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Abstract 

Increased patient survival is a mark of modern anti-cancer therapy success. Unfortunately 

treatment side-effects such as neurotoxicity are a major long term concern. Sensory 

neuropathy is one of the common toxicities that can arise during platinum based 

chemotherapy. In many cases the current poor understanding of the neurological 

degeneration and lack of suitable analgesia has led to high incidences of patient drop out of 

treatment. VEGF-A is a prominent neuroprotective agent thus it was hypothesised to prevent 

cisplatin induced neuropathy. Systemic cisplatin treatment (lasting 3 weeks biweekly) 

resulted in mechanical allodynia and heat hyperalgesia in mice when compared to vehicle 

control. PGP9.5 sensory nerve fibre innervation was reduced in the plantar skin in the 

cisplatin treated group versus vehicle control mice. The cisplatin induced sensory 

neurodegeneration was associated with increased cleaved caspase 3 expression as well as 

a reduction in Activating Transcription Factor 3 and pan VEGF-A expression in sensory 

neurons. VEGF-A165b expression was unaltered between vehicle and cisplatin treatment. 

rhVEGF-A165a and rhVEGF-A165b both prevented cisplatin induced sensory 

neurodegeneration. Cisplatin exposure blunts the regenerative properties of sensory 

neurons thus leading to sensory neuropathy. However, here it is identified that administration 

of VEGF-A isoform subtypes induce regeneration and prevent cell death and are therefore a 

possible adjunct therapy for chemotherapy induced neuropathy. 

 

Keywords; VEGF-A, chemotherapy, neuropathy. 
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Introduction  

Chemotherapy is routinely used alone or in combination with other therapies to treat patients 

following cancer diagnosis. However, chemotherapy-induced peripheral neuropathy (CIPN) 

is a major dose limiting effect of many chemotherapeutic agents, contributing to the further 

deterioration of the quality of life for cancer patients. CIPN is typically seen in about 40% [1-

3] (reported in up to 95%) of patients treated with platinum based treatments, including 

cisplatin [1]. These typically lead to severe neurotoxicity which results in sensory and motor 

neurodegeneration, and is classified as pain associated with touch, ‘pins and needles’ and 

numbness as well as loss of motor coordination [3]. These symmetrical sensory 

complications are routinely identified in the extremities e.g. fingers and toes, with symptoms 

persisting from weeks/months to many years. Moreover, the symptoms of CIPN may remain 

after discontinuation of treatment with platinum compounds [1, 4, 5]. Currently, there are 

limited treatments available for CIPN. Therefore it is of great importance to identify potential 

therapeutic agents that would help in either preventing or treating the CIPN. 

Cisplatin belongs to the first generation of platinum drugs and has been in use for the last 40 

years in the treatment of a number of advanced and metastatic cancers. Platinum based 

compounds lead to DNA cross linkage ultimately preventing mitosis, thus suppressing 

tumour growth. However, cisplatin also causes damage to other cell types such as sensory 

neurons. It is now widely regarded that such treatments cause the described sensory 

symptoms, although the mechanisms by which these cause neuropathy are still undefined. A 

number of rodent models (including oxaliplatin [6, 7] and cisplatin [8, 9] administration) have 

been developed, which display classical hallmarks of human chemotherapy-induced sensory 

neurodegeneration.  

It is widely accepted that upon a nervous insult such as a nerve injury, a number of 

neurotrophins and growth factors are up-regulated due to their integral role in neuronal 

survival and regeneration [10-12]. Recent evidence has identified that the vascular 

endothelial growth factor family-A (VEGF-A) family has a strong role in neuroprotection. This 

family consists of two sister protein groups that are unique, differing solely in the final 6 

amino acids of the C terminus, which give distinct functional roles to each isoform family 

[13]. The neuroprotective actions of VEGF-A have been demonstrated extensively in motor 

degenerative disease [14, 15]. In addition, VEGF-Axxxa is strongly associated with sensory 

neuronal development, protection and regeneration [16-19], with increased expression in 

dorsal root ganglia (DRG) sensory neurons upon traumatic nerve injury [20]. Recent work 

now highlights the role of VEGF-Axxxb in neuroprotection [12]. 
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This study tested the hypothesis that there is a reduction in the regenerative ability of 

sensory neurons upon chemotherapy exposure, which can be reversed by treatment with 

neurotrophic VEGF isoforms. The experimental aims were to target the impact of cisplatin on 

sensory neurons and determine the role of the VEGF-A family in response to such an insult. 

