
This is a repository copy of astroplan: An Open Source Observation Planning Package in
Python.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/126092/

Version: Published Version

Article:

Morris, B.M., Tollerud, E., Sipocz, B. et al. (9 more authors) (2018) astroplan: An Open
Source Observation Planning Package in Python. Astronomical Journal , 155 (3). 128.
ISSN 0004-6256

https://doi.org/10.3847/1538-3881/aaa47e

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

astroplan: An Open Source Observation Planning Package in Python

Brett M. Morris
1

, Erik Tollerud
2

, Brigitta Sipőcz
3
, Christoph Deil

4
, Stephanie T. Douglas

5
, Jazmin Berlanga Medina

6
,

Karl Vyhmeister
7
, Toby R. Smith

1
, Stuart Littlefair

8
, Adrian M. Price-Whelan

9
, Wilfred T. Gee

10
, and Eric Jeschke

11

1
Astronomy Department, University of Washington, Seattle, WA 98195, USA; bmmorris@uw.edu

2
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21211, USA

3
Visitor, Institute of Astronomy, University of Cambridge, Madingley Road, CB30HA, UK

4
Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg, Germany

5
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

6
Imagination Station, 600 North 4th Street, Lafayette, IN, USA

7
California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA

8
University of Sheffield, Western Bank, Sheffield S10 2TN, UK

9
Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA

10
Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia

11
Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA

Received 2017 October 18; revised 2017 December 23; accepted 2017 December 27; published 2018 February 23

Abstract

We present astroplan—an open source, open development, Astropy affiliated package for ground-based observation
planning and scheduling in Python. astroplan is designed to provide efficient access to common observational
quantities such as celestial rise, set, and meridian transit times and simple transformations from sky coordinates to
altitude-azimuth coordinates without requiring a detailed understanding of astropy’s implementation of coordinate
systems. astroplan provides convenience functions to generate common observational plots such as airmass and
parallactic angle as a function of time, along with basic sky (finder) charts. Users can determine whether or not a target is
observable given a variety of observing constraints, such as airmass limits, time ranges, Moon illumination/separation
ranges, and more. A selection of observation schedulers are included that divide observing time among a list of targets,
given observing constraints on those targets. Contributions to the source code from the community are welcome.

Key words: methods: numerical – methods: observational

1. Introduction

The Astropy Project is a community effort to develop a

common core package for astronomy in Python and to foster an

ecosystem of interoperable astronomy packages. The astropy

core package contains all of the machinery necessary for

computing whether or not a given object is observable from a

location on the Earth at specified times. It defines an object-

oriented framework for specifying times and coordinates on the

sky and Earth. In this paper, we assume that the reader has some

familiarity with the tools available in astropy, see Astropy

Collaboration et al. (2013) or the online documentation.12

There are several practical algorithms useful for observation

planning that are not included in astropy. Some questions

that users may seek to answer using astropy would require

substantial effort, such as: “is this star currently above 30°
altitude from the Apache Point Observatory?” or “what time is

astronomical twilight this evening on MaunaKea?”
astroplan is an Astropy affiliated package for ground-

based observation planning and scheduling, which provides

functionality for answering these questions. It is a pure-Python

package that provides an efficient application programming

interface (API) for quick access to common observational

calculations, while using the full accuracy and precision of

astropy under-the-hood to handle the sky and time

coordinate transformations.
The most similar existing Python software that can be used to

plan observations is pyephem (Rhodes 2011). astroplan is

different from pyephem in a few fundamental ways. astro-

plan provides support for computing the positions of the Sun,

Moon, stars, and major planets. It uses astropy’s modern and

more accurate IAU2000/2006 methods and NASA’s DE430

planetary ephemeris. astroplan is built around the astropy

objects that specify times and coordinates. astroplan users can

use the extensively documented and constantly improving

astropy framework for specifying times and coordinates.

pyephem uses package-specific implementations of times and

coordinates that are not cross-compatible with packages in the

Astropy Project ecosystem. pyephem supports the Sun, Moon,

stars, major planets, asteroids and comets, and uses the older

IAU1976/1980 precession/nutation methods, and VSOP87

planetary ephemerides.
Here, we briefly outline some key features of astroplan

version 0.4 and the design decisions that went into making

them. In Section 2, we outline the astroplan API, and in

Section 3, we direct the reader to the online documentation and

resources for teaching and learning astroplan.

