuitively, if a test
suite cannot kill a mutant then this means that it would not
be able to detect this type of programming error if it was
subsequently introduced into the program under test [18].

While mutation analysis was originally proposed for
traditional programs [17], it has recently been adopted for
a wider range of software artifacts. For instance, Deng et
al. and Lindström et al. proposed the use of mutation
analysis to assess the adequacy of test suites for Android
apps [26], [27]. Mutation testing has also recently been used
to measure the effectiveness of test suites for web sites [28],
[29], [30]. Additionally, mutation testing has been applied
in other diverse domains such as mobile software agents
(e.g., [31], [32]) and security policies (e.g., [33], [34]).

In the context of databases, while Bowman et al. focused
on the use of mutation testing to assess test suites for an
entire database management system [35], Kapfhammer et
al. [12] were the first to propose and evaluate mutation
operators for the integrity constraints expressed in a rela-
tional database schema. These proposed operators created
mutants by adding, removing, and replacing columns in
the definitions of PRIMARY KEY and UNIQUE constraints, while
also adding and removing NOT NULL constraints from other
columns in the schema’s tables. An operator was also pro-
posed to remove CHECK constraints from schema definitions.
Wright et al. [15] extended this set by adding operators that
mutate the predicates of CHECK constraints (e.g., by replacing
a relational operator such as > with >=) while also adding
operators to mutate the columns featuring in a relational
database schema’s definition of FOREIGN KEY constraints.

Figure 3 shows an example of a mutation to a
PRIMARY KEY. For the solitary table of the original schema,
shown by part (a), the column x is the sole primary key
column. For the mutant, shown by part (b), the column y

is also a part of the key. With integrity constraint mutation,
a mutant is “killed” when INSERTs made to a database in-
stantiating the mutant schema behave differently compared
to a database instantiating the original schema. As high-
lighted by the fact that the original and mutated schemas
lead to different outcomes (i.e., an 7 indicating rejection
and a 3 meaning acceptance, respectively), the following
INSERT statements are capable of distinguishing between the
original and the mutant for an initially empty database:

Original Mutant

(8) INSERT INTO t(x, y) VALUES (0, 0); 3 3

(9) INSERT INTO t(x, y) VALUES (1, 0); 3 3

(10) INSERT INTO t(x, y) VALUES (0, 1); 7 3

The data in statements (8) and (9) are successfully in-
serted into the database because the value of x is distinct,
thereby satisfying the PRIMARY KEY constraint of the original
schema, while the combination of x and y are distinct,
satisfying the PRIMARY KEY of the mutant. For statement (10),
however, the value for x is not distinct for the column,
thereby causing the INSERT statement’s rejection. The com-
bination of x and y values is still unique for the mutated
PRIMARY KEY, however, and thus statement (10) is accepted,
leading to the mutant being killed, as indicated by the 7 for
the original schema and the 3 for the mutated one.

Like program mutation, mutation analysis of a relational
database schema is a costly process that takes a long time to
complete, due to the many mutants that may be created, and
the fact that the test suite must be run against each mutant
to determine if it is killed or remains live. Furthermore, mu-
tation can result in many “ineffective” mutants that do not
contribute to the mutation score or make it less useful, while
still consuming valuable execution time. The most famous of
these—and most widely studied for program mutation—is
the “equivalent” mutant [17]. As with all mutants, equiva-
lent mutants correspond to seeded changes—but they do
not result in any change in behavior. An example of an
equivalent mutant for program mutation is shown by Fig-
ure 2(c). The relational operator of the conditional statement
has been changed, but the mutant program behaves exactly
the same as the original one. That is, there is no input to the
mutant that will produce an output different from that of
the original. Thus, as previously noted, it is impossible for
a test to distinguish between them. Equivalent mutants will
always remain “live” following mutation, thereby prevent-
ing the tests from achieving a perfect mutation score [17].

In addition, there may be equivalence between pairs of
mutants themselves. This means that the same mutants may
be considered more than once; Just et al. [36] label these
mutants as “redundant” while Papadakis et al. call them
“duplicate” and note that they are problematic for mutation
testing [37]. Even though the removal of these equivalent
and redundant mutants would make mutation testing more
efficient, the detection of equivalent mutants for programs
is generally undecidable due to the halting problem [17].
Finally, mutation may introduce another type of ineffective
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CREATE TABLE t ( CREATE TABLE t ( CREATE TABLE t (

c INT PRIMARY KEY c INT c INT

... ... ...

PRIMARY KEY(c) );

); ); ALTER TABLE t

ADD PRIMARY KEY(c);

(a) (b) (c)

Fig. 4. Three relational database schemas that are identical, and there-
fore equivalent, but declared in different, but valid, ways in the SQL.

mutant, known as the stillborn mutant. These mutants are
ones where the seeded change has caused it to become
invalid—for example, producing a program that does not
compile [38]. Stillborn mutants slow down the process of
mutation analysis, since there is an execution cost associated
with finding them to be invalid (e.g., due to a compilation
error) and removing them from the mutant pool so that they
receive no further consideration. Overall, as these examples
demonstrate, ineffective (i.e., equivalent, redundant, and
stillborn) mutants are also a problem for the mutation of the
integrity constraints in a schema. The next section explains
how these mutants can arise, and, along with identifying a
new type of ineffective mutant, define patterns common to
schemas that are the direct cause of mutant ineffectiveness.

3 CLASSIFYING THE INEFFECTIVE MUTANTS OF

INTEGRITY CONSTRAINTS IN DATABASE SCHEMAS

In this section we describe and define four different types of
ineffective mutants produced during the mutation of the in-
tegrity constraints encoded in a relational database schema.
We give examples of how they occur, and additionally iden-
tify common patterns in database schemas that summarize
the root cause of their ineffectiveness. Three types of mutant
that are ineffective for relational database schemas are also
found in program mutation—equivalent, redundant and
stillborn mutants [17], [36], [39], [40]. We further identify
and explain a fourth type of ineffective mutant for relational
database schemas, namely the impaired mutant.

3.1 Equivalent Relational Database Schema Mutants

As with program mutation, equivalent mutants for rela-
tional database schemas are mutants that have the same
behavior as the original artifact, and as such cannot be
distinguished by a test. In SQL, it is possible to express the
same two schemas by stating their definition, at the syntactic
level, in a slightly different manner. As an example, Figure 4
shows the definition of three schemas that are actually the
same. Each schema consists of one table, t, with one column,
c, with a PRIMARY KEY constraint defined on that column.
Yet, the SQL declaration of the PRIMARY KEY constraint is
expressed in three different ways. For the schema shown
by part (a), the keyword “PRIMARY KEY” appears on the
definition of the column. For the schema shown by part
(b), the PRIMARY KEY declaration appears before the end of
the table’s definition. In the final schema of part (c), the
PRIMARY KEY constraint definition appears after the creation
of the table via an ALTER statement. We refer to schemas that
are identical, but which are possibly declared in different
ways, as structurally equivalent. We define this property as:

Def. 1 (Structural Equivalence).
Two relational database schemas s1 and s2 are said to
be structurally equivalent, if, following declaration, the

CREATE TABLE t ( CREATE TABLE t (

c INT, c INT,

... ...

PRIMARY KEY (c) UNIQUE (c)

); );

(a) (b)

Fig. 5. Two relational database schemas that are different, but function-
ally equivalent, for SQLite, since, for this DBMS, primary keys reject non-
unique values in the same way as is done by UNIQUE constraints.

tables, columns, and integrity constraints that exist for
schema s1 are identical to those of schema s2.

It is also possible to express schemas that are structurally
different but are functionally equivalent, and so also indis-
tinguishable by a test case. This is because different types of
integrity constraints have similar or identical behaviors, or
can be combined to have the same effect as another. Since
SQLite does not enforce the standard that a PRIMARY KEY

should also imply a NOT NULL [41], PRIMARY KEY and UNIQUE

constraints are, for this DBMS, identical in terms of ac-
cepting and rejecting the same INSERT statements. Figure 5
shows an example of two schemas, which are the same but
for the fact that one has a PRIMARY KEY constraint defined for
the c column for the schema shown in part (a) of this figure,
while the other, shown in part (b), has a UNIQUE constraint
defined on the column instead. The functional behavior of
these two schemas is the same: when distinct values for
c are inserted into the table, the DBMS will accept them.
Alternatively, when an INSERT statement contains a value
that is already in the database for c, it will be rejected.

However, these database schemas are not equivalent for
most other DBMSs (e.g., HyperSQL and PostgreSQL), where
PRIMARY KEY constraints also reject the insertion of NULLs in
addition to non-distinct values. As such, the two schemas
shown in Figure 5 behave differently when managed by
these DBMSs: one schema will be responsible for rejecting
NULL values submitted for the c column (i.e., the schema in
part (a) of the figure) while the other schema will admit
them (i.e., the schema in part (b) of the same figure). There-
fore, the equivalence of database schemas is a property that
varies depending on the DBMS in question. This leads to
the following definition of behavioral equivalence:

Def. 2 (Behavioral Equivalence).
Two relational database schemas s1 and s2 are said to be
behaviorally equivalent for a relational database man-
agement system D if when, following their instantiation,
for two initially empty (and separate) databases d1 and
d2, using D, no sequence of INSERT statements I =
〈i1, . . . , iq〉 exists such that there is an ij ∈ 〈i1, . . . , iq〉
that is accepted by d1 but rejected by d2.

Note that, according to this previous definition,
structural equivalence is a type of behavioral equivalence:
all database schemas that are structurally equivalent to
one another are also behaviorally equivalent. As explained
in the following definition, an equivalent mutant therefore
refers to a mutant that is behaviorally equivalent with the
original database schema from which it was created:

Def. 3 (Equivalent Relational Database Schema Mutant).
A mutant meqv of a database schema s is said to be
equivalent if s and meqv are behaviorally equivalent.
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Where equivalent mutants exist, mutation scores are
artificially deflated [19], thus, for instance, potentially com-
promising the comparison of different data generation tech-
niques through mutation analysis. Equivalent mutants also
have an associated human cost: following mutation analysis,
testers often have to manually inspect test cases, mutants,
and the original schema to determine why a mutant is still
alive. In the context of programs, where 45% of undetected
mutants are equivalent, the manual study and classification
of a mutant takes about fifteen minutes [20]. Since it is
impossible to kill an equivalent mutant, such diagnostic
effort on the part of testers is essentially wasted.

Combined with the execution cost per mutant, this
makes the detection and discarding of these mutants,
known as the equivalent mutant problem [17], an important
issue for the mutation of both relational database schemas
and programs. Since the large number of equivalent mutants
and the high costs of human inspection make it infeasible
to manually detect equivalent mutants [20], there are many
approaches that attempt to automatically detect them for
programs (e.g., [40], [42], [43]). This motivates our work to
identify causes of equivalence for database schemas.

Structural equivalence, which occurs at the syntactic
level, is one source of equivalent mutants for database
schemas that we defined in Definition 1. Behavioral equiv-
alence following integrity constraint mutation is due to the
functional equivalence of integrity constraints or between
combinations of integrity constraints. We now identify six
representative patterns that encapsulate the ways in which
behavioral equivalence can manifest.

Pattern BE-1: UNIQUE constraints and PRIMARY KEYs

Pattern BE-1 expresses the form of equivalence demon-
strated in Figure 5, where, for DBMSs like SQLite, there is
no behavioral difference between PRIMARY KEYs and UNIQUEs.
Schemas that are identical but for a UNIQUE instead of a
PRIMARY KEY defined on the same column set are equivalent.

Pattern BE-2: PRIMARY KEYs and UNIQUE constraints paired with
NOT NULL constraints

For DBMSs where PRIMARY KEYs and UNIQUE constraints do
not behave in the same way, because PRIMARY KEYs do not ad-
mit NULL values and UNIQUE constraints do (e.g., for DBMSs
such as HyperSQL and PostgreSQL), the following two re-
lational database schemas are behaviorally equivalent. If the
columns involved in a UNIQUE constraint also have NOT NULL

constraints defined on them, the combined behavior is the
same as that of a PRIMARY KEY constraint:

CREATE TABLE t ( CREATE TABLE t

c INT UNIQUE NOT NULL c INT PRIMARY KEY

); );

Pattern BE-3: PRIMARY KEYs and PRIMARY KEYs paired with
NOT NULL constraints

Following from the last rule, and for DBMSs where
PRIMARY KEYs do not allow NULL values, NOT NULL con-
straints defined on primary key fields are superfluous. Thus,
a schema without NOT NULL constraints on primary key fields
is behaviorally equivalent to an identical schema but with
additional NOT NULL constraints defined. That is, the follow-
ing two database schemas are behaviorally equivalent:

CREATE TABLE t ( CREATE TABLE t

c INT PRIMARY KEY c INT PRIMARY KEY NOT NULL

); );

Pattern BE-4: Extraneous UNIQUE constraints

If a set of columns Csub is declared as UNIQUE, any further
UNIQUE constraints involving the same columns (i.e, a set
Csup, Csub ⊂ Csup) are extraneous. That is, the following two
relational database schemas are behaviorally equivalent:

CREATE TABLE t ( CREATE TABLE t

c1 INT UNIQUE, c1 INT UNIQUE,

c2 INT c2 INT,

); UNIQUE(c1, c2)

);

Column values for c1 will be unique, due to the
“UNIQUE(c1)” declaration. Therefore the combination of any
further column value (i.e., c2) paired with a unique value
for c1 will also be unique. This means that the additional
constraint “UNIQUE(c1, c2)” in the right-hand schema is
superfluous, and the two database schemas are equivalent.

Note that removing “UNIQUE(c1)” from the right-hand
schema would not have the same effect: The constraint
“UNIQUE(c1, c2)” on its own does not guarantee that c1 is
individually unique. It only guarantees that the combination
of c1 and c2 are unique. As such, removing “UNIQUE(c1)”
rather than “UNIQUE(c1, c2)” would change the behavior
of the right-hand schema, and it would no longer be equiv-
alent. It is also important to note that one of the integrity
constraints could be a PRIMARY KEY (as it is not possible for
a table to have two primary keys), since primary keys are
equivalent to UNIQUE constraints under certain conditions, as
already discussed in Patterns BE-1 and BE-2.

An exception to the rule occurs when another table in
the schema has a foreign key referencing the constraint with
the greater number of columns (i.e, Csup). In this case, the
superset constraint is not redundant, as it is preventing
the schema from being invalid. We expand on the issue of
foreign keys and schema validity in Section 3.3.

Pattern BE-5: NOT NULL constraints and CHECK ... IS NOT NULL

constraints

The effect of a CHECK constraint of the form “CHECK c IS NOT

NULL” for some column c is equivalent to defining a NOT NULL

constraint on the column, as in the following example:

CREATE TABLE t ( CREATE TABLE t

c INT NOT NULL c INT,

); CHECK c IS NOT NULL

);

Pattern BE-6: Behaviorally equivalent CHECK constraints

Since CHECK constraints can encode arbitrary constraints, it
is possible for them to be specified in different ways while
being behaviorally equivalent, as in the following example.

CREATE TABLE t ( CREATE TABLE t

c1 INT, c1 INT,

c2 INT, c2 INT,

CHECK c1 > c2 CHECK c1 >= c2 + 1

); );

3.2 Redundant Mutants

In the context of program mutation, Just et al. describe a mu-
tant of a conditional expression with one logical operator as
being redundant if it leads to the same boolean outcome as
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other mutants that are better suited for efficiently assessing
test suite effectiveness [36]. In this paper, we use the term
more broadly: While equivalent mutants are behaviorally
the same as the original artifact, a mutant is redundant with
respect to another mutant if they are behaviorally equivalent
to one another. This leads to the next definition:

Def. 4 (Redundant Relational Database Schema Mutant).
A mutant mred of a relational database schema s is said
to be redundant with respect to some other mutant m of
s if m and mred are behaviorally equivalent.

Patterns of redundancy are the same as for equivalence,
except that the relationship holds between mutants rather
than between a mutant and the original artifact. When a
redundant mutant pair is found, one of the mutants may be
safely discarded, as it replicates the other mutant in the pair
and only serves to artificially inflate mutation scores [37].

3.3 Stillborn Mutants

In the context of program mutation, stillborn mutants are
programs that do not compile due to a mutation operator
making it syntactically or semantically invalid [38]. Such
mutants cannot be used during mutation analysis, since
they do not represent an artifact against which any tests
can be run. Stillborn mutants are also possible for relational
database schema mutation, taking the form of syntactically
invalid SQL declarations and also arising from semantic
invalidity. The submission of SQL statements relating to the
CREATE TABLE declarations for an invalid schema, and there-
fore a stillborn mutant, will be rejected by these DBMSs.
Thus, we define the concept of a stillborn mutant4 as:

Def. 5 (Stillborn Relational Database Schema Mutant).
A mutant mstb of a relational database schema s is said
to be stillborn for a DBMS D if any SQL declaration
relating to the definition of mstb is rejected by D.

We now define two patterns that are a source of seman-
tically invalid database schemas during integrity constraint
mutation, thus leading to stillborn mutants.

Pattern SB-1: PRIMARY KEY and UNIQUE constraints

Some DBMSs, such as HyperSQL, do not allow UNIQUE con-
straints to be defined on the same column sets as the table’s
primary key. An attempt to submit a database schema such
as the following results in an error. That is, any mutant
where UNIQUE constraint columns replicate those of the
primary key will be stillborn, as in the following example:

CREATE TABLE t (

c INT PRIMARY KEY UNIQUE

);

Pattern SB-2: Foreign key misalignment

Many DBMSs require that, for foreign keys appearing in
schemas, the column or columns in the referenced table

4. In previous work we referred to stillborn mutants as “quasi”
mutants [15], since it was always the case that, in practice, a mutant
that was stillborn for one DBMS was not for another. In this paper,
we revert to the original “stillborn” term, since we now know that the
effective/ineffectiveness status of other types of mutants—for example,
equivalent mutants—also varies across different DBMSs.

CREATE TABLE t1 ( CREATE TABLE t1

id INT NOT NULL, id INT NOT NULL,

age INT, age INT,

... ...

PRIMARY KEY (id) PRIMARY KEY (age)

); );

CREATE TABLE t2 ( CREATE TABLE t2

id INT NOT NULL, id INT NOT NULL,

... ...

FOREIGN KEY (id) FOREIGN KEY (id)

REFERENCES t1 (id) REFERENCES t1 (id)

); );

(a) Original schema (b) Mutant with
foreign key misalignment

Fig. 6. A relational database schema (in part (a)) and a mutant schema
(in part (b)) with foreign key misalignment. With the mutant, the primary
key column for t1 has changed (as highlighted) meaning the column
referenced by the foreign key for t2 is no longer distinct.

must be the primary key of that table, or be declared in a
UNIQUE. We refer to this property as foreign key alignment:

Def. 6 (Foreign Key Alignment).

A relational database schema s for a relational
database management system D is said to exhibit
foreign key alignment when for each foreign key
fk = (t, 〈tc1 . . . tcn〉, r, 〈rc1 . . . rcn〉), where tc1 . . . tcn
are columns of the table t on which the key is defined,
and rc1 . . . rcn are the columns of the referenced table r

for the key, a PRIMARY KEY or UNIQUE constraint exists on
r for the columns rc1 . . . rcn, and the pairs of columns
(tc1, rc1) . . . (tcn, rcn) have compatible types for a spe-
cific relational DBMS D. A relational database schema
is said to exhibit foreign key misalignment when the
foreign key alignment property does not hold.

As stated by this definition, column pairs must have
compatible types, a property that depends on the DBMS
in use. For example, SQLite has a weak typing mechanism
allowing any column type to be mapped to any other in a
foreign key. In contrast, PostgreSQL is more strongly typed:
It will allow a column of type INTEGER to be mapped to
a column of type DECIMAL for example, but the pairing of
VARCHAR and INTEGER types, for instance, is not allowed
by this DBMS. An example of a database schema with
correct foreign key alignment, and a mutant with foreign
key misalignment is shown by Figure 6. The original schema
(part (a) of the figure) has a foreign key defined on the
table t2, mapping the column id in table t2 to the id

column of table t1. Since the id column in t1 is a primary
key column, the schema is correctly aligned. However, the
mutated version of the schema (part (b) of the figure) has
had the primary key column changed from id to age. This
schema is misaligned, since the foreign key in table t2 of the
mutant is still referencing the non-primary key column id.

Mutants with foreign key misalignment are problem-
atic for most database management systems. For instance,
DBMSs such as PostgreSQL and HyperSQL, will reject
the second CREATE TABLE statement in Figure 6(b). Other
DBMSs, such as SQLite, do not reject database schemas
with foreign key misalignment, but simply reject all data
that is attempted to be inserted into the table with the
misaligned foreign key definition. This leads to a fourth
category of ineffective mutant, heretofore not mentioned in
the literature and described in the next subsection.
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CREATE TABLE t ( CREATE TABLE t_m (

p1 INT, p1 INT,

p2 INT, p2 INT,

CHECK (p1 > 0 AND p2 > 0), CHECK (p1 > 0 AND p2 = 0),

CHECK ((p1 + p2) > 0) CHECK ((p1 + p2) < 0)

); );

(a) Original schema (b) Impaired mutant

Fig. 7. A schema and an impaired mutant. The mutation changes the
relational operator in the second CHECK (highlighted for the mutant in
part (b)), rendering the constraint infeasible. No data can be inserted
into the table of the mutant, and as such we describe it as “impaired”.

3.4 Impaired Mutants

For database schema mutation, impaired mutants can be
created when an integrity constraint is mutated such that
satisfaction of the collective system of integrity constraints
for that table is not possible. That is, even though the schema
will be accepted by the DBMS in use, no INSERT will ever
result in a new row of data being added to the database’s
table. We now discuss how this can occur in terms of pat-
terns found in a definition of a relational database schema.

Pattern IM-1: Foreign key misalignment

Database schemas with incorrect foreign key alignment, that
are stillborn for most DBMSs, are impaired for others, such
as for SQLite. This DBMS accepts the table definition as
valid, but then refuses to accept data into the table with
the misaligned foreign key when foreign keys are enabled
for the DBMS. IM-1 is identical to SB-2 except that mutants
are identified as impaired rather than stillborn.

Pattern IM-2: Infeasible CHECK constraints

For most DBMSs, a similar situation can occur with infeasi-
ble CHECK constraints. Infeasible CHECK constraints can occur
as a result of schema mutation, as shown by the example
in Figure 7. The mutation of the relational operator in the
second CHECK results in an infeasible set of constraints, and
as a result, every INSERT will be rejected. Since infeasibility
of constraints is generally undecidable [40], [44], [45], this
type of impairment is hard to detect automatically.

