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Abstract

Accurate estimates of rotavirus incidence in infants are crucial given disparities in rotavirus

vaccine effectiveness from low-income settings. Sero-surveys are a pragmatic means of

estimating incidence however serological data is prone to misclassification. This study used

mixture models to estimate incidence of rotavirus infection from anti-rotavirus immunoglobu-

lin A (IgA) titres in infants from Vellore, India, and Karonga, Malawi. IgA titres were mea-

sured using serum samples collected at 6 month intervals for 36 months from 373 infants

from Vellore and 12 months from 66 infants from Karonga. Mixture models (two component

Gaussian mixture distributions) were fit to the difference in titres between time points to esti-

mate risk of sero-positivity and derive incidence estimates. A peak incidence of 1.05(95%

confidence interval [CI]: 0.64, 1.64) infections per child-year was observed in the first 6

months of life in Vellore. This declined incrementally with each subsequent time interval.

Contrastingly in Karonga incidence was greatest in the second 6 months of life (1.41 infec-

tions per child year [95% CI: 0.79, 2.29]). This study demonstrates that infants from Vellore

experience peak rotavirus incidence earlier than those from Karonga. Identifying such differ-

ences in transmission patterns is important in informing vaccine strategy, particularly where

vaccine effectiveness is modest.

Introduction

Prior to wide-spread rotavirus vaccination, rotavirus was responsible for over 450 000 deaths

in young children, with 95% of these deaths occurring in low income, GAVI-the Vaccine Alli-

ance (GAVI)-eligible countries[1]. Two live oral vaccines are currently globally licenced for

the prevention of severe rotavirus gastroenteritis, a monovalent and a pentavalent formulation.
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These vaccines are highly efficacious against severe disease in high and middle income coun-

tries (vaccine efficacy 85–100%)[2,3], but have proven much less protective in low income

countries (LIC) (vaccine efficacy 49%-64%)[4–6]. The reasons for reduced vaccine efficacy in

LIC are not fully understood but hypotheses include vaccine interaction with maternal anti-

body, micronutrient malnutrition, differences in gut microbiome, concomitant oral polio vac-

cination, and epidemiological differences such as greater force of infection (rate at which

susceptible individuals acquire infection[7]) [8–12]. In view of the high rotavirus gastroenteri-

tis morbidity and mortality, the World Health Organisation (WHO) has recommended rou-

tine rotavirus vaccination of infants in LIC and rotavirus vaccine has subsequently been

introduced into more than 35 GAVI eligible countries[13]. Post-introduction reports of vac-

cine effectiveness from LIC have been encouraging (60–70%)[14–16], but remain low com-

pared to high-income settings[17,18].

In the context of a high burden of rotavirus disease and reduced vaccine effectiveness in

LIC, understanding patterns of exposure is important for public health policy such as vaccine

schedules, and exploring potential epidemiological mechanisms for vaccine failure. Due to the

high frequency of sub-clinical infections and transient faecal viral shedding, the true incidence

of rotavirus infection is hard to estimate outside of large closely monitored cohort studies,

which are logistically challenging and expensive to conduct. In this context, sero-surveys may

represent a pragmatic alternative. Serum anti-rotavirus immunoglobulin A (IgA) develops in

response to rotavirus infection, reflects intestinal IgA, which is thought to be key in long term

protection against rotavirus, and has been shown to correlate well with protection against

severe rotavirus disease[19–23]. Previously heterogenicities in sampling methods and labora-

tory protocols meant that comparison of IgA responses between populations was challenging.

Recently however clinical vaccine trials have given rise to more standardised methods, facilitat-

ing comparisons of sero-response to vaccine and pre-vaccine exposure to rotavirus across set-

tings [24,25]. To our knowledge this has not been utilised to compare incidence of rotavirus

infection between populations although serological data has previously been used to evaluate

prevalence and incidence of other pathogens including human papilloma virus and Campylo-

bacter[26,27]. Interpretation of serological data can be complicated, however, by natural fluc-

tuations and measurement errors that mask or mimic infection and traditional methods of

analysis of serological data such as pre-defined cut-offs in levels and/or “fold increase” can be

prone to misclassification[27,28].