Cisplatin led to a reduction in regenerative markers including VEGF-A. Treatment with either 

VEGF-A165a or VEGF-A165b prevented both cisplatin induced cell death and reduction in 

neurite growth. 

  



AJTR0008685, received 4-1-2015, accepted 6-13-2015, Original Article 
 

Materials and methods  

Studies in mice treated with or without cisplatin 

 

Adult C57bl6 male (~30g, 10 total) mice were used. All procedures were performed 

according to UK Home Office legislation in accordance with the United Kingdom Animals 

(Scientific Procedures) Act 1986 and associated guidelines (2012), and were approved by 

the University of Nottingham AWERB. Animals were provided food and water ab libitum. 

 

Nociceptive behavioral assays 

 

All treatments administered were given via intraperitoneal (i.p.) injection. Treatments were 

biweekly i.p. injections of either vehicle (phosphate buffered saline) or cisplatin (2mg/kg [21, 

22]). Animal weight was monitored regularly. The experiment was terminated at the end of 

week 3. Prior to onset of nociceptive behavioral testing, mice were habituated to the testing 

procedure which involved transport and handling, and to the testing environment including 

mesh and glass-floored Perspex boxes, for 10 minutes before the start of testing. 

Mechanical withdrawal thresholds were defined as previously described [23]. A total of five 

applications of each von Frey hair (Linton) were applied to the plantar surface of both hind 

paws. Von Frey forces applied were used to obtain data ranging from 0% to 100% 

nociceptive withdrawal responses, which were then used to construct force response curves 

to determine 50% withdrawal threshold.  Nociceptive responses to heat were also 

determined using the Hargreaves test [20]. Both hind paws were tested three times to 

provide a mean withdrawal latency. A rest period between each hind paw stimulation was 

enforced to prevent sensitization to the heat stimulation. These parameters were recorded at 

weekly intervals for duration of the study. 

 

Cell culture 

 

An immortalized embryonic sensory neuronal cell line, 50B11s, was provided as a gift from 

Drs Ahmet Hoke and Damon Lowes. The cells were prepared and cultured to 80% 

confluence in a T75 flask as previously described [24] in neurobasal media (Gibco) with 

Fetal bovine serum (Sigma-Aldrich), 2% B27 (Life Technologies), 0.2% L-glutamine (Sigma-

Aldrich), 0.2% (11mM) glucose (Fisher) as supplements. Prior to differentiation and 

experimentation the cells were left for 24hrs in the culture plate. For neuronal growth and 

cleaved caspase III assays cells were plated at low density (5000 cells per well) on ethanol 
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sterilized coverslips in a 24 well plate. 75μM forskolin (Abcam) was used to differentiate the 

50B11s and was applied after 24hrs along with other experimental agents; vehicle 

(phosphate buffered saline), 2.5nM recombinant human (rh) VEGF-A165a (R&D systems), 2.5 

nM rhVEGF-A165b (R&D systems), 1nM nerve growth factor (NGF), cisplatin (a range of 

doses as outlined in figure legends given in μg/ml). Following initial experiments to 

determine dose, 5μg/ml cisplatin was used. Cells were incubated under experimental 

conditions for 24 hours, after which they were fixed with 4% paraformaldehyde (PFA) prior to 

imaging. 

 

Neurite growth 

 

For neurite growth measurements cells grown in 24 well plates and were imaged using a 

Nikon Eclipse Ti microscope using differential interference contrast. Each well was imaged 

with an x20 objective and for each well 5 random fields of view were captured and used for 

analysis. Image J was used to analyze images to determine neurite growth [25]. 