We name these mutants “impaired” mutants. While they are
valid relational schemas as far as the DBMS is concerned—
and as such do not qualify as being “stillborn”—they have
been damaged by the mutation process. Impaired mutants
have little use in mutation analysis, due to the ease with
which they are killed—essentially any syntactically valid
test case will kill this type of mutant. We therefore categorize
them as ineffective, and formally define them as follows:

Def. 7 (Impaired Relational Database Schema Mutant).

A mutant mimp of a relational database schema s is said
to be impaired for a relational database management
system D if there is some table t defined for mimp for
which no INSERT statements are accepted by D.

To the best of our knowledge, the concept of an “im-
paired” mutant has not been defined previously in the
literature. An analogous ineffective mutant for program
mutation might be a software component that is altered such
that whenever it is used or accessed, it returns the same
result or throws exceptions, and as such is trivially killed.

Generated
Mutants

M

Original
Schema
s in D

INSERT Statements
I = 〈i1, . . . , iq〉

ij ∈ I

Effective
M \ M ′

Ineffective
Mutants
M ′ ⊆ M

Equivalent
meqv = s

Impaired

ij
7
→ D,mimpRedundant

mred =
m ∈ M

Stillborn

mstb
7
→ D

Fig. 8. A taxonomy of database schema mutant types. In this figure,
boxes with rounded corners represent a type of mutant and a box with
non-rounded corners denotes an artifact that plays a role in determining
whether or not a mutant is ineffective. The box with a double border
shows that these effective mutants will be used in a subsequent mutation
analysis. The light gray box highlights the fact that this paper is the
first to draw attention to this type of mutant; boxes with a dark gray
background correspond to types of ineffective mutant that have been
previously reported in the mutation testing literature for programs.

3.5 Ineffective Mutant Classification Summary

Figure 8 summarizes our categorization of mutants for
database schemas. Out of those produced, only some will
be “effective”. “Ineffective” mutants are ones that are ei-
ther equivalent to the original; redundant, since they are the
same as an already produced effective mutant; represent an
invalid schema for the DBMS concerned, that is they are
stillborn; or, INSERTs will always fail for one or more tables of
the mutant schema, that is, they are impaired. Additionally,
this section defines representative patterns that describe the
four different types of ineffective mutants: there are six pat-
terns each for equivalent and redundant mutants and two
patterns each for stillborn and impaired mutants, respec-
tively. The next section explains how to use these patterns
to automatically detect and remove ineffective mutants.

4 AUTOMATICALLY DETECTING AND REMOVING

INEFFECTIVE DATABASE SCHEMA MUTANTS

Ineffective mutants decrease the usefulness of the mutation
score, and may also increase the time taken to perform
mutation analysis. This section describes our techniques for
automatically removing certain classes of ineffective mutant
that can be identified in advance of mutation analysis,
thereby improving the usefulness of the mutation scores
obtained and potentially decreasing analysis costs. The
presented techniques rely on an abstract representation of
relational database schemas, which greatly simplifies the
analysis that needs to be performed, while not losing key
information needed to identify the ineffective mutants. After
describing this abstract representation, we then introduce
our algorithms that use it when detecting and removing
stillborn and impaired mutants. To avoid further unnec-
essary and potentially costly checks involving database
schema comparisons, these types of mutants are automat-
ically removed before applying the algorithms that identify
and extract the equivalent and redundant mutants.
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4.1 Abstract Representation of Database Schemas

First, our technique parses the SQL statements that declare
a relational database schema and creates a model, which
we refer to as the “abstract representation” of a schema.
This representation abstracts away the syntactic details of
an SQL definition that also make the semantic analysis of
schemas for ineffectiveness harder to undertake. This step is
important both because, as discussed in Section 3.1, SQL can
be used to express the same schema property in a variety of
ways and, furthermore, SQL dialects vary across DBMSs

In our model, a schema s is a sextuple s =
(T,CC ,FK ,NN ,PK ,UC ), where T is a set of tables, CC
is a set of CHECK constraints, FK is a set of FOREIGN KEY

constraints, NN is a set of NOT NULL constraints, PK is a set
of PRIMARY KEY constraints, and UC is a set of UNIQUE con-
straints. A table t ∈ T is a pair (id t, C) where id t is a unique
string identifier (i.e., ∀t′ = (id ′t, C

′) ∈ T, t 6= t′, id t 6= id ′t)
and C is a set of columns. The function COLS can be used
to obtain the columns for a table (i.e., COLS(t) = C).
A column c ∈ C is a pair (idc, type), where idc is a
unique string identifier for the column in the table (i.e.,
∀c′ = (id ′c, type

′) ∈ C, c′ 6= c, idc 6= id ′c), and type is a
label indicating the data type of the column (e.g., INT).

A CHECK constraint cc ∈ CC is a pair (tcc , p), where tcc
is the table to which the CHECK constraint applies, tcc ∈ T ,
and p is a predicate over the subset of columns COLS(tcc).

A FOREIGN KEY constraint fk ∈ FK is a quadruple
(tfk ,TC fk , rfk ,RC fk ), where tfk ∈ T is the table on which
the key is defined, and rfk ∈ T is the table that it references.
TC fk = 〈tc1, ..., tclen〉 and RC fk = 〈rc1, ..., rclen〉 are
two lists of columns of equal length len , {tc1, ..., tclen} ⊆
COLS(tfk ) and {rc1, ..., rclen} ⊆ COLS(rfk ).

A NOT NULL constraint nn ∈ NN is a pair (tnn , cnn)
where tnn and cnn are the table and column on which the
constraint is defined, cnn ∈ COLS(tnn).

A PRIMARY KEY constraint pk ∈ PK is a pair (tpk , Cpk )
where tpk and Cpk are the table and columns on which
the constraint is defined, where Cpk ⊆ COLS(tpk ). Only
one primary key can be specified per table, that is, ∀pk ∈
PK , ∄pk ′ = (t′pk , C

′
pk ) ∈ PK such that pk 6= pk ′∧tpk = t′pk .

Finally, a UNIQUE constraint uc ∈ UC is a pair (tuc , Cuc)
where tuc and Cuc are the table and columns on which the
constraint is defined, Cuc ⊆ COLS(tuc).

4.2 Stillborn Mutants

As described in Section 3.3, stillborn mutants are mutants
that will be rejected by the DBMS and may negatively influ-
ence the efficiency of mutation analysis. This paper’s static
analysis approach involves identifying stillborn mutants on
the basis of different patterns. Following the parsing of the
relational database schema into the abstract representation
described in the previous subsection, the technique applies
different checks to each mutant produced by each of the
mutation operators. If the check passes, then the technique
removes the mutant. The checks undertaken depend on the
DBMS in use during mutation analysis and are as follows.

Check 1: PRIMARY KEY and UNIQUE constraints

This check applies to the mutant types characterized by Pat-
tern SB-1 described in Section 3.3 (i.e., UNIQUE constraints de-
fined on exactly the same column set as a PRIMARY KEY in the

Algorithm 1 Detecting PRIMARY KEY and UNIQUE constraints
on identical column sets for a schema s

function UNIQUEONPRIMARYKEY(s = (. . . ,PK ,UC ))
for all pk = (tpk , Cpk ) ∈ PK do

for all uc = (tuc , Cuc) ∈ UC do
if tpk = tuc ∧ Cpk = Cuc then

return true

end if
end for

end for
return false

end function

same table of a schema). These mutants can be detected at
the level of the abstract representation using the function
UNIQUEONPRIMARYKEY shown by Algorithm 1. Mutants
flagged by this detector can then be removed from the pool
that is subsequently used during mutation analysis.

Check 2: Foreign key misalignment

This check investigates mutants for possible foreign key
misalignment according to Pattern SB-2 (Section 3.3) for
DBMSs that reject these types of schemas (i.e., HyperSQL
and PostgreSQL). This check is automatically performed
using the abstract representation of the mutant schema and
the function DETECTFKMISALIGNMENT in Algorithm 2. If
there is misalignment, then the mutant can be removed from
the pool used during the subsequent mutation analysis.

4.3 Impaired Mutants

Our checks detect and remove impaired mutants according
to Patterns IM-1 and IM-2. Pattern IM-1 (foreign key mis-
alignment) is the same as Pattern SB-2, except it is applied
at a different stage for DBMSs that regard mutants with mal-
formed foreign keys as impaired rather than stillborn (e.g.,
SQLite). Therefore our check for IM-1 re-uses Algorithm 2.

The problem of detecting infeasible CHECKs (Pattern IM-2)
is generally undecidable [40], [44], [45], although some
simple analyses, with limited generality, may be possible.
As stated in Section 8, this task is outside of the scope of
this paper and thus we leave it for future work.

4.4 Equivalent and Redundant Mutants

Detection of equivalent and redundant mutants involves the
same static analysis checks—that are applied to different
mutants—since the basic problem is to detect whether two
mutants behave identically (or are identical). In the case of
equivalent mutants, the checks for equivalence take place
between the original schema and a mutant, while for redun-
dant mutants, the checks occur for each created mutant.

As for stillborn and impaired mutants, the presented
solution for detecting equivalence involves the comparison
of the abstract representation for a pair of schemas s1 and s2.
This structural equivalence is trivial to detect as it is simply
the check s1 = s2. Finding behaviorally equivalent mutants
is more challenging, however. The presented method con-
verts schemas already in the abstract representation into a
normalized form, aiming to produce a single common form
of the schema such that behaviorally equivalent mutants
will be structurally equivalent. Equivalent mutants can then
be removed from the mutant pool used in a later mutation
analysis. For a pair of identical mutants, one of the mutants
is redundant and can be removed from the pool.
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Normalization of schemas involves a series of transfor-
mation steps, which are linked to the patterns of equivalence
identified in Section 3.1. We describe these as follows, fur-
nishing algorithms in terms of our abstract representation
and illustrating the algorithms with examples, which, for
ease of understanding, we demonstrate as if the abstract
schema were written back out into SQL CREATE TABLEs.
For clarity, we use before and after examples of database
schemas to fully illustrate each of the transformation steps.

Algorithm 2 Detecting foreign key misalignment for a
schema s and a DBMS D

The function COMPATIBLE returns true if two columns have compatible types for

the DBMS D, else it returns false.

function DETECTFKMISALIGNMENT(s = (. . . ,FK , . . . ,PK ,UC ), D)
for all fk = (tfk , 〈tc1, ..., tclen〉, rfk , 〈rc1, ..., rclen〉) ∈ FK do

compatible ← true

for i = 1...len do
if ¬COMPATIBLE(D, tci, rci) then

compatible ← false

end if
end for

Cfk ← {rc1, ..., rclen}

foundPK ← false

for all pk = (tpk , Cpk ) ∈ PK do
if rfk = tpk ∧ Cfk = Cpk then

foundPK ← true

end if
end for

foundUC ← false

for all uc = (tuc , Cuc) ∈ UC do
if rfk = tuc ∧ Cfk = Cuc then

foundUC ← true

end if
end for

if ¬compatible ∨ ¬(foundPK ∨ foundUC ) then
return false

end if
end for

return true

end function

Transformation Step 1: Conversion of PRIMARY KEYs

The first transformation step corresponds to the equivalence
patterns BE-1 and BE-2, converting primary keys to equiv-
alent UNIQUEs. The transformation depends on the DBMS’s
“understanding” of how primary keys should behave. If,
like HyperSQL and PostgreSQL, primary key column val-
ues should also be not NULL, the conversion involves also
adding NOT NULL constraints to the columns concerned. If
NULL values can be inserted into primary key columns, as
for SQLite, this step is ignored, as Algorithm 3 shows.

The next example illustrates how, for SQLite, the fol-
lowing two schemas, which are behaviorally equivalent as
described by pattern BE-1, are normalized into a structurally
equivalent form by the transformation step. The right-hand
database schema, involving a PRIMARY KEY constraint is af-
fected by the change, and is normalized such that it is now
structurally equivalent to the left-hand schema:

Original CREATE TABLE t ( CREATE TABLE t (

Schemas c INT UNIQUE c INT PRIMARY KEY

); );

↓ ↓
Following CREATE TABLE t ( CREATE TABLE t (

conversion c INT UNIQUE c INT UNIQUE

); );

The next two examples show database schemas that
will be submitted to a DBMS that mandates primary

Algorithm 3 The conversion of PRIMARY KEY constraints for
a schema s and a DBMS D

The nature of the conversion depends on the DBMS being used. If a DBMS D—

such as HyperSQL or PostgreSQL—rejects NULL as a primary key value, the

function PKSARENOTNULL returns true and NOTNULL constraints are added

to each of the PRIMARYKEY constraints converted to UNIQUE constraints. For

DBMSs that accept NULL as a primary key value (e.g., SQLite), the function

PKSARENOTNULL returns false, and this particular step is ignored.

function CONVERTPKS(s = (. . . ,PK ,UC ), D)
for all pk = (tpk , Cpk ) ∈ PK do

PK ← PK \ {pk}
UC ← UC ∪ {(tpk , Cpk )}

if PKSARENOTNULL(D) then
for all pkc ∈ Cpk do

NN ← NN ∪ {(tpk , pkc)}
end for

end if
end for

end function

Algorithm 4 Removing extraneous UNIQUE constraints in-
volving a superset of columns for some existing UNIQUE

constraint defined on some table for a schema s
function CONVERTUCS(s = (. . . ,FK , . . . ,UC ))

for all uc = (tuc , Cuc) ∈ UC do
for all uc′ = (t′uc , C

′

uc) ∈ UC , uc 6= uc′ do
if ∄fk = (tfk ,TC fk , rfk ;RC fk ) ∈ FK , rfk = tuc ∧RC fk = Cuc then

if C′

uc ⊂ Cuc then
UC ← UC \ {uc′}

end if
end if

end for
end for

end function

key columns should not involve NULL values (e.g., Hyper-
SQL and PostgreSQL). In the first example, the two schemas
are behaviorally equivalent according to pattern BE-2. The
right-hand schema is normalized by Algorithm 3, and be-
comes structurally equivalent to the left-hand schema:

Original CREATE TABLE t ( CREATE TABLE t (

Schemas c INT UNIQUE NOT NULL c INT PRIMARY KEY

); );

↓ ↓
Following CREATE TABLE t ( CREATE TABLE t (

conversion c INT UNIQUE NOT NULL c INT UNIQUE NOT NULL

); );

The second example involves a pair of relational
database schemas that are behaviorally equivalent accord-
ing to pattern BE-3. Again, the transformation step converts
these schemas into structural equivalents. In this example,
both schemas are affected. In the right-hand schema, a
NOT NULL constraint is not added since one is already present
for the column c in the set NN for the database schema.

Original CREATE TABLE t ( CREATE TABLE t (

Schemas c INT PRIMARY KEY c INT PRIMARY KEY NOT NULL

); );

↓ ↓
Following CREATE TABLE t ( CREATE TABLE t (

conversion c INT UNIQUE NOT NULL c INT UNIQUE NOT NULL

); );

Transformation Step 2: Remove extraneous UNIQUE constraints

Transformation step 2 removes extraneous UNIQUEs defined
on schemas—constraints that are superfluous since there
is already some other UNIQUE constraint defined on the
same table involving a subset of columns (Pattern BE-4
in Section 3.1). Algorithm 4 implements this step, with its
third line ensuring that it does not remove a UNIQUE that
is involved in a FOREIGN KEY. Note that this algorithm need
not be concerned if one of the constraints is a PRIMARY KEY,
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since these will already have been converted in the previous
step (transformation step 1). The following example shows
two schemas that are behaviorally equivalent, as described
by equivalence pattern BE-4. The right-hand schema has an
extraneous UNIQUE that is removed by the algorithm, such
that the two schemas become structurally equivalent:

Original CREATE TABLE t ( CREATE TABLE t (

Schemas c1 INT UNIQUE, c1 INT UNIQUE,

c2 INT c2 INT,

); UNIQUE(c1, c2)

);

↓ ↓
Following CREATE TABLE t ( CREATE TABLE t (

conversion c1 INT UNIQUE, c1 INT UNIQUE,

c2 INT c2 INT);

); );

Transformation Step 3: Replace instances of CHECK ... IS NOT

NULL with NOT NULL constraint

As described by equivalence pattern BE-5, CHECK constraints
of the form CHECK ... IS NOT NULL are behaviorally equiv-
alent to NOT NULL constraints. Algorithm 5 describes how
they may be removed in the abstract representation.

The following example shows how such CHECK con-
straints are removed by the algorithm so that the two
schemas involved become structurally equivalent:

Original CREATE TABLE t ( CREATE TABLE t (

Schemas c INT NOT NULL c INT,

); CHECK c IS NOT NULL

);

↓ ↓
Following CREATE TABLE t ( CREATE TABLE t (

conversion c INT NOT NULL c INT NOT NULL

); );

Finally, we do not handle behavioral equivalence pattern
BE-6 in this paper, due to the undecidability of identifying
equivalent constraint systems [40], [44], [45]. While simple
cases of the problem could be handled by customizing the
presented algorithms, we intend, as noted in Section 8, to
more generally tackle this task as part of future work.

5 MUTATION ANALYSIS WITH SchemaAnalyst

We implemented mutation analysis (i.e., the generation of
mutants and the repeated execution of the test suite to de-
termine the mutants’ kill status) and the ineffective mutant
removal algorithms into our SchemaAnalyst tool [22], which
supports the SQLite, PostgreSQL, and HyperSQL DBMSs.
Although SchemaAnalyst also performs the automatic gen-
eration of test suites for relational schemas [22], since it is
the primary focus of this paper, Figure 9 only shows the
different steps involved in mutant production with Schema-
Analyst, which we describe in the following subsections.

5.1 Automated Relational Schema Parsing

SchemaAnalyst begins by parsing the SQL declarations of
the relational schema (i.e., the CREATE TABLE statements)
into the abstract, DBMS-independent schema representation
described in Section 4.1 (Step 1 of Figure 9). To control the
threats to validity that may arise from incorrectly break-
ing down SQL commands, SchemaAnalyst performs parsing
with the General SQL Parser (GSP)5, a commercial tool that

5. General SQL Parser (GSP) is available at http://sqlparser.com.

Algorithm 5 Converting NOT NULL predicates in CHECK con-
straints to NOT NULL constraints for a schema s

The function assumes that the predicate of each CHECK constraint is in

conjunctive normal form. The function REMOVE removes a conjunct from a

predicate, returning the modified predicate or ⊥ if no conjuncts remain.

function CONVERTCHECKNULLS(s = (. . . ,CC , . . . ,UC , . . .))
for all cc = (tuc , p = p1 ∧ ... ∧ pmax ) ∈ UC do

for all c ∈ COLS(tuc) do
for conjunct = 1 . . .max do

if pconjunct = “c IS NOT NULL” then
p← REMOVECLAUSE(p, conjunct)
NN ← NN ∪ {(tuc , c)}

end if
end for
if p = ⊥ then

CC ← CC \ {cc}
end if

end for
end for

end function

handles SQL for a variety of database management systems,
including the three used in the empirical study of Section 6.

5.2 Automated Generation of Mutants

After the schema is parsed into the abstract representation,
the tool applies mutation operators to produce mutant
schemas (Step 2 of Figure 9). Table 1 summarizes 13 different
mutation operators that we apply in this paper and which
are implemented into SchemaAnalyst. Designed to model the
types of mistakes that database designers might make when
specifying a schema, as outlined in Section 2.2, these oper-
ators were originally proposed by Kapfhammer et al. [12]
and Wright et al. [15] for introducing synthetic faults into
the integrity constraints of a relational schema. We designed
these operators according to the following principles:

• Operators should make the smallest possible changes to
the integrity constraints in a relational database schema.

• Operators should be as general as possible, applying to
a wide range of DBMSs and vendor interpretations of
the SQL standard. Thus, it is not an operator’s respon-
sibility to avoid the production of mutants that may be
ineffective for one DBMS but effective for another.

• An operator should not create mutants that are trivially
redundant with respect to its other produced mutants.

• An operator should be usable independently of other
operators, thus enabling it to work in either a selective
or a higher-order mutation strategy. It is therefore not
an operator’s concern as to whether the mutants it
produces are redundant or not with respect to mutants
that may or may not be produced by other operators.

While prior work has defined mutation operators for
other parts of a database application (e.g., the SQL SELECT

statements created by a program [46]), SchemaAnalyst does
not incorporate them since they do not adhere to the afore-
mentioned design principles. Notably, operators that manip-
ulate the SELECTs cannot directly process the CREATE TABLE

statements that define a relational schema. Section 8 ex-
plains that, in future work, we will customize these SELECT-
based operators so that they can manipulate schemas.

For brevity and ease of identification, we assign
each operator a name according to the constraint it tar-
gets and the modification it makes. For example, the
“Primary Key Column Addition” operator is abbreviated
to “PKColumnA”. The “addition” and “removal” operators

http://sqlparser.com
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add and remove components, respectively, while the “ex-
change” operators swap some component for another.

The first three operators mutate CHECK constraints. The
“CInListElementR” operator removes individual elements
from the list of an IN expression (e.g., “CHECK month IN (1,

2, 3 ...)”). The second, “CRelOpE”, produces mutants by
replacing the relational operator (i.e., =, <, >, <=, and >=) in
an expression of a CHECK constraint with each other possible
relational operator. Finally, the third operator, called “CR”,
simply removes a CHECK from the definition of a schema.

The next two operators mutate FOREIGN KEY constraints.
Foreign key definitions require pairs of columns that map
values in a column in the table on which the FOREIGN KEY is
defined, referred to as the “source” table, to a column in the
“referenced” table. “FKColumnPairR”, in contrast, performs
the reverse operation, removing a pair of columns from
an existing FOREIGN KEY constraint. The “FKColumnPairE”
operator exchanges one of the columns in one of the pairs
of the key (that is, the column that is changed can be
on the source table side of the pair, or on the referenced
table side of the pair). Wright et al. [15] also proposed an
“FKColumnPairA” operator, which added a pair of columns
to an existing foreign key. However, due to foreign key
misalignment, this operator only produces non-stillborn or
impaired mutants in a very narrow set of circumstances [47].
It does not result in any effective mutants for the represen-
tative schemas that we study in the experiments of Section 6
and thus, to forestall artificially inflating the significance of
the results, we omitted it from the empirical evaluation.

Two operators mutate NOT NULL constraints. The “NNA”
operator adds a NOT NULL constraint to a column that did not
previously have one, while the “NNR” operator removes an
existing NOT NULL constraint from a table’s column.

