
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 38, No. 6, pp. C603–C623

PRECONDITIONING OF LINEAR LEAST SQUARES BY ROBUST
INCOMPLETE FACTORIZATION FOR IMPLICITLY HELD

NORMAL EQUATIONS∗

JENNIFER SCOTT† AND MIROSLAV TŮMA‡

Abstract. The efficient solution of the normal equations corresponding to a large sparse linear
least squares problem can be extremely challenging. Robust incomplete factorization (RIF) precon-
ditioners represent one approach that has the important feature of computing an incomplete LLT

factorization of the normal equations matrix without having to form the normal matrix itself. The
right-looking implementation of Benzi and Tůma has been used in a number of studies but experience
has shown that in some cases it can be computationally slow and its memory requirements are not
known a priori. Here a new left-looking variant is presented that employs a symbolic preprocess-
ing step to replace the potentially expensive searching through entries of the normal matrix. This
involves a directed acyclic graph (DAG) that is computed as the computation proceeds. An inexpen-
sive but effective pruning algorithm is proposed to limit the number of edges in the DAG. Problems
arising from practical applications are used to compare the performance of the right-looking approach
with a left-looking implementation that computes the normal matrix explicitly and our new implicit
DAG-based left-looking variant.

Key words. sparse matrices, sparse linear systems, indefinite symmetric systems, iterative
solvers, preconditioning, incomplete factorizations

AMS subject classifications. Primary, 65F08, 65F20, 65F50; Secondary, 15A06, 15A23

DOI. 10.1137/16M105890X

1. Introduction. Linear least squares (LS) problems arise in a wide variety
of practical applications. Let us consider the algebraic problem of linear LS in the
following form:

(1.1) min
x
‖b−Ax‖2,

where A ∈ Rm×n (m ≥ n) is a large sparse matrix with full column rank and b ∈ Rm is
given. Solving (1.1) is mathematically equivalent to solving the n×n normal equations

(1.2) Cx = AT b, C = ATA,

where, since A has full column rank, the normal matrix C is symmetric positive
definite. To solve very large LS problems, an iterative method may be the method
of choice because it can require much less storage and fewer operations than direct
counterparts. However, iterative methods do not offer the same level of reliability and
their successful application often needs a good preconditioner to achieve acceptable
convergence rates (or, indeed, to obtain convergence at all).

∗Submitted to the journal’s Software and High-Performance Computing section January 28, 2016;
accepted for publication (in revised form) August 23, 2016; published electronically November 1,
2016.

http://www.siam.org/journals/sisc/38-6/M105890.html
Funding: The first author’s work was supported by EPSRC grants EP/I013067/1 and

EP/M025179/1. The second author’s work was supported by project 13-06684S of the Grant Agency
of the Czech Republic and by ERC-CZ project MORE LL1202 financed by MŠMT of the Czech Re-
public.
†Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Campus, Oxford-

shire, OX11 0QX, UK (jennifer.scott@stfc.ac.uk).
‡Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,

Sokolovská 83, 186 75 Prague, Czech Republic (mirektuma@karlin.mff.cuni.cz).

C603

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/145628307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sisc/38-6/M105890.html
mailto:jennifer.scott@stfc.ac.uk
mailto:mirektuma@karlin.mff.cuni.cz


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C604 JENNIFER SCOTT AND MIROSLAV TŮMA

In recent years, a number of techniques for preconditioning LS problems have been
proposed. In particular, significant attention has been devoted to the development
of algorithms based on incomplete orthogonal factorizations of A [30, 38, 40, 43].
Most recently, there is the multilevel incomplete QR (MIQR) factorization of Li and
Saad [33]. An alternative is the LU-based strategy that was first introduced as a
direct method in 1961 in [32]; see its further development as the Peters–Wilkinson
method [39] (and later in [11, 14]). For large-scale LS problems, methods based on
randomized algorithms have been proposed, for example, in [3, 35].

While these and other approaches are very useful in some circumstances, here we
focus on the most traditional approach that is based on the normal equations and
an incomplete factorization of the symmetric positive-definite matrix C. A direct
variant of this approach dates back to 1924 [4]. One problem connected to the normal
equations is that they may not be very sparse, for example, if A contains some dense
(or close to dense) rows. A possible way to overcome this is to treat the dense rows
separately. An alternative approach is to avoid explicitly forming C (that is, to
work only with A and AT ) and to compute its factorization implicitly. Working with
C implicitly is also important for very large problems for which computing C may
be too costly (in terms of both time and memory). Moreover, forming the normal
equations may lead to severe loss of information in highly ill-conditioned cases. The
recent limited memory incomplete Cholesky factorization code HSL MI35 of Scott and
Tůma [29, 41, 42] is designed for normal equations. It offers an option to input
either the matrix C or A. In the latter case, a single column of C is computed at
each stage of the incomplete factorization process, thus avoiding the need to store
C explicitly but not the work needed to form the product ATA [10]. Recent results
by Gould and Scott [26, 27] illustrate that HSL MI35 can perform well on a range of
problems but that constructing the incomplete factorization can be expensive when
A has dense rows.

An implicit factorization scheme that uses a Schur complement-based approach
is the robust incomplete factorization (known as the RIF algorithm) of Benzi and
Tůma [9]. RIF is based on C-orthogonalization and works entirely with A and AT

and can be derived as the “dual” of the SAINV (stabilized approximate inverse) pre-
conditioner [9]. The preconditioner is guaranteed to be positive definite and, in exact
arithmetic, the incomplete factorization process is breakdown free. A right-looking
implementation of RIF for LS problems is available as part of the SPARSLAB soft-
ware collection of Benzi and Tůma (see http://www.karlin.mff.cuni.cz/∼mirektuma)
and has been used in a number of studies on LS preconditioners (including [2, 36]).
Important weaknesses of this code are that it can be computationally slow (see the
results of [26]) and the amount of memory needed is not known a priori (although for
the experiments in [9] the total storage is estimated to be approximately 25% more
than the storage needed for the final incomplete factor but this itself is not known
and will depend on the dropping strategy). The aim of this paper is to present a new
potentially more computationally efficient left-looking RIF algorithm that avoids the
need to compute any entries of C. A key contribution is to propose and implement the
use of a symbolic step to replace the searching through C that is needed in previous
implementations. Symbolic preprocessing is a standard tool in sparse direct methods
for linear systems (see, for example, the early symbolic decomposition for symmetric
and positive-definite matrices in [20], symbolic evaluations in LU decomposition [24],
and the overview of the theory of nonsymmetric elimination trees given in [19]). The
proposed symbolic step involves a search using a directed acyclic graph (DAG) that we
construct as the computation proceeds. When used for RIF applied to LS problems,
it has the potentially attractive property of offering the possibility of replacing the

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.karlin.mff.cuni.cz/~mirektuma


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C605

update step in the left-looking algorithm by a parallelizable sparse saxpy operation,
although the design and development of parallel implementations lie beyond the scope
of the current paper.

The rest of the paper is organized as follows. Section 2 recalls both the right- and
left-looking RIF algorithms and summarizes existing strategies for exploiting sparsity
in the left-looking approach. Then, in section 3, our new symbolic preprocessing is
introduced. The use of RIF for solving LS problems is described in section 4. Nu-
merical experiments in section 5 demonstrate the efficiency and robustness of the new
approach using a range of problems from real-world linear systems and LS applica-
tions. Finally, section 6 presents some concluding remarks.