2. API

2.1. Basic Operations

We begin by defining the Observer object, which specifies

the location of an observer on the Earth. Most of the major

observatories included in IRAF (National Optical Astronomy

The Astronomical Journal, 155:128 (9pp), 2018 March https://doi.org/10.3847/1538-3881/aaa47e

© 2018. The American Astronomical Society.

Original content from this work may be used under the terms

of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

12
http://docs.astropy.org

1

https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
mailto:bmmorris@uw.edu
https://doi.org/10.3847/1538-3881/aaa47e
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/aaa47e&domain=pdf&date_stamp=2018-02-23
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/aaa47e&domain=pdf&date_stamp=2018-02-23
http://creativecommons.org/licenses/by/3.0/
http://docs.astropy.org

Observatories 1999) are accessible by name in astroplan

via the at_site class method:

Example 1. Define a common observer

An observer can be located anywhere on the Earth with use of
astropy’s EarthLocation object.

Example 2. Define a custom observer

In order to account for atmospheric refraction in different
environments, several atmospheric parameters can be described
on the Observer object, including the atmospheric pressure,
temperature, and relative humidity.

Targets with fixed celestial coordinates are described by
FixedTarget objects, which contain their coordinate
and name:

Example 3. Define a fixed celestial target

The from_name class method uses tools from astropy.

coordinates to query Simbad, NED, and VizieR for target
coordinates by name through the Sesame Name Resolver
(Schaaff 2004). Non-fixed targets apart from the Sun and Moon
are not implemented in astroplan at the time of writing, and
community contributions for supporting minor bodies are
welcome.

Rise and set times are the cornerstone computations of
observation planning. astroplan computes the rise and set
times of an object by transforming the sky coordinates of the
object (e.g., ICRS, galactic, etc.) into a grid of altitude-azimuth
coordinates for that target as seen by an observer at a specific
location on the Earth, at 10-minute intervals over a 24-hr
period. The rise or set time is then computed by linear
interpolation between the two coordinates nearest to zero. The
meridian/anti-meridian transit time is computed similarly; it
takes a numerical derivative of the altitudes before searching
for the appropriate zero crossing. The user can also define a rise
or set horizon other than 0° altitude, which is useful for
observatories with non-zero altitude limits.
We chose to compute rise and set times with a grid-search to

maximize accuracy, rather than speed. In particular, we sought

Figure 1. An airmass plot and a sky chart for observing Sirius and Rigel from
Apache Point Observatory, made with the astroplan.plots methods
plot_airmass and plot_sky. The underlying altitude/azimuth calcul-
ation powered by astropy.coordinates includes atmospheric refraction.

2

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

to preserve the astropy altitude-azimuth coordinate trans-
formation, which accounts for atmospheric refraction.

Convenience methods are included to compute the altitude-
azimuth coordinates of a target at a given time, and the times of
rise, set, meridian, and anti-meridian transit.

Example 4. Find target altitude/azimuth and rise time

Times can be defined in a variety of scales using astropy

Time objects, including UTC, TAI, TCB, TCG, TDB,
TT, UT1.

The sky coordinates of the major solar system bodies are
computed using the jplephem package, which provides an
API for querying JPL’s Satellite Planet Kernel files. The
methods for querying the positions of solar system bodies were
originally developed for astroplan, and have since been
moved into the astropy.coordinates package.