Three additional operators mutate PRIMARY KEY con-
straints. The “PKColumnA” operator adds a column to an
existing PRIMARY KEY constraint, or creates a new one from
a column should a table not already have a primary key
defined. The “PKColumnR” operator performs the reverse
operation of removing a column from an existing primary
key, while the “PKColumnE” operator exchanges a column
in an existing key for another one in the table.

The final three operators mutate UNIQUEs in much the
same way as primary keys are mutated: adding columns
to an existing UNIQUE constraint or creating new constraints
(“UColumnA”), removing columns from existing columns
(“UColumnR”), and exchanging them (“UColumnE”).

In contrast to program mutation, which makes small
changes to program code at the syntactic level, these opera-
tors apply mutation at a semantic level, automatically pro-
cessing the abstract representation provided by the Schema-
Analyst tool. This method has clear advantages as it avoids
the production of many kinds of ineffective mutants from
the outset. Stillborn mutants that result from syntactical is-
sues are not possible, while structurally equivalent mutants,
such as those illustrated in Figure 4, cannot be generated.

By definition, each of these operators cannot produce a
mutant that is structurally equivalent to the original schema.
However, some operators (i.e., “UColumnE”) employ ad-
ditional checks to ensure that structurally equivalent pairs
of mutants (i.e., where one of the pair is redundant) are
not produced. In adherence to our design principles, each

TABLE 1
The mutation operators studied in this paper

In this table, the naming convention for the mutation operators follows a system
according to the constraint type being mutated (e.g., Primary Key), the aspect
being mutated (that is generally a column in a table of the database), and how the
aspect is being mutated (i.e., Added, Removed, or Exchanged with another).

Operator Name Description

CInListElementR Removes an element from an IN (...) of a
CHECK constraint

CR Removes a CHECK constraint
CRelOpE Exchanges a relational operator in the predicate

of a CHECK constraint

FKColumnPairR Removes a column pair from a FOREIGN KEY

FKColumnPairE Exchanges a column in a FOREIGN KEY

NNA Adds a NOT NULL constraint to a column
NNR Removes a NOT NULL constraint from a column

PKColumnA Adds a column to a PRIMARY KEY

PKColumnR Removes a column from a PRIMARY KEY

PKColumnE Exchanges a column in a PRIMARY KEY

UColumnA Adds a column to a UNIQUE constraint
UColumnR Removes a column from a UNIQUE constraint
UColumnE Exchanges a column in a UNIQUE constraint

operator does not know which other operators are being
used together, nor does it have a notion of behavioral equiv-
alence or invalidity as these concepts are DBMS specific.
Therefore, ineffective mutants may be produced that are
stillborn, equivalent, redundant, or impaired. As such, we
implemented the algorithms described in the last section
to automatically remove these ineffective mutants. The next
subsection introduces the details of this implementation.

5.3 Automatic Removal of Ineffective Mutants

Following the tool’s automatic generation of mutants, the
stage that is novel to this paper removes the ineffective (i.e.,
the stillborn, impaired, equivalent, and redundant database
schema mutants), as discussed in Section 3, and according
to the algorithms described in Section 4. The algorithms
detailed in that section occupy steps 3–6 of Figure 9.

Step 3 (removal of stillborn mutants), consists of apply-
ing Checks 1 and 2 (described in Section 4.2) for HyperSQL.
For PostgreSQL, SchemaAnalyst only applies Check 2, the
only relevant check for this DBMS; for SQLite, no still-
born mutants can be identified, so the tool does not perform
any checks. Any mutants found to be stillborn by these
checks are removed from the mutant pool. In the Figure 9
and in the experiments of Section 6, this is the set of mutants
referred to as −S, since it contains all of the generated
mutants, minus those the tool identified as stillborn.

Step 4 (removal of impaired mutants) applies to SQLite,
since SchemaAnalyst only needs to check for mutants with
foreign key misalignment for this DBMS. In Figure 9 and in
Section 6’s experiments, this is the set of mutants denoted
−(S+I), since it contains all of the generated mutants,
minus those identified as being stillborn and impaired.

Step 5 (removal of equivalent mutants) normalizes the
remaining mutants according to the transformation steps
described in Section 4.4. It then compares mutants with
the (normalized) original schema for structural equivalence.
SchemaAnalyst removes mutants identified as equivalent
from the mutant pool. In Figure 9 and in the experiments
of Section 6, this is the set of mutants referred to as
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Fig. 9. The inputs and outputs of automatic mutation analysis in the SchemaAnalyst tool. In this figure, a dark square represents the tool and its
constituent parts, an arrow stands for a process, a rectangle is a SQL representation, and circle symbolizes a relational database schema.

−(S+I+E), since it contains all the mutants generated, mi-
nus those the tool identified as being stillborn, impaired as
well as those equivalent to the original schema.

Step 6 (removal of redundant mutants) uses the normal-
ized mutants in checks for equivalence between the mutants
themselves. Where two mutants are found to be structurally
identical, one of the mutants is marked as redundant and
removed from the mutant pool. In Figure 9 and in the exper-
iments of Section 6, this is the set of mutants referred to as
−(S+I+E+R), since it contains all the mutants generated,
minus those automatically identified by the tool as stillborn,
impaired, equivalent, and redundant with respect to some
other mutant with which it is equivalent in the mutant pool.

5.4 Automated Mutation Analysis

Once it completes the phases in Figure 9, SchemaAnalyst then
outputs the mutant schemas in the form of SQL CREATE

TABLE statements, following a standardized SQL-writing
process tailored to the DBMS in use in step 7. Muta-
tion analysis can then begin, as described in Section 2.4.
SchemaAnalyst applies its automatically generated suites of
INSERT statements to the original and mutant schemas,
checking whether the INSERTs are accepted or rejected by
a DBMS in the same way for the two schemas. If there is
any difference, then the mutant is killed, else it is deemed
to be alive. Using this information, SchemaAnalyst computes
the higher-is-better mutation score for the test suite.

6 EMPIRICAL STUDY

In order to evaluate Section 4’s technique that automati-
cally detects and removes ineffective mutants for database
schemas, we designed an empirical study with the aim of
answering the following three research questions:

RQ1: Ineffective Mutants Detected by Static Analysis.
How many stillborn, impaired, equivalent, and redun-
dant relational database schema mutants are detected using
SchemaAnalyst’s automated static analysis approach? Do any
ineffective mutants remain that were not identified by the
presented method, and how are they characterized?

RQ2: Efficiency of the Approach. How does the up-front
time cost of statically identifying and removing impaired,
equivalent, and redundant database schema mutants com-
pare to the time savings made in not having to analyze
them during mutation analysis? In other words, is mutation

analysis more efficient overall with or without the use of
automatic ineffective mutant identification and removal?

RQ3: Impact on the Mutation Score. How does the auto-
matic removal of impaired, equivalent, and redundant mu-
tants influence the mutation score for the schema’s tests?
That is, how often does the removal of ineffective mutants
cause a test suite’s mutation score to increase or decrease?
Does ineffective mutant removal ever enable a previously
non-adequate test suite to achieve a perfect mutation score?

6.1 Methodology

We now describe the methodology that we used to conduct
our experiments with SchemaAnalyst, beginning with our
choice of database schemas to use in mutation analysis with
and without the removal of the ineffective mutants.

6.1.1 Subject Schemas

In order to answer the aforementioned research questions,
we constructed a representative set of 34 database schemas,
over double the size of the set of subjects that featured in
the conference version of this paper [15], and larger than in
previous work on testing database schemas (e.g., [12], [13],
[14]). Houkjær et al. notes that complex real-world relational
schemas often include features such as composite keys and
multi-column foreign-key relationships [10]. As such, the
schemas chosen for this paper’s study reflect a diverse
set of features, from simple instances of each of the main
types of integrity constraint (i.e., PRIMARY KEY constraints,
FOREIGN KEY constraints, UNIQUE constraints, NOT NULL con-
straints, and CHECK constraints) to more complex examples
involving many-column foreign key relationships. Addi-
tionally, the set of subjects that we used in this study involve
database schemas drawn from a range of sources. Further
details are shown by Table 2: the number of tables in each
relational database schema varies from 1 to 42, with a range
of just 3 columns in one of the smallest schema, to 309 in
the largest. Collectively, the 186 tables and 1044 columns
feature each of the main types of database schema integrity
constraint that our mutation operators seek to manipulate.

Several schemas were taken from real-world projects.
For example, ArtistSimilarity and ArtistTerm are schemas
that underpin part of the Million Song dataset, a freely
available research dataset of song metadata [23] (a fragment
of which we introduced earlier in Figure 1(b)). Cloc is a
schema for the database used in a popular open-source
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application that counts the number of various types of
lines in code for many different programming languages
(http://cloc.sourceforge.net). IsoFlav R2 belongs to a plant
compound database from the U.S Department of Agricul-
ture. JWhoisServer is used in an open-source, Java-based
implementation of a server for the Internet WHOIS protocol
(http://jwhoisserver.net). MozillaExtensions and MozillaPer-
missions were both extracted from SQLite databases that are
a part of the Mozilla Firefox Internet browser. RiskIt is a
database schema that forms part of a system for model-
ing the risk of insuring an individual (http://sourceforge.
net/projects/riskitinsurance). StackOverflow is the under-
lying schema used by a popular programming question
and answer website, as previously studied in a conference
data mining challenge [48]. UnixUsage is taken from an
application for monitoring and recording the use of Unix
commands, while WordNet is the database schema used
in a graph visualizer for the WordNet lexical database (a
fragment of which was introduced earlier in Figure 1(a)).
While some of these database schemas are from real-world
applications not used in prior experiments, we chose others
because they featured in previous studies of various testing
methods (e.g., RiskIt, UnixUsage [49], and JWhoisServer [50]).

The six “Nist–” schemas are drawn from the SQL Con-
formance Test Suite of the National Institute of Standards
and Technology (NIST) [24], and have featured in past
studies such as those conducted by Tuya et al. [46] (the
NistWeather schema in particular is shown by Figure 1(c)).
DellStore, FrenchTowns, Iso3166, and Usda were taken from
the samples for the PostgreSQL DBMS, available from the
PgFoundry.org website. iTrust is a large schema that was
designed as part of a patient records medical application to
teach students about software testing methods. It previously
featured in a mutation analysis experiment of Java code
[51]. The remaining schemas (e.g., BankAccount, BookTown,
CoffeeOrders, CustomerOrder, Person, and Products) were ex-
tracted from the textbooks, assignments, and online tutorials
in which they were provided as examples. While simpler
than some of the other schemas used in our study, they
nevertheless proved challenging for open-source database
analysis tools such as the DBMonster data generator [12].

Since many of the database schemas studied in this
paper’s experiments contain many lines of complex SQL
code, we do not include them in this paper. However, all
of the schemas used as subjects are available from the web
site for the SchemaAnalyst tool [22]. Moreover, the Schema-
Analyst tool parsed the SQL for each of these schemas into
the abstract representation that was previously described
in Section 5. Once in this abstract form, the tool wrote the
SQL out again for each of the particular DBMSs featured in
our study, regardless of minor differences in the version of
SQL used; the abstract representation of each schema is also
available for download from SchemaAnalyst’s web site [22].

6.1.2 Subject DBMSs

We performed experiments using the HyperSQL, Post-
greSQL, and SQLite DBMSs. Each of these database
management systems is supported by our SchemaAna-
lyst tool [22]; they were chosen for their performance dif-
ferences and varying design goals. PostgreSQL is a full-
featured, extensible, and scalable DBMS, while HyperSQL is
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The 34 relational database schemas studied in this paper
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ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
BrowserCookies 2 13 2 1 4 2 1 10
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
CustomerOrder 7 32 1 7 27 7 0 42
DellStore 8 52 0 0 39 0 0 39
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 9 24
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
IsoFlav R2 6 40 0 0 0 0 5 5
iTrust 42 309 8 1 88 37 0 134
JWhoisServer 6 49 0 0 44 6 0 50
MozillaExtensions 6 51 0 0 0 2 5 7
MozillaPermissions 1 8 0 0 0 1 0 1
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
StudentResidence 2 6 3 1 2 2 0 8
UnixUsage 8 32 0 7 10 7 0 24
Usda 10 67 0 0 31 0 0 31
WordNet 8 29 0 0 22 8 1 31

Total 186 1044 38 49 357 122 24 590

a lightweight, small DBMS that supports an “in-memory”
mode that avoids disk writing. SQLite is a lightweight
DBMS that differs in its interpretation of the SQL standard
in subtly different ways from HyperSQL and PostgreSQL.
All three of these DBMSs are used in a wide variety of real-
world programs from many diverse application domains.

6.1.3 Automatic Generation of the Example Test Suites

To study the effect of removing ineffective mutants on
the usefulness and cost of mutation analysis, we needed
example test suites on which to perform mutation analysis.
Since none of the chosen schemas are accompanied by a
suite of tests that contain a sequence of INSERT statements,
we generated suites with SchemaAnalyst using the approach
described in our prior work [13]. In that paper, we detailed
a series of coverage criteria and automated techniques that
aim to generate tests to fulfill them. Importantly, the number
of tests generated by the techniques from our prior work is a
function of the chosen coverage criteria and not a parameter
whose values are controlled by the empirical study’s design.

We used Random+ and AVM to automatically generate
test cases with the aim of satisfying the coverage criteria
combination of “ClauseAICC”, “AUCC”, and “ANCC”, as
previously introduced in Section 2.3. Since our previous
work showed that these two test generators satisfy these
particular criteria to different degrees [13], resulting in tests
with medium to strong mutant killing power, we deemed
them highly suited to the task of assessing the relative
usefulness and costs of mutation analysis with and without
ineffective mutant removal. Since both methods rely on
random number generation, we generated 30 test suites for

http://cloc.sourceforge.net
http://jwhoisserver.net
http://sourceforge.net/projects/riskitinsurance
http://sourceforge.net/projects/riskitinsurance
PgFoundry.org
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each database schema using each of the two techniques and
while always employing a different random seed [52].

6.1.4 Experimental Procedure

RQ1: Ineffective Mutants Detected by Static Analysis. To
answer RQ1, we ran the automated static analysis approach
for detecting ineffective mutants on each of the schemas
when hosted by every DBMS, recording the numbers of
mutants detected for each of the four category types—
stillborn, impaired, equivalent, and redundant. Our static
analysis procedure follows rules consistent with each DBMS
such that false positives are unlikely to occur, unless there
are bugs in our implementation of SchemaAnalyst or in the
database management system itself (see Section 6.2 for more
details about how we addressed the former in mitigating the
threats to the validity of our experimental study).

Although we judge that SchemaAnalyst is capable of
identifying large numbers of mutants as ineffective, its
checks are not exhaustive, and as such false negatives are
still possible—that is, there may be mutant schemas that are
ineffective, yet missed by our approach. For stillborn mu-
tants, false negatives are easy to find in the course of
standard mutation analysis—any mutant not identified as
stillborn is rejected by the DBMS. For equivalent mutants,
we manually analyzed the live mutants following mutation
analysis, as a mutant that is killed by a test suite cannot
be equivalent. For this purpose, a mutant is counted as
“live” if it was not killed by any test suite. Since the
number of live mutants is relatively few in number, an
exhaustive manual analysis of these mutants is possible. For
impaired and redundant mutants, however, no automated
DBMS checks exist, nor is the set of mutants naturally
reduced to a tractable number for manual checking through
our implemented and tested mutation analysis procedure.
Thus, we further checked our results through an intensive
manual spot-check of the database schema mutants.

To do so, we selected a subset of non-stillborn mutants
produced by SchemaAnalyst for each schema and DBMS
and manually generated INSERT statements with the aim
of checking the classification of each mutant by our tool
as either equivalent, redundant, impaired, or normal (i.e.,
effective). We selected an initial 50 mutants at random.
We then added a further seven mutants to this pool to
ensure that it contained at least one representative mutant
for each schema, DBMS, mutation operator, and ineffective
mutant pattern, as detailed in Section 3. Where possible,
we selected these additional mutants at random from a
constrained set (e.g., all mutants produced by a particular
operator or for a schema, if fixing one of these aspects
was an important property). Finding an exemplar mutant
for Pattern IM-2 (i.e., infeasible CHECK constraints) was less
straightforward, however, since we were unaware if such
mutants existed in the set of mutants SchemaAnalyst gen-
erated for our schemas, and if they did, which ones they
were. The process we adopted was therefore as follows: We
manually reasoned about the 13 subject schemas involving
CHECK constraints listed in Table 2, firstly concluding that
removing elements of IN expressions through the CInLis-
tElementR operator, or complete constraints through the
CR operator, would not result in infeasible constraints for

any of these schemas. This left mutants produced by the
CRelOpE operator, which was applicable to eight of our
schemas (i.e., BookTown, BrowserCookies, Employee, Exami-
nation, NistXTS748, NistXTS749, Products, and StudentRes-
idence), as they involve CHECK constraints with relational
expressions. Two of these schemas (i.e., BrowserCookies and
Products) have expressions of sufficient complexity that they
could be sources of infeasibility following mutation. The rest
involve expressions that simply compare a column with a
constant. We performed an exhaustive manual analysis of
the mutants produced by CRelOpE for BrowserCookies (15
mutants) and Products (20 mutants). We found three mutants
for Products with infeasible CHECKs following mutation and
selected one to use in our manual spot-check of mutants.

The first author then produced a JUnit test suite for
each of the 57 mutants for our manual spot-check anal-
ysis. Each test suite consisted of INSERT statements that
could be automatically checked against mutants with the
intention of asserting whether that mutant was correctly
classified as “effective” or “ineffective”, and, if ineffective,
what type of ineffective mutant it was. To rule out the
possibility of a mutant being “impaired”, the first author
devised INSERTs to show that data could be added to each
table. To eliminate the possibility of manually classifying a
mutant as equivalent to the original schema, INSERTs were
crafted to show a difference in behavior for the original
schema and the selected mutant (that is, a difference in the
acceptance/rejection pattern of the INSERTs with the mutant
compared to the original schema for the DBMS concerned).

Finally, to rule out the conclusion that the mutant was
equivalent to another mutant (i.e., it was redundant) further
INSERT statements were written to ensure a difference be-
tween the mutant and each other mutant produced for the
schema in question. To assist this process, the first author
wrote utility methods that could be used by each JUnit test
suite to automatically instantiate databases with the original
and mutant schemas, submit INSERT statements, and com-
pare the DBMS responses. If we could not construct INSERT
statements to refute a particular type of ineffectiveness, the
mutant was labeled accordingly, and the manually derived
conclusion cross-checked against the mutant’s classifica-
tion as automatically computed by SchemaAnalyst using the
static detection routines. As noted in Section 6.2, all of the
aforementioned test suites, classifications, and crosschecks
produced by the first author are available for download
from a replication package accompanying this paper.6

RQ2: Efficiency of the Approach. To answer RQ2, we
split up our analysis to specifically investigate (a) stillborn
mutants and (b) impaired, equivalent, and redundant mu-
tants. We treat these two sets of mutants separately since
stillborn mutants may also be identified using the database
management system, while the other three types of ineffec-
tive mutants cannot. If a mutant is stillborn, the DBMS will
reject its CREATE TABLE statements. There are no such DBMS
checks for impaired, equivalent, and redundant mutants. So,
we compare the performance of our algorithms against the
use of the DBMS for stillborn mutants, while for the other
types of mutants, we compare the execution cost of mutation
analysis with and without their inclusion. As background

6. https://github.com/schemaanalyst/ineffectivemutants
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processes on the workstation could lead to small differences
in the timings collected to answer this research question, we
always ran 30 repeat trials for each experiment [52].

(a) Stillborn Mutants. For the first part of our investigation,
relating specifically to stillborn mutants, we ran three ex-
periments. First, we recorded the time taken to submit each
of the CREATE TABLE statements for each mutant for each
subject schema to every DBMS (i.e., HyperSQL, PostgreSQL,
and SQLite). We then verified whether the DBMS accepted
the mutant schema or rejected it as invalid. This particu-
lar scenario represents the simplest method of performing
mutation analysis for database schemas, since schemas are
identified during the process as stillborn by relying on the
DBMS to report an error when the schema is invalid.

Secondly, we recorded the time taken to perform the
same process, but this time by wrapping the CREATE TABLEs
for each mutant schema inside SQL transactions. This repre-
sents a potentially faster method of detecting stillborn mu-
tants using the DBMS. Transactions leverage the “roll back”
feature of a DBMS to remove any successfully created ta-
bles in the event of DBMS rejection of some later CREATE

TABLE [53], rather than individually removing the parts of
the schema that were successfully created. This is important
since all fragments of a schema need to be removed from the
DBMS in preparation for the analysis of the next mutant.

Finally, we recorded the time taken to perform the still-
born mutant checking process using SchemaAnalyst’s auto-
mated static analysis approach. That is, the tool identified
stillborn mutants ahead of the mutation analysis process,
and then removed them from the mutant pool. Since, to our
knowledge, stillborn mutants for database schema integrity
constraints cannot be created for SQLite with the operators
studied—and as a result there is no need for static analysis
checks for this particular DBMS—we ran SchemaAnalyst for
this analysis with only HyperSQL and PostgreSQL.

(b) Impaired, Equivalent, and Redundant Mutants. To address
the second part of the investigation, relating to impaired,
equivalent, and redundant mutants, we first studied the
time taken to run the detection and removal algorithms
with each combination of schema and DBMS to achieve
the four sets of mutants introduced in Section 5.3: “−S”,
which corresponds to all mutants that are produced except
those identified by the algorithms as stillborn; “−(S+I)”,
which further excludes mutants identified as impaired;
“−(S+I+E)”, which additionally excludes equivalent mu-
tants; and finally “−(S+I+E+R)”, which also excludes
redundant mutants, and as such excludes all ineffective
mutants found by the algorithms. Figure 9 showed the se-
quencing of these removals implemented in SchemaAnalyst.

To find the times taken to produce every set of inef-
fective mutants, we timed how long SchemaAnalyst took to
execute each of the steps 4–6 as described in Section 5.3
and depicted in Figure 9. The time needed to produce the
−(S+I+E+R) set of mutants corresponds to the complete
time (i.e., for steps 4–6 inclusively). To obtain the time for
−(S+I+E), we subtracted the time spent in step 6. For
−(S+I), we subtracted the time spent in steps 5 and 6;
while for −S the time is zero, since mutation analysis will
always take place with stillborn mutants removed, regard-
less of which of the three different methods studied in part

(a) of this research question is used to remove them.
We ran SchemaAnalyst to perform mutation analysis with

all non-stillborn mutants produced by its operators (i.e., the
set “−S”), recording the time taken to evaluate each indi-
vidual mutant. Then it calculated the time taken to perform
mutation analysis for each of the four different sets of mu-
tants (i.e., −S, −(S+I), −(S+I+E), and −(S+I+E+R))
by summing the evaluation times for each of the mutants
in each of those particular sets. We repeated mutation anal-
ysis 30 times for each combination of schema, DBMS (i.e.,
HyperSQL, PostgreSQL, and SQLite) and test generation
method (i.e., the AVM and Random+) using different tests
generated with a different random seed, thus minimizing
the possibility of random chance, during test generation,
affecting the results [52]. To produce a total time to perform
mutation analysis with each of the four mutant sets, we
added the time to produce each respective set of mutants
with the time needed to perform mutation analysis with it.