Notation. We end this section by introducing the notation that is employed in
the rest of the paper. We let the number of nonzero entries of a matrix A be nz(A)
and we let these entries be ai,j . Furthermore, we denote the jth column of A by aj ,
and ej denotes the jth unit basis vector. For any column aj , we define its structure
(sparsity pattern) to be the set Struct(aj) = {i | ai,j 6= 0}. Section notation is used
to denote part of the matrix so that Ak ≡ A1:k,1:k is the leading submatrix of order
k and A1:k,j is the first k entries of column j.

For a symmetric positive-definite matrix C, we define the C-inner product to be

(1.3) 〈x, y〉C = yTCx ∀ x, y ∈ Rn

and associated C-norm

‖x‖C =
√
xTCx.

In the LS case,

〈x, y〉C = (yTAT )(Ax) ∀ x, y ∈ Rn.

We also recall some standard notation related to sparse matrices and their graphs;
see, e.g., [23]. We defineG(A) = (V,E) to be the directed graph of the (nonsymmetric)
matrix A ∈ Rn×n with nonzero diagonal entries as follows: the vertex set is V =
{1, . . . , n} and for 1 ≤ i 6= j ≤ n there is an edge (i, j) ∈ E from i to j if and only if
ai,j 6= 0. There is a directed path from vertex i ∈ V to vertex k ∈ V if there exists a
sequence of vertices i = i0, i1, i2, ..., ik−1, ik = k belonging to V such that each edge
(ij−1, ij) is in E. This path is denoted by i⇒ k and k is said to be reachable from i.
The set of vertices that are reachable from i is denoted by Reach(i).

We let L = {li,j} and Z = {zi,j} denote a lower and an upper triangular matrix,
respectively. A nonzero off-diagonal entry li,j must have i > j, so any edge in the
directed graph of L must satisfy i > j. Thus the directed graph of a triangular matrix
has no loops and belongs to the class of DAGs. We denote the DAG of L by DAG(L).

In the following, we assume some basic knowledge of the concept of an elimination
tree and its role in sparse factorizations; this is described, for example, in the survey
paper by Liu [34].

2. Robust incomplete factorization and symbolic decomposition. We
start by considering general sparse symmetric positive-definite matrices that are not
necessarily normal matrices.

2.1. Left- and right-looking approaches. Consider the factorization of a
general sparse symmetric positive-definite matrix C into the product of two triangular
factors of the form

(2.1) C = LLT .

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C606 JENNIFER SCOTT AND MIROSLAV TŮMA

Algorithm 1. Left-looking Gram–Schmidt process (classical CGS, modified MGS,
and mixed AINV variants).

Input: Symmetric positive-definite matrix C ∈ Rn×n.
Output: Factors Z and L satisfying (2.2).

1. for k = 1 : n do
2. Set z

(0)
k = ek

3. for j = 1 : k − 1 do
4. if MGS
5. Set lk,j = 〈z(j−1)

k , zj〉C
6. else if CGS
7. Set lk,j = 〈z(0)

k , zj〉C
8. else if AINV
9. Set lk,j = 〈z(j−1)

k , ej〉C
10. end if
11. Set z

(j)
k = z

(j−1)
k − lk,jzj

12. end do
13. Set lk,k = ‖z(k−1)

k ‖C
14. Set zk = z

(k−1)
k /lk,k

15. end do

This factorization is unique (up to the sign of the diagonal entries of L) but there
are a number of approaches to computing it. For example, we can consider different
computational variants of the Cholesky decomposition or the Gram–Schmidt process
with the C-inner product. While the former is well-known, our focus is on the latter
and, in particular, the RIF algorithm [8, 9]. Given n linearly independent vectors,
the Gram–Schmidt process builds a C-orthogonal set of vectors z1, z2, . . . , zn. This
can be written as

(2.2) ZTCZ = I, I = LTZ,

where Z = [z1, z2, . . . , zn] is upper triangular with positive diagonal entries. In exact
arithmetic, LT is the transposed Cholesky factor of C and Z is its inverse. The left-
looking Gram–Schmidt process is outlined in Algorithm 1; the right-looking process is
outlined in Algorithm 2. Three computational options are included that correspond
to the classical, modified, and mixed variants (denoted by CGS, MGS, and AINV,
respectively); for details, see [31]. The relationship between L and Z can be found,
for example, in the 1952 seminal paper on the conjugate gradient (CG) method by
Hestenes and Stiefel [28].

For large sparse matrices, we need to consider incomplete (approximate) factor-
izations. Here and elsewhere, we let L̃ = {l̃i,j} and Z̃ = {z̃i,j} denote incomplete
factors such that

(2.3) Z̃TCZ̃ ≈ I, I ≈ L̃T Z̃.

These incomplete factors may be used as preconditioners for the CG method. Two dif-
ferent types of preconditioner can be obtained by carrying out the C-orthogonalization
process incompletely. The first approach drops small entries from the computed vec-
tors as the C-orthogonalization proceeds, that is, after line 11 of Algorithm 1 entries
that are smaller in absolute value than some chosen drop tolerance are discarded.

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C607

Algorithm 2. Right-looking Gram–Schmidt process (classical CGS, modified MGS,
and mixed AINV variants).

Input: Symmetric positive-definite matrix C ∈ Rn×n.
Output: Factors Z and L satisfying (2.2).

1. for k = 1 : n do
2. Set z

(0)
k = ek

3. end do
4. for k = 1 : n do
5. Set lk,k = ‖z(k−1)

k ‖C
6. Set zk = z

(k−1)
k /lk,k

7. for j = k + 1 : n do
8. if MGS
9. Set lk,j = 〈z(k−1)

j , zk〉C
10. else if CGS
11. Set lk,j = 〈z(0)

j , zk〉C
12. else if AINV
13. Set lk,j = 〈z(k−1)

j , ek〉C/lk,k
14. end if
15. Set z

(j)
j = z

(j−1)
j − lk,jzk

16. end do
17. end do

Alternatively, a relative drop tolerance can be used. Whatever dropping strategy is
used, the result is an incomplete inverse factorization of the form

C−1 ≈ Z̃Z̃T .

This is a factored sparse approximate inverse and is known as the SAINV precondi-
tioner. The diagonal entries are positive and so the preconditioner is guaranteed to
be positive definite.

The second approach (the RIF preconditioner) is obtained by saving the multipli-
ers l̃k,j . Again, those that are smaller than a chosen drop tolerance can be discarded
after they are computed in the inner loop of Algorithm 1. In some special cases (for
example, banded C) it is possible to discard some computed and sparsified columns z̃k
of Z̃ before the end of the factorization. However, this involves both more complicated
data structures and more complex implementation details and since an objective in
this paper is to simplify these, we do not seek to exploit particular structures. The
RIF approach computes an incomplete Cholesky factorization

C ≈ L̃L̃T .

Again, the preconditioner is guaranteed to be positive definite. Benzi and Tůma [9]
report that, for LS problems, the RIF preconditioner is generally more effective at
reducing the number of CG iterations than the SAINV preconditioner and thus it is
the one we consider.