Common plots are accessible through the astroplan.

plots module—see Figure 1 for a few examples. There are
many more example plots and the source code that generates
them, which are available in the online documentation.13

2.2. Observing Constraints

Planning astronomical observations often requires an
observer to determine whether or not a celestial object is
observable given a list of observing constraints. astroplan
contains a generic framework for defining observing con-
straints and computing the “observability” of a list of targets
given those constraints.

For example, suppose an observer is planning to observe
low-mass stars in Praesepe in the optical and infrared from the
W.M.Keck Observatory. The constraints imposed by the
telescope and science case require all observations to occur:
(i) between astronomical twilights; (ii) while the Moon is
separated from Praesepe by at least 45°; and (iii) while
Praesepe is above the lower elevation limit of Keck I, about
33°. These observing constraints can be specified with the
AtNightConstraint, MoonSeparationConstraint,
and AltitudeConstraint objects. We demonstrate this
use case with astroplan in a long code example in
Appendix A.

Other built-in constraints allow users to specify acceptable
ranges of: Moon illuminations, airmass, Sun separations (e.g., for
non-optical observations), and local times. The observing
constraint classes take as inputs: targets, times, and an observer;
and the constraints return Boolean matrices indicating whether or
not those targets are observable at each time.

The constraints framework is modular and written to be
extensible. Users can implement their own constraints for a
particular observatory or science case by following a tutorial in
the online documentation14 to produce constraint objects that
are compatible with the astroplan scheduling framework.

2.3. Transiting Exoplanets and Eclipsing Binaries (EBs)

The astroplan.periodic module contains a frame-
work for defining systems with periodic events, such as
exoplanets and binaries. There are specialized classes for
eclipsing systems, such as EBs and transiting exoplanets. The
module makes use of the generic terms “primary eclipse” and
“secondary eclipse,” where the primary eclipse is a “transit” in
the case of exoplanets. There are convenience functions for
computing the next primary or secondary eclipses of an
exoplanet or EB, or as well as computing ingress and egress
times of the next primary or secondary eclipse.

Example 5. Find upcoming exoplanet transit times

There are also complementary methods in the constraints
module for use with the periodic system framework. Users
can determine which eclipse events are observable from an
observatory with a list of constraints. We include a brief tutorial
for using the periodic module with queries from online
exoplanet parameter databases in Appendix B.

2.4. Scheduling Observations

The scheduling framework enables users to define observing
blocks, which denote an observation of a target or group of
targets for an amount of time in a particular instrument
configuration. Each observing block can be assigned a numerical
priority, which by convention spans the range [0, 1] where zero
is low priority. Priorities can be assigned by an observer based
on which potential observations are most important to them to
get scheduled. A set of observing blocks gets assigned a rank,

13
https://astroplan.readthedocs.io/en/stable/tutorials/plots.html

14
https://astroplan.readthedocs.io/en/stable/tutorials/constraints.html#user-

defined-constraints

3

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

https://astroplan.readthedocs.io/en/stable/tutorials/plots.html
https://astroplan.readthedocs.io/en/stable/tutorials/constraints.html#user-defined-constraints
https://astroplan.readthedocs.io/en/stable/tutorials/constraints.html#user-defined-constraints

which for example, might be the rank a proposal receives from a
telescope time allocation committee (TAC).

Each observing block has a list of associated constraints. We
compute a score for each constraint on an observing block,
which can be a Boolean or float in the range [0, 1] where zero is
unfavorable. For example, the score computed from an airmass
constraint will be highest when the airmass is low, while the
score computed from an altitude constraint will be highest
when the altitude is high. Other constraints, like the
AtNightConstraint, yield Boolean scores.

These scored observing blocks can be assigned to time slots
by a scheduler, which chooses the order for which observing
blocks get scheduled first, and the times to assign them. Each
scheduler creates an observing schedule based on one of
several strategies for filling time slots with observing blocks.
As of astroplan version 0.4, there are two schedulers
implemented: the sequential and priority schedulers.

The sequential scheduler begins by selecting the best-scored
observing block at the beginning of the observing time. It then
continues to choose the next best-scored block for the next
observation, until all available observing time is allocated, or
all observing blocks have been allocated.

