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Abstract 34 

Pregnancy is associated with significant changes in vitamin D metabolism, notably increased 35 

maternal serum levels of active vitamin D, 1,25-dihydroxyvitamin (1,25(OH)2D). This appears 36 

to be due primarily to increased renal activity of the enzyme 25-hydroxyvitamin D-1α-37 

hydroxylase (CYP27B1) that catalyzes synthesis of 1,25(OH)2D, but CYP27B1 expression is 38 

also prominent in both the maternal decidua and fetal trophoblast components of the 39 

placenta. The precise function of placental synthesis of 1,25(OH)2D remains unclear, but is 40 

likely to involve localised tissue-specific responses with both decidua and trophoblast also 41 

expressing the vitamin D receptor (VDR) for 1,25(OH)2D. We have previously described 42 

immunomodulatory responses to 1,25(OH)2D by diverse populations of VDR-expressing 43 

cells within the decidua. The aim of the current review is to detail the role of vitamin D in 44 

pregnancy from a trophoblast perspective, with particular emphasis on the potential role of 45 

1,25(OH)2D as a regulator of trophoblast invasion in early pregnancy. Vitamin D-deficiency is 46 

common in pregnant women, and a wide range of studies have linked low vitamin D status to 47 

adverse events in pregnancy. To date most of these studies have focused on adverse 48 

events later in pregnancy, but the current review will explore the potential impact of vitamin 49 

D on early pregnancy, and how this may influence implantation and miscarriage.  50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 
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Introduction 58 

The human placenta is a vital organ without which the mammalian fetus cannot survive. It 59 

forms the interface between the mother and fetus, supplying the fetus with oxygen, nutrients, 60 

excreting waste products, whilst protecting against maternal immunologic attack. The main 61 

functions of the placenta can be broadly categorised into transport and metabolism, 62 

protection and endocrine (Gude, et al. 2004). The complex architecture of the placenta, 63 

bounded by the maternal aspect (basal plate) and the fetal aspect (chorionic plate), houses 64 

an abundance of the fundamental functional unit of the placenta, the chorionic villus, where 65 

all nutritional-waste exchange between the maternal blood and the fetal circulation occurs.  66 

As well as facilitating a good maternal blood supply for nutrition-waste exchange, and 67 

orchestrating endocrine mediators of pregnancy to maintain maternal physiological changes 68 

for an optimal environment for fetal development, the placenta also acts to protect the fetus 69 

from xenobiotic materials and infectious agents (Gude et al. 2004; Moore, et al. 1999; 70 

Rudge, et al. 2009; Yang 1997). Successful development of the placenta involves two 71 

distinct mechanisms: implantation of the blastocyst, initiated by attachment of the embryo to 72 

the maternal endometrial epithelium, and invasion of fetal trophoblast cells into the maternal 73 

endometrium to facilitate maternal-fetal exchange of nutrients, gases and waste. The diverse 74 

mechanisms associated with the regulation of trophoblast invasion have been well 75 

documented (Menkhorst, et al. 2016).  The aim of the current review is to provide an 76 

overview of these early events in placental development, with particular emphasis on the 77 

potential role of vitamin D as a determinant of early placental development through effects 78 

on trophoblast cells, particularly via effects of vitamin D on trophoblast invasion. 79 

 80 

Vitamin D and pregnancy 81 

Despite its long-standing association with rickets and osteoporosis, vitamin D has become 82 

increasingly recognized as a pluripotent regulator of biological functions above and beyond 83 

its classical effects on bone and calcium homeostasis.  Expression of vitamin D receptor 84 
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(VDR) for the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), as well as the 85 