2.2. Implementing left- and right-looking approaches. We now consider
the basic data structures and techniques used to implement the left- and right-looking
approaches. The left-looking algorithm (Algorithm 1) computes the (sparse) columns

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C608 JENNIFER SCOTT AND MIROSLAV TŮMA

of Z one by one. This requires knowledge of which indices j give nonzero C-inner
products lk,j ; this is discussed in sections 2.3 and 3. The columnwise computation

allows an approximation Z̃ to be computed by limiting the number of nonzeros that
are retained in each column or by discarding entries with respect to a drop tolerance.
To compute the lk,j , C is accessed by columns. Note that the AINV variant requires
a single column at a time. The actual computation of lk,j is straightforward and
is based on standard sparse matrix-vector products and sparse dot products. These
multipliers form the RIF factor stored by rows.

For the right-looking algorithm (Algorithm 2), determining the nonzero lk,j in
the loop starting at line 7 is straightforward. Even in the most involved MGS variant,
it reduces to a sparse product of the vector zk with the matrix C. The result is then

compared with the matrix whose columns comprise the vectors z
(k−1)
j for j = k+1 to

n. For efficiency, this matrix needs to be held as a sparse matrix. The amount of fill-in
is typically modest and the sparse rank-one updates can often be fast. But a data
structure that allows fast dynamic operations is needed. The Benzi and Tůma right-
looking implementation [8, 9] employs the data structure described in [37, 44] (and is
used in the early sparse direct solvers MA28 [17] and Y12M [44]). While developments
in sparse matrix technologies (see, for example, [18, 24]), as well as the advent of block
methods, mean that such dynamic schemes have long been superseded in sparse direct
solver software, the same is not true for incomplete factorization algorithms. This is
at least partly because their memory requirements keep right-looking schemes viable.
At the start of the computation, three arrays are allocated. The compressed row
indices, column indices, and matrix values in individual columns are held as sections
within these arrays with some additional spare space between each row and column.
This is gradually filled and, at each step j of the factorization, for each array the
memory used is recorded to be the first unused entry in the array plus the size of the
j computed columns of the lower triangular factor. At some step, the size of an array
may be found to be insufficient. In this case, it is reallocated to be larger and the
data in the old array that is still required (which may have become fragmented) is
copied to the front of the new array.

2.3. Existing strategies for exploiting sparsity. The practical success of
solvers based on factorizing large sparse matrices crucially depends on exploiting
sparsity. Over the last 40 or more years, many sophisticated techniques have been
developed for sparse direct solvers. For incomplete factorizations, far less has been
done. This may be because of the relative simplicity of many incomplete factor-
ization schemes and they offer far fewer opportunities for the employment of block
algorithms. However, the RIF approach is not straightforward to implement and the
computational schemes in the original papers [5, 6, 8] do not discuss the exploitation
of sparsity in depth.

To take advantage of sparsity in the left-looking approach, we first observe that
the inner products at lines 5, 7, and 9 of Algorithm 1 involve matrix-vector products
and, if C is sparse, most of these inner products are zero and so the corresponding
update operation at line 11 of Algorithm 1 can be skipped. The most crucial step
from the point of view of exploiting sparsity is thus the determination of which inner
products are nonzero. Once known, it is straightforward to use sparsity in the other
steps of the algorithm.

In an early left-looking implementation, determining the nonzero inner products
was interleaved with the actual numerical updates and was based on an efficient search
of columns of C. For LS problems, C may not be available explicitly and, in this case,

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C609

such searching is unacceptably slow. Consequently, a right-looking approach was used
by Benzi and Tůma [9] but, as already observed, this has the major disadvantage of
not being memory limited. Thus we want to develop a left-looking limited memory
approach that is able to exploit sparsity when C is stored implicitly.

There are two basic graph-based strategies to determine the nonzero inner prod-
ucts in Algorithm 1 (with no dropping). The most straightforward (which we will call
Strategy I) is based on the sparsity pattern of Z, which is known theoretically. The
following result was shown in [7, 12] (and is a consequence of [22]).

Lemma 2.1. Assume there is no cancellation in the factorization process. Then
zk,j 6= 0 if and only if j is an ancestor of k in the elimination tree of C.

Consequently, for each k, the sparsity pattern of column zk can be found using
the elimination tree. Once the pattern is known, which inner products should be
evaluated can be determined; that is, the required inner products are flagged by a
search through a submatrix of C that is determined by the symbolic structure of zk.
A bound on the complexity of the corresponding symbolic procedure for the mixed
Gram–Schmidt method (AINV), for example, is given by the following straightforward
result.

Lemma 2.2. For Strategy I and a given k ≥ 2, the complexity to determine all
indices j < k of the AINV nonzero inner products at line 9 of Algorithm 1 is bounded
by O(nz(

∑
{j|j∈anc(k)} C1:k−1,j), where j ∈ anc(k) denotes j is an ancestor of k in

the elimination tree of C.

However, Strategy I has a serious disadvantage: it typically results in many more
inner products being evaluated than is necessary, even in exact arithmetic. This is
illustrated by Bridson and Tang [13]. The reason for this overdetermination is that

the structure of zk is just the final structure of z
(k−1)
k and this is generally a superset

of the patterns that are considered in the minor steps of the algorithm. Therefore,
many of the inner products determined using Strategy I are still zero.

A significant enhancement can be achieved by using the relation between L and
Z given in [28] and which has been considered in [13]; we will refer to it here as
Strategy II. It is based on the fact that the inner products used to update column

z
(j−1)
k are the entries of the kth row of L. Assuming no dropping, we can formulate

this observation in terms of the elimination tree and its row subtrees [34], which can
be cheaply computed on the fly.

Lemma 2.3. The inner product 〈z(j−1)
k , zj〉C ≡ 〈z(j−1)

k , ej〉C is nonzero if and
only if j belongs to the kth row subtree Tr(k) of the elimination tree of L.

Without going into the theory of sparse matrix decompositions, let us explain
why this characterization implies significantly fewer dot products. The total number
of entries from the row subtrees is equal to the number of nonzeros in L because
the row subtrees describe the sparsity of the rows of L. This is the number of inner
products given by this lemma. Moreover, all the ancestors in Lemma 2.1 contain as
many nonzeros as L−1, which is clearly often much greater than the nonzeros in L.
Based on this characterization, we have the following complexity result for the AINV
Gram–Schmidt process (but note that, in the case of exact arithmetic, the MGS,
CGS, and AINV variants are equivalent).

Lemma 2.4. Suppose there is no cancellation in the factorization process. Then
for a given k ≥ 2, the complexity to determine all indices j < k of the AINV nonzero
inner products at line 9 of Algorithm 1 is bounded by O(nz(

∑
{j|j∈Tr(k)} C1:k−1,j).

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C610 JENNIFER SCOTT AND MIROSLAV TŮMA

3. Exploiting sparsity for implicit C and incomplete factorizations. In
this section, we introduce our new symbolic preprocessing to exploit sparsity in C
when it is available only implicitly. In the previous section, we assumed there was no
dropping. In an incomplete factorization, there is dropping and as row subtrees are
no longer useful, an alternative approach is needed. Consider the following approxi-
mate bordering scheme for a symmetric positive-definite matrix Ck−1 that is extended
symmetrically by appending one row and column ck:

(3.1)

(
Ck−1 ck
cTk γk

)
≈
(
L̃k−1

l̃Tk λ̃k

)(
L̃T
k−1 l̃k

λ̃k

)
.

The off-diagonal entries l̃k of the new column of L̃T satisfy l̃k = L̃−1
k−1ck. To obtain

the sparsity pattern of l̃k, recall the following lemma of Gilbert [22] that holds for any
triangular matrix (and thus in particular for the incomplete factor L̃k−1).