 

Protein expression 

 

Immunofluorescence 

Plantar skin from the hind paws of all mice was taken and placed into 4% PFA overnight, 

cryoprotected in 30% sucrose solution overnight, all at 4OC. Tissue was frozen in OCT and 

stored at -80OC until processing. Thin sections (20μm) of plantar skin from hind paws of the 

mice were cut on a cryostat and placed onto slides (VWR international). Sections were 

washed once in phosphate-buffered saline (PBS) for 10 minutes. The skin sections were 

then subjected to a 10 minute wash in PBS-0.2% Triton X-100 after which they were 

incubated in blocking buffer (10% FBS, 5% BSA, 0.2% PBS-Triton) for 1hr at room 

temperature. The primary antibody (anti-rabbit anti-polyclonal protein gene product 9.5 (PGP 

9.5), 1 in 100, Ultraclone) was added in blocking solution and incubated at 4OC overnight. 

Three PBS washes were performed followed by incubation in PBS 0.2%-Triton X-100 

containing biotinylated anti-rabbit IgG (1 in 500, Jackson) at room temperature for 2hrs. 

Three further washes were performed and streptavidin Alexa Fluor 555 anti-rabbit antibody 

(Invitrogen) at a concentration of 1:1000 in 0.2% PBS-Triton was added for 1 hr at room 

temperature. Samples were then subjected to three 5 minute washes with PBS, coverslipped 

with Fluorsave (Calbiochem) and imaged on a Leica TCS SPE confocal microscope using 

Leica application suite. 5 random images were taken per skin sample (per field of view from 

x40 objective/25600μm2).  A mean was taken from the number of PGP9.5+ve nerve 
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terminals identified at the dermal:epidermal border of each image to provide a mean value 

per animal. These were then used for subsequent analysis for treatment groups 

 

Immunocytochemistry 

Cultured cells were treated with 4% PFA for 15 minutes and as with the above protocol 

(Immunofluorescence) were prepared in block solution. Cells were incubated in primary 

antibody (rabbit anti-cleaved caspase 3, 1:500, Cell Signalling Technology) at 4oC overnight, 

and with secondary antibody (Alexa Fluor 555 conjugated anti-rabbit antibody, 1:1000, 

(Invitrogen) in 0.2% PBS-Triton X-100 for 1 h at RT. Cell nuclei were labeled with DAPI 

(1:2000, Invitrogen) for five minutes at room temperature. Washes and cell imaging were 

performed as described above. The slides were then imaged using a fluorescent microscope 

(Nikon Eclipse Ti). Five random images of immunofluorescence were taken per well. 

 

 

Protein extraction and quantification 

 

50B11 cells were seeded in 10 cm petri dishes and grown to 70% confluence after which 

they were differentiated with 75μM Forskolin ± 5μg/ml cisplatin. After 24 hours of treatment, 

protein was extracted from the cells. The media from each dish was removed and 

centrifuged. The supernatant was discarded and the resulting pellet was kept. 150µl lysis 

buffer (Radioimmuno Precipitation Assay (RIPA) buffer supplemented with 1mM 

phenylmethylsulfonyl fluoride (PMSF), 20μg/ml Protease Inhibitor cocktail, 50mM sodium 

fluoride and 1mM sodium orthovanodate (Na3VO4), all reagents from Sigma-Aldrich, UK), 

was added to each dish, and the cells were collected. The lysis buffer was collected in 

Eppendorf tubes and left on ice for 30 minutes with occasional agitation. The samples were 

sonicated on ice for 15 minutes and the protein concentration was subsequently quantified 

using a Bradford assay (Bioad).  