1α-hydroxylase enzyme that synthesizes 1,25(OH)2D (CYP27B1), has been reported for 86 

various tissues that can be broadly termed ‘barrier sites’ (Jones, et al. 1998; Townsend, et 87 

al. 2005), indicating that localized responses to vitamin D may be a key feature of these 88 

tissues.  Prominent amongst these barrier sites is the placenta, acting as the interface 89 

between mother and fetus. Historically, the placenta was one of the first extra-renal tissues 90 

shown to be capable of synthesizing 1,25(OH)2D, with CYP27B1 activity detectable in both 91 

maternal decidua and fetal trophoblast (Gray, et al. 1979; Weisman, et al. 1979).  Initially, 92 

this was linked to the rise in maternal serum 1,25(OH)2D that occurs at the end of the first 93 

trimester of pregnancy.  However, studies of CYP27B1-deficient animals and an anephric 94 

pregnant woman indicated that this is not likely to be the case (Kovacs and Kronenberg 95 

1997).  Instead, the presence of VDR in the placenta suggests that vitamin D functions in 96 

tissue-specific fashion at the fetal-maternal interface (Bruns and Bruns 1983). One possible 97 

explanation is that 1,25(OH)2D acts as a regulator of placental calcium transport (Bruns and 98 

Bruns 1983), but a placental immunomodulatory function has also been proposed (Liu and 99 

Hewison 2012). Moreover, the rapid induction of VDR and CYP27B1 early in pregnancy 100 

(Zehnder, et al. 2002) suggests that vitamin D may play a more fundamental role in the 101 

process of conception, implantation and development of the placenta itself.         102 

 103 

Vitamin D and implantation 104 

To date the precise role of vitamin D in the process of implantation remains unclear.  105 

Nevertheless, vitamin D has a biologically plausible role in female reproduction and 106 

implantation process.  1,25(OH)2D has been shown to regulate expression of the homeobox 107 

gene HOXA10 in human endometrial stromal cells (Du, et al. 2005b). HOXA10 is important 108 

for the development of the uterus during fetal life and, later in adulthood, is essential for 109 

endometrial development, allowing uterine receptivity to implantation (Bagot, et al. 2000). 110 

Interestingly, animal studies have shown that vitamin D-deficiency reduces mating success 111 
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and fertility in female rats. Female rats fed with a vitamin D-deficient diet are capable of 112 

reproduction, but overall fertility is reduced including the failure of implantation (Halloran and 113 

DeLuca 1980). This was shown to be corrected by administration of 1,25(OH)2D (Kwiecinksi, 114 

et al. 1989), but also by use of diets high in calcium, phosphate and lactose (Johnson and 115 

DeLuca 2002), suggesting that the fertility effects of vitamin D may be due to indirect effects 116 

on mineral homeostasis. Other studies using knockout mouse models have further 117 

highlighted the importance of the vitamin D metabolic and signalling system in the process of 118 

implantation, with Vdr -/- and Cyp27b1 -/- female mice both presenting with uterine 119 

hypoplasia and infertility (Panda, et al. 2001; Yoshizawa, et al. 1997). Conversely, injection 120 

of 1,25(OH)2D has been shown to increase uterine weight and promote endometrial to 121 

decidual differentiation (Halhali, et al. 1991).   122 

 123 

As well as regulating uterine and decidual development, vitamin D may also influence 124 

implantation indirectly via its well-known immunomodulatory actions. Regulation of immune 125 

function at the maternal-fetal interface involves a heterogeneous population of innate and 126 

adaptive immune cell subsets. Thus throughout pregnancy, decidual synthesis of 127 

1,25(OH)2D has the potential to influence uterine natural killer cells, dendritic cells, 128 

macrophages, and T-cells  (Evans, et al. 2004; Tamblyn, et al. 2015). Notable effects include 129 

inhibition of Th1 cytokines and promotion of Th2 cytokines (Gregori, et al. 2001), which are 130 

known to play a significant role in the process of implantation (Piccinni, et al. 2000; Zehnder 131 

et al. 2002).  Purification of decidual cells into non-adherent stromal cells and adherent cells, 132 

which include decidual macrophages and uterine natural killer cells, has shown that 133 

adherent cells demonstrate a greater capacity for 1,25(OH)2D production (Kachkache, et al. 134 