The priority scheduler takes a prioritized list of observing
blocks. The priority for each observing block could be assigned
by an observatory TAC, for example, or by an individual
observer who needs to schedule their observations given their
scientific priorities. The scheduler will first allocate the highest
priority observing block to the best-scored time slot for that
observing block, and then schedule the next priority block at its
best time, etc.

The two schedulers presently implemented are most useful
for planning an individual observer’s observations; a complete
example is available in Appendix C. We intend to continue to
develop the scheduling module to support queue scheduling for
observatories with many observing programs. A wide range of
strategies exist for planning observations, however, so the code
for the schedulers is adaptable for users to adopt to other
strategies either via subclassing or creating new scheduler
classes. The package welcomes contributions of this sort from
the community.

2.5. Testing and Development

astroplan has an extensive testing suite. In addition to
simple unit tests, which check that sensible inputs yield
sensible outputs, there are also many tests that compare the
accuracy of astroplan outputs. The tests are executed
remotely whenever changes are made to the source code or
documentation within the astroplan repository. The
astroplan outputs are commonly compared against outputs
from the independent python ephemeris package pyephem

(Rhodes 2011). The difference in rise and set times with
astroplan and pyephem is always <8minutes (with
atmospheric refraction), and the differences are probably
attributable to intrinsically different interpretations of these
times.

Contributions to the package from the community are
welcome. The source code is hosted on GitHub,15 where users
can contribute new features. astroplan follows the open
development model refined by astropy, and many tutorials

on contributing to the source code of either package are
available in the astropy documentation.16

3. Documentation

3.1. Online Documentation

Detailed, tested, living documentation for astroplan is
available online via Read the Docs.17 This paper is intended as
a brief introduction to astroplan’s core functionality and
the algorithms used throughout the package, so we refer the
reader to the online documentation for the complete API
description and complete tutorials for each module with
examples.

3.2. astroplan in the Classroom

astroplan is incorporated into the curriculum for under-
graduate majors in astronomy at the University of Washington,
in the “Introduction to Programming for Astronomical
Applications” course. The lesson plan on observing with
Python is built around the task of planning astronomical
observations. Along the way, it guides students through using
the time, coordinate, and quantity objects of astropy,
building up to their combined use in observation planning
with astroplan. Jupyter notebooks guiding students through
these lessons are freely available online.18

4. Summary

astroplan is a pure-Python, open source, Astropy
affiliated package for observation planning and scheduling. It
provides methods for computing common observational
quantities such as target rise, set, and transit times, and it
specifies a framework for testing the “observability” of targets
given observing constraints.

B.M.M., J.B.M. and K.V. gratefully acknowledge support
from the Google Summer of Code program in 2015 and 2016.
B.M.M. acknowledges financial support from the Python
Software Foundation and from the University of Washington
eScience Institute, with funding from the Gordon and
Betty Moore Foundation and the Alfred P. Sloan Foundation.
We thank Eric Agol and Suzanne Hawley for supporting
B.M.M. to devote some PhD thesis time toward developing and
maintaining astroplan. B.M.M. graciously acknowledges
support from Jake VanderPlas, as well.
This research has made use of NASA’s Astrophysics Data

System. This research has made use of the SIMBAD database,
operated at CDS, Strasbourg, France (Wenger et al. 2000).
Software:astroplan (Morris et al. 2017), ipython

(Perez & Granger 2007), numpy (Van Der Walt et al. 2011),
scipy (Jones et al. 2001), matplotlib (Hunter 2007),
astropy (Astropy Collaboration et al. 2013), pyephem

(Rhodes 2011), jplephem.19

15
GitHub: https://github.com/astropy/astroplan, static Zenodo archive:

https://doi.org/10.5281/zenodo.1035883.