 

Western blotting 

 

100μg of each protein was loaded in a 4% stacking/12% separating gel and separated by 

SDS-PAGE at 70V until the ladder reached the resolving gel, then at 120 V. The proteins 

were then transferred onto polyvinyldifluoride (PVDF, Biorad) membrane by wet transfer at 

90V for 1 hour 30 minutes. The membrane was incubated in 5% milk powder in Tris buffered 

saline (TBS)-Tween 0.1% for 30 minutes at room temperature with agitation. Primary 

antibodies, rabbit anti-cleaved caspase 3 (1:1000 Cell Signalling Technology; #9664), rabbit 

anti-total caspase III (Cell Signaling Technology; #9662), rabbit anti-Pan VEGF (A20, 
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1μg/ml, Santa Cruz Bio Technology; sc-152), mouse anti-VEGF165b (2μg/ml, Abcam; ab-

14994), rabbit anti-Activating Transcription factor 3 (ATF3; 2μg/ml, Santa Cruz Bio 

Technology; sc-128) and rabbit anti-α/β tubulin (1:500 Cell Signalling; #2148) antibodies 

were diluted in blocking solution. The membrane was incubated in the primary antibodies 

overnight at 40C with agitation. The membranes were washed three times in TBST-0.1% 

before incubation with secondary antibodies (Licor donkey anti-rabbit and anti-mouse 

antibodies 1:10000) in TBST-0.1% 1% BSA. After 90 minutes incubation in the secondary 

antibodies, the membranes were washed thrice with TBST-0.1% before visualizing on the 

Licor Odessey.  

 

Statistical analysis 

Data were acquired and analysed using Microsoft Excel, Image J and GraphPad Prism 6. 

The results obtained are presented as means with standard error of the mean. Behavioural 

assays were recorded and analysed as outlined in the methods. No significant difference 

was observed between the hind paws within groups (p= 0.1724, two way ANOVA between 

hind paws and groups), therefore in all instances both hind paws per animal were used as 

replicates in the analysis. A two way ANOVA with post-hoc Sidak’s multiple comparison tests 

was used to determine any statistical difference of treatment over time. For quantification of 

CC3+ve cells the total number of cleaved caspase 3 positive cells (CC3+ve) was counted 

based upon colocalision with DAPI stain. For neurite length analysis, Image J was calibrated 

to a microscope graticule and neurite length was manually determined using Image J 

measuring tools. For both in vitro cell based assays and in vivo IENF PGP9.5+ve nerve 

innervation (per field of view from x40 objective/25600μm2), values were determined from 5 

random images acquired per sample (i.e. well or tissue sample) and a mean determined. 

Western blot densitometry was measured using Image J gel plugin. Differences in protein 

loading were corrected using densitometry of the control protein (i.e. tubulin or actin). Data 

obtained in in vitro assays, PGP9.5+ve nerve fibre innervation and western blot densitometry 

were analysed using Mann Whitney and Kruskal Wallis tests for two and multiple group 

comparisons respectively. 

  



AJTR0008685, received 4-1-2015, accepted 6-13-2015, Original Article 
 

Results 

Biweekly administration of cisplatin in mice led to a neuropathic pain phenotype (Figure1). 

Compared to gender/age matched sham (vehicle treatment) injected mice, those treated 

with biweekly i.p. 2mg/kg cisplatin showed a significant drop in mechanical withdrawal 

threshold (Figure1A; Week 3 Sham=1.59g ± 0.09 vs. Cisplatin = 1.23g ± 0.08) and a 

reduction in heat nociceptive response latencies (Figure 1B; Week 3 Sham = 9.46s ± 0.17 

vs. Cisplatin = 6.11s ± 0.63). Cisplatin did not induce weight loss in the treatment group 

compared to the sham group (Figure1C; Week 3 Sham = 28.08g ± 0.79 vs. Cisplatin = 

25.42g ± 0.6). Furthermore, there was a significant reduction in intra-epidermal sensory 

nerve innervation (Figure 2A; Week 3 Sham = 6.14 ± 0.39 PGP9.5+ve terminals/field of 

view vs. Cisplatin = 2.38 ± 0.8 PGP9.5+ve terminals/field of view) in the cisplatin group 

(Figure 2C) compared to the vehicle injected mice (Figure 2B). 

To isolate the actions of cisplatin on sensory neurons, an immortalised nociceptive sensory 

neuronal cell line, 50B11s, was used [24]. To determine in vitro markers of sensory 

neurodegeneration, the degree of cell stress/death (cleaved caspase 3) and neurite length, 

50B11s were treated with cisplatin in increasing concentrations (0µg/ml-10µg/ml; Figure 3) 

for 24hrs. Increasing concentrations of cisplatin led to a dose dependent increase in cleaved 

caspase 3 expression (Figure 3A, E&F; 0µg/ml = 0.0% ± 0.0, 10µg/ml = 72.06% ± 3.09). 