This study used mixture models as an analytical approach to estimate incidence of rotavirus

infection using serum anti-rotavirus IgA titres in two different low-income, unvaccinated pop-

ulations: an urban setting in Vellore, Southern India, and a rural setting in Karonga, Northern

Malawi. Our mixture models specify mixtures of two (“positive” and “negative”) component

gaussian distributions, and may offer an advantage over more traditional methods of evaluat-

ing serological data as they evaluate data probabilistically. Models were used to describe pat-

terns of exposure over the first 3 years of life in Vellore and to compare incidence rates

between infants in Vellore and Karonga in order to increase understanding of force of rotavi-

rus infection in young children from different LIC prior to rotavirus vaccine introduction.

Methods

Study population and sample collection

This study utilised serum samples collected from young children in two distinct locations; an

urban slum setting in Vellore, Southern India; and Karonga, a rural setting in Northern

Malawi. In Vellore, serum samples were collected from 373 children enrolled in a birth cohort

designed to evaluate natural immunity to rotavirus infection. Data from this cohort were
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collected between 2002 and 2006. Samples for serology were collected at 6 month intervals

from birth and biweekly stool samples were collected for three years onwards. Stool samples

were tested for rotavirus and rotavirus infection defined as positive on two enzyme-linked

immunosorbent assay (ELISA) tests or reverse-transcriptase–polymerase-chain-reaction

(RT-PCR). A detailed description of this cohort has been published[29]. In Karonga, serum

samples were collected at 6, 26 and 52 weeks of life from 190 children born in the Karonga

Health and Demographic Surveillance System between November 2008 and November 2010

[30]. These infants were enrolled as part of a birth cohort investigating pneumococcal carriage

in Human Immunodeficiency Virus (HIV) exposed mothers and their infants, and approxi-

mately 28% of the infants were exposed to HIV[31]. A total of 112 of these 190 children had

complete sets of three serum samples. Samples were selected for IgA analysis if they contained

more than 100μl of serum, resulting in 198 samples from 66 children. Neither population had

routine rotavirus vaccine introduced at the time of specimen collection. Anonymised serologi-

cal data from Vellore and Karonga can be found in S1 File in the supplementary materials

(S1A and S1B File respectively). Written consent for infant participation in each study was

obtained from the responsible parent or guardian, and this process was approved by the

respective ethics committees (Christian Medical College, Vellore and National Health Sciences

Research Committee in Malawi).

Laboratory methods

Anti-rotavirus IgA antibodies were measured using a standard sandwich ELISA [32]. Methods,

standards and controls used were the same in both sites, with the exception that Vellore used 2

x 10 fold dilution of sera while Karonga used 4 x 2 fold dilutions. Briefly, 96 well plates coated

with rabbit anti-rotavirus hyperimmune serum were incubated with WC3 rotavirus containing

cell culture lysate (MA104). Sera prepared in respective dilutions in blocking solution (1%

blotto) were added to the plate. Anti-rotavirus IgA detection was performed using biotinylated

rabbit anti-human IgA (Jackson ImmunoResearch Lab, USA) an avidin-biotin-peroxidase

complex (Vecastain ABC kit; Vector) and a peroxidase substrate (o-Phenylenediaminedihy-

drochloride; Sigma) and H2O2 (Sigma). Rotavirus-specific IgA titres were quantitated against

a standard curve (serial 2 fold dilution of control plasma calibrated against an international

standard) and positive, negative and uninfected cell lysate controls were added to each plate.

Results were expressed as mean adjusted titres of at least two values per serum with a coeffi-

cient of variation < 20%. Positive samples in which the titres obtained in 2 or more dilutions

had>20% coefficient of variation in two repeat tests were expressed using trimmed geometric

means. Results which fell below the lower limit of quantification defined by the standard curve

were defined as below the limit of detection and were recorded as zero. Results above the

upper limit of detection were repeated with serial dilutions until a quantifiable result was

obtained. Quantitative values for clinical test samples were expressed as IU/ ml IgA.

Statistical analysis

Analysis comprised 4 stages: i) descriptive analysis; ii) estimation of risk of seroconversion in

the first 3 years of life in Vellore and thereby derivation of incidence; iii) comparison of risk

and incidence estimates in Vellore and Karonga, and iv) calculation of antibody decay rate.

We compared independent and paired continuous variables using sign-rank and rank sum

tests respectively, and chi-squared tests to compare independent proportions. For this analysis

seroconversion was defined as titres�20IU/ml[33].