16
http://docs.astropy.org/en/stable/development/workflow/development_

workflow.html
17

http://astroplan.readthedocs.io/
18

https://github.com/UWashington-Astro300/astroplan-in-the-classroom
19

https://github.com/brandon-rhodes/python-jplephem/releases/tag/v2.6

4

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

https://github.com/astropy/astroplan
https://orcid.org/0000-0003-2528-3409
http://docs.astropy.org/en/stable/development/workflow/development_workflow.html
http://docs.astropy.org/en/stable/development/workflow/development_workflow.html
http://astroplan.readthedocs.io/
https://github.com/UWashington-Astro300/astroplan-in-the-classroom
https://github.com/brandon-rhodes/python-jplephem/releases/tag/v2.6

Appendix

We outline here some in-depth code examples that demonstrate a few intended use cases for astroplan.

We again encourage the reader to visit the online documentation described in Section 3 for many example inputs and outputs.

Appendix A

Observing Constraints

In Section 2.2, we outlined a list of example observing constraints, which we might like to evaluate at various times with

astroplan. We will observe Praesepe from Keck Observatory, and we are setting the following constraints: (i) observe between

astronomical twilights; (ii) observe while the Moon is separated from Praesepe by at least 45°; and (iii) observe while Praesepe is

above the lower elevation limit of Keck I, about 33°. These observing constraints can be specified with the AtNightConstraint,

MoonSeparationConstraint, and AltitudeConstraint objects. Other built-in constraints include: Moon illumination,

airmass limits, Sun separation limits (e.g., for non-optical observations), and local time constraints. The observing constraint classes

take the following parameters as input: targets, times, and an observer. The constraints return Boolean matrices indicating whether or

not those targets are observable at each time.

The following code will compute whether or not Praesepe is observable given the constraints listed above. The array

observablility will contain “True” for times when Praesepe is observable given the specified constraints, and “False”

otherwise. We visualize the observability grid in Figure 2.

A warning may be printed if astropy or astroplan need to update the International Earth Rotation and Reference Systems

Service (IERS) tables before computing a target’s altitude and azimuth. The altitude and azimuth of a target depends on the

orientation of the Earth, which varies on short timescales due to shifts in the Earth’s moment of inertia. In order to account for these
unpredictable variations in the Earth’s position with time, astropy (and therefore astroplan) use constantly updated tables from the

IERS, which specify the Earth’s orientation with observations of quasars.

5

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

Appendix B

Eclipsing Binary and Transiting Exoplanet Ephemerides

Suppose you want to observe a newly discovered eclipsing binary or a well-known transiting exoplanet. You can compute the time

of the next primary eclipse or transit event with the EclipsingSystem object.

With the latest version of astroquery (Ginsburg et al. 2017), you can query the NASA Exoplanet Science Institute Exoplanet

Archive (Akeson et al. 2013) or the Exoplanet Orbit Database (Wright et al. 2011; Han et al. 2014) for exoplanet system parameters:

Figure 2. Diagram summarizing the “observability grid” of Praesepe given each observing constraint, at each hour within the time range. Dark squares represent times
when the observing constraint is not satisfied.

6

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

Appendix C

Scheduling Observations

In this example, suppose we want to create a schedule for observations at Apache Point Observatory in the first half of the night of 2016

July 7 UTC. We will schedule 16 exposures of Deneb and M13, each in three color filters: B, G, and R. We must observe these targets

when they meet the following constraints: (1) the airmass of the target is<3; (2) the time is between civil twilights; (3) the time is between

02:00–08:00 UTC, which corresponds to the first half of the night at Apache Point.

astroplan provides control over the many parameters that affect observation scheduling. In the example below, we take into

account the slew rate of the telescope, the time it takes to change filters, and a user-input priority for each observing block, see Figure 3.