Lemma 3.1. The sparsity structure of l̃k is equal to the subset of vertices of the
DAG of L̃k−1 that is reachable by directed paths from the nonzeros of ck (that is,
Reachk−1(Struct(ck))).

Employing this result in Algorithm 1, the sparsity pattern of row k of L̃ determines
the nonzero inner products that should be evaluated by the Gram–Schmidt process
and used to obtain the numerical values of the entries in the row. There are two
main problems connected with this but, as we now show, they can both be overcome.
First, we do not have DAG(L̃) readily available since Algorithm 1 computes L̃ by
rows but the efficient computation of the pattern of L̃ needs access by columns. To
deal with this, DAG(L̃) is computed as the computation proceeds. At each step,
a new row is added into DAG(L̃). Therefore, it is computed only once. To store
DAG(L̃) by columns, we use a set of linked lists, one for each column, held using a
single array that is reallocated as necessary. If DAG(L̃) has nzd nonzeros, then we
need 2 ∗ nzd memory positions to store the indices (not including the diagonal ones)
plus n positions to point to the location of the first entry in each column. The pruning
algorithms that we describe below are such that they can be implemented efficiently
using this linked list data structure. Note that in the case of a complete factorization,
computing a DAG on the fly is unnecessary since the elimination tree is available and
no other graph structure is needed.

The second potential problem is that DAG(L̃) may have more edges than are
needed to generate the row structure. The graph with the smallest number of entries
needed to generate the row structure is the transitive reduction [1] and for a DAG it
is unique. In general, finding the transitive reduction is expensive; instead, a cheap
preprocessing called pruning is used. Pruning aims to remove edges that are both
cheap to find and redundant in preserving the set of paths in DAG(L̃). We note that
a similar mechanism for pruning based on structural symmetry in LU factorizations
was proposed by Eisenstat and Liu [21].

The first simple pruning approach that we consider is based on the following
lemma.

Lemma 3.2. Let L̃ be a lower triangular matrix with graph DAG(L̃). Assume
that for some i < j < k, l̃k,i 6= 0 and l̃k,j 6= 0, l̃j,i 6= 0. Then the set of paths in

DAG(L̃) stays the same if l̃k,i is set to 0.

Proof. Because of the edges (k, j) and (j, i), we have the path k ⇒ i and so the
edge (k, i) can be pruned.

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C611

i
j k

Fig. 1. Simple illustration of Lemma 3.2. The edge (i, k) can be pruned.

Algorithm 3. Simple pruning algorithm.

Input: Lower triangular matrix L̃ ∈ Rn×n.
Output: Pruned graph DAGp(L̃) with vertex set V and edge set E.

1. Set V = {1}, E = ∅
2. Set PREV (i) = i, 1 ≤ i . . . ≤ n
3. for k = 2 : n
4. Set V = V ∪ {k}
5. Obtain the sparsity structure Jk = {j1, . . . , jp} of L̃k,1:k−1 with

1 ≤ j1 < . . . < jp ≤ k − 1
6. Set E′ = (k, j1) ∪ . . . ∪ (k, jp)
7. for i = 1 : p
8. if PREV (ji) = i or (k, PREV (ji)) 6∈ E′ then
9. Set E = E ∪ (k, ji)
10. PREV (ji) = k
11. end if
12. end for
13. end for



∗
∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗





∗
∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗



Fig. 2. The structure of L̃ is on the left and the matrix corresponding to the pruned graph
DAGp(L̃) is on the right.

Figure 1 provides a simple illustration of Lemma 3.2. Its assumptions imply the
edge (i, k) can be pruned from the DAG.

Algorithm 3 applies the test in Lemma 3.2 successively to vertices of DAG(L̃)
to get the pruned DAGp(L̃). The algorithm is illustrated using the example given in
Figure 2.

It is easy to see that the complexity of Algorithm 3 is linear, that is, its iteration
count is of the order O(nz(L̃)). However, in some cases it is not able to prune DAG(L̃)
sufficiently. Consider a lower bidiagonal matrix that has additional nonzero entries
at positions (i, j) such that i = 2 ∗ l, j = 1, . . . , (i − 4)/2 for l = 2, . . . , pn/2q. This

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C612 JENNIFER SCOTT AND MIROSLAV TŮMA

∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗


Fig. 3. The structure of a matrix L̃ that Algorithm 3 is unable to prune.

Algorithm 4. More powerful pruning algorithm.

Input: Lower triangular matrix L̃ ∈ Rn×n.
Output: Pruned graph DAGp(L̃) with vertex set V and edge set E.

1. Set V = {1}, E = ∅
3. for k = 2 : n
4. Set V = V ∪ {k}
5. Obtain the sparsity structure Jk = {j1, . . . , jp} of L̃k,1:k−1 with

1 ≤ j1 < . . . < jp ≤ k − 1
7. for i = 1 : p
8. found = false
15. for kk such that {(kk, ji)} ∈ E in the increasing order
16. if (k, kk) ∈ E then
17. found =true
18. end if
19. end for
20. if found = false
21. Set E = E ∪ (k, ji)
23. end if
24. end for
25. end for

sparsity pattern with n = 9 is depicted in Figure 3. The number of edges in the
corresponding DAG is of the order n2. For this example, Algorithm 3 does not prune
any edges. This suggests we need a more powerful approach to pruning. For each
index ji ∈ Jk, the simple approach used by Algorithm 3 applies a test based on just
one nonzero (line 8). It seems reasonable to do more searches, provided the number
of tests is limited. A straightforward approach is presented in Algorithm 4.

It is straightforward to see that after applying Algorithm 4 to the lower triangular
matrix given in Figure 3, DAGp(L̃) has O(n) nonzero entries but that it is still not
transitively reduced since the worst-case complexity of this reduction based on the
appropriate reachability sets is, in general, O(n2). The following result describes the
complexity of Algorithm 4.

Lemma 3.3. Assume that the number of nonzero entries in each column of L̃ or
in each row of L̃ is bounded by lz. Then the number of comparisons in Algorithm 4
is bounded by O(n ∗ lz2).

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C613

Proof. The comparisons in the algorithm imply that for each nonzero entry l̃i,j ,
all other row indices ik such that lik,j 6= 0 and j < ik < i should be tested. If

each column of L̃ has at most lz entries, then nz(L̃) ≤ n ∗ lz, and for each entry at
most lz comparisons are performed. If each row of L̃ has at most lz entries, then
for each of its n rows we need to compare only entries in those rows that corre-
spond to its nonzero entries. The maximum number of such rows is lz and the result
follows.

Note that the above bound is asymptotically the same as the number of operations
needed by the exact Cholesky factorization with the same upper bound for the number
of entries in its columns. Our case of the incomplete factorization based on inner
products and different data structures is not exactly comparable but it is clear that
the complexity of pruning specified in Lemma 3.3 is affordable. Further additional
dropping in L̃ based on the magnitudes of the computed inner products can be applied,
typically for each k once the structure of column l̃k has been computed.

4. Implicit left-looking RIF for LS problems. While the previous section
looked at exploiting sparsity in the left-looking RIF algorithm for general symmetric
positive-definite matrices, here we focus on its application to the solution of LS prob-
lems. In Algorithm 5, we present an outline of our implicit left-looking RIF algorithm
for LS problems that avoids computing the normal matrix C = ATA explicitly. Al-
gorithm 5 includes scaling and the optional use of a nonzero shift α so that the RIF
factorization of S(C + αI)S is computed where the diagonal matrix S is an n × n
column scaling matrix.