RQ3: Impact on the Mutation Score. To answer RQ3, we
used SchemaAnalyst to compute the mutation scores for each
of the four sets of mutants (i.e., −S, −(S+I), −(S+I+E),
and −(S+I+E+R)) as evaluated during mutation analy-
sis for the experiments that we conducted to answer RQ2.

We performed all of the experiments with our Schema-
Analyst tool [12], [13], [15], [22], as described in Section 5,
compiled with the Java Development Kit 7 compiler and
executed with the Linux version of the 64-bit Oracle Java 1.7
virtual machine. Experiments were executed on a dedicated
Ubuntu 14.04 workstation, with a 3.13.0-44 GNU/Linux 64-
bit kernel, a quad-core 2.4GHz CPU, and 12GB RAM. All
input (i.e., relational database schemas) and output (i.e.,
data files) were stored on the workstation’s local disk. We
used the default configuration of PostgreSQL version 9.3.5,
HyperSQL version 2.2.8, and SQLite 3.8.2. HyperSQL and
SQLite were used with “in-memory” mode enabled.

6.1.5 Evaluating the Impact on Timing and Mutation Score

For each experiment, we computed the means of mutation
scores and timings, over each of the experiment’s 30 repeti-
tions. To gauge the efficiency implications of ineffective mu-
tant removal, we compared the time taken, and the mutation
scores obtained, for mutation analysis with and without
ineffective mutants. For timing data, where a type of mutant
was removed from the mutant pool, we include the time
required for the static analyses to run, detect, and remove
ineffective mutants, thereby producing the different mutant
sets described in Section 5.3 (i.e., “−S” and “−(S+I)”).

Given two sets of data (obtained for either timing or
mutation score, one set with an ineffective mutant type
and one without), we checked for statistical significance
with the Wilcoxon Rank-Sum test, using p < 0.05 as the
significance threshold [52]. Then, we calculated the Vargha-
Delaney Â statistic to measure effect size, thereby determin-
ing the average probability that one approach outperforms
another [54]. In the tables of timing data and mutation
scores (i.e., Tables 9–14), we annotate large effect sizes (that
is, Â < 0.29 or > 0.71) with a “⋆”. Statistically significant
decreases are annotated by a “F” symbol, while statistically
significant increases are annotated by a “�” symbol. If
timings are subject to a significant decrease, this means
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that the process is more efficient with the removal of the
ineffective mutants. Conversely, if timings are subject to a
significant increase, the exclusion of ineffective mutants is
slower than when it includes them. With mutation scores,
a significant increase means that test suites killed a more
favorable percentage of mutants following the removal of
an ineffective mutant, while a significant decrease indicates
that test suites killed a less favorable percentage of mutants.

For assessing the implications of removing stillborn mu-
tants, we only present standard deviations computed for
the 30 runs of each experiment, as shown by Table 8. Due to
the large differences in the means, and the relatively small
standard deviations involved, the trend was clearly evident
and thus further statistical analysis was not necessary.

6.2 Threats to Validity

We now detail some threats to the validity of our empirical
study, and explain how we sought to mitigate them as
part of our experimental design. At the outset, it is im-
portant to note that the SchemaAnalyst tool and all of the
relational database schemas used in this paper’s study are
available from the tool’s web site.7 The availability of the
data generation and mutation analysis tools, in addition
to the SQL source code for each schema listed in Table 2,
permits both the replication of this paper’s experiments and
the external confirmation that we correctly controlled many
of the threats to validity discussed in this subsection.

Also, all of the data sets and each of the data ma-
nipulation, statistical analysis, and table-creation routines—
implemented separately by two different authors of the pa-
per in two distinct programming languages—are available
for download from the web site for this paper’s replication
package.8 Along with supporting the external confirmation
that we appropriately controlled some of the validity threats
mentioned in the remainder of this subsection, the availabil-
ity of this replication package enables the recreation of all
of the paper’s data tables and statistical analyses [55]. In
summary, along with releasing all of the software used to
arrive at this paper’s conclusions, we identified and handled
the following validity threats for the experimental study.

• The schemas used may not generalize. While it impos-
sible for us to claim that our schemas are representative
of all of the characteristics of all possible relational
database schemas, the set of subjects we have collected
is larger than previously considered [12], [13], [14], [15]
and contains schemas drawn from a wide range of
sources, including the production systems detailed in
Section 6.1.1. Table 2 shows the diversity captured by
the 34 schemas that vary in size and their coverage of
each of the main types of integrity constraint.

• The DBMSs used are not representative. While it is the
case that there are some popular DBMSs that we did not
include in the experiments, we note that our choice of

7. The web site https://github.com/schemaanalyst/schemaanalyst
features a Git version control repository containing all of the relational
database schemas used in the experiments in addition to the docu-
mented version of SchemaAnalyst’s source code and test suite.

8. Along with providing the source code for all of the data
analysis and manipulation routines and all of the raw data files,
https://github.com/schemaanalyst/ineffectivemutants also furnishes
the manually created JUnit tests used in answering RQ1.

DBMSs provides a good coverage of the different de-
sign goals (i.e., high performance through in-memory
data storage or stability by keeping data on disk) and
adherence to the SQL standard of many DBMSs used
in practice, as we explained in Section 6.1.2. Although
the results may vary for different DBMSs, the patterns
observed for other management systems are likely to
be similar to those seen for the chosen DBMSs as
long as their features are similar—which several recent
comparisons suggest is, in fact, largely the case.9

• The test suites used may bias the results. To ensure
a diverse set of tests in each of our test suites, we
chose to generate test suites with two different test
data generation techniques—the AVM and Random+—
with their differing approaches to obtaining coverage,
as explained in Section 6.1.3. These two methods are
stochastic, and so further diversity can be achieved by
repeating experiments using a different random seed,
which we did for each experiment and test data gener-
ator. Finally, since none of the chosen database schemas
were accompanied by tests, we could not study how
these types of test influenced the detection and removal
of ineffective mutants; Section 8 notes that this may
be a promising area for future work as more database
designers start to test relational schemas.

• The mutation operators may not generalize. Since
prior work has shown that real-world relational
schemas are complex and often include features such as
composite keys and multi-column foreign-key relation-
ships [10], our operators specifically target these aspects
of relational database schemas. Yet, different results
may be obtained with different types of operators, and
our results may not generalize to those operators. For
instance, this paper does not focus on the identifica-
tion and removal of ineffective higher-order mutants.
However, Section 8 notes that we plan, as part of future
work, to further control this threat by extending the set
of mutation operators used by the SchemaAnalyst tool.

• The mutants are not representative of real faults.
According to the “competent programmer” hypothe-
sis [56], programmers are likely to produce programs
that are nearly correct, implying that real faults will
frequently be the result of small mistakes. By making
small changes to each type of constraint, the mutation
operators that we used were designed to model such
faults in the context of relational database schemas.
They implement operators for both the addition and
removal of columns, and as such model faults of both
omission and commission, further improving the range
of mistakes in database schema that they can represent.

• Background tasks interfering with timings. The tim-
ing of the processes for detecting and removing inef-
fective mutants, and performing the mutation analy-
sis itself, are subject to interference from background
tasks. To minimize the impact of background tasks, we
repeated the experiments and recorded all timings.

9. The web site available at http://goo.gl/7pzxeV provides a
regularly-updated “DBMS comparison” table revealing that different
database management systems now offer many of the same features.
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• Defects in the SchemaAnalyst tool. To mitigate this
threat, we have implemented a JUnit test suite in par-
allel with the development of the SchemaAnalyst tool
itself. Furthermore, we have extensively hand checked
the results obtained to ensure that they are correct.
In addition, as part of the methodology of the ex-
periments, we manually-checked the classification of
57 mutants, further confirming the tool’s correctness.

• Mistakes made as part of the manual analysis. Al-
though the INSERT statements and JUnit tests used to
find false positives in RQ1 of the experimental study
were manually written by an author of this paper, they
were automatically checked against the behavior of the
DBMS and other mutants, and in each case our con-
clusions agreed with the result produced by the static
analysis algorithms for ineffective mutant detection.

• The statistical tests used. We cannot be certain that our
data is normally distributed, and as a result, we used
non-parametric statistical tests, including the Wilcoxon
Rank-Sum (Mann-Whitney U) Test and the Vargha-
Delaney Â statistic for measuring effect size. These two
statistical tests are commonly adopted for analysing
results arising from the study of software engineering
methods that employ randomness [52], thereby mitigat-
ing concerns that our conclusions are incorrect.

• Defects in the statistical analysis tools. Since it is
possible that we made a mistake during the manipula-
tion and statistical analysis of the empirical results, we
took several steps to control this threat to validity. For
instance, two authors of this paper separately imple-
mented the data analysis routines and then compared
the outputs, ultimately finding agreement in the final
data tables and outcomes of the statistical tests.

6.3 Characterizing the Test Suites

Since none of the database schemas came with a test
suite, we automatically generated tests using the AVM and
Random+ methods provided by the SchemaAnalyst tool. Ta-
ble 3 characterizes the test suites created by both of these
techniques, revealing that it is rare for the AVM to not
achieve full coverage of the test requirements. In fact, in
cases where AVM does not cover all of the requirements, we
found that this was due to an infeasibility in the constraints
that the test data generator must cover. This table also
shows that test suites created by AVM are of a higher
coverage—and often comprised of more tests—than those
created by Random+, thereby suggesting that they will also
have a higher mutation score and a longer mutation analysis
time than those that are produced by the random method.

6.4 Answers to Research Questions

RQ1: Ineffective Mutants Detected by Static Analysis

Table 4 shows the number of mutants produced for each
database schema, and the ineffective mutants identified for
each. Table 5 breaks the data down by mutation operator.

The number of mutants produced for each database
schema depends on the number and type of integrity con-
straints it has, all information that is shown in Table 2. If
a type of integrity constraint is not present for a schema,

then certain operators cannot be applied (e.g., the NNR
operator cannot be used to produce mutants with NOT NULL

constraints removed, if there are no NOT NULL constraints
in the first instance). Certain types of integrity constraints
will yield more mutants with certain operators than others.
For example, the PKColumnA operator will produce four
different mutants for a table with a single column primary
key with five columns, where each mutant is the original
primary key with another column in the table added to it.

Responding to this research question, we now discuss
the results for each of the types of ineffective mutant.

Stillborn Mutants

The tables show that SchemaAnalyst’s use of the abstract rep-
resentation and static analysis checks leads to the identifica-
tion of many stillborn mutants for the 34 schemas and the
HyperSQL and PostgreSQL DBMSs. For stillborn mutants, it
is possible to automatically verify the results by submitting
each mutant to the DBMS and checking to see if was rejected
as invalid. This process confirmed that the static analysis
correctly identified all stillborn mutants. The stillborn mu-
tants found are identified as a result of the foreign key
misalignment rule (as discussed in Section 3.3) and the
rule for HyperSQL that detects PRIMARY KEY constraints and
UNIQUE constraints with identical column sets, which are
disallowed for this DBMS. Since neither issue affects SQLite,
no stillborn mutants were found for this DBMS.

Table 4 shows that the NistDML182 schema resulted
in the most stillborn mutants with the mutation opera-
tors. This schema has one foreign key with 15 columns,
leading to many instances of foreign key misalignment
when SchemaAnalyst applies the mutation operators. The
RiskIt, UnixUsage, and CustomerOrder schemas also have
high numbers of stillborn mutants. As Table 2 shows, these
schemas have the highest number of foreign keys (10, 7, and
7, respectively), which again causes foreign key misalign-
ment. As seen from Table 5, approximately 80% of mutants
produced by the FKColumnPairE operator are stillborn. In
order to create a mutant that maintains a correctly aligned
foreign key, this operator has to exchange a column where
the modified column set in the referenced table corresponds
to an existing PRIMARY KEY or UNIQUE constraint so that the
mutant is valid. However, this happened relatively infre-
quently. Moreover, approximately a third of mutants are
stillborn for the FKColumnPairR operator. Since FKColumn-
PairR removes a pair of columns from the foreign key (i.e., a
column in the foreign key table and its associated column in
the referenced table), valid mutants tend not to be produced
except for when the foreign key involves a single column
pair, in which case the entire constraint is removed.

Impaired mutants

For SQLite, mutant schemas with foreign key misalign-
ment are impaired, rather than stillborn. Accordingly, many
mutants that would have been classified as stillborn for
HyperSQL and PostgreSQL are identified as impaired for
SQLite. An example of this phenomenon is given in Ta-
ble 5, where, for SQLite, operators like FKColumnPairE and
PKColumnA, and PKColumnE produce no stillborn mu-
tants and, respectively, 415, 102, and 111 impaired mutants.
Also, there are fewer impaired mutants for SQLite than
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TABLE 3
Mean coverage and size of the test suites that were automatically generated by Random+ and the AVM

In this table, the abbreviation “Cov.” stands for the higher-is-better coverage score of the suite created by the test generator, while “# Tests” is the number of test cases.

HyperSQL PostgreSQL SQLite

Random+ AVM Random+ AVM Random+ AVM

Schema Cov. # Tests Cov. # Tests Cov. # Tests Cov. # Tests Cov. # Tests Cov. # Tests

ArtistSimilarity 59.3 10.7 100.0 18.0 59.3 10.7 100.0 18.0 61.2 11.7 100.0 19.0
ArtistTerm 59.5 23.9 100.0 40.0 59.5 23.9 100.0 40.0 62.0 26.9 100.0 43.0
BankAccount 84.6 26.4 100.0 31.0 84.6 26.4 100.0 31.0 87.0 32.4 100.0 37.0
BookTown 91.8 247.4 99.0 266.0 91.8 247.4 99.0 266.0 91.8 250.4 99.0 269.0
BrowserCookies 57.8 42.0 100.0 72.0 57.8 42.0 100.0 72.0 58.6 42.0 100.0 71.0
Cloc 92.1 36.9 100.0 40.0 92.1 36.9 100.0 40.0 92.1 36.9 100.0 40.0
CoffeeOrders 57.1 44.4 100.0 77.0 57.1 44.4 100.0 77.0 61.6 55.7 100.0 90.0
CustomerOrder 41.1 49.9 100.0 120.0 41.1 49.9 100.0 120.0 41.3 52.7 100.0 126.0
DellStore 93.0 165.4 100.0 177.0 93.0 165.4 100.0 177.0 93.0 165.4 100.0 177.0
Employee 88.8 31.3 100.0 35.0 88.8 31.3 100.0 35.0 89.9 34.3 100.0 38.0
Examination 82.4 85.4 100.0 103.0 82.4 85.4 100.0 103.0 83.3 89.6 100.0 107.0
Flights 58.4 38.8 100.0 66.0 58.4 38.8 100.0 66.0 57.8 36.1 100.0 62.0
FrenchTowns 34.1 18.4 100.0 53.0 34.1 18.4 100.0 53.0 34.1 18.4 100.0 53.0
Inventory 95.3 15.3 100.0 16.0 95.3 15.3 100.0 16.0 96.0 17.3 100.0 18.0
Iso3166 84.5 7.7 100.0 9.0 84.5 7.7 100.0 9.0 88.5 10.7 100.0 12.0
IsoFlav R2 87.1 155.0 100.0 177.0 87.1 155.0 100.0 177.0 87.1 155.0 100.0 177.0
iTrust 91.1 1334.8 100.0 1458.0 91.1 1334.8 100.0 1458.0 91.6 1395.4 100.0 1517.0
JWhoisServer 85.9 131.5 100.0 152.0 85.9 131.5 100.0 152.0 86.5 137.5 100.0 158.0
MozillaExtensions 87.3 198.5 100.0 226.0 87.3 198.5 100.0 226.0 87.5 201.5 100.0 229.0
MozillaPermissions 95.3 30.7 100.0 32.0 95.3 30.7 100.0 32.0 95.3 31.7 100.0 33.0
NistDML181 63.1 23.6 100.0 37.0 63.1 23.6 100.0 37.0 64.2 24.7 100.0 38.0
NistDML182 62.0 110.0 100.0 176.0 62.0 110.0 100.0 176.0 65.0 124.0 100.0 190.0
NistDML183 100.0 34.0 100.0 34.0 100.0 34.0 100.0 34.0 100.0 34.0 100.0 34.0
NistWeather 56.8 29.8 100.0 52.0 56.8 29.8 100.0 52.0 75.2 42.3 100.0 56.0
NistXTS748 100.0 16.0 100.0 16.0 100.0 16.0 100.0 16.0 100.0 16.0 100.0 16.0
NistXTS749 85.0 31.7 100.0 37.0 85.0 31.7 100.0 37.0 85.9 30.2 100.0 35.0
Person 92.8 17.7 100.0 19.0 92.8 17.7 100.0 19.0 93.7 18.7 100.0 20.0
Products 69.3 32.8 97.0 46.0 69.3 32.8 97.0 46.0 78.3 41.9 98.0 52.0
RiskIt 67.9 167.8 100.0 245.0 67.9 167.8 100.0 245.0 69.7 175.2 100.0 250.0
StackOverflow 95.5 164.2 100.0 171.0 95.5 164.2 100.0 171.0 95.5 164.2 100.0 171.0
StudentResidence 70.0 21.0 100.0 30.0 70.0 21.0 100.0 30.0 73.2 25.1 100.0 34.0
UnixUsage 49.6 73.6 100.0 147.0 49.6 73.6 100.0 147.0 51.8 76.6 100.0 147.0
Usda 89.6 222.4 100.0 247.0 89.6 222.4 100.0 247.0 89.6 222.4 100.0 247.0
WordNet 89.5 114.4 100.0 127.0 89.5 114.4 100.0 127.0 88.6 105.5 100.0 118.0

(1) CHECK (price > 0)

(2) CHECK (discounted_price > 0)

(3) CHECK (price > discounted_price)

Fig. 10. CHECK constraints of the Products schema

stillborn mutants for HyperSQL and PostgreSQL because
SQLite does not regard mutants with UNIQUE constraints
and PRIMARY KEYs on the same sets of columns as invalid,
as does HyperSQL, and type mismatches between columns
in mutated, yet correctly-aligned, FOREIGN KEYs are of no
concern for this DBMS. (As discussed in Section 3.3, SQLite
has a weak typing mechanism where, for example, a col-
umn of type TEXT can form a foreign key with a column
of type INTEGER.) Since there is no need for static checks
for impaired mutants with HyperSQL and PostgreSQL, no
impaired mutants were identified for these DBMSs.

Yet, our manual analysis did reveal impaired mutants
that escaped the automated analysis. For the mutants of
schemas with CHECKs, we found three that had constraints
that were infeasible, and are therefore impaired. Involving
Products, these mutants were produced by CRelOpE, which
is responsible for changing the relational operator in a CHECK.
This database schema has a table involving the three CHECK

constraints shown by Figure 10. The operator mutated the
first constraint to price = 0, price < 0, and price <= 0,
respectively. Because of the second constraint, mandating
that discounted_price be greater than zero, the third con-
straint price > discounted_price can never be true.

It is worth noting that our manual analysis involved
an exhaustive search for mutants with infeasible CHECK

constraints, and resulted in us finding only three mutants—
a very small percentage of the total number of mutants pro-
duced for the subject schemas. As reported in Tables 4 and
5, a total of 5223 mutants were produced, meaning that only

3
5233 = 0.06% of mutants escaped the automated analysis.

Nevertheless, as discussed in Section 8, future work will
automatically identify cases of infeasibility in CHECKs and
remove them from the subsequent mutation analysis.

Equivalent mutants

Tables 4 and 5 show that a significant number of mutants
were identified as equivalent to the original schema by the
automated analysis. Following the removal of stillborn and
impaired mutants from the total of 5223 mutants produced
for all subject schemas, SchemaAnalyst identified 162 (3%),
271 (5%), and 115 (2%) of these as equivalent for the Hyper-
SQL, PostgreSQL, and SQLite DBMSs, respectively.

Using the mutation operators with SQLite results in
the fewest equivalent mutants of all three DBMSs detected
by the static analysis checks (115 mutants). As shown by
Table 5, the NNA and NNR operators do not produce equiv-
alent mutants for SQLite—even though they do so with
PostgreSQL and HyperSQL. This is because of the difference
in PRIMARY KEY behavior between SQLite and the other two
DBMSs. For PostgreSQL and HyperSQL, a NOT NULL can be
added to or removed from a column that is already part of a
PRIMARY KEY, and it will have no effect on the behavior of the
PRIMARY KEY constraint, since for these DBMSs, primary key
columns also have an implicit NOT NULL defined on them. As
such, the NNA and NNR operators produce mutants that
are indistinguishable in behavior from the original schema.
However, for SQLite, values in primary key columns may
be NULL, so adding and removing NOT NULL constraints on
these columns changes the behavior of the schema.