1993). Furthermore, first-trimester decidual cells treated with either 25OHD- or 1,25(OH)2D 135 

demonstrate significant induction of antibacterial protein cathelicidin and β-defensins (Evans, 136 

et al. 2006; Liu, et al. 2009). Since similar effects of vitamin D are observed in peripheral 137 

monocytes, an equivalent innate antimicrobial responsivity is postulated to exist at the 138 

maternal-fetal interface (Liu and Hewison 2012).  139 



 
 

6 
 

 140 

Vitamin D metabolism and function in trophoblast cells 141 

The organisation of maternal and fetal cells within the developing placenta has been well 142 

documented elsewhere (Oreshkova, et al. 2012; Vigano, et al. 2003), and is represented 143 

schematically in Figure 1. Both the maternal decidua and fetal trophoblast components of 144 

the placenta (including syncytiotrophoblast and invasive extravillous trophoblast [EVT]) 145 

express CYP27B1 (Zehnder et al. 2002), and are able to produce detectable levels of 146 

1,25(OH)2D (Gray et al. 1979; Weisman et al. 1979). The resulting tissue concentrations of 147 

1,25(OH)2D appear to be significantly higher in the decidua (Tamblyn, et al. 2017), but the 148 

coincident expression of VDR in trophoblast as well as decidua (Evans et al. 2004) means 149 

that multiple cell types within the placenta are capable of responding to the locally 150 

synthesized 1,25(OH)2D, either in an autocrine or paracrine fashion.  151 

 152 

To date, studies of the physiological impact of decidual-trophoblast 1,25(OH)2D production 153 

have focused primarily on trophoblast cells, using both primary cultures of EVT and 154 

trophoblast cells lines. Primary cultures of human syncytiotrophoblast express CYP27B1 and 155 

are able to synthesize 1,25(OH)2D (Diaz, et al. 2000), and also express VDR (Pospechova, 156 

et al. 2009). However, in choriocarcinoma trophoblast cell lines such as BeWo and JEG-3, 157 

expression of VDR is low, with analysis of the effects of chromatin remodelling agents 158 

suggesting that this may be due to epigenetic suppression of VDR in these cells 159 

(Pospechova et al. 2009).  Further studies to assess the impact of differentiation of cultured 160 

trophoblast cells have been carried out using cyclic AMP (cAMP) to mimic the process of 161 

syncytialisation (Keryer, et al. 1998). Expression of hCG is elevated by cAMP in trophoblast 162 

cells, and this was associated with decreased expression of CYP27B1, with VDR expression 163 

being unaffected (Avila, et al. 2007), suggesting that presence of the vitamin D metabolic 164 

and signalling pathways in the placenta is differentiation-sensitive. The JEG-3 trophoblast 165 

cell line has also been reported to express CYP27B1, but synthesis of 1,25(OH)2D by these 166 
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cells appears to be significantly less than observed with primary trophoblast cells and 167 

unaffected by cAMP (Pospechova et al. 2009).  In addition to cAMP, inflammatory cytokines 168 

(Noyola-Martinez, et al. 2014), and insulin-like growth factor I (Halhali, et al. 1999) also 169 

stimulate trophoblast expression of CYP27B1 and synthesis of 1,25(OH)2D. 170 

 171 

The vitamin D catabolic enzyme CYP24A1 has been reported to be undetectable in 172 

trophoblast cells, consistent with methylation epigenetic silencing of this gene in the human 173 

placenta (Novakovic, et al. 2009). This suggests that synthesis of 1,25(OH)2D by trophoblast 174 

cells is not subject to the same catabolic feedback control observed in other VDR-expressing 175 

tissues. However, other studies have shown that trophoblast expression of CYP24A1 is 176 

increased following treatment with cAMP (Avila et al. 2007). In addition, studies using the 177 

Hyp mouse model, which has elevated circulating levels of the positive regulator of 24-178 

hydroxylase fibroblast growth factor 23 (FGF23), showed elevated placental expression of 179 