The Vellore dataset was then used to investigate the pattern of rotavirus exposure in the

first 3 years of life. Two component Gaussian mixture models, one component assumed to
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correspond to uninfected individuals and one, with larger values, to seroconverted (presumed

infected) individuals, were used to estimate the risk of seroconversion at 6 monthly time inter-

vals, where the risk refers to the proportion (prevalence) of samples assigned to the positive or

“infected” distribution[26,27]. Antibody titres were log transformed after adding one to the

value of each titre to allow log transformation of zero values, and models were fit to the incre-

ment in log transformed titres between each of the time points (i.e. between 6 and 26 weeks

[d1], 26 and 52 weeks [d2], 52 and 78 weeks [d3], 78 and 104 weeks [d4], 104 and 130 weeks

[d5] and 130 and 156 weeks [d6]). There were large numbers of zero values (representing no

change in antibody titre) for each time point. These did not fit a Gaussian distribution, and

were therefore excluded from fitting the models. As these values clearly represented no evi-

dence of re-infection, they were added back into the uninfected component for calculations of

risk and incidence. Bootstrap confidence bounds were calculated.

Rotavirus infection incidence λ, during the interval τ between each time point was calcu-

lated based on the relationship between the risk and incidence rate using the formula below,

where p corresponds to the bootstrap estimate of mean risk of sero-conversion[34]:

l ¼
� lnð1 � pÞ

t

The same methods were then used to estimate the risk and incidence of seroconversion in

Karonga between 6 and 26, 26 and 52 and 6 and 52 weeks of life in order to compare exposure

to rotavirus infection in infancy between the Vellore and Karonga populations. The timing of

the first sample differed between populations (6 weeks of age in Karonga vs birth in Vellore),

however for the purposes of this analysis this baseline time point was assumed to be the same.

For additional validation, and to investigate if the pattern of increment differed significantly

between populations we calculated the difference between increments in each location by sub-

tracting [d2] from [d1] and compared the mean value obtained between locations using a two-

sample t-test.

To evaluate the use of mixture models, seroconversion was also calculated using two alter-

native standard definitions; fold increase and a pre-defined cut-off of anti-rotavirus IgA

titres� 20IU. For calculation of fold increase 0.1 was added to each assay result (to allow cal-

culation of fold increase for zero values), and seroconversion was defined as a three-fold or

greater rise between time points. For the cut-off of�20IU, sero-positivity was defined as IgA

titres� 20IU and becoming seropositive between time points was considered seroconversion.

Finally, in order to evaluate the likelihood of capturing repeated infection episodes using

mixture models, a decay rate was calculated for anti-rotavirus IgA using a subset of children

from the Vellore dataset. 87 children were identified who had a stool or serologically con-

firmed rotavirus infection in the first 26 weeks of life, and no evidence of re-infection between

26 and 52 weeks. Antibody decay was calculated based on the log of the fold increase in titres

between 26 and 52 weeks, where any value less than one indicates a decline in titre. Anon-

ymised serological data used to estimate decay rate can be found in S1 File in the supplemen-

tary materials (S1 File).

Statistical analyses were conducted using Stata 12 (StataCorp, USA), GraphPad Prism 6

(GraphPad Software Inc, USA), and R 3.0.2 (R Foundation for Statistical Computing, Austria).

Results

Descriptive analysis

IgA titres rose incrementally in both Vellore and Karonga, with significant rises in median IgA

titres between time points (Fig 1). The proportion of children with anti-rotavirus IgA titres

Estimating rotavirus incidence using serial anti-rotavirus IgA titres
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�20IU/ml was greater in Vellore than Karonga at 6 (15.43% vs 1.52%, chi-squared test p =

0.002) and 26 (37.78% vs 13.64%, chi-squared p<0.001) weeks of life, but there was no signifi-

cant difference between the two populations at 52 weeks of life (61.13% vs 60.61%, chi squared

p = 0.937).

Patterns of rotavirus infection in first 3 years of life

Mixture models fit to the Vellore data set over 3 years showed an initial high frequency of rotavirus

infection, with a risk of seroconversion of 0.41 (95% confidence interval [CI]: 0.27, 0.56) between

birth and 6 months, which declined with each subsequent time interval (Fig 2 and Table 1).

Comparison of patterns of rotavirus infection in first year of life between

Vellore and Karonga

Fitting mixture models to the Karonga dataset demonstrated that incidence of rotavirus infec-

tion varied by time and between the populations. Between 6 weeks and 26 weeks incidence of

infection in Karonga was lower than observed in Vellore with 0.34 episodes/child year (95%

CI: 0.08, 1.17) compared to 1.05 episodes/child year (95% CI: 0.64, 1.64) (Fig 3 and Table 1).