Observe that since the algorithm treats C = ATA implicitly, the shift is per-
formed within the main loop and the scaling is applied to the shifted entries. In some
applications in optimization, such as the Levenberg–Marquardt method for solving
nonlinear LS, a nonzero shift is used (see, e.g., [16]). However, if α = 0, the algorithm
to compute the RIF factorization can be significantly accelerated, as we state in the
following proposition.

Proposition 4.1. If the shift α is equal to zero, then the computed vj do not need
to be stored. Instead, if vj = z̃j (MGS variant,) the matrix-vector products pj = Avj
can be precomputed and stored (that is, once z̃k is computed at line 26, Az̃k may be
computed and stored). Note that the case vj = ej (CGS and AINV variants) trivially
uses a column of A, that is, pj = aj.

5. Numerical experiments.

5.1. Test environment. Most of the test problems used in our experiments are
taken from the University of Florida Sparse Matrix Collection [15]. The exceptions
are a Laplacian test example, problem IPROB (which is part of the CUTEst linear
programming set [25]) and problem PIGS large1 from a pig breeding application (see
[2] for details). In our experiments involving symmetric positive-definite linear systems
Cx = b, the right-hand-side vector b is computed so that the exact solution is x = 1,
and the stopping criteria used for preconditioned conjugate gradients (PCG) is

(5.1) ‖Cx− b‖2 ≤ 10−6‖b‖2.

We define the density ratio of the computed incomplete factor L̃ to be

ρ = nz(L̃)/nz(C).

For the LS tests, we use PCGs for the normal equations (CGNE). We employ the
following stopping rules that are taken from [26]:

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C614 JENNIFER SCOTT AND MIROSLAV TŮMA

Algorithm 5. Left-looking RIF algorithm for LS with C = ATA held implicitly.

Input: A ∈ Rm×n with full column rank, a shift α ≥ 0, and drop tolerance τ > 0.
Output: Incomplete RIF factor L̃ (stored by rows).

1. Compute a column scaling S and scale: A← AS
2. Set L̃1,: = (1 + α)

√
aT1 a1

3. Set z̃1 = e1

4. for k = 2 : n do
5. Set z̃

(0)
k = ek

6. Let ck = ATA1:k−1,k

7. Compute the sparsity structure Jk of L̃−1
k−1ck as Reachk−1(Struct(ck)).

8. Prune Jk using Algorithm 3 or 4 to get Jk = {j1 < · · · < jp} with p ≤ k − 1;
set j0 = 0

9. for s = 1 : p do
10. j = js
11. if MGS
12. Set vj = z̃j and uk = z̃

(js−1)
k

13. else if CGS
14. Set vj = ej and uk = z̃

(0)
k

15. else if AINV
16. Set vj = ej and uk = z̃

(js−1)
k

17. end if
18. Compute pj = Avj , qk = Auk and, if α > 0, βk = vTj S

2uk
19. if pTj qk + αβk > τ do

20. Set l̃k,j = pTj qk + αβk

21. Set z̃
(j)
k = z̃

(js−1)
k − l̃k,j z̃j

22. Discard all components of z
(j)
k less than τ in absolute value

23. end if
24. end do

25. Set l̃k,k =

√
(Az̃

(jp)
k )T (Az̃

(jp)
k )

26. Set z̃k = z̃
(jp)
k /l̃k,k

27. end do

C1. Stop if ‖r‖2 < δ1, or
C2. Stop if

‖AT r‖2
‖r‖2

<
‖AT r0‖2
‖r0‖2

∗ δ2,

where r = Ax−b is the residual, r0 is the initial residual, and δ1 and δ2 are convergence
tolerances that we set to 10−8 and 10−6, respectively. In all our experiments, we take
the initial solution guess to be x0 = 0 and in this case C2 reduces to

‖AT r‖2
‖r‖2

<
‖AT b‖2
‖b‖2

∗ δ2.

We define the density ratio of the computed incomplete factor L̃ to be

ρ = nz(L̃)/nz(A).

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C615

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14
x 10

4

si
ze

 o
f t

he
 p

re
co

nd
iti

on
er

 d
ag

decreasing drop tolerance

 

 
 full dag
 pruned dag: Alg. 3.1
 pruned dag: Alg. 3.2

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3
x 10

4

si
ze

 o
f t

he
 p

re
co

nd
iti

on
er

 d
ag

decreasing drop tolerance

 

 
 full dag
 pruned dag: Alg. 3.1
 pruned dag: Alg. 3.2

Fig. 4. Effect of the two pruning approaches (Algorithms 3 and 4) on the two-dimensional
Laplacian matrix (left) and on matrix Pothen/bodyy4 (right). We depict here the dependence of the
number of edges in the auxiliary DAG on the drop tolerance.

All the reported experiments use the MGS variant of the left- and right-looking
RIF algorithms. The experiments are performed on an Intel Core i5-4590 CPU run-
ning at 3.30 GHz with 12 GB of internal memory. The codes are written in Fortran
and the Visual Fortran Intel 64 XE compiler (version 14.0.3.202) is used.

5.2. The case for pruning. Our first experiment, which we report on in Fig-
ure 4, demonstrates the need for pruning. Results are given for two examples: a
two-dimensional Laplacian matrix of dimension 25,000 and problem Pothen/bodyy4
(n = 17,546, nz(C) = 121,550). In each case, we repeatedly increase the density
ratio ρ by decreasing the drop tolerance τ used in the incomplete factorization (30
different tolerances are used for the Laplacian and 11 for Pothen/bodyy4). We see
that Algorithm 3 is highly effective in limiting the growth in the number of edges in
DAGp(L̃) but that some further reductions are possible using the more sophisticated

Algorithm 4, particularly as the number of entries in L̃ increases. Note that we get
exactly the same preconditioner (that is, the same nonzero entries) with pruning as
without pruning.

5.3. Memory management for left- and right-looking approaches. Our
second experiment is designed to demonstrate the principal differences in the memory
management of the left- and right-looking approaches. Here we employ symmetric
positive-definite test matrices while the experiments in the next subsection are for
RIF applied to the normal equations (C = ATA). Figure 5 depicts the reported
memory for three preconditioners of different densities for problem Nasa/nasa1824
(n =1,824, nz(C) = 39,208). The density ratios are ρ = 1.2, 1.6, and 2.8, respectively.
The PCG iteration counts are 26, 18, and 8, respectively. To understand the results,
we return to how we measure memory consumption during the factorization. For
the left-looking approach, the reported memory is the size of the approximate inverse
factor Z̃ plus that of the preconditioner L̃ plus the memory for the DAG. As described
in section 2.2, for the right-looking approach the rows and columns of Z̃ are stored
as contiguous parts of large arrays with empty locations between each of them. In
our implementation, we allow lsize = 5 such locations and the arrays are initially
allocated to be of size n ∗ lsize plus an additional 2 ∗nz(A) free locations. In general,
we have found that the run time is not very sensitive to the choice of lsize and the

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C616 JENNIFER SCOTT AND MIROSLAV TŮMA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7
x 10