CYP24A1 mRNA in these mice (Ma, et al. 2014; Ohata, et al. 2014).  Likewise, direct 180 

injection of FGF23 into normal placentas from wild type mice also induced expression of 181 

CYP24A1 (Ohata et al. 2014). This appears to be mediated via trophoblast expression of 182 

fibroblast growth factor receptor 1 and its co-receptor α-klotho by trophoblast, suggesting 183 

that catabolism via CYP24A1 plays an as yet undefined role in mediating trophoblast effects 184 

of vitamin D.  185 

 186 

Despite a wide range of studies showing regulation and activity of vitamin D metabolic 187 

enzymes in primary trophoblast cells and trophoblast cell lines, the principal functional 188 

analysis of vitamin D in these cells has centered on responses to 1,25(OH)2D. Initial 189 

experiments using JEG-3 cells described stimulation of calcium uptake (Tuan, et al. 1991), 190 

and the regulation of the cytosolic calcium binding protein calbindin-D28K (Belkacemi, et al. 191 

2005) by 1,25(OH)2D, consistent with a role for vitamin D in the endocrinology of placental 192 

calcium homeostasis. However, subsequent investigations of trophoblast cells and 193 

1,25(OH)2D have explored other mechanisms associated with placental endocrine function. 194 
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These reports include the stimulation of human placental lactogen synthesis and release 195 

(Stephanou, et al. 1994), hCG expression (Barrera, et al. 2008), and the regulation of 196 

estradiol and progesterone synthesis (Barrera, et al. 2007).   197 

 198 

In recent years, our perspective on vitamin D and trophoblast function has been expanded to 199 

include studies of immunomodulatory function. In primary trophoblast cells and trophoblast 200 

cell lines, 1,25(OH)2D has been shown to potently stimulate expression of the antibacterial 201 

protein cathelicidin (Liu et al. 2009), whilst also suppressing inflammatory responses to 202 

tumor necrosis factor α (TNFα) (Diaz, et al. 2009). Similar anti-inflammatory responses to 203 

1,25(OH)2D have also been reported using trophoblasts from women with the inflammatory 204 

disorders of pregnancy, preeclampsia (Noyola-Martinez, et al. 2013), and antiphospholipid 205 

syndrome (APS) (Gysler, et al. 2015). In recent studies the anti-inflammatory effects of 206 

1,25(OH)2D on trophoblasts have been reported to include attenuation of oxidative stress-207 

induced microparticle release from preeclampsia trophoblastic cells (Xu, et al. 2017), further 208 

underlining the importance of this facet of vitamin D function within the placenta. In vivo, 209 

studies using Cyp27b1-/- and Vdr-/- mice have shown that loss of both alleles for either of 210 

these genes on the fetal side of the placenta alone was sufficient to dramatically exacerbate 211 

anti-inflammatory responses to lipopolysaccharide (LPS) immune challenge (Liu, et al. 212 

2011). Thus, in addition to the active immune cell function classically observed in the 213 

maternal decidua, trophoblast cells also appear to make a major contribution to the 214 

regulation of placental inflammation. 215 

    216 

A role for vitamin D in EVT invasion? 217 

Controlled invasion of fetal cytotrophoblast and differentiated EVT cells into the maternal 218 

decidua and myometrium in the first trimester of pregnancy is a key process in placentation, 219 

and is essential for successful pregnancy.  A complex network of communications among 220 

trophoblast, decidual stromal, and immune cells is reported to facilitate implantation and 221 



 
 

9 
 

maintenance of pregnancy, with key roles in tissue remodelling, cell trafficking, and immune 222 

tolerance being evident (Oreshkova et al. 2012). The mechanisms underpinning these 223 

processes have received increasing attention since abnormal placentation due to shallow 224 

invasion of EVT can cause important pregnancy disorders such as miscarriage (Ball, et al. 225 

2006), pre-eclampsia (Caniggia, et al. 2000), fetal growth restriction, pre-term birth, and 226 

stillbirth (Reddy, et al. 2006) (Goldman-Wohl and Yagel 2002; Kadyrov, et al. 2006; 227 