This was accompanied by a reduction in neurite growth, with decreased total neurite growth 

per cell (Figure 3B; 0µg/ml = 234.4μm ± 20.47 vs. 10µg/ml = 30.57 μm ± 12.3), a reduction 

in mean neurite length (Figure 3C; 0µg/ml = 108.9 μm ± 3.65 vs. 10µg/ml = 20.85 μm ± 

5.86) and the percentage of cells with neurites (Figure 3D; 0µg/ml = 63.37 + 2.8 vs. 10µg/ml 

= 2.96 ± 1.25). All subsequent experiments were carried at sub-maximal dose of 5 µg/ml as 

there was also a significant loss of neuronal growth and high degree of neuronal 

compromise. 

In protein extracted from cells treated for 24hrs with cisplatin (sub-maximal dose 5µg/ml) 

there were also elevated levels of cleaved caspase 3/ total caspase (Fig.4A&B). 

Additionally, cisplatin treatment significantly reduced ATF3 expression compared to the 

vehicle group (Fig.4C&D), and was associated with the suppression of regenerative capacity 

as shown by reduced neurite outgrowth (Figure 3). The expression of pan-VEGF-Axxx (total 

VEGF-A isoforms) was significantly reduced compared to the vehicle treated group (Figure 

4E&F; VEGF-A165) in the cisplatin group (5µg/ml), but expression of the alternatively spliced 

variant VEGF-A165b was unaltered by cisplatin treatment (Fig.4E&F).  

Treatment of 50B11 cells with exogenous rhVEGF-A165a alone (without cisplatin) for 24hrs 

led to robust neurite growth compared to vehicle treated cells (Figure 5A; Vehicle = 
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117.1μm ± 4.88 vs. rhVEGF-A165a = 211μm ± 12.1; representative images C&E), as did the 

archetypal sensory neuronal growth factor NGF (Figure 5A; positive control NGF = 157.4μm 

± 10.8; representative images D). Furthermore, rhVEGF-A165a led to a significant increase in 

total neurite outgrowth compared to NGF (Figure 5A). Treatment with rhVEGF-A165b did not 

induce increased total neurite growth compared to vehicle treated cells (Fig.5B; vehicle = 

145.1μm ± 4.72 vs. rhVEGF-A165b = 158.2μm ± 6.48; representative images F). Incubation 

with either rhVEGF-A165a or rhVEGF-A165b did not affect cleaved caspase 3 expression 

(Figure 6; vehicle = 5.94 ± 1.55% vs. rhVEGF-A165a = 7.64 ± 1.48% vs. rhVEGF-A165b = 

3.65 ± 1.08%) versus vehicle treated cells. Thus VEGF165a acted as a growth factor for 

50B11 cells, whereas VEGF165b did not.  

To determine whether exogenous VEGF-A (either VEGF-A165a or VEGF-A165b) could 

prevent cisplatin-induced neuronal damage in vitro, rhVEGF-A165a or rhVEGF-A165b were co-

administered with cisplatin for 24hrs. Cisplatin treatment (5µg/ml) again led to a significant 

reduction in neurite outgrowth (Figure 7A; control (untreated normal media) = 181.6μm ± 

7.92 vs. Cisplatin 5µg/ml + Vehicle = 97.72μm±6.79) and increased caspase 3 expression 

(Figure7B; control (untreated normal media) = 9.29% ± 2.7 vs. Cisplatin 5µg/ml + Vehicle = 

76.22% ± 4.15). Administration of rhVEGF-A165a or rhVEGF-A165b to cisplatin treated cells 

led to pronounced neuroprotection, preventing both the cisplatin-induced reduction in total 

nevurite length (Figure 7A; Cisplatin 5µg/ml + rhVEGF-A165a = 180.7μm ± 9.74 vs. Cisplatin 