As shown in Table 4, the number of equivalent mutants
detected for HyperSQL (162 mutants) is lower than that
for PostgreSQL (271 mutants). This phenomenon is evident
because many mutants that are equivalent for the Post-
greSQL DBMS are stillborn for HyperSQL, and thus they
were previously removed from the mutant pool. This set of
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TABLE 4
Ineffective mutants by database schema

In this table, “Produced” is the number of mutants produced for a relational database schema, while “Stillborn”, “Impaired”, “Equivalent”, and “Redundant” indicate
the numbers of these mutants that are ineffective by their differing type. The “Ineffective” column denotes the total number of ineffective mutants, while “Effective”
indicates the total number of remaining effective mutants. Finally, the “Reduction” columns indicates the overall reduction in the number of mutants needed for
mutation analysis following the removal of ineffective mutants. In this table, “H” = HyperSQL, “P” = PostgreSQL, and “S” = SQLite.
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H 13 2 0 1 2 5 8 38.5 H 190 6 0 6 0 12 178 6.3
ArtistSimilarity P 13 1 0 2 2 5 8 38.5 JWhoisServer P 190 0 0 12 0 12 178 6.3

S 13 0 1 1 4 6 7 46.2 S 190 0 0 6 0 6 184 3.2

H 29 6 0 3 0 9 20 31.0 H 364 4 0 2 12 18 346 4.9
ArtistTerm P 29 3 0 6 0 9 20 31.0 MozillaExtensions P 364 0 0 4 13 17 347 4.7

S 29 0 3 3 4 10 19 34.5 S 364 0 0 2 28 30 334 8.2

H 42 14 0 2 0 16 26 38.1 H 31 1 0 1 0 2 29 6.5
BankAccount P 42 12 0 4 0 16 26 38.1 MozillaPermissions P 31 0 0 2 0 2 29 6.5

S 42 0 10 2 0 12 30 28.6 S 31 0 0 1 0 1 30 3.2

H 235 11 0 13 2 26 209 11.1 H 33 13 0 2 0 15 18 45.5
BookTown P 235 0 0 24 2 26 209 11.1 NistDML181 P 33 13 0 2 0 15 18 45.5

S 235 0 0 13 29 42 193 17.9 S 33 0 11 0 4 15 18 45.5

H 114 30 0 3 3 36 78 31.6 H 351 255 0 15 0 270 81 76.9
BrowserCookies P 114 29 0 4 3 36 78 31.6 NistDML182 P 351 270 0 15 0 285 66 81.2

S 114 0 21 1 3 25 89 21.9 S 351 0 240 0 17 257 94 73.2

H 30 0 0 0 0 0 30 0.0 H 31 11 0 0 0 11 20 35.5
Cloc P 30 0 0 0 0 0 30 0.0 NistDML183 P 31 11 0 0 0 11 20 35.5

S 30 0 0 0 10 10 20 33.3 S 31 0 11 0 6 17 14 54.8

H 101 45 0 5 0 50 51 49.5 H 48 14 0 3 1 18 30 37.5
CoffeeOrders P 101 40 0 10 0 50 51 49.5 NistWeather P 48 13 0 4 1 18 30 37.5

S 101 0 40 5 0 45 56 44.6 S 48 0 13 1 2 16 32 33.3

H 183 92 0 7 0 99 84 54.1 H 19 1 0 0 1 2 17 10.5
CustomerOrder P 183 87 0 14 0 101 82 55.2 NistXTS748 P 19 0 0 0 2 2 17 10.5

S 183 0 71 7 0 78 105 42.6 S 19 0 0 1 2 3 16 15.8

H 156 0 0 0 39 39 117 25.0 H 38 13 0 3 2 18 20 47.4
DellStore P 156 0 0 0 39 39 117 25.0 NistXTS749 P 38 12 0 4 2 18 20 47.4

S 156 0 0 0 52 52 104 33.3 S 38 0 10 1 2 13 25 34.2

H 45 1 0 1 0 2 43 4.4 H 23 1 0 1 0 2 21 8.7
Employee P 45 0 0 2 0 2 43 4.4 Person P 23 0 0 2 0 2 21 8.7

S 45 0 0 1 0 1 44 2.2 S 23 0 0 1 0 1 22 4.3

H 138 26 0 2 0 28 110 20.3 H 67 16 0 4 0 20 47 29.9
Examination P 138 24 0 4 0 28 110 20.3 Products P 67 14 0 6 0 20 47 29.9

S 138 0 16 2 0 18 120 13.0 S 67 0 14 2 2 18 49 26.9

H 84 36 0 4 2 42 42 50.0 H 347 148 0 12 4 164 183 47.3
Flights P 84 36 0 4 2 42 42 50.0 RiskIt P 347 138 0 22 4 164 183 47.3

S 84 0 31 0 2 33 51 39.3 S 347 0 123 10 8 141 206 40.6

H 128 30 0 0 35 65 63 50.8 H 129 0 0 0 5 5 124 3.9
FrenchTowns P 128 22 0 8 35 65 63 50.8 StackOverflow P 129 0 0 0 5 5 124 3.9

S 128 0 18 8 36 62 66 48.4 S 129 0 0 0 43 43 86 33.3

H 21 3 0 1 1 5 16 23.8 H 45 7 0 2 0 9 36 20.0
Inventory P 21 0 0 2 2 4 17 19.0 StudentResidence P 45 5 0 4 0 9 36 20.0

S 21 0 0 1 4 5 16 23.8 S 45 0 4 2 0 6 39 13.3

H 11 1 0 1 0 2 9 18.2 H 192 98 0 8 3 109 83 56.8
Iso3166 P 11 0 0 2 0 2 9 18.2 UnixUsage P 192 92 0 14 3 109 83 56.8

S 11 0 0 1 0 1 10 9.1 S 192 0 67 6 7 80 112 41.7

H 219 3 0 0 0 3 216 1.4 H 201 0 0 0 31 31 170 15.4
IsoFlav R2 P 219 0 0 0 3 3 216 1.4 Usda P 201 0 0 0 31 31 170 15.4

S 219 0 0 3 37 40 179 18.3 S 201 0 0 0 67 67 134 33.3

H 1458 51 0 44 22 117 1341 8.0 H 107 6 0 16 6 28 79 26.2
iTrust P 1458 21 0 74 22 117 1341 8.0 WordNet P 107 0 0 20 8 28 79 26.2

S 1458 0 19 30 46 95 1363 6.5 S 107 0 0 4 8 12 95 11.2

H 5223 945 0 162 171 1278 3945 24.5
Total P 5223 843 0 271 179 1293 3930 24.8

S 5223 0 723 115 423 1261 3962 24.1

mutants corresponds to schemas where a PRIMARY KEY and a
UNIQUE constraint involve an identical set of columns, and,
as Table 5 shows, is largely the result of the UColumnA
operator, where a column is added to an existing UNIQUE

constraint or a new single-column UNIQUE is created that is
identical to the database table’s primary key.

With the goal of finding equivalent mutants that were
not detected by our static analysis approach, we inves-
tigated mutants not killed following all of the mutation
analysis runs, in adherence to the methodology detailed
in Section 6.1.4. Table 6 summarizes this data, showing the
numbers of remaining live mutants for each schema and op-
erator after mutation analysis with each of the three chosen
DBMSs. We manually studied each live mutant to try and
ascertain whether it was a genuine equivalent mutant that

was missed by our automated analysis, or whether the test
suites used had simply failed to kill it. Following this inves-
tigation, we found that only three mutants were genuinely
equivalent for each of the DBMSs. The first equivalent mu-
tant is the one produced by the CR operator for Products, as
listed in Table 6. This operator mutated the CHECK constraints
shown by Figure 10. For this schema, the first constraint is
actually superfluous, since price must be greater than zero,
if, according to constraint (2), discounted_price is greater
than zero, and price must be greater than discounted_price

as per constraint (3). Therefore, when the CR operator
produces a mutant by removing constraint (1), the mutant is
equivalent to the original. Two further equivalent mutants
occur with the Products schema and CRelOpE, accounting
for two of the three mutants listed for CRelOpE in Table 6.
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TABLE 5
Ineffective mutants by mutation operator

(Please refer to Table 4 for a description of each heading)
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H 282 0 0 0 0 0 282 0.0
CInListElementR P 282 0 0 0 0 0 282 0.0

S 282 0 0 0 0 0 282 0.0

H 38 0 0 0 0 0 38 0.0
CR P 38 0 0 0 0 0 38 0.0

S 38 0 0 0 0 0 38 0.0

H 110 0 0 0 0 0 110 0.0
CRelOpE P 110 0 0 0 0 0 110 0.0

S 110 0 0 0 0 0 110 0.0

H 643 518 0 0 0 518 125 80.6
FKColumnPairE P 643 535 0 0 0 535 108 83.2

S 643 0 415 0 0 415 228 64.5

H 67 23 0 0 2 25 42 37.3
FKColumnPairR P 67 23 0 0 2 25 42 37.3

S 67 0 23 0 2 25 42 37.3

H 687 0 0 71 0 71 616 10.3
NNA P 687 0 0 71 0 71 616 10.3

S 687 0 0 2 0 2 685 0.3

H 357 0 0 91 0 91 266 25.5
NNR P 357 0 0 91 0 91 266 25.5

S 357 0 0 0 0 0 357 0.0

H 884 114 0 0 99 213 671 24.1
PKColumnA P 884 102 0 8 103 213 671 24.1

S 884 0 102 12 338 452 432 51.1

H 568 114 0 0 0 114 454 20.1
PKColumnE P 568 111 0 0 0 111 457 19.5

S 568 0 111 0 0 111 457 19.5

H 160 51 0 0 23 74 86 46.2
PKColumnR P 160 51 0 0 24 75 85 46.9

S 160 0 51 0 33 84 76 52.5

H 1167 109 0 0 28 137 1030 11.7
UColumnA P 1167 8 0 101 28 137 1030 11.7

S 1167 0 8 101 28 137 1030 11.7

H 223 12 0 0 14 26 197 11.7
UColumnE P 223 9 0 0 14 23 200 10.3

S 223 0 9 0 14 23 200 10.3

H 37 4 0 0 5 9 28 24.3
UColumnR P 37 4 0 0 8 12 25 32.4

S 37 0 4 0 8 12 25 32.4

H 5223 945 0 162 171 1278 3945 24.5
Total P 5223 843 0 271 179 1293 3930 24.8

S 5223 0 723 115 423 1261 3962 24.1

The first mutant changes the expression of CHECK constraint
(1) to price != 0 while the second changes it to price >= 0.
Again, these constraints add nothing further to constraints
(2) and (3), and are thus equivalent to the original schema.

Manual analysis of the remaining live mutants revealed
that the automatically generated test suites were incapable
of distinguishing each of these mutants from their corre-
sponding original schema. That is, the mutants were in
theory killable by a test suite, and they were not actually
equivalent. This is a shortcoming of the generated test suites
and not the technique for detecting equivalent mutants. We
refer the reader to our prior work on test data generation
for relational database schemas [13] for a discussion of why
the test suites generated with the chosen coverage criteria
cannot kill all of the mutants that the operators produce.

In summary, the automated analysis approach detects
a significant number of equivalent mutants. However, due
to the arbitrary nature of CHECK constraints, some mutants
related to this type of constraint are not detected. As for
impaired mutants, this is a small number (i.e., 3 of 5223
mutants), and is related to the fact that the current imple-
mentation does not analyze CHECK constraints. As mentioned
in Section 8, we will address this issue in future work.

Redundant mutants

Tables 4 and 5 show the number of schema mutants found
to be redundant using the automated analysis. These tables

TABLE 6
Live mutants following mutation analysis with all test suites

A mutant is said to be “live” if it was not killed by any of the test suites
generated by SchemaAnalyst as part of the experimental study. In this table,
“H” = HyperSQL, “P” = PostgreSQL, and “S” = SQLite.
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Total
Schema H P S H P S H P S H P S H P S

BankAccount 0 0 0 0 0 0 3 3 4 0 0 0 3 3 4
BrowserCookies 0 0 0 1 1 1 0 0 6 4 4 4 5 5 11
CoffeeOrders 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3
CustomerOrder 0 0 0 0 0 0 4 4 4 0 0 0 4 4 4
FrenchTowns 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6
iTrust 0 0 0 0 0 0 2 2 1 0 0 0 2 2 1
NistWeather 0 0 0 0 0 0 2 2 2 0 0 0 2 2 2
Products 1 1 1 2 2 2 0 0 0 0 0 0 3 3 3
RiskIt 0 0 0 0 0 0 0 0 9 0 0 0 0 0 9
UnixUsage 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
WordNet 0 0 0 0 0 0 2 2 4 0 0 0 2 2 4

Total 1 1 1 3 3 3 13 13 34 10 10 10 27 27 48

show that, following the removal of stillborn, impaired, and
equivalent mutants from the initial total of 5223 mutants
produced for all subject schemas, SchemaAnalyst identified
171 (3%), 179 (3%) and 423 (7%) of these as redundant for the
HyperSQL, PostgreSQL, and SQLite DBMSs, respectively.

In practice, redundant mutants can be caused by the
same or two different operators producing two identical
mutants. One mutant is kept, while the other is removed
from the mutant pool. Table 5 lists the mutants removed
according the operator that produced them. Table 7 gives
another view of redundant mutants, showing the pairs of
operators that were responsible for producing the identical
mutant pairs. The operators listed on each row are the
ones that produced the mutant that was removed, while the
operators listed on each column are those that produced the
identical mutant that SchemaAnalyst retained. The cells of the
table contain numbers of identical mutant pairs produced
by each pair of operators for a particular DBMS.

Tables 4 and 5 show that more redundant mutants were
produced for SQLite than for HyperSQL and PostgreSQL.
Table 7 reveals that this was due to the overlapping effects of
PKColumnA and UColumnA and the fact that SQLite does
not force primary key values to also not be NULL. As such,
these two operators can produce schemas with the same
behavior for this DBMS. Since HyperSQL and PostgreSQL
do require primary key values to not be NULL, the same
effect does not occur, except when primary key columns are
also declared as NOT NULL—that is, the addition of either a
PRIMARY KEY or a UNIQUE constraint to a column would have
had an identical effect in terms of the schema’s behavior.

Table 7 shows that redundant mutants can be placed into
two categories: redundant mutants that were caused by two
operators that mutate the (a) same or (b) a different type
of integrity constraints. In category (a) are redundant mu-
tants caused by operators that add, remove, and exchange
columns from foreign keys, primary keys, and UNIQUE con-
straints have overlapping effects that are detected using the
automated analysis. An example of this can occur when a
table has two single-column UNIQUE constraints. The column
of the first constraint is exchanged with that of the second
by the UColumnE operator, which effectively removes the
first constraint. This replicates UColumnR when it produces
a mutant that removes the same constraint, resulting in
behaviorally identical schemas. Yet, these mutants are a
small proportion of the original pool of 5223, with the exact
numbers depending on the DBMS used in each case.
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TABLE 7
Redundant mutants by pairs of operators that produced them
In this table, “H” = HyperSQL, “P” = PostgreSQL, and “S” = SQLite.

Operator FK
Colu

m
nPai

rE

N
N

A
PK
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U
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Colu
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H 2 0 0 0 0 0 0
FKCColumnPairR P 2 0 0 0 0 0 0

S 2 0 0 0 0 0 0

H 0 0 0 1 98 0 0
PKCColumnA P 0 4 0 1 98 0 0

S 0 0 0 3 335 0 0

H 0 0 0 0 23 0 0
PKCColumnR P 0 0 1 0 23 0 0

S 0 0 3 0 30 0 0

H 0 0 0 0 9 3 16
UCColumnA P 0 0 0 0 9 3 16

S 0 0 0 0 9 3 16

H 0 0 0 0 0 14 0
UCColumnE P 0 0 0 0 0 14 0

S 0 0 0 0 0 14 0

H 0 0 0 0 0 5 0
UCColumnR P 0 0 0 0 0 8 0

S 0 0 0 0 0 8 0

In category (b) are redundant mutants generated by
PKColumnR and UColumnA. Again, these mutants happen
in relatively rare situations (i.e., 23 to 30 mutants, depending
on the DBMS), as Table 7 indicates. An example of such
a situation is when a mutant is produced that removes a
column from a multi-column primary key on columns (A, B)
with PKColumnR, making it a primary key on just A. A be-
haviorally identical mutant is produced with UColumnA by
adding a UNIQUE constraint to the column A. Although this
mutant still has the primary key on (A, B), it now behaves the
same as the UNIQUE constraint on A, for the reasons explained
in Section 3’s presentation of Pattern BE-4. Other mutants in
this category are created by PKColumnA and NNA for Post-
greSQL. This occurs when the operators add a primary key
and a NOT NULL, respectively, to a column already declared as
UNIQUE. (For HyperSQL, adding a primary key to a UNIQUE

column makes it stillborn, whereas for SQLite, primary keys
are not also required to be not NULL—hence the two schemas
have different behaviors for this DBMS).

Finally, our careful manual analysis of the 57 mutants
chosen to verify SchemaAnalyst’s automated approach re-
vealed no redundant mutants not already found by our tool.

Conclusion for RQ1

The automated static analyses detected many ineffective
mutants, the majority of which are stillborn or impaired,
accounting for as many as 18% of mutants with HyperSQL.
The tool also detected significant numbers of equivalent and
redundant mutants. Our manual analysis of these mutants
revealed that there were some ineffective mutants that our
approach did not detect, but that they were relatively few in
number and were associated with complex CHECKs. Analysis
of arbitrary constraints for infeasibility and equivalence
is undecidable in general [40], [44], [45], rendering these
types of ineffective mutant hard to detect automatically.
Yet, if the schema is free of CHECKs, the static analyses
can reliably detect all ineffective mutants. If the schema
does involve CHECKs, then some ineffective mutants may
be missed, particularly where the constraints are relational
expressions and there are multiple constraints involving the
same columns, both of which contributed to mutants with
infeasible constraints when applying the operators. Overall,

our technique was able to identify approximately 24% of
mutants as ineffective, regardless of the DBMS being used.

RQ2: Efficiency of the Approach

Stillborn Mutants

Table 8 shows the times taken for each of the three meth-
ods devised to identify stillborn mutants for HyperSQL
and PostgreSQL (i.e., “DBMS”, “DBMS-Transacted”, and
“Static”), as detailed by the methodology described in Sec-
tion 6.1.4. Since no stillborn mutants are produced by our
operators for SQLite—as confirmed by the answer to the
last research question—there is no need for static analysis
checks, and thus there are no results to report for this DBMS.

This table shows that using a DBMS is significantly more
time consuming than using static analysis (in fact, due to the
clarity of this result, we do not furnish a statistical analysis
of these data points). This is the case even when attempting
to use the DBMS to check schemas as efficiently as possi-
ble, by wrapping CREATE TABLE statements in transactions.
Static analysis only takes a fraction of a second for any
of the schema and DBMS combinations. For HyperSQL, it
requires two milliseconds or less for four schemas (i.e., Cloc,
DellStore, StackOverflow, and Usda) and, with PostgreSQL,
less than one millisecond for 15 schemas (i.e., for just under
half of the schemas). The longest time was recorded for
NistDML182 with HyperSQL, at just 265 milliseconds. In
contrast, relying on the DBMS to reject schemas takes sev-
eral orders of magnitude longer, with the use of transactions
only marginally decreasing the time overhead. The longest
time recorded is with the non-transacted method for iTrust,
which requires over eight seconds to process with Hyper-
SQL, and over one hour with PostgreSQL. As Table 8 shows,
more processing time was required for the database schemas
when used in conjunction with PostgreSQL as opposed to
HyperSQL, whether it be with the DBMS method (i.e., non-
transacted) or with the DBMS-Transacted version.

Further analysis of each technique’s longest processing
times sheds light on how schema characteristics influence
running time. For the static analysis checks, the schemas
with the longest processing times (for HyperSQL and Post-
greSQL, respectively) are NistDML182 (257ms and 265ms),
RiskIt (208ms and 199ms), UnixUsage (149ms and 141ms),
and CustomerOrder (144ms and 138ms). These are also the
schemas with the greatest number of foreign keys (c.f.
Table 2) or the most complex foreign key relationships—as
discussed in the answer to the last research question—and
which, therefore, require the most foreign key misalignment
checks needed for detecting the stillborn mutants.

For the DBMS-based methods, the schemas with lengthy
processing times tend to be those that are the largest and/or
result in the greatest number of mutants—that is, the ones
that will require the most setup on the host DBMS and/or
the most DBMS-based validity checks. For example, iTrust,
MozillaExtensions, RiskIt, and BookTown produce the longest
times for the (non-transacted) DBMS method with Post-
greSQL (46, 2.9, 2.6, and 2.4 ×105 ms respectively). These are
the schemas that produce the most mutants (first is iTrust,
with 1458 mutants; second is MozillaExtensions with 364, as
shown by Table 4), or are the largest in terms of the number
of tables (first is iTrust, with 42 tables; second is BookTown
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TABLE 8
Mean times taken to detect stillborn database schema mutants (in milliseconds)

This table compares the times taken to detect stillborn mutants by using the DBMS (i.e., the columns labeled “DBMS”) versus using the static analysis approach (i.e.,
the columns labeled “Static”), which makes a series of checks on each mutated schema. The data for the columns labeled “DBMS-Transacted” are for the approach that
also uses the DBMS to identify stillborn mutants, but groups SQL statements in transactions in order to speed up the process. “SD” refers to the standard deviation for
each set of 30 times recorded. Since our mutation operators do not produce stillborn mutants with SQLite, only figures for HyperSQL and PostgreSQL are recorded.

HyperSQL PostgreSQL

DBMS DBMS-Transacted Static DBMS DBMS-Transacted Static

Schema Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

ArtistSimilarity 461 62 449 5 28 < 1 2811 312 2563 126 27 4
ArtistTerm 537 8 531 2 37 < 1 15059 769 13351 453 32 < 1
BankAccount 550 7 546 3 43 1 6261 387 5594 257 39 < 1
BookTown 2072 12 2069 13 40 1 244112 15297 185449 1335 < 1 < 1
BrowserCookies 768 4 766 4 63 1 33613 1133 31620 655 59 < 1
Cloc 477 4 476 2 1 < 1 2345 161 2123 179 < 1 < 1
CoffeeOrders 1000 10 991 11 87 2 35357 1571 28307 545 79 1
CustomerOrder 1906 21 1905 57 144 1 95346 3393 75280 1191 138 1
DellStore 1574 13 1571 12 1 < 1 38694 826 28500 668 < 1 < 1
Employee 499 3 497 2 27 < 1 3746 234 3665 269 < 1 < 1
Examination 856 4 853 6 59 1 21451 812 18810 547 54 < 1
Flights 729 4 724 6 67 1 12764 556 10821 462 65 < 1
FrenchTowns 1087 11 1080 9 72 1 63723 1601 59590 768 62 1
Inventory 446 3 444 2 29 < 1 2569 151 2600 221 < 1 < 1
Iso3166 442 4 442 3 26 < 1 986 107 984 62 < 1 < 1
IsoFlav R2 1056 11 1054 15 30 1 153139 4083 137529 1646 < 1 < 1
iTrust 8313 83 8258 104 124 2 4625197 18668 3785693 60134 67 2
JWhoisServer 1796 21 1796 15 37 1 111755 3703 97565 1233 < 1 < 1
MozillaExtensions 1278 21 1274 13 35 1 286327 4926 259820 2211 < 1 < 1
MozillaPermissions 464 1 463 3 26 < 1 4104 235 4234 281 < 1 < 1
NistDML181 486 3 482 3 41 < 1 6775 381 6128 214 40 < 1
NistDML182 1011 6 978 10 257 2 30688 1352 24817 712 265 2
NistDML183 485 3 481 2 39 1 3382 257 2864 126 38 < 1
NistWeather 628 2 626 5 43 1 7450 543 6552 396 40 1
NistXTS748 452 4 450 4 27 1 1641 120 1707 175 < 1 < 1
NistXTS749 523 6 517 3 42 2 7514 403 6842 287 39 1
Person 471 3 470 3 27 < 1 1927 168 1970 142 < 1 < 1
Products 738 3 735 3 48 < 1 18198 884 16054 459 44 < 1
RiskIt 2309 17 2282 23 208 2 256171 5611 203354 2340 199 2
StackOverflow 872 6 872 3 1 < 1 35407 1619 30343 732 < 1 < 1
StudentResidence 565 3 563 3 35 < 1 6801 410 6025 284 31 1
UnixUsage 1467 54 1442 9 149 1 91778 3526 71117 1148 141 2
Usda 1761 10 1760 9 2 < 1 68873 1296 50764 925 < 1 < 1
WordNet 1169 12 1169 12 34 < 1 79787 2986 68046 993 < 1 < 1

with 22; third is RiskIt with 13, as shown by Table 2). While
the times required for the DBMS-based methods are related
to the schema’s size or the number of mutants which result
from it, the cost of the static checks is more closely related to
the number of stillborn mutants produced by the operators.