In comparison, incidence was considerably higher in Karonga between 26 and 52 weeks than

in Vellore (1.41 episodes/child year [95% CI 0.79, 2.29] vs 0.44 episodes/child year [95% CI:

0.17, 1.02]) (Fig 3 and Table 1). There was no clear difference between the two populations

when incidence was calculated between 6 and 52 weeks (1.25 episodes per child year [95% CI

0.54, 2.28] in Karonga, versus 0.80 [95% CI: 0.65, 0.97] in Vellore).

The mean difference in titres ([d2]-[d1]) was significantly smaller in Vellore than Karonga

(-0.35 in Vellore and 1.45 in Karonga, two sample t-test p = 0.004). This is likely due to the

high risk of seroconversion in the first six months of life and subsequent lower relative increase

in titres in the second six months of life in Vellore.

Overall, estimates of incidence using the mixture models were similar to the two alternative

definitions of seroconversion (Table 2). The notable exception was for estimating incidence

Fig 1. Increase in IgA titres over time in Vellore (A) and Karonga (B). Error bars represent median and IQR. P values represent sign-rank tests for

paired medians.

https://doi.org/10.1371/journal.pone.0190256.g001
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between 6 and 26 weeks, when using fold increase resulted in a substantially higher estimate in

Karonga (1.10 episodes/child year [95% CI: 0.74, 1.59]) than using mixture models or IgA

titres > = 20 IU (0.34 episodes/child year [95%: CI 0.08, 1.17] and 0.29 episodes/child year

[95% CI: 0.15, 0.56], respectively). Apart from this, all three methods showed higher incidence

of infection in Vellore compared to Karonga in the first 6 months of life, and higher incidence

in Karonga compared to Vellore between 26 and 52 weeks.

Anti-rotavirus IgA antibody decay

Based on the log of fold increase, anti-rotavirus IgA titres showed a relatively rapid decay with

a mean fold increase of 0.09 fold/year, which is equivalent to a > 10X reduction in antibody

titres) following an initial infection (Fig 4).

Discussion

Identifying heterogeneities in infant rotavirus transmission patterns is important as force of

infection may be a contributing factor to the reduced vaccine effectiveness observed in LIC,

and understanding patterns of incidence may help inform vaccine scheduling and improve

vaccine impact. This study demonstrates notable differences in force of infection between

Fig 2. Output from mixture models showing positive (“infected”) and negative (“uninfected”) distributions for increment in log

transformed anti-rotavirus IgA titres between 6 month time points in Vellore. The dashed line represents the (fitted) mixture

distribution, the red line the constituent distribution for the “infected” and the blue line the constituent distribution for the “uninfected”. Bars

represent values for difference between titres.

https://doi.org/10.1371/journal.pone.0190256.g002
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infants from Vellore, India, and Karonga, Malawi in the first year of life, with children in Vel-

lore seemingly infected earlier in life than those in Karonga.

Although the confidence intervals for risk and incidence estimates are wide and overlap

considerably, the validity of these findings are corroborated by the observation that the same

patterns are seen when a pre-defined cut-off (�20 IU) is used to define seroconversion, and

that a significant difference is observed in mean titre increment from the first six to the second

six months of life between populations. One explanation for the observed difference in expo-

sure patterns is variation in population dynamics between the two study sites; Vellore is an

urban slum environment with a population density of 17,000/km2[35] in contrast to the rural

Karonga district, with a population density of approximately 264/km2[30]. In support of this,

crowding has previously been associated with increased frequency of rotavirus infection[36],

and a recent study from Dhaka, Bangladesh demonstrated that rotavirus incidence in the

densely populated core of the city was 3 times greater than in the more sparsely populated

periphery [37].

Using anti-rotavirus IgA titres to assess force of rotavirus infection is attractive, particularly

as in recent years IgA titres in infants have been measured in a standardised manner across

numerous different populations as part of vaccine efficacy trials, making comparisons between

studies and sites easier and resulting in banks of data which could be utilised to understand

global trends in population level rotavirus incidence[38]. Mixture models offer an advantage

over traditional methods of defining seroconversion, as they provide a visual interpretation of

the data, and evaluate infection probabilistically (i.e. the probability of each sample falling into

the positive or negative distribution), and thus avoid the assumption of an, somewhat arbi-

trary, absolute cut off. Uncertainty around estimates can be evaluated using boot-strapping

and expressed as confidence intervals. The ability to estimate rotavirus incidence with relative

ease could increase understanding of differences in patterns of exposure between populations.

Table 1. Parameter estimates from mixture models for rotavirus infection in Vellore and Karonga.