5

m
em

or
y

factorization step

 

 
 right−looking, rho=1.2
 left−looking, rho=1.2
 right−looking, rho=1.6
 left−looking, rho=1.6
 right−looking, rho=2.8
 left−looking, rho=2.8

Fig. 5. Memory comparison for the left- and right-looking RIF approaches for Nasa/nasa1824
for three different density ratios (denoted here by rho).

initial array size; the cost is mainly driven by the amount of fill-in and the overhead
incurred from the data structures. As the computation proceeds, the lsize empty
locations between the contiguous segments in the large arrays become filled. Once
there is no space to extend a row or a column, it is copied into the free locations at
the end of the array. If there is insufficient space for this, the array is reallocated (in
all our experiments, when reallocating we double the previous size) and (fragmented)
data in the old array that is still needed is copied to the front of the new array,
again with each row and column that is not yet computed separated by lsize empty
locations, and the memory pointer is reset. Locations from the first to the last nonzero
position form the active part of the array. In reporting the memory consumption, we
show just the size of the active part, which explains the sharp drop in the reported
memory for the right-looking approach when an array is found to be too small. We
observe that the reallocation process may be repeated several times as the memory
required is not known a priori. Note that if the original array is sufficiently large
there will be no drops in the memory usage as the factorization proceeds but because
of fragmentation, using such a large array will potentially result in significantly more
memory being used than is necessary.

We see from Figure 5 that as the density ratio ρ increases, the influence of the
memory to store Z̃ becomes more significant. But, in general, this occurs when the
preconditioner is too large to be practical. Similar results for problems Nasa/nassarb
and GHS psdef/hood are given in Figure 6. For Nasa/nassarb, ρ is 0.8, 1.2, and 2.1
and the PCG iteration count decreases from 194 to 43. For GHS psdef/hood, the
densities are 0.5 and 1.5 and the corresponding PCG iteration counts are 224 and 51.
GHS psdef/hood illustrates large but not atypical differences between the right- and
left-looking memory demands.

5.4. Least-squares problems. We now explore some differences between the
left- and right-looking approaches when used for solving the normal equations (1.2).
Our first example is a small square matrix IPROB of order n = 3001 for which ATA
is dense (nz(ATA) ≈ 9 × 106). The RIF preconditioner is of size nz(L̃) ≈ 2.5 × 106

and nz(Z̃) ≈ 8.6 × 104; three CGNE iterations are required for convergence. The
plot on the left in Figure 7 shows that both the left- and right-looking algorithms

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C617

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7
x 10

7

m
em

or
y

factorization step

 

 
 right−looking, rho=0.8
 left−looking, rho=0.8
 right−looking, rho=1.2
 left−looking, rho=1.2
 right−looking, rho=2.1
 left−looking, rho=2.1

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6
x 10

7

m
em

or
y

factorization step

 

 
 right−looking, rho=0.5
 left−looking, rho=0.5
 right−looking, rho=1.5
 left−looking, rho=1.5

Fig. 6. Memory comparison for the left- and right-looking RIF approaches for problem
Nasa/nasasrb for three different density ratios (left) and GHS psdef/hood for two different den-
sity ratios (right) (denoted here by rho).

have similar memory requirements if the size of ATA (left-looking approach) or of A
(right-looking approach) is not taken into account. However, in the plot on the right
we include the size of ATA for the left-looking approach and of A and AT for the
right-looking approach (A must be held by both rows and columns) and we now see
that the explicit computation of the normal matrix ATA can result in an unacceptable
overhead for the left-looking algorithm.

In many applications, m is significantly larger than n and consequently nz(ATA)
can be smaller than nz(A) +nz(AT ). For problem LPnetlib/lp osa 30 (m = 104,374,
n = 4,350, and nz(A) = 604,488), Figure 8 shows the RIF memory requirements for
a sparse preconditioner (here the density ratio ρ is approximately 0.5). The corre-
sponding comparison for an increased density ratio of 0.8 is given in Figure 9. Note
again the sharp drops in the memory for the right-looking approach indicate memory
reallocations are needed. We also observe that for this example the factors fill in
significantly toward the end of the factorization, resulting in a sudden increase in the
memory for the left-looking RIF where the memory is dominated by L̃ (for the right-
looking approach the total memory dominates that of L̃ so the increase from the fill-in

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C618 JENNIFER SCOTT AND MIROSLAV TŮMA

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 7. Memory comparison for the left- and right-looking RIF approaches for problem IPROB
for which the normal equations C = ATA are dense. The plot on the left does not take into account
the memory for input matrix C. The plot on the right adds to the explicit left-looking approach the
size of ATA and adds nz(A) + nz(AT ) to the right-looking approach.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3
x 10

5

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 8. Memory comparison for the left- and right-looking RIF approaches applied to the
normal equations for problem LPnetlib/lp osa 30 with ρ = 0.5. The plot on the left does not take
into account the input matrix A. The plot on the right adds to the explicit left-looking approach the
size of ATA and adds to the right-looking approach the sizes of A and AT .

is not seen). In Figure 10, we plot memory usage for problem Yoshiyasu/mesh deform
(m = 234,023, n = 9393, and nz(A) = 853,829); the density ratio is approximately 4.
Again, for this example with m � n, the left-looking approach is considerably more
memory efficient than the right-looking one.

5.5. Explicit versus implicit left-looking approaches. We next consider
the differences between the left-looking algorithm that explicitly forms the normal
matrix C = ATA and the new implicit DAG-based variant that avoids forming C.
Note that both result in preconditioners of a similar quality and lead to essentially the
same CGNE iteration counts. In some practical applications it may not be possible to
form C, in which case the only computational possibility with limited memory is the
DAG-based approach. But this is also the method of choice if nz(ATA)� nz(A), as
illustrated in Table 1 by our reported results for problems IPROB and Bydder/mri2.
Note that for these examples, pruning (using Algorithm 4) leads to a significant

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C619

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6

7

8
x 10

5

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 9. Memory comparison for the left- and right-looking RIF approaches applied to the
normal equations for problem LPnetlib/lp osa 30 with ρ = 0.8. The plot on the left does not take
into account the input matrix A. The plot on the right adds to the explicit left-looking approach the
size of ATA and adds to the right-looking approach the sizes of A and AT .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5
x 10

6

m
em

or
y

factorization step

 

 
 right−looking
 left−looking

Fig. 10. Memory comparison for the left- and right-looking RIF approaches applied to the
normal equations for problem Yoshiyasu/mesh deform with ρ = 4. The plot on the left does not take
into account the input matrix A. The plot on the right adds to the explicit left-looking approach the
size of ATA and adds to the right-looking approach the sizes of A and AT .

reduction in the number of edges in the DAG. However, if C can be formed and stored
and is sufficiently sparse, the explicit algorithm can be much faster than the implicit
one. This happens, in particular, if L̃ is not very sparse. This is demonstrated by
problems PIGS large1 and Pereyra/landmark. The final three problems in Table 1 are
known to be challenging (see [26]) and for these relaxed stopping tolerances δ1 = 10−5

and δ2 = 10−3 are used together with a shift α = 0.1 ∗ ‖ATA‖F .
Figure 11 (left-hand plot) for example LPnetlib/lp osa30 illustrates that the ex-

plicit algorithm can be as fast as the implicit left-looking algorithm but, in gen-
eral, which is faster depends on the preconditioner size. For problem Kemelmacher/
Kemelmacher (right-hand plot in Figure 11), we see that as ρ increases, the explic-
itly computed C does not prevent the computational time from steadily increasing.
Thus, summarizing our experience, we conclude that both the explicit and implicit
algorithms can be useful, and even when C is available, deciding which approach

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C620 JENNIFER SCOTT AND MIROSLAV TŮMA

Table 1
A comparison of the explicit left-looking (Explicit LL), implicit left-looking (Implicit LL), and

implicit right-looking (Implicit RL) RIF approaches when used to precondition CGNE. Time is the
time (in seconds) to compute the preconditioner; Iters is the number of CGNE iterations; size p
denotes the number of entries in the preconditioner (for Implicit LL this is the number of edges in
the DAG, and before and after indicate the number of edges before and after pruning). ∗ denotes
stopping tolerances δ1 = 10−5 and δ2 = 10−3 are used together with a shift α = 0.1 ∗ ‖ATA‖F .