5µg/ml + rh VEGF-A165b = 163.6μm ± 9.58) and cleaved caspase expression (Fig.7B; 

Cisplatin 5µg/ml + rhVEGF-A165a = 31.34% ± 5.89 vs. Cisplatin 5µg/ml + rhVEGF-A165b = 

36.21% ± 5.92). However, neither rhVEGF-A165a (Figure 7E) or rhVEGF-A165b (Figure 7F) 

treatment completely prevented cisplatin induced cleaved caspase 3 expression (Figure 

7B), with slight increases above control conditions. 
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Discussion 

Chemotherapy induced neuropathy is highly prevalent in cancer patients and survivors [3] 

and is a dose limiting side effect that can impact upon the continuation of treatment regimes, 

ultimately on patient survival and on cancer survivor quality of life. We show here that 

cisplatin treatment results in chronic pain phenotypes in mice, with evidence of mechanical 

allodynia and heat hyperalgesia. Cisplatin-induced neuropathic pain may occur due to 

suppression of the endogenous capacity for neuroregeneration and neuroprotection of the 

peripheral sensory neuron, as endogenous growth factor (VEGF-Axxxa) and regeneration 

marker (ATF3) expression are reduced by cisplatin in sensory neurons in vitro. 

Administration of VEGF-A isoforms can provide neuroprotection and neurotrophic support to 

these neurons, inhibiting the effects of cisplatin. 

Sensory neuropathy is induced by a host of anti-cancer treatments e.g. platinum derived 

agents, vinca alkaloids. Symptoms range from exacerbated evoked painful sensations, and 

pain resulting from touch or non-noxious temperature change, through to pins and needles 

and numbness (paresthesia). The onset of neuropathy can occur immediately following the 

start of chemotherapy treatment, and most unfortunately, the symptoms can persist not only 

for the duration of treatment but also past it’s termination, which impacts greatly on the 

survivors quality of life. Critically, despite not being directly related to the disease, 

chemotherapy-induced neuropathy weighs heavily on the patient, carers and family. The 

additional and on-going burden of an iatrogenic medical complication can lead to emotional 

disturbances arising as a result of reduced quality of life often resulting from limited mobility 

and reduced sleep quality [26, 27]. These contribute to the well-documented increased 

incidence of depression and anxiety in cancer patients, with patient catastrophization, 

leading to enhanced perceived pain [28, 29]. Furthermore, there are very few available 

analgesic drugs that can cisplatin-induced pain in the majority of patients [30]. 

Typically the sensations associated with peripheral sensory neurodegeneration are as 

described above, but the degeneration itself can also be demonstrated by loss of intra-

epidermal sensory nerve fibre (IENF) innervation in the skin [31] and by alterations in 

sensory nerve conduction velocity [32]. These hallmarks of peripheral sensory neuropathy 

are apparent in humans but to allow further investigation of the mechanisms of these 

changes, a number of rodent models are now being characterised [8]. Cisplatin 

administration in rodents leads to prominent sensory alterations including mechanical and 

cold hypersensitivity  [33, 34] with progression to hypoalgesia as neurodegeneration occurs. 

Our findings demonstrate that this regime of cisplatin leads to a pronounced sensory 

neuropathy in adult mice as previously reported [21, 22], including IENF terminal loss and 
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altered nociceptive behaviour, comparable to reports from previous studies [8] providing a 

suitable model for the study of novel therapies. 

Platinum-based chemotherapy treatment results in significant neuronal damage and 

degeneration in the peripheral sensory nervous system, with many reports of sensory nerve 

regression and axonal dysfunction with accompanying neuropathic pain [35]. However, the 

underlying mechanisms and causes of neuropathy are still unclear. Platinum based 

treatments induce neuropathy in rodent models but there are contrasting data showing that 