Mean 1* SD* 1 Mean 2 SD 2 Risk** 95% CI Incidence† 95% CI

Vellore

0–26 wks -2.44 2.68 3.97 1.86 0.41 0.27,0.56 1.05 0.64, 1.64

26–52 wks 0.11 2.08 5.02 1.42 0.20 0.08,0.40 0.44 0.17, 1.02

52–78 wks 0.26 1.84 4.69 1.77 0.18 0.02,0.72 0.39 0.04, 2.57

78–104 wks -0.08 1.36 4.52 1.43 0.13 0.02,0.54 0.29 0.04, 1.57

104-130wks -0.12 1.31 3.84 1.41 0.11 0.02,0.47 0.24 0.04, 1.29

130–156 wks -0.17 1.69 5.14 1.36 0.05 0.00,0.78 0.10 0.00, 3.04

Karonga

6–26 wks 0.40 1.45 4.87 1.22 0.15 0.04,0.44 0.34 0.08, 1.17

26–52 wks 0.08 1.31 4.48 1.35 0.50 0.33,0.68 1.41 0.79, 2.29

Increment over first year of life

Vellore

0–52 wks -0.35 2.62 4.62 1.53 0.55 0.48,0.62 0.80 0.65, 0.97

Karonga

6–52 wks -0.22 0.59 4.26 1.82 0.71 0.42,0.90 1.25 0.54, 2.28

Data from Vellore for 156 weeks, from Karonga for 52 weeks.

*Where mean 1 and SD1 refer to mean and standard deviation (SD) for distribution 1 (increment in log transformed titres for uninfected children), and mean

2 and SD2 to mean and standard deviation for distribution 2 (increment in log transformed titres for infected children).

**Mean risk of seroconversion and confidence intervals (CI) derived from bootstrap estimates
† Incidence rate of rotavirus infection derived from mean risk using formula stated previously. Incidence rate in episodes per child year.

https://doi.org/10.1371/journal.pone.0190256.t001
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In this study, the risk of seroconversion identified using mixture models is reasonably consis-

tent with that identified using the more traditional methods of a defined cut-off, or fold

increase from baseline. The exception to this is risk of seroconversion defined by fold increase

in the first six months of life in Karonga, which identified significantly more children as having

seroconverted that either mixture models or a pre-defined cut-off. One explanation for this

could be mathematical artefact due the lower proportion of children who had IgA titres�20

IU at the time of first sample in Karonga[28].

Widespread introduction of rotavirus vaccination has had a substantial impact on the bur-

den of diarrhoeal disease in children from the poorest countries[39–41]. With the success of

programmatic vaccine introduction and encouraging but sub-optimal vaccine effectiveness

reported from LIC it is important to target vaccine failure and residual rotavirus disease. High

force of infection may lead to higher trans-placental maternal IgG and anti-rotavirus IgA titres

in breast milk, both of which may impact on vaccine response in infants[42]. An additional

dose of vaccine or delayed vaccine schedule such as recently trialled in Ghana may improve

vaccine response in this instance[43]. Understanding the timing of peak rotavirus incidence

may also inform decisions around optimal vaccine schedules; for example a high burden of

very early disease such as observed in Vellore could lead to consideration of a neonatal dose of

vaccine, such as the candidate vaccine RV3-BB, currently undergoing immunogenicity trials

Fig 3. Output from mixture models showing positive (“infected”) and negative (“uninfected”) distributions for increment in log

transformed anti-rotavirus IgA titres for the first year of life in Karonga and Vellore. The dashed line represents the (fitted) mixture

distribution, the red line the constituent distribution for the “infected” and the blue line the constituent distribution for the “uninfected”.

https://doi.org/10.1371/journal.pone.0190256.g003
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[44]. The variation in transmission patterns between two different low income settings identi-

fied in this study suggests that different populations may require different approaches. It is

intriguing that the model derived mean increment for Vellore in the first 6 months of life is a

negative value. This is unlikely to reflect maternal antibody as this is usually IgG, which is not

Table 2. Risk of seroconversion and incidence of rotavirus infection between 0/6 and 26 weeks, 26 and 52 and 0/6 and 52 weeks for Vellore and

Karonga using mixture models, fold increase and IgA titres> = 20IU.