Kaufmann, et al. 2003). By contrast, unrestricted invasion resulting from a failure to restrain 228 

the invading cytotrophoblast is associated with premalignant conditions such as malignant 229 

choriocarcinomas and invasive mole (Caniggia et al. 2000; Ringertz 1970), and can lead to 230 

aberrant placentation such as pathological adhesion to the myometrium (placenta accreta), 231 

extension into the myometrium (placenta increta), or invasion through the myometrium into 232 

adjacent organs (placenta percreta) (Khong 2008).  233 

 234 

In recent studies we have shown that human EVT isolated from first trimester pregnancies 235 

are a target for both 25(OH)D and 1,25(OH)2D (Chan, et al. 2015). In ex vivo experiments 236 

both vitamin D metabolites promoted the invasion of EVT through Matrigel, with zymographic 237 

analysis showing that this effect involves enhanced expression of the matrix 238 

metalloproteinases pro-MMP2 and pro-MMP9 (Chan et al. 2015). These observations are in 239 

direct contrast to previously published studies describing 1,25(OH)2D inhibition of matrix 240 

invasion by tumor cells  (Bao, et al. 2006). In this case the primary mode of action for 241 

1,25(OH)2D was indirect suppression of MMPs via enhanced tissue inhibitor of 242 

metalloproteinase-1 (TIMP-1) expression. However, in other reports, low vitamin D status 243 

has been shown to be associated with elevated circulating MMP2 and MMP9 (Timms, et al. 244 

2002). Suppression of a variety of MMPs, including MMP2 and MMP9, by 1,25(OH)2D has 245 

also been described for primary cultures of human uterine fibroid cells and uterine fibroid cell 246 

lines (Halder, et al. 2013). Thus, the pro-invasive effects of vitamin D on EVTs appear to be 247 

quite distinct to pregnancy and the placenta.    248 
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 249 

The concept of vitamin D as a regulator of cellular motility and invasion is not novel and has 250 

been extensively reported in cancer states (Krishnan, et al. 2012; Leyssens, et al. 2014; Ma, 251 

et al. 2016), where effects of vitamin D have been related to modulation of epithelial 252 

mesenchymal transition (EMT) (Chen, et al. 2015; Fischer and Agrawal 2014; Hou, et al. 253 

2016). Interestingly, this effect of vitamin D has not been observed in non-pathophysiological 254 

states or during embryogenesis. For example, vitamin D is known to inhibit invasion and 255 

motility of ovarian cancer and teratocarcinoma cell lines, but does not affect these cellular 256 

characteristics in the non-neoplastic ESD3 murine embryonic cell line (Abdelbaset-Ismail, et 257 

al. 2016). The precise molecular mechanisms that mediate migration and invasion regulation 258 

by vitamin D remain unclear, although several different pathways have been studied. 259 

Notably, vitamin D has been shown to regulate the actin cytoskeleton in numerous cell 260 

types. In osteoblast-like cells, vitamin D promotes actin polymerisation as part of its 261 

transcriptional induction of fibroblast growth factor 23 (Fajol, et al. 2016). In endometrial 262 

cells, vitamin D treatment has also been shown to induce changes in actin architecture, 263 

through regulation of the RAc1/Pak1 axis (Zeng, et al. 2016). It is not clear if such responses 264 

are also seen in trophoblast cells during placental development, but vitamin D has been 265 

shown to rescue motility defects in fetal endothelial colony forming cell function of umbilical 266 

vein endothelial cells derived from pregnancies complicated by preeclampsia (von Versen-267 

Hoynck, et al. 2014) and gestational diabetes (Gui, et al. 2015). 268 

 269 

Effects of vitamin D on EVT invasion and migration may also be mediated indirectly via 270 

effects on other known EVT regulators. 1,25(OH)2D has been shown to abolish S1P 271 

mediated inhibition of migration via suppression of S1PR2 in trophoblast cell lines Swan-71 272 

and JEG-3 (Westwood 2017). 1,25(OH)2D has also been shown to stimulate 273 

hCG expression and secretion via a cAMP/PKA-mediated signalling pathway (Barrera et al. 274 