DRG sensory neurons do not necessarily express all common markers of sensory neuronal 

damage or regeneration (e.g. ATF3) in response to this cellular stress or insult. Oxaliplatin 

induces cleaved caspase 3 expression in DRG sensory neurons [12] and regression of 

neurite outgrowth [36], and pharmacological inhibition of caspase activity blunted pain 

behaviours induced by oxaliplatin and cisplatin [7]. We demonstrate a pronounced reduction 

in the expression of the widely accepted neuronal damage marker and inducer of sensory 

neuronal regeneration, ATF3 [10, 37] following cisplatin treatment. In contrast, ATF3 

expression in DRG neurons is increased in response to cisplatin treatment [9] or unchanged 

following exposure to paclitaxel and oxaliplatin [6, 38], in animals that displayed on-going 

neuropathic pain behaviours and alterations in sensory neuronal function typified by 

increased ongoing neuronal activity and alterations in conduction velocity [39]. In general, 

previous in vitro data are consistent with our in vivo observations of epidermal sensory nerve 

regression indicating that sensory neurons lose their normal neuroregenerative capability in 

response to cisplatin induced peripheral nerve damage. 

Here we demonstrate that cisplatin treatment induced a significant neurodegeneration in vivo 

and in vitro. In vitro, this was accompanied by a reduction of total VEGF-A expression, a 

potent neuro-protective and regenerative agent [12, 18, 40]. Studies to date have 

demonstrated that VEGF-A has prominent actions on neurons, promoting survival and 

protection. In a number of rodent models of neuropathic pain (traumatic [18] and diabetic 

neuropathy [40]) VEGF-A can prevent sensory neuropathy. Interestingly, in vitro, total 

expression of VEGF-A was reduced, but expression of VEGF-Axxxb was unchanged 

following cisplatin treatment, which suggests a reduction in the relative expression of VEGF-

Axxxa isoforms. Administration of a specific VEGF-Axxxb neutralising antibody exacerbated 

oxaliplatin-induced neuronal toxicity in vitro [12] indicating that endogenous VEGF-Axxxb 

levels may be maintained during chemotherapy exposure, and may offer a degree of 

neuroprotection, as supported by our finding that exogenous VEGF-A165b was 

neuroprotective . Consideration of the independent neuroprotective functions of alternatively 

spliced isoforms is of great importance, as many well-established anti-cancer drugs are 

targeted against all VEGF-A isoforms or the functional receptor, VEGF receptor 2. These 
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drugs were developed to inhibit VEGF-A165a-mediated angiogenesis and tumour growth [41], 

but also block the actions of VEGF-Axxxb isoforms, which have different physiological and 

pathological actions [20]. Blockade of VEGF-A signalling leads to the suppression of tumour 

growth and improved survival in some cancers, however these patients also demonstrate 

pronounced neuropathy [42, 43]. This implies that the effects of these treatments on 

important VEGF-A-mediated neural signalling pathways may contribute to the advancing 

neuropathy that ultimately results in termination of treatment [44]. Consideration of the 

function and expression of known and emerging neuroprotective and regenerative growth 

factors such as VEGF-A165b, is now crucial when designing and using such anti-cancer 

therapy, especially in combination with platinum-based chemotherapy. Understanding the 

functions that loss of endogenous growth factor support has in the adverse effects of such 

treatments may provide avenues to nullify those treatment-limiting side effects.   
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Figure legends 

Figure 1 

Cisplatin induces neuropathic pain behaviour.  

[A] Intraperitoneal administration of cisplatin (biweekly 2mg/kg) to adult male mice led to a 

significant reduction in mechanical nociceptive withdrawal threshold indicative of mechanical 

allodynia and [B] decrease in withdrawal latency to heat (heat hyperalgesia) versus the 

control group (i.p. vehicle) (*p<0.05, **p<0.01 two way ANOVA with post-hoc Bonferroni 

tests, n=5 per group). [C] Cisplatin treatment did not lead to a significant reduction in body 

weight when compared to the age/gender matched sham group.  

 

Figure 2 

Intraepidermal nerve fibre innervation is lost as a result of cisplatin treatment.  

[A] Three weeks of cisplatin treatment resulted in a significant reduction in intra-epidermal 

nerve fibre innervation in the plantar skin/per field of view (PGP9.5 = red, *p<0.05 Mann 

Whitney U test).[B & C] Representative examples of PGP 9.5 positive nerve terminal staining 

in [B] control and [C] cisplatin groups (scale bar = 20μm). 