Impaired, Equivalent, and Redundant Mutants

Following the notational conventions given in Section 6.1.4,
Tables 9 and 10 report mean mutation analysis times with
tests generated using AVM and Random+, respectively, with
the exclusion of different sets of mutants to form the mutant
pool used in mutation analysis. Each subsequent column
in the table for a DBMS involves the removal of a particular
type of ineffective mutant, and, for the purposes of statistical
testing and effect size computation, can be compared with
the left-most adjacent column for timing differences. For
example, the −(S+I+E+R) column shows mean times
when all ineffective mutants have been removed, and can
be contrasted with the −(S+I+E) column to draw con-
clusions about the effect of removing redundant mutants.
As given in Table 11, we summarize this information in the
following discussion by counting the number of database
schemas where times significantly improve (i.e., times de-
crease) or become significantly worse (i.e., times increase),
highlighting the greatest increases and decreases in muta-
tion analysis time for a database schema as appropriate.

Impaired Mutants. Since only SQLite has automatic checks
for impaired mutants, as originally discussed in Section 5.3,
Tables 9 through 11 report figures for the −(S+I) set
of mutants (i.e., the set of mutants following removal of
impaired mutants) for this DBMS. To analyze the effect
of removing impaired mutants, we contrast times in this
column with the preceding −S column of the same table.

For Random+, SchemaAnalyst performs mutation analysis
significantly faster for 14 schemas after removing impaired
mutants, with a large effect size in each case. With the AVM,
mutation analysis is significantly faster overall for the same
14 schemas as Random+, and additionally, FrenchTowns. The
effect size is large for 12 of these 15 schemas, of which RiskIt
sees the greatest performance improvement. With SQLite, a
comparison of the value for RiskIt in Table 9’s “Impaired”
column to its “Stillborn” column shows that SchemaAnalyst
achieved a mean saving of 6 seconds when using Random+.
The mean saving for the AVM is just under 8 seconds, as
observed from the corresponding values in Table 10.

Table 4 shows that 19 schemas have impaired mutants,
meaning that there were four schemas with impaired mu-
tants (i.e., ArtistSimilarity, ArtistTerm, iTrust, and Studen-
tResidence) for which mutation analysis did not become
significantly faster following their removal. In fact, Tables 9
and 10 reveal that mutation analysis time increased, in a
statistically significant fashion and with large effect size, for
two schemas (i.e., ArtistSimilarity and StudentResidence) with
Random+ and also for ArtistSimilarity with AVM. Notably for
ArtistSimilarity, the cost of finding and removing its single
impaired mutant leads to a time increase. It is clear that
these schemas did not have a sufficient number of impaired
mutants to make mutation analysis significantly faster.

Equivalent Mutants. In contrast to impaired mutants, Schema-
Analyst supports, with the methods described in Sections 4
and 5, the removal of equivalent mutants for all three
DBMSs. The −(S+I+E) columns of Tables 9 and 10 show
mean mutation analysis times for the mutant pool with
equivalent mutants removed. We compare this column with
the preceding −S column (for HyperSQL and PostgreSQL)
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TABLE 9
Mean mutation analysis times (in milliseconds) for test suites generated with Random+

This table reports the mean mutation times for mutation analysis following the removal of a type of ineffective mutant from the mutant pool (resulting in one of the
different sets of mutants used in our experiments, i.e., “−S, −(S+I) . . . ”, etc., as described in Section 5.3). A figure with an accompanying “F” symbol denotes that
mutation analysis times significantly decreased (i.e., mutation analysis became faster) with the removal of the ineffective mutant type, while “�” denotes that mutation
analysis times significantly increased (i.e., mutation analysis became slower). A “⋆” indicates that the effect size was large. (See Section 6.1.5 for more information
about the computation of the statistical significance and effect size measures reported in this table.)

HyperSQL PostgreSQL SQLite

Stillborn Equivalent Redundant Stillborn Equivalent Redundant Stillborn Impaired Equivalent Redundant
Schema −S −(S+I+E) −(S+I+E+R) −S −(S+I+E) −(S+I+E+R) −S −(S+I) −(S+I+E) −(S+I+E+R)

ArtistSimilarity 125 ⋆ � 144 ⋆ � 153 5190 ⋆ F 4348 ⋆ F 3532 61 ⋆ � 84 ⋆ � 114 ⋆ � 137
ArtistTerm 714 718 ⋆ � 840 30256 ⋆ F 23422 23546 397 407 ⋆ � 473 ⋆ � 552
BankAccount 725 ⋆ � 753 ⋆ � 899 24367 ⋆ F 21226 21371 456 ⋆ F 419 ⋆ � 500 ⋆ � 694
BookTown 22063 ⋆ F 21164 ⋆ � 25154 1529847 ⋆ F 1374219 F 1365462 30572 30572 ⋆ F 29311 29877
BrowserCookies 1786 ⋆ � 1880 ⋆ � 2251 109640 ⋆ F 104543 F 100974 1216 ⋆ F 1118 ⋆ � 1270 ⋆ � 1693
Cloc 875 ⋆ � 939 ⋆ � 1058 25883 25948 26067 325 325 ⋆ � 390 ⋆ � 416
CoffeeOrders 2182 ⋆ F 2135 ⋆ � 2511 85352 ⋆ F 71440 71828 1709 ⋆ F 1324 ⋆ � 1429 ⋆ � 1888
CustomerOrder 3144 3190 ⋆ � 3896 190678 ⋆ F 162563 163239 3576 ⋆ F 2951 ⋆ � 3116 ⋆ � 4440
DellStore 7393 ⋆ � 7604 ⋆ F 5986 539668 539878 ⋆ F 405741 7121 7121 7336 ⋆ F 6213
Employee 785 ⋆ � 855 ⋆ � 1054 24892 ⋆ F 23662 23860 348 348 ⋆ � 452 ⋆ � 649
Examination 3110 ⋆ � 3251 ⋆ � 3801 246915 ⋆ F 237505 238059 3313 ⋆ F 3135 3275 ⋆ � 3906
Flights 1426 1434 ⋆ � 1646 44565 40840 39227 936 ⋆ F 704 ⋆ � 854 ⋆ � 1199
FrenchTowns 1565 ⋆ � 1725 1616 96648 ⋆ F 89527 ⋆ F 57964 844 829 ⋆ � 954 ⋆ � 1204
Inventory 222 ⋆ � 245 ⋆ � 311 9509 ⋆ F 8670 ⋆ F 7863 104 104 ⋆ � 162 ⋆ � 227
Iso3166 71 ⋆ � 84 ⋆ � 109 2512 ⋆ F 2084 2109 35 35 ⋆ � 77 ⋆ � 101
IsoFlav R2 6735 ⋆ � 6929 ⋆ � 9008 941703 941922 931542 8349 8349 8431 8702
iTrust 1384595 ⋆ F 1346515 ⋆ � 2641232 81471300 ⋆ F 77147636 77233244 2061300 2045496 ⋆ F 2008114 ⋆ � 3195904
JWhoisServer 7228 � 7318 ⋆ � 9287 578919 ⋆ F 542861 544821 7349 7349 7450 ⋆ � 9346
MozillaExtensions 14287 14465 ⋆ � 19777 1969632 1948320 ⋆ F 1883958 21881 21881 22050 ⋆ � 25958
MozillaPermissions 633 ⋆ � 671 ⋆ � 790 24046 ⋆ F 22519 22639 274 274 ⋆ � 349 ⋆ � 468
NistDML181 442 450 ⋆ � 560 14919 ⋆ F 13468 13577 268 ⋆ F 239 ⋆ � 318 ⋆ � 427
NistDML182 2674 ⋆ F 2492 ⋆ � 3175 207688 ⋆ F 169772 170305 9040 ⋆ F 4579 ⋆ � 4805 ⋆ � 7215
NistDML183 630 ⋆ � 686 ⋆ � 784 19524 19579 19677 332 ⋆ F 292 ⋆ � 365 ⋆ � 399
NistWeather 868 903 ⋆ � 1059 23592 ⋆ F 20981 20495 569 ⋆ F 485 ⋆ � 600 ⋆ � 799
NistXTS748 228 ⋆ � 263 ⋆ � 320 6636 6672 ⋆ F 5955 76 76 ⋆ � 132 ⋆ � 200
NistXTS749 719 718 ⋆ � 785 24891 ⋆ F 21032 ⋆ F 19256 374 ⋆ F 341 ⋆ � 429 ⋆ � 579
Person 350 ⋆ � 389 ⋆ � 499 8529 ⋆ F 7829 7940 132 132 ⋆ � 206 ⋆ � 318
Products 1384 1426 ⋆ � 1759 49173 ⋆ F 43066 43400 827 ⋆ F 768 ⋆ � 898 ⋆ � 1253
RiskIt 11389 ⋆ F 11072 ⋆ � 14924 1141541 ⋆ F 1020890 ⋆ F 1003204 28729 ⋆ F 22702 ⋆ F 22096 ⋆ � 30407
StackOverflow 5074 ⋆ � 5221 ⋆ � 5438 497848 497998 ⋆ F 478979 5069 5069 ⋆ � 5218 ⋆ F 4007
StudentResidence 681 ⋆ � 749 ⋆ � 955 21297 ⋆ F 18904 19112 349 ⋆ � 357 ⋆ � 453 ⋆ � 677
UnixUsage 3613 3659 ⋆ � 4259 278588 ⋆ F 239667 ⋆ F 232038 5640 ⋆ F 4761 � 4885 ⋆ � 6364
Usda 10889 ⋆ � 11092 ⋆ � 11388 983728 983933 ⋆ F 834074 13225 13225 13432 ⋆ F 11439
WordNet 3788 ⋆ F 3647 ⋆ � 3980 324839 ⋆ F 264274 ⋆ F 240764 3131 3131 ⋆ � 3270 ⋆ � 3681

or the −(S+I) column (for SQLite) of the same data table
to study the effect of removing equivalent mutants from the
mutant pool on the time taken for mutation analysis.

The summary information in Table 11 reveals that, for
HyperSQL, mutation analysis times significantly improve
for 6 schemas with test suites generated using Random+, and
an additional 6 with test suites generated by the AVM (i.e.,
12 in total), with large effect sizes in each case. When Schema-
Analyst uses either Random+ or the AVM, the iTrust schema
sees the greatest decrease in mutation analysis time for
HyperSQL, with time savings of about 38 and 42 seconds,
respectively. Yet, for HyperSQL with both the AVM and
Random+, times are significantly worse for 19 schemas.

For PostgreSQL, mutation analysis times never become
significantly worse, and become significantly better for 25
schemas with test suites generated by Random+, and 27
schemas with the tests from AVM. For each configuration,
significance is coupled with a large effect size. As with the
HyperSQL DBMS, the iTrust schema demonstrates the great-
est decrease in mutation analysis time, with SchemaAnalyst
saving 72 and 89 minutes when it uses tests by Random+ and
the AVM, respectively. Finally, for SQLite, mutation analysis
times become significantly better for 3 schemas with tests
from the AVM and Random+, but significantly worse for 25.
Yet, all three cases of significant improvement are coupled
with a large effect size. Notably, SchemaAnalyst experiences
the greatest decrease in mutation analysis time with the
iTrust schema, respectively saving about 37 and 41 seconds
with the test suites generated by Random+ and the AVM.

Removing equivalent mutants involves comparing each
mutated schema against the original schema. The cost of this
comparison depends on the complexity of the schema under

analysis, and tends to be slower than the automated checks
that identify impaired mutants. As with impaired mutants,
the differences by schema are explained by the number of
equivalent mutants removed from the pool. Therefore, the
timings vary depending on how many mutants SchemaAn-
alyst removes. When equivalent mutants are abundant, the
overall time required for SchemaAnalyst to perform mutation
analysis is reduced significantly. In fact, the schemas that
experienced significant improvement in times for all three
DBMSs (i.e., BookTown, iTrust, and RiskIt) had some of the
greatest numbers of equivalent mutants identified out of all
the subjects (c.f. Table 2). Yet, when equivalent mutants are
few in number, the mutation analysis is significantly slower.

Yet, the choice of DBMS has the greatest effect on the
mutation analysis times with or without the equivalent
mutants. For PostgreSQL, mutation analysis times never be-
come significantly worse, whereas for the other two DBMSs
it depends on how many equivalent mutants are produced
by the operators. This is primarily due to the way that the
DBMSs are designed and work: PostgreSQL is an enterprise
DBMS that uses disk-based storage, thus making it slow at
evaluating mutants. The cost of evaluating extra ineffective
mutants dominates that of detecting and eliminating them.
In contrast, HyperSQL and SQLite store databases in mem-
ory, allowing for mutants to be evaluated quickly—meaning
that the numbers of equivalent mutants involved must be
high before the cost of running the removal algorithms may
be recouped and additional time saved.

Redundant Mutants. The −(S+I+E+R) columns of Tables
9 and 10 show the mean times for mutation analysis when
the pool of mutants excludes those that are redundant.
We compare this column with the preceding −(S+I+E)
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TABLE 10
Mean mutation analysis times (in milliseconds) for test suites generated with the AVM

(Please see the caption of Table 9 for a description of this table’s headings)

HyperSQL PostgreSQL SQLite

Stillborn Equivalent Redundant Stillborn Equivalent Redundant Stillborn Impaired Equivalent Redundant
Schema −S −(S+I+E) −(S+I+E+R) −S −(S+I+E) −(S+I+E+R) −S −(S+I) −(S+I+E) −(S+I+E+R)

ArtistSimilarity 237 ⋆ � 246 ⋆ F 232 8721 ⋆ F 7295 ⋆ F 5862 118 ⋆ � 138 ⋆ � 164 ⋆ � 167
ArtistTerm 1128 ⋆ F 1095 ⋆ � 1216 49333 ⋆ F 38090 38214 636 637 ⋆ � 690 ⋆ � 710
BankAccount 847 ⋆ � 867 ⋆ � 1013 29174 ⋆ F 25335 25480 549 ⋆ F 487 ⋆ � 566 ⋆ � 760
BookTown 23488 ⋆ F 22507 ⋆ � 26486 1646118 ⋆ F 1478688 ⋆ F 1468870 32808 32808 ⋆ F 31432 ⋆ F 30957
BrowserCookies 2128 ⋆ � 2229 ⋆ � 2601 204301 ⋆ F 194419 ⋆ F 187244 2098 ⋆ F 1936 ⋆ � 2080 ⋆ � 2475
Cloc 968 ⋆ � 1032 ⋆ � 1151 27872 27936 28056 381 381 ⋆ � 445 ⋆ � 450
CoffeeOrders 2598 ⋆ F 2517 ⋆ � 2893 187003 ⋆ F 156504 156892 2899 ⋆ F 2370 ⋆ � 2395 ⋆ � 2854
CustomerOrder 5146 ⋆ F 5090 ⋆ � 5795 542150 ⋆ F 461932 462608 9495 ⋆ F 8041 7913 ⋆ � 9238
DellStore 7448 ⋆ � 7658 ⋆ F 6069 589502 589711 ⋆ F 447365 7622 7622 ⋆ � 7836 ⋆ F 6398
Employee 899 ⋆ � 966 ⋆ � 1165 28533 ⋆ F 27102 27300 409 409 ⋆ � 512 ⋆ � 709
Examination 3566 ⋆ � 3700 ⋆ � 4250 312234 ⋆ F 300155 300708 4244 ⋆ F 4027 ⋆ � 4158 ⋆ � 4789
Flights 1918 1919 ⋆ � 2080 88541 ⋆ F 80846 ⋆ F 77390 1594 ⋆ F 1225 ⋆ � 1374 ⋆ � 1701
FrenchTowns 2439 ⋆ � 2599 ⋆ F 2317 244147 ⋆ F 225622 ⋆ F 144442 2385 ⋆ F 2288 2298 ⋆ F 2099
Inventory 231 ⋆ � 253 ⋆ � 318 9656 ⋆ F 8748 ⋆ F 7895 114 114 ⋆ � 172 ⋆ � 234
Iso3166 85 ⋆ � 96 ⋆ � 121 2762 ⋆ F 2291 2317 51 51 ⋆ � 93 ⋆ � 117
IsoFlav R2 7413 ⋆ � 7607 ⋆ � 9686 1045369 1045588 ⋆ F 1033437 8999 8999 9041 ⋆ � 9141
iTrust 1512846 ⋆ F 1470576 ⋆ � 2763257 91935913 ⋆ F 86593001 86648519 2222324 2208819 ⋆ F 2167725 ⋆ � 3350112
JWhoisServer 7722 ⋆ � 7793 ⋆ � 9761 674101 ⋆ F 630688 632648 8640 8640 8641 ⋆ � 10538
MozillaExtensions 14909 15086 ⋆ � 20372 2142353 ⋆ F 2117573 ⋆ F 2044416 22814 22814 23004 ⋆ � 26736
MozillaPermissions 670 ⋆ � 706 ⋆ � 825 24469 ⋆ F 22795 22916 301 301 ⋆ � 375 ⋆ � 494
NistDML181 697 ⋆ F 676 ⋆ � 785 23293 ⋆ F 21012 21121 444 ⋆ F 377 ⋆ � 456 ⋆ � 539
NistDML182 3296 ⋆ F 3029 ⋆ � 3712 362090 ⋆ F 293206 293739 12802 ⋆ F 6710 ⋆ � 6935 ⋆ � 9048
NistDML183 644 ⋆ � 700 ⋆ � 798 19906 19961 20059 350 ⋆ F 306 ⋆ � 379 ⋆ � 408
NistWeather 1340 ⋆ F 1331 ⋆ � 1472 48448 ⋆ F 42817 ⋆ F 41644 775 ⋆ F 656 ⋆ � 769 ⋆ � 957
NistXTS748 212 ⋆ � 246 ⋆ � 305 6465 6501 ⋆ F 5873 84 84 ⋆ � 140 ⋆ � 206
NistXTS749 853 ⋆ F 837 ⋆ � 894 29727 ⋆ F 24974 ⋆ F 22826 459 ⋆ F 412 ⋆ � 498 ⋆ � 642
Person 392 ⋆ � 429 ⋆ � 539 8934 ⋆ F 8176 8287 162 162 ⋆ � 235 ⋆ � 347
Products 1765 1789 ⋆ � 2122 76111 ⋆ F 66182 66516 1038 ⋆ F 968 ⋆ � 1088 ⋆ � 1437
RiskIt 15333 ⋆ F 14744 ⋆ � 18509 1920017 ⋆ F 1715760 ⋆ F 1682656 41185 ⋆ F 33360 ⋆ F 32111 ⋆ � 40123
StackOverflow 5269 ⋆ � 5416 ⋆ � 5615 511428 511578 ⋆ F 492259 5436 5436 ⋆ � 5585 ⋆ F 4175
StudentResidence 959 ⋆ � 1013 ⋆ � 1220 31906 ⋆ F 28314 28522 524 523 ⋆ � 610 ⋆ � 835
UnixUsage 5523 ⋆ F 5387 ⋆ � 5971 723963 ⋆ F 622293 ⋆ F 601248 11805 ⋆ F 10293 10164 ⋆ � 11316
Usda 11797 ⋆ � 12001 ⋆ � 12179 1111570 1111775 ⋆ F 942597 13889 13889 ⋆ � 14096 ⋆ F 11629
WordNet 4058 ⋆ F 3870 ⋆ � 4193 358214 ⋆ F 290945 ⋆ F 264849 3780 3780 ⋆ � 3903 ⋆ � 4268

column of the corresponding table to study the effect of
removing redundant mutants from the mutant pool on the
time taken to perform mutation analysis with a schema.

The summary information in Table 11 shows that, for
HyperSQL and the removal of redundant mutants, only one
schema (i.e., DellStore) experienced a significant decrease
in mutation analysis time with tests generated by either
Random+ or AVM. While almost all of the other schemas
saw a significant increase in mutation analysis time (i.e., 32
with Random+ and 31 with AVM), the effect size for DellStore
is large, representing a time savings of about one second for
HyperSQL and the tests from either Random+ or AVM. For
PostgreSQL, 14 schemas experienced a significant decrease
in mutation analysis time with Random+ and 17 with the
AVM. In contrast to mutation analysis with HyperSQL, no
schemas are subject to a significant increase in time for this
DBMS. With PostgreSQL, Usda saw the greatest reduction
in time, saving about two minutes when it used tests from
either Random+ or AVM. Finally, for SQLite, three schemas
exhibit a significant improvement in mutation analysis time
for Random+ (all with a large effect size), with five for AVM
(again, all with a large effect size). Most of the remaining
schemas (i.e., 29) saw a significant increase in time. Again,
Usda sees the greatest reduction in mutation analysis time,
with savings of about one and two seconds when it uses
SQLite and tests from Random+ and AVM, respectively.

The identification of redundant mutants is potentially
more costly than for equivalent mutants: each mutant must
be compared not just against one other schema (i.e., the
original schema under test), but against every other mutant.
Therefore, overall savings are less frequent with this type of
ineffective mutant, since more mutants need to be removed
to recoup the upfront cost of the analysis. For the majority
of schemas, the overall mutation analysis process becomes
significantly slower, except for when PostgreSQL is used.

Here, as for equivalent mutants, the use of disk-based
storage makes this DBMS slow at evaluating mutants, and
thus the cost of performing the static analysis never leads to
a significantly negative effect on mutation times.