Explicit LL Implicit LL Implicit RL

Identifier nnz(A) nnz(ATA) Time size p Time size p Time size p Iters
before after

Pereyra/ 1.15× 106 1.20× 105 0.22 2.59× 104 2.62 2.59× 104 7.84× 103 1.35 2.69× 104 50
landmark
PIGS large1 7.50× 104 1.29× 105 0.08 4.83× 104 0.42 4.83× 104 3.94× 104 0.08 4.74× 104 94
LPnetlib/ 3.58× 105 6.09× 105 3.02 3.99× 105 1.46 4.10× 105 2.98× 105 21.6 3.62× 105 103
lp ken 18
LPnetlib/ 6.04× 105 4.37× 105 11.5 2.21× 105 14.8 2.20× 105 1.05× 105 17.9 2.20× 105 155
lp osa30
JGD Groebner/ 1.71× 105 4.49× 106 33.3 2.22× 106 6.03 2.23× 106 2.00× 104 13.6 2.42× 106 799
f855 mat9∗

JGD Groebner/ 2.46× 106 1.69× 107 277. 7.90× 106 146. 8.14× 106 4.64× 104 120. 7.83× 106 961
c8 mat11∗

Bydder/mri2∗ 5.69× 105 3.13× 107 569. 7.42× 106 129. 1.03× 107 1.64× 105 83.5 1.13× 107 671

2.195 2.2 2.205 2.21 2.215 2.22 2.225 2.23

x 10
5

0

20

40

60

80

100

120

140

160

180

200

tim
e 

to
 c

om
pu

te
 p

re
co

nd
iti

on
er

 (
in

 s
ec

on
ds

)

preconditioner size

 

 
 implicit left−looking RIF
 explicit left−looking RIF
 implicit right−looking RIF

0 2 4 6 8 10 12

x 10
5

0

50

100

150

200

250

300

tim
e 

to
 c

om
pu

te
 p

re
co

nd
iti

on
er

 (
in

 s
ec

on
ds

)

preconditioner size

 

 
 implicit left−looking RIF
 explicit left−looking RIF
 implicit right−looking RIF

Fig. 11. Dependence of the time to compute the explicit and implicit left-looking RIF on the
size of the preconditioner L̃ for problems LPnetlib/lp osa30 (left) and Kemelmacher/Kemelmacher
(right).

will be the computationally most efficient is not a clear choice. Construction of the
preconditioner using the auxiliary DAG can be considered as a way to a parallel
implementation since the implicit algorithm enables the classical generalized Gram–
Schmidt algorithm to be used to compute the factor Z̃. This offers the potential to
significantly enhance the exploitation of parallelism, but a more detailed discussion
lies outside the scope of the current study. We also note in this context that we could
prescribe the structure for L̃. This introduces another parameter into the construction
of the preconditioner.

Another interesting question is how the RIF approach compares with other pre-
conditioning techniques for LS problems, in particular, those based on orthogonal de-
compositions. Comparisons with preconditioners based on incomplete Gram–Schmidt
decompositions and with the Givens rotation-based strategies for solving LS problems

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C621

are given in [9]. These illustrate that, in terms of total solution time, RIF is often the
winner. Very recently, Gould and Scott [26, 27] presented the most comprehensive
numerical evaluation yet of preconditioned iterative methods for solving LS problems;
RIF was included in this study along with the MIQR factorization of Li and Saad
[33]. Gould and Scott show that, while generally slower than MIQR, in some in-
stances RIF can be the faster approach, with the difference in their run times being
highly problem dependent. For example, for problem JGD Groebner/f855 mat9 (see
Table 1), Gould and Scott report RIF is three times faster than MIQR (total solution
time of 78 versus 220 seconds). Although [26] finds the best preconditioner to be
our limited-memory incomplete Cholesky factorization [41, 42], because LS problems
are so diverse and can be very tough to solve, the development of complementary
approaches is important.

6. Concluding remarks. In this paper, we have proposed a new left-looking
variant of the RIF approach for computing an incomplete LLT factorization of a sparse
positive-definite matrix and, in particular, the normal equations matrix C = ATA.
The practical success of solvers for the solution of large sparse problems crucially
depends on the efficient and effective exploitation of sparsity. In the case of direct
methods, the importance of sparsity is well understood and, over many years, sophis-
ticated techniques have been developed to take advantage of sparsity throughout the
factorization. Much less has been done for incomplete factorizations. While this may
partly be because of the relative simplicity of many such algorithms, this is definitely
not the case for sophisticated schemes such as RIF that need complicated data struc-
tures and combine techniques from Gaussian elimination and orthogonalization. For
the left-looking RIF algorithm, we have introduced a global symbolic preprocessing
step that constructs a directed acyclic graph DAG(L̃) that determines the sparsity
pattern of the preconditioner factor L̃, without the need to explicitly construct the
matrix C. An efficient pruning algorithm has been proposed to limit the number of
edges in DAG(L̃). Numerical experiments have shown this pruning algorithm to be
highly effective.

A fundamental difference between the left- and right-looking RIF approaches is
their memory management. For the latter, the memory required is not known a priori
and so it can be necessary to increase the memory available during the factorization
and this reallocation may have to be done more than once. Our results have illustrated
that, for linear systems, which approach is most memory efficient not only is problem
dependent but also depends on the density of the computed L̃ (that is, on the choice of
the dropping parameter). For LS problems, we additionally need to take into account
the number of entries in A and AT or, in the case of the explicit left-looking algorithm,
the number of entries in C = ATA. We have found that the performances of the
different variants can vary significantly but for a given problem, without some prior
knowledge of the problem and its characteristics, it is not obvious which approach
will be most efficient. Clearly, if a series of similar problems must be solved and it
is possible to construct and store C, it may be worthwhile to try both the explicit
and implicit approaches and select the most efficient. If it is not possible to explicitly
compute C, then the new implicit variant offers a viable alternative.

While this study was carried out with prototype codes, in the future we plan to
develop library-quality implementations that will be made available as part of the HSL
software library [29]. We anticipate that these implementations will include options
for ordering and scaling of the problem, which can potentially significantly enhance
the performance.

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C622 JENNIFER SCOTT AND MIROSLAV TŮMA

Acknowledgment. We are grateful to two anonymous reviewers for their de-
tailed and constructive comments.

REFERENCES

[1] A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive reduction of a directed graph,
SIAM J. Comput., 1 (1972), pp. 131–137.