 

Figure 3 

Cisplatin treatment inhibits neurite outgrowth and increases cleaved caspase in immortalised 

sensory neurons.  

[A] Increasing doses of cisplatin (given in µg/ml) induced a significant increase in cleaved 

caspase 3 expression. [B] Cisplatin prevented neurite growth leading to a reduction in total 

neurite growth per cell, [C] reduced average neurite length per cell and [D] reduced 

percentage of cells with neurites. [E] Representative examples of cleaved caspase 3 

expression (CC3=Red, DAPI=Blue) in control conditions (0μg/ml) and [F] the presence of 10 

μg/ml cisplatin. (**p<0.01, ***p<0.001 one way ANOVA with post-hoc Bonferroni tests, scale 

bar = 100μm). 

 

Figure 4 



AJTR0008685, received 4-1-2015, accepted 6-13-2015, Original Article 
 

Sensory neurons have altered expression of pro- and anti-degenerative molecules following 

cisplatin treatment.  

[A] The immortalised sensory neuronal cell line (50B11) showed increased expression of 

cleaved caspase 3 (corrected for total caspase 3 expression) following cisplatin (5µg/ml) 

treatment. [B] Representative Western blot of cleaved caspase expression. [C] 50B11 cells 

showed reduced expression of the neuroregenerative marker Activating Transcription Factor 

3 (ATF3) following cisplatin (corrected for loading against actin expression). [D] 

Representative Western blot of ATF3 expression. [E] Total (pan) Vascular Endothelial 

Growth factor-A expression was decreased by cisplatin treatment, but VEGF-A165b levels did 

not change (corrected for loading against tubulin. [F] Representative Western blots of pan-

VEGF and VEGF-A165b expression. (A, C and D all *p<0.05 Mann Whitney test, n=4).  

 

Figure 5 

Vascular Endothelial Growth Factor-A isoforms induce sensory neuronal neurite growth.  

[A] VEGF-A165a administration resulted in a greater total neurite outgrowth per cell than 

either the archetypal trophic factor, NGF or vehicle. [B] In contrast, VEGF-A165b did not lead 

to increased neurite growth in 50B11 neurons. [C-F] Representative images of 50B11 

neurons grown in the presence of [C] vehicle, [D] NGF, [E] VEGF-A165a and [F] VEGF-A165b. 

(**p<0.01, *** p<0.001, one way ANOVA with post-hoc Bonferroni tests, scale bar = 50μm).  

 

Figure 6 

Vascular endothelial growth factor-A isoforms does not affect cleaved caspase 3 expression 

in immortalised sensory neurons.  

[A] There was no effect of VEGF-A isoforms on cleaved caspase 3 expression in 50B11 

neurons. Representative images of 50B11 neurons cultured with either [B] vehicle, [C] 

VEGF-A165a and [D] VEGF-A165b. (CC3=Red, DAPI=Blue, scale bar = 100μm) 

 

Figure 7. VEGF-A isoforms reverse the cisplatin-induced changes in neurite outgrowth and 

cleaved caspase expression.  
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50B11 neurons were cultured in 5μg/ml cisplatin for 24hrs, which led to a reduction in [A] 

total neurite growth per cell and [B] increased cleaved caspase 3 (CC3=Red, DAPI=Blue) 

expression (representative images [C] normal media and [D] cisplatin 5μg/ml). 

Administration of either VEGF-A165a or VEGF-A165b prevented cisplatin induced (5μg/ml) [A] 

reduction in total neurite growth. In addition, [E=representative image VEGF-A165a] or 

[F=representative image VEGF-A165b] treatment attenuated cisplatin induced cleaved 

caspase 3 expression [B] (***p<0.001 one way ANOVA with post-hoc Bonferroni test). 

However, neither [E] VEGF-A165a nor [F] VEGF-A165b completely prevented cisplatin induced 

cell death compared to normal media alone (one way ANOVA with post-hoc Bonferroni test, 

*p<0.05, **p<0.01, ***p<0.001, scale bar = 100μm). 
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