Finally, it is worth noting that when mutation analysis
uses tests created by Random+, SchemaAnalyst has fewer sig-
nificant timing improvements than it does when it leverages
AVM’s tests. This trend is evident because Random+ makes
smaller test suites that cover fewer test coverage require-
ments than those suites created by the AVM, as shown in
Table 3. Consequently, mutants are faster to evaluate with
Random+ than AVM, which in turn renders the removal of
ineffective mutants less beneficial—particularly for faster,
memory-based DBMSs like HyperSQL and SQLite.

Conclusion for RQ2

Checking for stillborn mutants by submitting mutated
schemas to the DBMS is a time-consuming process, even
when using transactions. In contrast, static analysis checks
for invalid schemas are fast, taking on the order of mil-
liseconds, rather than seconds, minutes, or even hours. The
removal of impaired mutants, a step that the algorithms
only perform for SQLite, is similarly fast. When mutation
operators produce many impaired mutants for a schema, the
speed of mutation analysis generally improves significantly
when SchemaAnalyst removes them. Table 11 illustrates
this trend, revealing that, for test suites created by either
Random+ or AVM, the detection and removal of impaired
mutants respectively reduces mutation analysis times, with
a large effect size, for 14 and 15 database schemas.

For tests generated by both Random+ and AVM, the
summary in Table 11 makes it clear that, when using
PostgreSQL, the removal of equivalent mutants decreases
mutation analysis time, with a large effect size, for 25 and 27
of the 34 schemas. While the further removal of redundant
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TABLE 11
Summary of significance and effect size results for mutation analysis times

This table gives the number of database schemas for which mutation analysis became significantly faster (i.e., times decreased) when a type of impaired mutant was
removed consideration in our experiments, denoted by columns headed “F”, while columns headed “�” denote the number of schemas for which mutation analysis
became significantly slower (i.e., times increased). Figures in parentheses indicate the number of times that significance was accompanied by a large effect size. (See
Section 6.1.5 for more information about the computation of the statistical significance and effect size measures reported in this table.) Note that there is no data for
the removal of impaired mutants for the HyperSQL and PostgreSQL DBMSs, as they do not need automated checks to identify this type of mutant.

Random+ AVM

Impaired Equivalent Redundant Impaired Equivalent Redundant
−(S+I) −(S+I+E) −(S+I+E+R) −(S+I) −(S+I+E) −(S+I+E+R)

F � F � F � F � F � F �

HyperSQL - - 6 (6) 19 (18) 1 (1) 32 (32) - - 12 (12) 19 (19) 3 (3) 31 (31)
PostgreSQL - - 25 (25) 0 (0) 14 (12) 0 (0) - - 27 (27) 0 (0) 17 (17) 0 (0)
SQLite 14 (14) 2 (2) 3 (3) 25 (24) 3 (3) 29 (29) 15 (15) 1 (1) 3 (3) 25 (25) 5 (5) 29 (29)

mutants is less beneficial, this table shows that, for Random+

and AVM respectively, 12 and 17 schemas still see mutation
analysis times drop with a large effect size. These trends
are evident because PostgreSQL is a disk-based DBMS,
meaning that the cost of the static checks for ineffective
mutant detection is outweighed by the expense of creating
the mutants and running tests during mutation analysis.

The picture for equivalent mutants, and the HyperSQL
and SQLite DBMSs, is mixed and depends on whether the
mutation of a schema generates enough ineffective mutants
so that the time taken to check for and remove them from
the pool is recouped by not having to consider them later
in mutation analysis. Table 11 reveals that, while there are
more schemas that do not benefit from removing equivalent
mutants than do, 6 and 12 schemas, respectively, see a
decrease in mutation analysis time with HyperSQL and
tests from Random+ and AVM. Yet, only three schemas, for
tests generated by both Random+ and AVM, experience a
reduction in mutation analysis time with SQLite.

Table 11 shows that the further exclusion of redun-
dant mutants, for both HyperSQL and SQLite, leads to
few decreases in mutation analysis time. While Tables 9
and 10 point out that small reductions in mutation analysis
time are possible, Table 11 reveals, for tests generated by
both Random+ and AVM, that this happens for relatively
few schemas. For instance, only 1 and 3 schemas, respec-
tively, see decreased mutation analysis time with tests from
Random+ when run with HyperSQL and SQLite. The trend
is similar for tests generated by the AVM, with only 3 and 5
schemas, respectively, seeing time reductions with these two
DBMSs. Overall, these results are evident since redundant
mutant removal requires the comparison of a mutant to all
others in the pool, making it expensive and thus less likely
to decrease the overall cost of mutation analysis.

In summary, Tables 9 through 11 point out that, while the
removal of impaired and equivalent mutants often speeds
up mutation analysis, there is a point of diminishing returns.
Yet, importantly, there are other benefits to the removal of
ineffective mutants. As explained in the answer to the next
research question, finding and removing these mutants can
also lead to desirable changes in the mutation score.

RQ3: Impact on the Mutation Score

Tables 12 and 13 show how the mean mutation score
changes as a result of removing different types of ineffective
mutants for the tests generated by Random+ and the AVM,
respectively. The AVM achieves higher mutation scores than
does Random+. On average, its mutation score never drops
below 85% over all schemas when stillborn mutants are not

considered, regardless of the DBMS. In contrast, the average
mutation score of Random+’s test suites, over all schemas,
never increases beyond 75%, regardless of the DBMS.

We now discuss the effect of removing different types of
ineffective mutant on the mutation scores for the database
schemas, leveraging Table 14’s summary data. At the outset,
it is worth noting that a decrease in a test suite’s mutation
score is not a negative outcome per se—the lower score now
gives a more useful understanding of its effectiveness. Since
stillborn mutants do not contribute to mutation scores, we
start by analyzing the effect of removing impaired mutants.

Impaired Mutants

Because impaired mutants artificially inflate the mutation
scores, their removal can only lead to a decrease in the
resulting scores. The algorithms are only designed to detect
impaired mutants for the SQLite DBMS, and 19 of the
subject schemas feature them, as shown by Table 4.

With tests generated by the AVM, the mutation scores of
16 of these 19 significantly decreased (with large effect sizes)
following SchemaAnalyst’s removal of impaired mutants, as
summarized by Table 14 and seen in Tables 12 and 13 by
comparing the −S (i.e., stillborn) and −(S+I) (i.e., im-
paired) columns for this DBMS. The mutation scores of the
remaining three schemas with impaired mutants (i.e., Nist-
DML181, NistDML182, and NistDML183) did not change,
because their test suites killed all other mutants, and as such
had perfect mutation scores (i.e., 100%) before (and after)
their removal. The killed-to-total proportion remained the
same for the other schemas without any impaired mutants.

Tests suites generated by Random+ for NistDML181 and
NistDML182 did not obtain perfect mutation scores before
SchemaAnalyst removed impaired mutants (as can be seen
by comparing their mutation scores in Tables 12 and 13
under the −S column for SQLite). Overall, 18 of the 19
schemas with impaired mutants saw a decrease in mutation
score with this test generator. Of these 18 schemas, 16 saw
significant decreases, with a large effect size.

Equivalent Mutants

As equivalent mutants are impossible to kill, and thus arti-
ficially deflate mutation scores, schemas with these mutants
saw their mutation scores increase for all of the test suites
generated by both the AVM and Random+. This effect can
be seen by looking at Tables 12 and 13 and, for SQLite,
comparing the scores in the −(S+I) (i.e., impaired) column
to the −(S+I+E) (i.e., equivalent) column. Additionally,
for HyperSQL and PostgreSQL, the comparison is between
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TABLE 12
Mean mutation scores obtained with test suites generated by Random+

Mutation scores are reported for each schema with each DBMS following the removal of a type of impaired mutant from mutation analysis (resulting in one of the
different sets of mutants used in our experiments, i.e., “−S, −(S+I) . . . ”, etc., as described in Section 5.3). A figure with an accompanying “F” symbol denotes that
mutation scores significantly decreased with the removal of the ineffective mutant type, while “�” denotes that mutation score significantly increased. A “⋆” indicates
that the effect size was large. (See Section 6.1.5 for more information on the statistical tests and effect size measures used.)

HyperSQL PostgreSQL SQLite

Stillborn Equivalent Redundant Stillborn Equivalent Redundant Stillborn Impaired Equivalent Redundant
Schema −S −(S+I+E) −(S+I+E+R) −S −(S+I+E) −(S+I+E+R) −S −(S+I) −(S+I+E) −(S+I+E+R)

ArtistSimilarity 74.5 ⋆ � 82.0 ⋆ F 77.5 68.3 ⋆ � 82.0 ⋆ F 77.5 64.6 ⋆ F 61.7 ⋆ � 67.3 ⋆ � 74.3
ArtistTerm 69.9 ⋆ � 80.3 80.3 61.8 ⋆ � 80.3 80.3 62.5 ⋆ F 58.2 ⋆ � 65.8 ⋆ � 79.3
BankAccount 69.2 ⋆ � 74.5 74.5 64.6 ⋆ � 74.5 74.5 68.3 ⋆ F 58.4 ⋆ � 62.3 62.3
BookTown 84.5 ⋆ � 89.7 89.9 80.5 ⋆ � 89.7 89.9 80.9 80.9 ⋆ � 85.6 � 86.9
BrowserCookies 51.8 ⋆ � 53.7 ⋆ � 55.8 51.2 ⋆ � 53.7 ⋆ � 55.8 55.8 ⋆ F 45.8 46.3 ⋆ � 47.9
Cloc 89.8 89.8 89.8 89.8 89.8 89.8 79.6 79.6 79.6 ⋆ � 84.7
CoffeeOrders 42.0 ⋆ � 46.1 46.1 38.5 ⋆ � 46.1 46.1 66.6 ⋆ F 44.8 ⋆ � 48.8 48.8
CustomerOrder 34.0 � 36.9 36.9 31.9 ⋆ � 37.3 37.3 59.9 ⋆ F 34.6 36.9 36.9
DellStore 87.1 87.1 ⋆ � 90.1 87.1 87.1 ⋆ � 90.1 85.2 85.2 85.2 ⋆ � 88.9
Employee 87.0 89.0 89.0 85.0 ⋆ � 89.0 89.0 86.4 86.4 88.4 88.4
Examination 87.4 89.0 89.0 85.9 ⋆ � 89.0 89.0 78.9 76.2 77.4 77.4
Flights 40.8 44.5 46.3 40.8 44.5 46.3 66.5 ⋆ F 47.0 47.0 48.6
FrenchTowns 23.0 23.0 26.0 21.3 23.0 26.0 32.6 ⋆ F 21.6 23.3 26.6
Inventory 79.6 ⋆ � 84.3 ⋆ � 87.5 74.6 ⋆ � 82.5 ⋆ � 88.2 79.4 79.4 ⋆ � 83.3 ⋆ � 87.5
Iso3166 69.7 77.4 77.4 63.3 ⋆ � 77.4 77.4 61.5 61.5 67.7 67.7
IsoFlav R2 56.3 56.3 56.3 56.9 56.9 56.3 49.3 49.3 50.0 ⋆ F 47.2
iTrust 87.1 ⋆ � 90.0 90.1 85.3 ⋆ � 90.0 90.1 85.5 85.4 ⋆ � 87.2 87.4
JWhoisServer 85.4 ⋆ � 88.3 88.3 82.7 ⋆ � 88.3 88.3 85.9 85.9 ⋆ � 88.7 88.7
MozillaExtensions 60.2 60.5 61.3 59.9 60.6 61.5 59.7 59.7 60.1 60.7
MozillaPermissions 92.4 ⋆ � 95.6 95.6 89.5 ⋆ � 95.6 95.6 92.7 92.7 ⋆ � 95.8 95.8
NistDML181 64.7 ⋆ � 71.9 71.9 64.7 ⋆ � 71.9 71.9 73.2 ⋆ F 59.8 59.8 ⋆ � 72.0
NistDML182 66.0 ⋆ � 78.2 78.2 60.5 ⋆ � 74.2 74.2 89.9 ⋆ F 68.2 68.2 ⋆ � 80.5
NistDML183 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NistWeather 44.9 49.2 50.7 43.6 49.2 50.7 72.7 ⋆ F 62.6 ⋆ � 64.4 ⋆ � 67.6
NistXTS748 94.3 94.3 ⋆ F 93.9 94.6 94.6 ⋆ F 93.9 89.3 89.3 ⋆ � 94.3 ⋆ F 93.5
NistXTS749 75.2 ⋆ � 85.5 86.7 72.3 ⋆ � 85.5 86.7 82.3 ⋆ F 76.0 78.8 79.2
Person 88.0 92.2 92.2 84.2 ⋆ � 92.2 92.2 88.6 88.6 92.6 92.6
Products 55.8 ⋆ � 60.5 60.5 53.6 ⋆ � 60.5 60.5 76.9 ⋆ F 70.8 73.6 74.8
RiskIt 63.5 ⋆ � 67.6 68.3 60.5 ⋆ � 67.6 68.3 76.5 ⋆ F 63.6 ⋆ � 66.5 ⋆ � 67.9
StackOverflow 94.8 94.8 94.5 94.8 94.8 94.5 89.5 89.5 89.5 ⋆ � 92.1
StudentResidence 83.1 ⋆ � 87.7 87.7 78.9 ⋆ � 87.7 87.7 76.2 ⋆ F 73.9 ⋆ � 77.7 77.7
UnixUsage 45.4 ⋆ � 49.7 ⋆ � 51.4 42.7 ⋆ � 49.7 ⋆ � 51.4 69.4 ⋆ F 53.0 ⋆ � 55.7 ⋆ � 59.1
Usda 80.9 80.9 ⋆ � 85.5 80.9 80.9 ⋆ � 85.5 75.6 75.6 75.6 ⋆ � 81.7
WordNet 69.8 ⋆ � 83.0 82.4 67.3 ⋆ � 82.8 82.4 76.5 76.5 ⋆ � 79.4 78.8

the scores in −S (i.e., stillborn) and −(S+I+E) (i.e.,
equivalent) columns. The summary in Table 14 shows that
the tests for 15 to 23 schemas experienced a significant
increase in mutation score when they were generated by
Random+, while test scores for 26 to 27 schemas signifi-
cantly increased if the AVM generated them. The removal
of equivalent mutants had a further interesting effect: when
using the AVM, tests for seven schemas with HyperSQL
and PostgreSQL, and five schemas with SQLite, which were
previously thought to have suboptimal mutation scores,
changed to scores of 100%. That is, every mutant was killed
after removing equivalent mutants from the mutant pool.

Redundant Mutants

The removal of redundant mutants cannot cause test suites
to change to 100% mutation scores, even if all other mutants
are killed. Either the redundant mutant pair is killed, and
thus the score must already be 100%, or the pair is not
killed, in which case one member of the pair will still remain
alive in the mutant pool. When the pair is not killed, the
mutation score always increases when one of the mutants
in the pair is removed, as the total number of mutants (i.e.,
the denominator of the mutation score equation) is now less.
When the pair is killed, the mutation score always decreases
when a mutant in the pair is removed, as the numerator and
denominator always decrease by one.

Since the AVM’s tests are good at killing mutants, suites
generated by this technique tend to experience a decrease
in mutation score when redundant mutants are removed
from the pool. Table 14 shows that test suites for 12 to 15
schemas experience a significant drop, depending on the
DBMS in use. In contrast to the AVM, Random+ generates

tests that are not as good at killing mutants and thus suites
for 2 schemas exhibited a significant decrease in their score,
with 5 to 14 seeing a significant increase in their score.

Conclusion for RQ3

As shown in Table 14, the removal of impaired, equivalent,
and redundant mutants generally changes the mutation
score of a test suite. In particular, removing equivalent mu-
tants always affects test suites, and can cause a test suite
to “gain” a perfect mutation score, where previously it
was thought to have one that was suboptimal, due to a
mutant that was impossible to kill. In summary, this paper’s
technique can help testers of database schemas achieve a
more precise understanding of the quality of their test suites.

The effect of removing impaired and redundant mutants
on a test suite’s mutation score depends on the initial
strength of the generated tests. If a test suite originally
achieves a 100% score, then removing these mutants cannot
improve the score any further; moreover, their removal
cannot make it any worse. However, if a test suite has a
sub-100% score, then it is likely to experience a change in
its score. This means that the removal of these types of
ineffective mutants has more of an effect on the weaker test
suites generated by the Random+ test data generator than it
does for the AVM’s test suites, which are stronger and more
likely to therefore achieve 100% mutation scores.

Overall, automatically finding and removing ineffective
mutants lead to 33 of the 34 schemas having a significantly
changed mutation score for at least one DBMS and one test
generation method. The only schema that didn’t undergo
a significant change—NistDML183—had a consistent 100%
score before any ineffective mutants were removed.
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TABLE 13
Mean mutation scores obtained with test suites generated by the AVM

(Please see the caption of Table 12 for a description of this table’s headings)

HyperSQL PostgreSQL SQLite

Stillborn Equivalent Redundant Stillborn Equivalent Redundant Stillborn Impaired Equivalent Redundant
Schema −S −(S+I+E) −(S+I+E+R) −S −(S+I+E) −(S+I+E+R) −S −(S+I) −(S+I+E) −(S+I+E+R)

ArtistSimilarity 90.9 ⋆ � 100.0 100.0 83.3 ⋆ � 100.0 100.0 92.3 ⋆ F 91.7 ⋆ � 100.0 100.0
ArtistTerm 87.0 ⋆ � 100.0 100.0 76.9 ⋆ � 100.0 100.0 89.7 ⋆ F 88.5 ⋆ � 100.0 100.0
BankAccount 82.1 ⋆ � 88.5 88.5 76.7 ⋆ � 88.5 88.5 85.7 ⋆ F 81.2 ⋆ � 86.7 86.7
BookTown 92.0 ⋆ � 97.6 ⋆ F 97.6 87.7 ⋆ � 97.6 ⋆ F 97.6 82.6 82.6 ⋆ � 87.4 ⋆ F 85.5
BrowserCookies 89.3 ⋆ � 92.6 ⋆ F 92.3 88.2 ⋆ � 92.6 ⋆ F 92.3 88.6 ⋆ F 86.0 ⋆ � 87.0 ⋆ F 86.5
Cloc 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
CoffeeOrders 91.1 ⋆ � 100.0 100.0 83.6 ⋆ � 100.0 100.0 92.1 ⋆ F 86.9 ⋆ � 94.6 94.6
CustomerOrder 86.8 ⋆ � 94.0 94.0 80.2 ⋆ � 93.9 93.9 93.4 ⋆ F 89.3 ⋆ � 95.2 95.2
DellStore 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Employee 93.2 ⋆ � 95.3 95.3 91.1 ⋆ � 95.3 95.3 82.2 82.2 ⋆ � 84.1 84.1
Examination 95.5 ⋆ � 97.3 97.3 93.9 ⋆ � 97.3 97.3 86.2 ⋆ F 84.4 ⋆ � 85.8 85.8
Flights 87.5 ⋆ � 95.5 ⋆ F 95.2 87.5 ⋆ � 95.5 ⋆ F 95.2 90.5 ⋆ F 84.9 84.9 ⋆ F 84.3
FrenchTowns 88.8 88.8 ⋆ F 82.5 82.1 ⋆ � 88.8 ⋆ F 82.5 85.2 ⋆ F 82.7 ⋆ � 89.2 ⋆ F 83.3
Inventory 83.3 ⋆ � 88.2 ⋆ F 87.5 81.0 ⋆ � 89.5 ⋆ F 88.2 76.2 76.2 ⋆ � 80.0 ⋆ F 75.0
Iso3166 70.0 ⋆ � 77.8 77.8 63.6 ⋆ � 77.8 77.8 72.7 72.7 ⋆ � 80.0 80.0
IsoFlav R2 87.0 87.0 87.0 87.2 87.2 ⋆ F 87.0 85.8 85.8 ⋆ � 87.0 ⋆ F 84.4
iTrust 92.8 ⋆ � 95.8 ⋆ F 95.7 90.9 ⋆ � 95.8 ⋆ F 95.7 82.6 ⋆ F 82.4 ⋆ � 84.2 ⋆ F 83.6
JWhoisServer 76.1 ⋆ � 78.7 78.7 73.7 ⋆ � 78.7 78.7 74.2 74.2 ⋆ � 76.6 76.6
MozillaExtensions 82.2 ⋆ � 82.7 ⋆ F 82.1 81.9 ⋆ � 82.8 ⋆ F 82.1 73.1 73.1 ⋆ � 73.5 ⋆ F 71.3
MozillaPermissions 96.7 ⋆ � 100.0 100.0 93.5 ⋆ � 100.0 100.0 74.2 74.2 ⋆ � 76.7 76.7
NistDML181 90.0 ⋆ � 100.0 100.0 90.0 ⋆ � 100.0 100.0 100.0 100.0 100.0 100.0
NistDML182 84.4 ⋆ � 100.0 100.0 81.5 ⋆ � 100.0 100.0 100.0 100.0 100.0 100.0
NistDML183 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NistWeather 85.3 ⋆ � 93.5 ⋆ F 93.3 82.9 ⋆ � 93.5 ⋆ F 93.3 93.8 ⋆ F 91.4 ⋆ � 94.1 ⋆ F 93.8
NistXTS748 88.9 88.9 ⋆ F 88.2 89.5 89.5 ⋆ F 88.2 84.2 84.2 ⋆ � 88.9 ⋆ F 87.5
NistXTS749 84.0 ⋆ � 95.5 ⋆ F 95.0 80.8 ⋆ � 95.5 ⋆ F 95.0 92.1 ⋆ F 89.3 ⋆ � 92.6 ⋆ F 92.0
Person 77.3 ⋆ � 81.0 81.0 73.9 ⋆ � 81.0 81.0 78.3 78.3 ⋆ � 81.8 81.8
Products 79.7 ⋆ � 86.5 86.5 76.7 ⋆ � 86.5 86.5 87.6 ⋆ F 84.3 ⋆ � 87.6 ⋆ F 87.1
RiskIt 93.5 ⋆ � 99.5 ⋆ F 99.5 89.0 ⋆ � 99.5 ⋆ F 99.5 90.8 ⋆ F 85.7 ⋆ � 89.7 ⋆ F 89.3
StackOverflow 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
StudentResidence 89.5 ⋆ � 94.4 94.4 85.0 ⋆ � 94.4 94.4 84.4 ⋆ F 82.9 ⋆ � 87.2 87.2
UnixUsage 91.5 ⋆ � 100.0 100.0 86.0 ⋆ � 100.0 100.0 95.8 ⋆ F 93.6 ⋆ � 98.3 ⋆ F 98.2
Usda 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
WordNet 79.2 ⋆ � 94.1 ⋆ F 93.7 76.6 ⋆ � 94.3 ⋆ F 93.7 85.0 85.0 ⋆ � 88.3 ⋆ F 87.4

7 RELATED WORK

Much like this paper, there has been an extensive amount
of work that aims to make mutation analysis more efficient
and/or more useful. Due to the voluminous nature of work
in this area, we survey some representative papers that
are related to this paper’s technique and its experimental
study; a more comprehensive treatment can be found in
the survey by Jia and Harman [17]. To start, Wong and
Mathur presented an early empirical study that evaluated
different strategies for reducing the cost of mutation testing
by randomly selecting certain mutants for analysis. Mresa
and Bottaci [57] and Offutt et al. [58] followed up this
study with new experiments that investigated how selec-
tive mutation could speed-up mutation testing by reducing
the number of mutants subject to analysis; McCurdy et
al. subsequently released an open-source tool to support
further experimentation with these techniques [59]. Finally,
Ma and Kim showed how clustering can reduce the cost of
mutation testing by identifying similar mutants, facilitating
the analysis of only the representative ones [60]. While all of
these prior papers present ways to improve the efficiency of
mutation analysis by discarding mutants, they may yield a
mutation score that differs from the original; in contrast, the
method presented in this paper will never compromise the
mutation score because it only removes ineffective mutants.