7

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

(Continued)

ORCID iDs

Brett M. Morris https://orcid.org/0000-0003-2528-3409
Erik Tollerud https://orcid.org/0000-0002-9599-310X
Stephanie T. Douglas https://orcid.org/0000-0001-
7371-2832
Stuart Littlefair https://orcid.org/0000-0001-7221-855X
Adrian M. Price-Whelan https://orcid.org/0000-0003-
0872-7098

References

Akeson, R. L., Chen, X., Ciardi, D., et al. 2013, PASP, 125, 989

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33

Ginsburg, A., Sipocz, B., Parikh, M., et al. 2017, astropy/astroquery: v0.3.6 with
fixed license, Zenodo, doi:10.5281/zenodo.826911

Han, E., Wang, S. X., Wright, J. T., et al. 2014, PASP, 126, 827

Hunter, J. D. 2007, CSE, 9, 90

Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open Source Scientific

Tools for Python, http://www.scipy.org/

Figure 3. Airmass plot showing the scheduled observing blocks. As we constrained the observations to occur before 8:00 UTC, but Deneb does not reach its highest
altitude until after 8:00 UTC, the scheduler assigned the Deneb observing blocks as late as possible before the 8:00 UTC, thus minimizing the airmass of Deneb during
the observations. As M13 is observable at its minimum airmass, the scheduler centered the three observing blocks on the times when M13 is at minimum airmass. The
black lines between observing blocks represent transitions, which account for instrument reconfiguration dead time—in this example, filter changes and telescope
slews add some dead time.

8

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0002-9599-310X
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7371-2832
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0001-7221-855X
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://orcid.org/0000-0003-0872-7098
https://doi.org/10.1086/672273
http://adsabs.harvard.edu/abs/2013PASP..125..989A
https://doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A&A...558A..33A
https://doi.org/10.5281/zenodo.826911
https://doi.org/10.1086/678447
http://adsabs.harvard.edu/abs/2014PASP..126..827H
https://doi.org/10.1109/MCSE.2007.55
http://adsabs.harvard.edu/abs/2007CSE.....9...90H
http://www.scipy.org/

Morris, B. M., Vyhmeister, K., Sipocz, B., et al. 2017, astropy/astroplan: astroplan
v0.4, Zenodo, doi:10.5281/zenodo.1035883

National Optical Astronomy Observatories, 1999, IRAF: Image Reduction and
Analysis Facility, Astrophysics Source Code Library, ascl:9911.002

Perez, F., & Granger, B. E. 2007, CSE, 9, 21
Rhodes, B. C. 2011, PyEphem: Astronomical Ephemeris for Python, Astrophysics

Source Code Library, ascl:1112.014

Schaaff, A. 2004, in ASP Conf. Ser. 314, Astronomical Data Analysis Software
and Systems (ADASS) XIII, ed. F. Ochsenbein, M. G. Allen, & D. Egret
(San Francisco, CA: ASP), 327

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, arXiv:1102.
1523

Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9
Wright, J. T., Fakhouri, O., Marcy, G. W., et al. 2011, PASP, 123, 412

9

The Astronomical Journal, 155:128 (9pp), 2018 March Morris et al.

https://doi.org/10.5281/zenodo.1035883
http://www.ascl.net/9911.002
https://doi.org/10.1109/MCSE.2007.53
http://www.ascl.net/1112.014
http://adsabs.harvard.edu/abs/2004ASPC..314..327S
http://arxiv.org/abs/1102.1523
http://arxiv.org/abs/1102.1523
https://doi.org/10.1051/aas:2000332
http://adsabs.harvard.edu/abs/2000A&AS..143....9W
https://doi.org/10.1086/659427
http://adsabs.harvard.edu/abs/2011PASP..123..412W

	1. Introduction
	2. API
	2.1. Basic Operations
	2.2. Observing Constraints
	2.3. Transiting Exoplanets and Eclipsing Binaries (EBs)
	2.4. Scheduling Observations
	2.5. Testing and Development

	3. Documentation
	3.1. Online Documentation
	3.2. astroplan in the Classroom

	4. Summary
	Appendix
	Appendix AObserving Constraints
	Appendix BEclipsing Binary and Transiting Exoplanet Ephemerides
	Appendix CScheduling Observations
	References