2008). Although hCG is a potent regulator of trophoblast motility and invasion (Chen, et al. 275 

2011; Evans 2016), it is unclear whether changes in hCG expression are specifically 276 
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required for effects of vitamin D on trophoblast invasion. In a similar fashion, 1,25(OH)2D3 277 

has been shown to positively regulate progesterone synthesis by human trophoblast cells 278 

from term placenta (Barrera et al. 2007). In HTR8/SVneo trophoblast cells, which have been 279 

reported to consist of a mixed population of cells, progesterone appears to suppress 280 

trophoblast motility and invasion (Chen et al. 2011). Thus, 1,25(OH)2D may exert indirect 281 

effects on trophoblast invasion, although it is still not clear whether these effects are pro-282 

migratory. Indirect actions of vitamin D on EVT function may also stem from effects on 283 

placental cell differentiation. Recent studies have shown that inactivation of VDR in 284 

trophoblastic BeWo cells resulted in increased trophoblast differentiation and syncytium 285 

formation (Nguyen, et al. 2015). In a similar fashion vitamin D may also influence EVT 286 

invasion and motility indirectly by targeting the development of cells on the maternal side of 287 

the placenta. Endometrial stromal cells treated with 1,25(OH)2D have elevated expression of 288 

specific genes, including HOXA10 (Du, et al. 2005a), which are known to be involved in the 289 

regional development of uterine decidualization and embryo implantation by controlling 290 

downstream target genes. The complex circuitry of vitamin D metabolism and function 291 

involved in mediating direct or indirect effects on EVT invasion and migration has still to be 292 

fully elucidated and is likely to be a key component of future studies of vitamin D in 293 

pregnancy. 294 

 295 

Vitamin D and trophoblast function: clinical implications 296 

Irrespective of proposed functional targets, vitamin D-dysregulation during pregnancy has 297 

been linked to adverse effects on placental function and pregnancy in general. In 2010 the 298 

Institute of Medicine (IOM) defined vitamin deficiency as serum concentrations of 25(OH)D 299 

less than 20 ng/ml (50 nM) (Holick, et al. 2011a). Subsequently the Endocrine Society 300 

issued slightly different guidelines, defining vitamin D-insufficiency as being serum 25(OH)D 301 

levels below 30 ng/ml (75 nM) (Holick, et al. 2011b). Against this backdrop, several recent 302 

publications have highlighted the prevalence of low serum concentrations of 25(OH)D (less 303 
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than 25 nM) in pregnant women: 20% of pregnant women in the UK (Javaid, et al. 2006), 304 

25% in the UAE (Dawodu, et al. 1997), 80% in Iran (Bassir, et al. 2001), 45% in northern 305 

India (Sachan, et al. 2005), 60% in New Zealand (Eagleton and Judkins 2006) and 60–84% 306 

of pregnant non-Western women in the Netherlands (van der Meer, et al. 2006). It remains 307 

unclear if this reflects simply a normal physiological drop in vitamin D concentrations during 308 

pregnancy or if pregnancy is a stress test which can exacerbate and unmask pathological 309 

vitamin D deficiency.   310 

 311 

Vitamin D deficiency in pregnant women has been shown to be associated with increased 312 

risk for pregnancy complications (Lewis, et al. 2010). These include preeclampsia (Bodnar, 313 

et al. 2007b), fetal growth restriction, small for gestational age fetus (Bodnar, et al. 2010), 314 

bacterial vaginosis (Bodnar, et al. 2009), and gestational diabetes mellitus  (Maghbooli, et al. 315 

2008; Zhang, et al. 2008). Maternal vitamin D-deficiency has also been linked to adverse 316 

effects in offspring, including reduced bone density (Javaid et al. 2006) and childhood rickets 317 