Many related papers have attempted to improve the per-
formance of mutation analysis by using either specialized
computer hardware or integrated software tools. In early
work, both Offutt et al. [61] and Byoungju and Mathur [62]
proposed a technique for high-performance mutation test-
ing on a parallel computer. Attempting to improve the
software that performs mutation analysis, both DeMillo et
al. [63] and Just et al. [64] developed methods that were
directly integrated into the compiler for a specific pro-

gramming language. In an effort to make the generation of
program mutants faster, Untch et al. [65], Ma et al. [66], and
Just et al. [67] explored the use of configurable “templates”
when manipulating the source code of program mutants.
While each of these prior papers improves the efficiency
of mutation testing, it does so at the expense of requiring
either specialized hardware (e.g., a parallel computer) or
customized software (e.g., a Java compiler). This paper’s
method is distinguished from these prior works in that it
creates and executes mutants without needing to modify the
DBMS or any other systems software. It is also worth noting
that other prior work, like that of Zhang et al. [68] and
Just et al. [69], obviate the need for a customized execution
environment by applying regressing testing methods [70]
that improve the efficiency of mutation testing by reordering
the tests. While these methods could be customized for
relational database schemas, to date and to the best of our
knowledge, none of them can yet handle this new domain.

In the context of using mutation analysis to compare test
suite quality, the detection of equivalent program mutants
is known to be generally undecidable [71]. Since there is a
considerable human and computational cost associated with
deciding if a mutant is equivalent [20], prior work has devel-
oped approaches that use genetic algorithms [42], compiler
optimization [37], [39], constraint-based testing [40], and
coverage analysis [20] to detect and remove some equivalent
mutants. In addition, Hierons et al. explained how to use
program slicing to reduce the computational and human
effort needed to determine if a mutant is equivalent [72].
Applying it to the equivalent mutant problem, Hierons and
Merayo also presented an algorithm for detecting equiva-
lence between pairs of probabilistic stochastic finite state
machines [73]. While these methods may be adapted for
databases, none of them currently handle database schema
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TABLE 14
Summary of mutation score changes

This table reports the numbers of schemas whose tests, generated by either Random+ or the AVM, experienced a decrease or increase for a specific DBMS following
the removal of a type of impaired mutant from mutation analysis (resulting in one of the different sets of mutants used in the experiments—for instance,
“−S, −(S+I) . . . ”—described in Section 5.3). “F” denotes the number of schemas for which the mutation score significantly decreased following the removal
of an impaired mutant type, while “�” denotes the numbers of schemas for which the mutation score significantly increased. The value following this number in
parentheses is the number of schemas for which the significant change was accompanied by a large effect size. “#” denotes the number of schemas that experienced a
100% mutation score after the removal of the impaired mutants. Of the 34 schemas used in the experiments, the percentage of schemas with a 100% score is shown in
parentheses. Since there are no automated checks to identify impaired mutants for HyperSQL and PostgreSQL, there is no data for this mutant type and these DBMSs.

Random+ AVM

Stillborn Impaired Equivalent Redundant Stillborn Impaired Equivalent Redundant
−S −(S+I) −(S+I+E) −(S+I+E+R) −S −(S+I) −(S+I+E) −(S+I+E+R)

# F � # F � # F � # # F � # F � # F � #

HyperSQL 1 (2.9%) - - 0 (0) 19 (18) 1 (2.9%) 2 (2) 5 (5) 1 (2.9%) 5 (14.7%) - - 0 (0) 26 (26) 12 (35.3%) 12 (12) 0 (0) 12 (35.3%)
PostgreSQL 1 (2.9%) - - 0 (0) 23 (23) 1 (2.9%) 2 (2) 5 (5) 1 (2.9%) 5 (14.7%) - - 0 (0) 27 (27) 12 (35.3%) 13 (13) 0 (0) 12 (35.3%)
SQLite 1 (2.9%) 16 (16) 0 (0) 1 (2.9%) 0 (0) 15 (15) 1 (2.9%) 2 (2) 14 (13) 1 (2.9%) 7 (20.6%) 16 (16) 0 (0) 7 (20.6%) 0 (0) 26 (26) 9 (26.5) 15 (15) 0 (0) 9 (26.5%)

mutants. Moreover, the term redundant mutant was pre-
viously used by Just et al. [36] to describe Java program
mutants that should be removed because they are subsumed
by other mutants. We use this term more generally to mean
all mutants that are equivalent to other mutants. Finally,
Papadakis et al. point out that ineffective mutants—like the
ones that this paper’s methods can identify and remove—
are a validity threat for experiments using mutation analysis
to assess the effectiveness of testing techniques [21].

As previously mentioned in Section 2, most work involv-
ing the implementation, improvement, and evaluation of
mutation analysis methods was originally focused on tra-
ditional programs, like those written in programming lan-
guages such as Fortran, C, and Java [66], [74], [75]. However,
mutation has recently been adopted for a wider range of
software artifacts. For instance, the technique developed by
Gligoric et al. considers concurrent programs [76]. Moving
beyond traditional programs, work such as that of Deng et
al. and Lindström et al., proposed the use of mutation
analysis to assess the adequacy of test suites for Android
apps [26], [27]. Others have recently applied mutation anal-
ysis to the measurement of test suite effectiveness for web
sites [28], [29], [30]. Mutation testing has additionally been
applied in other diverse domains such as mobile software
agents (e.g., [31], [32]) and security policies (e.g., [33], [34]).
Like these examples of related work, this paper considers
mutation testing for a new domain—in this case, relational
database schemas. Yet, unlike the aforementioned papers,
this one’s focus is on the automatic identification and re-
moval of the ineffective mutants that may result in mislead-
ing mutation scores and an inefficient mutation analysis.

Since many organizations maintain large databases [2]
and the quality of the data in these databases is highly
valued by consumers [77], it is worth noting that several
examples of prior work have motivated the need for ef-
ficient and effective mutation analysis methods for rela-
tional database schemas. Experimentally observing that the
schema of the database in real-world applications changes
frequently, Qui et al. both demonstrated the important role
that the relational database schema plays in ensuring the
correctness of an application and motivated the need for
extensive schema testing [78]. The empirical results of Qui et
al. are amplified by Guz’s remark that one of the key
mistakes in testing database applications is “not testing
[the] database schema” [11]. These aforementioned papers
also stressed the importance of efficiently testing relational
database schemas with adequate tests; this paper’s auto-
mated technique for identifying and removing ineffective

mutants help testers achieve this goal by making database
schema mutation analysis both faster and more useful than
it was when performed with prior methods (e.g., [12]).

While Bowman et al. focused on using mutation analysis
to assess test suites for an entire database management
system [35], Kapfhammer et al. [12] were the first to propose
mutation operators for the integrity constraints expressed in
a relational database schema. These suggested operators cre-
ated mutants by adding, removing, and replacing columns
in the definitions of PRIMARY KEY and UNIQUE constraints,
while also adding and removing NOT NULL constraints from
other columns in the schema’s tables. An operator was
also proposed to remove CHECK constraints from database
schema definitions. Wright et al. [15] extended this set
with operators that mutated the predicates of CHECK con-
straints (e.g., by replacing a relational operator such as >

with >=), while also introducing operators to mutate the
columns in the definition of FOREIGN KEY constraints.

Other prior work by this paper’s authors furnished
methods, such as mutant schemata and parallel execu-
tion, for speeding up the mutation analysis of database
schemas [14]. Wright’s dissertation presented a unified
treatment of these approaches to efficient schema mutation
testing [47]. While this dissertation, and the author’s afore-
mentioned work (e.g., [12], [14], [15]), focused on mutating
the CREATE TABLE statements that produce the schema, other
prior work has proposed mutation operators for the SQL
SELECT statements used by applications to retrieve data
stored in a database [46], [79]. The idea of mutation analysis
for database queries was later incorporated into a tool for
instrumenting and testing database applications written in
the Java programming language, potentially mutating any
executed SELECT statement [80]. Chan et al. also proposed
mutation operators for the entity-relationship model man-
aged by a database application [81]. Yet, unlike these afore-
mentioned papers, this paper’s methods concentrate on the
database schema and are designed to remove the ineffective
mutants that make mutation testing slower and less useful.

8 CONCLUSIONS AND FUTURE WORK

Since data is a key driver in business and science, its
integrity is of obvious importance [53]. Relational database
schemas help to ensure the validity of data through integrity
constraints [1]. However, mistakes can be made while
specifying schemas, or by misunderstanding the dialect of
SQL understood by the DBMS of concern. Therefore, it is
important to test relational schemas, as has been recently
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recommended by industrial practitioners [11]. Since test
cases for database schemas may not be equally capable at
finding faults, mutation analysis offers a way to evaluate
the “strength” of test suites by inserting potential defects
and then checking to see if the tests can find them [12], [13].

Although mutation analysis is known to effectively char-
acterize the quality of tests for programs [82], it is subject
to certain concerns [17], to which mutation analysis for
schemas is also vulnerable. One issue is the production
of useless, ineffective mutants. For instance, a mutant is
ineffective if it is equivalent to the original program under
test [83]. In the context of using mutation analysis to assess
the quality of a program’s tests, the detection of equivalent
program mutants is known to be generally undecidable [71]
and costly from a human perspective [20]. Since these con-
cerns for program mutation also apply to the mutation anal-
ysis of database schemas, in this paper we have identified
patterns of ineffectiveness in database schemas that lead to
equivalent, redundant, and stillborn mutants. We have also
discovered a new type of ineffective mutant not heretofore
observed in program mutation: the impaired mutant. These
impaired mutants are similar to stillborn mutants in that
the schema is infeasible. However, instead of being rejected
by the database management system (or failing to compile,
as would be the case for stillborn mutants with program
mutation), they are live until trivially killed by a test.

This paper presented general-purpose algorithms, de-
signed to be run before mutation analysis and implemented
in the SchemaAnalyst tool, that statically analyze the mutants
of database schemas to check if they are ineffective. In
an empirical study, focusing on 34 representative database
schemas comprising a total of 186 tables, 1044 columns,
and 590 constraints that were hosted by the well-known
HyperSQL, PostgreSQL, and SQLite DBMSs, we found that
a significant number of ineffective mutants could be iden-
tified with this automated approach. We also discovered
that removing them from the mutant pool often significantly
decreased the time needed to perform mutation analysis.

In particular, the prior identification and removal of
stillborn mutants was shown to be an order of magnitude
faster than relying on the DBMS to reject them during
mutation analysis. The efficiency benefits of removing other
types of mutant depended on their numbers, and whether
the time taken to detect and eliminate them was regained in
the course of not having to analyze significant numbers of
them later, which could lead to further time savings. Finally,
the results also revealed that the removal of ineffective
mutants generally changed the mutation score, making it
more useful to testers assessing the quality of their tests.
In particular, the removal of equivalent mutants sometimes
lead to a test suite achieving a perfect mutation score.

Although this paper presents and empirically evaluates a
comprehensive suite of methods for automatically detecting
and removing ineffective mutants in database schemas,
several avenues for future work remain. Yet, these meth-
ods could not identify some equivalent and infeasible im-
paired mutants due to the existence of arbitrary predicates
in the database schema’s CHECK constraints. Even though
the equivalence and infeasibility of predicates is a generally
undecidable problem [17], [40], future work will develop
methods that can automatically detect simple forms and use

them as the basis for removing such mutants—for example,
by using a constraint solver. Moreover, even after the re-
moval of ineffective mutants, many mutants remain that are
costly to analyze. Future work needs to develop approaches
that can speed up their analysis (e.g., through further in-
vestigation of virtual execution approaches [84]); or with
techniques to reduce the number of mutants that need to
be considered by selecting a representative sample, as has
been previously proposed for program mutation (e.g., [42],
[57], [58]) and preliminarily developed and evaluated for
schema mutation [59]. Additionally, we will investigate how
this paper’s presented methods for the identification and
removal of ineffective mutants could be applied to other
domains, such as traditional programs and web sites.

There are also many ways in which we intend to improve
the empirical study presented in this paper. For instance, we
will extend the experiments by considering new database
schemas and database-aware mutation operators. This sec-
ond extension will involve, along with the development
of higher-order mutation operators for schemas, the cus-
tomization of the mutation operators for SQL SELECTs [46] so
that they ultimately work for database schemas. We will also
more thoroughly investigate how both automatically and
manually created tests influence the detection and removal
of ineffective mutants. These new experimental configura-
tions will serve to further control the threats to the validity
of this paper’s experimental study, leading to, for instance,
further confirmation of the generalizability of the results.

Once completed, we will integrate all of the new tech-
niques into the existing repository for the SchemaAna-
lyst tool10. Overall, the combination of this paper’s auto-
mated method for handling ineffective mutants, and the
improvements completed during future work, will yield an
effective way to assess the quality of the test suites for the
integrity constraints in a database schema. Ultimately, the
use of the algorithms presented in this paper will support
the production of better tests suites for schemas, leading to
the creation of high-quality relational databases that store
the data sets arising in fields such as science and business.
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[46] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Mutating database
queries,” Information and Software Technology, vol. 49, no. 4, 2007.

[47] C. Wright, “Mutation analysis of relational database schemas,”
Ph.D. dissertation, University of Sheffield, 2015.

[48] A. Bacchelli, “Mining challenge 2013: Stack overflow,” in Proceed-
ings of the 10th Working Conference on Mining Software Repositories,
2013.

[49] K. Pan, X. Wu, and T. Xie, “Generating program inputs for
database application testing,” in Proceedings of the 26th International
Conference on Automated Software Engineering, 2011.

[50] J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold, “Dy-
namic invariant detection for relational databases,” in Proceedings
of the 9th International Workshop on Dynamic Analysis, 2011.

[51] B. Smith and L. Williams, “An empirical evaluation of the Mu-
Java mutation operators,” in Proceedings of the Testing: Academic
and Industrial Conference - Practice and Research Techniques and the
International Workshop on Mutation Analysis, 2007.

[52] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Software Testing, Verification and Reliability, vol. 24, no. 3, 2014.

[53] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System
Concepts, 6th ed., 2010.

[54] A. Vargha and H. D. Delaney, “A critique and improvement of the
CL common language effect size statistics of McGraw and Wong,”
Journal of Education and Behavioral Statistics, vol. 25, no. 2, 2000.

[55] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Hitchhikers
need free vehicles! Shared repositories for statistical analysis in
SBST,” in Proceedings of the 9th International Workshop on Search-
Based Software Testing, 2016.

[56] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selec-
tion: Help for the practicing programmer,” Computer, vol. 11, no. 4,
1978.

[57] E. S. Mresa and L. Bottaci, “Efficiency of mutation operators and
selective mutation strategies: An empirical study,” Software Testing,
Verification and Reliability, vol. 9, no. 4, 1999.

[58] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evalu-
ation of selective mutation,” in Proceedings of the 15th International
Conference on Software Engineering, 1993.

http://java.dzone.com/articles/basic-mistakes-database/
http://java.dzone.com/articles/basic-mistakes-database/
http://www.itl.nist.gov/div897/ctg/sql_form.htm
https://sqlite.org/lang_createtable.html
https://sqlite.org/lang_createtable.html


34

[59] C. J. McCurdy, P. McMinn, and G. M. Kapfhammer, “mrstudyr:
Retrospectively studying the effectiveness of mutant reduction
techniques,” in Proceedings of the 32nd International Conference on
Software Maintenance and Evolution, 2016.

[60] Y.-S. Ma and S.-W. Kim, “Mutation testing cost reduction by
clustering overlapped mutants,” Journal of Systems and Software,
vol. 115, 2016.

[61] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K. Khambekar, “Mu-
tation testing of software using a MIMD computer,” in Proceedings
of the International Conference on Parallel Processing, 1992.

[62] C. Byoungju and A. P. Mathur, “High-performance mutation test-
ing,” Journal of Systems and Software, vol. 20, no. 2, 1993.

[63] R. DeMillo, E. Krauser, and A. Mathur, “Compiler-integrated
program mutation,” in Proceedings of the 15th Annual International
Computer Software and Applications Conference, 1991.

[64] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An effi-
cient and extensible tool for mutation analysis in a Java compiler,”
in Proceedings of the 26th International Conference on Automated
Software Engineering, 2011.

[65] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis us-
ing mutant schemata,” in Proceedings of the International Symposium
on Software Testing and Analysis, 1993.

[66] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: A mutation system
for Java,” in Proceedings of the 28th International Conference on
Software Engineering, 2006.

[67] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using condi-
tional mutation to increase the efficiency of mutation analysis,”
in Proceedings of the 6th International Workshop on Automation of
Software Test, 2011.

[68] L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing
inspired by test prioritization and reduction,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2013.

[69] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using non-
redundant mutation operators and test suite prioritization to
achieve efficient and scalable mutation analysis,” in Proceedings of
the 23rd International Symposium on Software Reliability Engineering,
2012.

[70] G. M. Kapfhammer, “Regression testing,” in The Encyclopedia of
Software Engineering, 2010.

[71] T. A. Budd and D. Angluin, “Two notions of correctness and their
relation to testing,” Acta Informatica, vol. 18, no. 1, 1982.

[72] R. Hierons, M. Harman, and S. Danicic, “Using program slicing
to assist in the detection of equivalent mutants,” Software Testing,
Verification and Reliability, vol. 9, no. 4, 1999.

[73] R. M. Hierons and M. G. Merayo, “Mutation testing from proba-
bilistic and stochastic finite state machines,” Journal of Systems and
Software, vol. 82, no. 11, 2009.

[74] K. N. King and A. J. Offutt, “A Fortran language system for
mutation-based software testing,” Software: Practice and Experience,
vol. 21, no. 7, 1991.

[75] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized
higher order mutation testing tool for the full C language,” in Pro-
ceedings of the Testing: Academic and Industrial Conference - Practice
and Research Techniques and the International Workshop on Mutation
Analysis, 2008.

[76] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, “Selective muta-
tion testing for concurrent code,” in Proceedings of the International
Symposium on Software Testing and Analysis, 2013.

[77] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality
means to data consumers,” Journal of Management Information
Systems, vol. 12, no. 4, 1996.

[78] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution
of schema and code in database applications,” in Proceedings
of the 21st International Symposium on the Foundations of Software
Engineering, 2013.

[79] G. Kaminski, U. Praphamontripong, P. Ammann, and J. Offutt, “A
logic mutation approach to selective mutation for programs and
queries,” Information and Software Technology, vol. 53, no. 10, 2011.

[80] C. Zhou and P. Frankl, “JDAMA: Java database application muta-
tion analyser,” Software Testing, Verification and Reliability, vol. 21,
no. 3, 2011.

[81] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based testing of
database application programs with conceptual data model,” in
Proceedings of the 5th International Conference on Quality Software,
2005.

[82] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman, “An
empirical study on mutation, statement and branch coverage fault

revelation that avoids the unreliable clean program assumption,”
in Proceedings of the 39th International Conference on Software Engi-
neering, 2017.

[83] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and
stubborn mutation operators using human analysis of equiva-
lence,” in Proceedings of the 36th International Conference on Software
Engineering, 2014.

[84] P. McMinn, G. M. Kapfhammer, and C. J. Wright, “Virtual muta-
tion analysis of relational database schemas,” in Proceedings of the
11th International Workshop on Automation of Software Test, 2016.

Phil McMinn is a Reader (Associate Profes-
sor) in the Department of Computer Science
at the University of Sheffield, where he has
been researching and teaching software engi-
neering since 2006. His main research inter-
ests include search-based software engineering,
software testing, program transformation, and
reverse engineering.

Chris J. Wright received the PhD degree in
computer science in 2016 from the University
of Sheffield, United Kingdom. His research inter-
ests include mutation analysis and search-based
software engineering, with a focus on the use of
automated software testing techniques.

Colton J. McCurdy received the BSc degree in
computer science in 2017 from Allegheny Col-
lege. He is a software engineer at StockX with
research interests in search-based software en-
gineering and selective mutation testing.

Gregory M. Kapfhammer is an Associate Pro-
fessor in the Department of Computer Science
at Allegheny College. In addition to teaching
courses in many technical areas, he conducts
research and develops useful tools in the fields
of software engineering and software testing.


	Introduction
	Background
	Relational Schemas and Integrity Constraints
	Mistakes Leading to Faults in Database Schemas
	Database Schema Testing
	Mutation Analysis of Schema Integrity Constraints

	Classifying the Ineffective Mutants of Integrity Constraints in Database Schemas
	Equivalent Relational Database Schema Mutants
	Redundant Mutants
	Stillborn Mutants
	Impaired Mutants
	Ineffective Mutant Classification Summary

	Automatically Detecting and Removing Ineffective Database Schema Mutants
	Abstract Representation of Database Schemas
	Stillborn Mutants
	Impaired Mutants
	Equivalent and Redundant Mutants

	Mutation Analysis with SchemaAnalyst
	Automated Relational Schema Parsing
	Automated Generation of Mutants
	Automatic Removal of Ineffective Mutants
	Automated Mutation Analysis

	Empirical Study
	Methodology
	Subject Schemas
	Subject DBMSs
	Automatic Generation of the Example Test Suites
	Experimental Procedure
	Evaluating the Impact on Timing and Mutation Score

	Threats to Validity
	Characterizing the Test Suites
	Answers to Research Questions

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Phil McMinn
	Chris J. Wright
	Colton J. McCurdy
	Gregory M. Kapfhammer