[2] M. Arioli and I. S. Duff, Preconditioning linear least-sqaures problems by identifying a basis
matrix, SIAM J. Sci. Comput., 37 (2015), pp. S544–S561.

[3] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: Supercharging LAPACK’s least
squares solver, SIAM J. Sci. Comput., 32 (2010), pp. 1217–1236.

[4] C. Benoit, Note sur une méthode de résolution des équations normales provenant de
l’application de la méthode des moindres carrés a un systeme d’équations linéaires en
nombre inférieur a celui des inconnues. application de la méthode a la résolution d’un
systeme défini d’équations linéaires, Bull. Géodésique, 2 (1924), pp. 5–77.

[5] M. Benzi, J. K. Cullum, and M. Tůma, Robust approximate inverse preconditioning for the
conjugate gradient method, SIAM J. Sci. Comput., 22 (2000), pp. 1318–1332.

[6] M. Benzi, C. D. Meyer, and M. Tůma, A sparse approximate inverse preconditioner for the
conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–1149.

[7] M. Benzi and M. Tůma, Orderings for factorized sparse approximate inverse preconditioners,
SIAM J. Sci. Comput., 21 (2000), pp. 1851–1868.

[8] M. Benzi and M. Tůma, A robust incomplete factorization preconditioner for positive definite
matrices, Numer. Linear Algebra Appl., 10 (2003), pp. 385–400.

[9] M. Benzi and M. Tůma, A robust preconditioner with low memory requirements for large
sparse least squares problems, SIAM J. Sci. Comput., 25 (2003), pp. 499–512.

[10] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[11] A. Björck and J. Y. Yuan, Preconditioners for least squares problems by LU factorization,

Electron. Trans. Numer. Anal., 8 (1999), pp. 26–35.
[12] R. Bridson and W.-P. Tang, Ordering, anisotropy, and factored sparse approximate inverses,

SIAM J. Sci. Comput., 21 (1999), pp. 867–882.
[13] R. Bridson and W.-P. Tang, Refining an approximate inverse, J. Comput. Appl. Math., 123

(2000), pp. 293–306.
[14] R. Bru, J. Maŕın, J. Mas, and M. Tůma, Preconditioned iterative methods for solving linear

least squares problems, SIAM J. Sci. Comput., 36 (2014), pp. A2002–A2022.
[15] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.

Software, 38 (2011), pp. 1:1–1:25.
[16] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, Classics in Appl. Math. 16, SIAM, Philadelphia, 1996.
[17] I. S. Duff, MA28—A Set of Fortran Subroutines for Sparse Unsymmetric Linear Equations,

Harwell Report UK AERE-R.8730, Harwell Laboratories, 1980.
[18] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear

equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325.
[19] S. Eisenstat and J.-W. H. Liu, The theory of elimination trees for sparse unsymmetric ma-

trices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 686–705.
[20] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, The Yale Sparse

Matrix Package (YSMP)—I: The symmetric codes, Internat. J. Numer. Methods Engrg.,
18 (1982), pp. 1145–1151.

[21] S. C. Eisenstat and J.-W. H. Liu, Exploiting structural symmetry in unsymmetric sparse
symbolic factorization, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 202–211.

[22] J. R. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 62–79.

[23] J. R. Gilbert and J. W. H. Liu, Elimination structures for unsymmetric sparse LU factors,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 334–352.

[24] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862–874.

[25] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: A constrained and unconstrained
testing environment with safe threads for mathematical optimization, Comput. Optim.
Appl., 60 (2015), pp. 545–557.

[26] N. I. M. Gould and J. A. Scott, The State-of-the-Art of Preconditioners for Sparse Linear
Least Squares Problems, Technical Report RAL-P-2015-010, Rutherford Appleton Labora-
tory, 2015.

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONING OF LINEAR LEAST SQUARES BY RIF C623

[27] N. I. M. Gould and J. A. Scott, The State-of-the-Art of Preconditioners for Sparse Lin-
ear Least Squares Problems: The Complete Results, Technical Report RAL-TR-2015-009
(revision 1), Rutherford Appleton Laboratory, 2016.

[28] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Res. National Bureau of Standards, 49 (1952), pp. 409–435.

[29] HSL, A Collection of Fortran Codes for Large-Scale Scientific Computation, http://www.hsl.
rl.ac.uk (2016).

[30] A. Jennings and M. A. Ajiz, Incomplete methods for solving ATAx = b, SIAM J. Sci. Statist.
Comput., 5 (1984), pp. 978–987.

[31] J. Kopal, M. Rozložńık, A. Smoktunowicz, and M. Tůma, Rounding error analysis of
orthogonalization with a non-standard inner product, BIT, 52 (2012), pp. 1035–1058.

[32] P. Läuchli, Jordan-Elimination und Ausgleichung nach kleinsten Quadraten, Numer. Math.,
3 (1961), pp. 226–240.

[33] N. Li and Y. Saad, MIQR: A multilevel incomplete QR preconditioner for large sparse least-
squares problems, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 524–550.

[34] J. W. H. Liu, The role of elimination trees in sparse factorizations, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[35] X. Meng, M. A. Saunders, and M. W. Mahoney, LSRN: A parallel iterative solver for
strongly over- or underdetermined systems, SIAM J. Sci. Comput., 36 (2014), pp. C95–
C118.

[36] K. Morikuni and K. Hayami, Inner-iteration Krylov subspace methods for least squares prob-
lems, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1–22.

[37] O. Østerby and Z. Zlatev, Direct Methods for Sparse Matrices, Lecture Notes in Comput.
Sci. 157, Springer-Verlag, Berlin, 1983.

[38] A. T. Papadopoulus, I. S. Duff, and A. J. Wathen, A class of incomplete orthogonal fac-
torization methods. II: Implementation and results, BIT, 45 (2005), pp. 159–179.

[39] G. Peters and J. H. Wilkinson, The least squares problem and pseudo-inverse, Comput. J.,
131 (1970), pp. 309–316.

[40] Y. Saad, Preconditioning techniques for nonsymmetric and indefinite linear systems, J. Com-
put. Appl. Math., 24 (1988), pp. 89–105.

[41] J. A. Scott and M. Tůma, HSL MI28: An efficient and robust limited-memory incomplete
Cholesky factorization code, ACM Trans. Math. Software, 40 (2014), pp. 24:1–24:19.

[42] J. A. Scott and M. Tůma, On positive semidefinite modification schemes for incomplete
Cholesky factorization, SIAM J. Sci. Comput., 36 (2014), pp. A609–A633.

[43] X. Wang, K. A. Gallivan, and R. Bramley, CIMGS: An incomplete orthogonal factorization
preconditioner, SIAM J. Sci. Comput., 18 (1997), pp. 516–536.

[44] Z. Zlatev, Computational Methods for General Sparse Matrices, Kluwer, Dordrecht, the
Netherlands, 1991.

D
ow

nl
oa

de
d 

11
/1

5/
16

 to
 1

30
.2

46
.7

6.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk

	Introduction
	Robust incomplete factorization and symbolic decomposition
	Left- and right-looking approaches
	Implementing left- and right-looking approaches
	Existing strategies for exploiting sparsity

	Exploiting sparsity for implicit C and incomplete factorizations
	Implicit left-looking RIF for LS problems
	Numerical experiments
	Test environment
	The case for pruning
	Memory management for left- and right-looking approaches
	Least-squares problems
	Explicit versus implicit left-looking approaches

	Concluding remarks
	References