(Wagner and Greer 2008), as well as increased risk of asthma (Camargo, et al. 2007), and 318 

schizophrenia (McGrath 2001).  319 

 320 

The impact of vitamin D status on early events in pregnancy has also been studied. In 321 

northern countries, where there is a strong seasonal contrast in light exposure and UVB-322 

induced vitamin D production in skin, conception rates are decreased during winter months, 323 

with rates rising during summer and an increased birth rate in spring (Rojansky, et al. 1992). 324 

Interestingly, ovulation rates and endometrial receptivity also appear to be reduced during 325 

long dark winters in northern countries (Rojansky, et al. 2000), which may be explained in 326 

part by seasonal variations in vitamin D levels. With this in mind, several observational 327 

studies have investigated the potential impact of vitamin D on in vitro fertilisation (IVF), albeit 328 

with largely conflicting outcomes.  In a study of  infertile women undergoing IVF, those with 329 

higher levels of 25(OH)D in serum and follicular fluid, were more likely to achieve pregnancy 330 

following IVF, and high vitamin D levels were also shown to improve the parameters of 331 
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controlled ovarian hyperstimulation (Ozkan, et al. 2010). Aleyasin et al. found no significant 332 

association between 25(OH)D levels in serum and follicular fluid with IVF outcomes 333 

(Aleyasin, et al. 2011). However, this did not include any women with a serum vitamin D 334 

level >50nmol/L. In another study of 100 women undergoing IVF, serum concentrations of 335 

25(OH)D were positively associated with fertilization rate (Abadia, et al. 2016). However, 336 

serum 25(OH)D was unrelated to the probability of pregnancy or live birth after IVF (Abadia 337 

et al. 2016). Anifandis et al. investigated 101 women who received IVF-intracytoplasmic 338 

sperm injection (ICSI) ovarian stimulation cycles. In this study, women with vitamin D-339 

sufficiency (25(OH)D level >30 ng/ml in follicular fluid) had a lower quality of embryos and 340 

were less likely to achieve clinical pregnancy, compared with women with insufficient 341 

(follicular fluid 25(OH)D level 20.10 to 30 ng/ml) or deficient vitamin D status (follicular fluid 342 

25(OH)D level <20 ng/ml) (Anifandis, et al. 2010).  343 

 344 

Elucidation of the immunomodulatory effects of 1,25(OH)2D has led to the suggestion that 345 

vitamin D might have a role in protecting against spontaneous abortion (Bubanovic 2004). 346 

This was supported by ex vivo analyses showing that 1,25(OH)2D is able to suppress 347 

inflammatory cytokine production by endometrial cells from women with unexplained 348 

recurrent spontaneous abortions (Tavakoli, et al. 2011). More recently, 1,25(OH)2D has 349 

been shown to potently regulate natural killer cells from women with recurrent miscarriage 350 

(Ota, et al. 2015). Considering these observations, the impact of maternal vitamin D status 351 

on pregnancy outcome has been studied in several cohorts.  In a large prospective cohort 352 

study of 1683 pregnant women donating serum before gestational week 22, serum 353 

concentrations of 25(OH)D less than 50 nM were associated with a >2-fold increase in first 354 

miscarriage rate, although no significant effect was observed for second trimester 355 

miscarriage (Andersen, et al. 2015). In a prospective study of pre-conceptual vitamin D, 356 

maternal serum 25(OH)D levels were not found to be associated with chances of conceiving 357 

or overall risk of miscarriage (Moller, et al. 2012). However, women with miscarriage in the 358 

second trimester had lower first trimester serum concentrations of 25(OH)D than those 359 
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women who did not miscarry (Moller et al. 2012). In a much larger, nested case-control study 360 

of over 5,000 women did not reveal any adverse effects of low serum 25(OH)D on 361 

pregnancy outcomes (Schneuer, et al. 2014). A recent meta-analysis and systematic review 362 

concluded that vitamin D-deficiency is not associated with increased risk of spontaneous 363 

recurrent abortion (Amegah, et al. 2017).  Thus, the possible impact of sub-optimal vitamin D 364 

on implantation and adverse pregnancy outcomes such as miscarriage still remains unclear. 365 

Interestingly, in endometrial tissue from women with unexplained recurrent spontaneous 366 

abortion, expression of key components in the vitamin D metabolic (CYP27B1/CYP24A1) 367 

and signalling (VDR) systems was found to be comparable to endometrial tissue from 368 

healthy fertile women (Tavakoli, et al. 2015).  By contrast, recent studies of women with 369 

recurrent miscarriage showed that expression of mRNA and protein for CYP27B1 in villous 370 

and decidual tissue was lower than in control tissues from normal healthy pregnancies 371 

(Wang, et al. 2016). In future studies it will be important to clarify how variations in the 372 

vitamin D system within the placenta and fetal trophoblast cells affect implantation and the 373 

maintenance of a successful healthy pregnancy.  374 

 375 

A major contributing factor to vitamin D status in pregnant women is obesity, with lower 376 

circulating levels of 25(OH)D being reported in in pregnant women with high body mass 377 

index (BMI), relative to pregnant women with a normal BMI (Bodnar, et al. 2007a; Karlsson, 378 

et al. 2015).  Maternal obesity is associated with adverse health effects for both mother and 379 

child, with increased inflammation has been proposed as an important pathological 380 

mechanism for the detrimental effects of obesity during pregnancy (Denison, et al. 2010; 381 

Pantham, et al. 2015). A role of vitamin D in the process is still unclear. However, given the 382 

established anti-inflammatory effects of vitamin D at the fetal-maternal interface (Tamblyn et 383 

al. 2015) it is possible that some pregnancy effects of obesity are mediated via low 384 

circulating maternal vitamin D.    385 

 386 
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Conclusions 387 

Expression of placental CYP27B1 and VDR at early stages of pregnancy suggests an 388 

important role for vitamin D in placental physiology. In previous studies we have 389 

hypothesized that placental vitamin D may function, at least in part, to promote anti-microbial 390 

and anti-inflammatory immune activity, with both the maternal decidua and fetal trophoblast 391 

contributing to these actions. However, analysis of trophoblast cells ex vivo and in vitro 392 

indicates that vitamin D may have a much broader role in placental function, including the 393 

regulation of trophoblast differentiation and EVT invasion of the decidua and myometrium 394 

(Figure 1). Thus, effects of vitamin D may occur earlier in pregnancy than previously 395 

appreciated, underlining the requirement for adequate vitamin D status across gestation. To 396 

date, studies of vitamin D status (maternal serum 25(OH)D) in pregnancy have tended to 397 

focus on later stages of pregnancy, and associated adverse events such as preterm birth, 398 

gestational diabetes and preeclampsia. Likewise, supplementation trials for vitamin D in 399 

pregnancy have focused on women between 10 and 18 weeks of pregnancy. However, the 400 

responsiveness of trophoblast cells to 1,25(OH)2D, notably effects on EVT invasion, 401 

suggests that further studies of vitamin D and adverse events in early pregnancy are 402 

required. To date there have been a limited number of reports of vitamin D-deficiency and 403 

miscarriage, but these need to be expanded to include more rigorous supplementation trials. 404 

The review we present is supportive of early, pre-conceptual, supplementation with vitamin 405 

D.  406 
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Legend to figure 761 

Figure 1.  Vitamin D pathway components at the maternal-fetal interface associated 762 

with implantation. Schematic showing key cell types involved in implantation and 763 

associated expression of components of the vitamin D system:  vitamin D binding protein 764 

(DBP); vitamin D receptor (VDR); retinoid X receptor (RXR); vitamin D-25-hydroxylase 765 

(CYP2R1); 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1); vitamin D-24-hydroxylase 766 

(CYP24A1); human chorionic gonadotropin (hCG); human prolactin (hPL).  767 
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