Mixture Model Fold Increase IgA titres> = 20IU

Risk* Incidence † Risk Incidence † Risk Incidence †

0/6 weeks to 26 weeks

Vellore Estimate 0.41 1.05 0.44 1.16 0.31 0.73

95% CI 0.27,0.56 0.64,1.64 0.39,0.49 0.98,1.36 0.26,0.36 0.60,0.88

Karonga Estimate 0.15 0.34 0.42 1.10 0.14 0.29

95% CI 0.04,0.44 0.08,1.17 0.31,0.55 0.74,1.59 0.07,0.26 0.15,0.56

26 to 52 weeks

Vellore Estimate 0.20 0.44 0.35 0.87 0.28 0.66

95% CI 0.08,0.40 0.17,1.02 0.30,0.41 0.73,1.04 0.24,0.33 0.54,0.80

Karonga Estimate 0.50 1.41 0.61 1.86 0.50 1.39

95% CI 0.33,0.68 0.79,2.29 0.48,0.72 1.31,2.54 0.38,0.62 0.95,1.94

0/6 weeks to 52 weeks

Vellore Estimate 0.55 0.80 0.60 0.91 0.50 0.70

95% CI 0.48–0.62 0.65–0.97 0.54–0.65 0.78–1.05 0.45–0.56 0.60–0.82

Karonga Estimate 0.71 1.25 0.74 1.36 0.59 0.89

95% CI 0.42–0.90 0.54–2.28 0.62–0.84 0.97–1.80 0.47–0.71 0.63–1.22

*Mean risk and confidence intervals (CI) derived from bootstrap estimates
† Incidence rate derived from risk estimate using formula stated previously. Incidence rate in episodes per child year.

https://doi.org/10.1371/journal.pone.0190256.t002

Fig 4. Anti-rotavirus IgA decay rates. A) Log transformed titres at 0, 26 and 52 weeks for 87 children included in IgA decay analysis. B) Fold increase in

titres per year for the same children. Titres log transformed then exponentiated.

https://doi.org/10.1371/journal.pone.0190256.g004
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measured by this study. One possibility could be a number of infants with neonatal infection

and subsequent sero-response, which then declines substantially over the next 6 months.

Whilst serum IgA is possibly the best currently available marker of recent rotavirus infec-

tion, it is not a perfect correlate of protection against rotavirus[45]. Using serology alone to

estimate rotavirus incidence will under-estimate the true burden; cohort studies from Vellore

and Mexico collected stool and serum samples to estimate rotavirus incidence and in both

approximately 25% of infections were identified in stool alone without a corresponding rise in

antibody titres [29,46]. The degree of under-estimation seems unlikely to vary considerably

across populations however, and broad patterns in rates of infection across should still be com-

parable. It is also possible that sero-response only captures first infection; that subsequent

infections may not boost IgA levels sufficiently for re-infection to be captured. However the

rapid decay in IgA titres (~10 fold per year) following an initial infection seen in this study

argues against this.

This analysis of existing data included a small number of children, particularly from Kar-

onga, which likely contributes to wide confidence bounds around risk and incidence estimates.

Those children from Karonga included in the study are a relatively small proportion of avail-

able children (66/190, 35%). This was due to available volume of serum and reflects the chal-

lenges of obtaining blood samples from young children. While this will have contributed to

the small sample size it is unlikely that children with larger sample volumes differ systemati-

cally from those with smaller sample volumes and should not affect the representative nature

of the results. Timing of collection of the first serum sample differed by site, but there were

very few infections identified in either cohort before the first sample therefore this is unlikely

to have affected the comparison. Approximately 28% of infants from Karonga were HIV

exposed, however as HIV infected infants have comparable IgA responses to those of HIV

uninfected infants following rotavirus vaccine and rotavirus does not seem to be more fre-

quent in HIV infected children[47–49], it seems unlikely that HIV exposure status should sub-

stantially influence IgA responses to natural rotavirus infection.

Conclusions

Fitting mixture models to anti-rotavirus serum IgA titres is an efficient and inexpensive quan-

titative method to estimate population incidence in young infants. Using these models we

identified that infants in Vellore are infected with rotavirus at a younger age than those in Kar-

onga. Identifying heterogeneities in transmission such as these may help increase understand-

ing of mechanisms behind reduced vaccine effectiveness and inform vaccine scheduling to

optimise protection for infants against rotavirus. This is crucial given the observed lower vac-

cine effectiveness and ongoing burden of disease in low income settings.

Supporting information

S1 File. Serological data for Karonga and Vellore. This consists of 3 datasets; S1A containing

data IgA data from Vellore, S1B containing IgA data from Karonga, and S1C containing a sub-

set of the Vellore data used to estimate IgA decay rate.
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28. Beyer WE., Palache A, Lüchters G, Nauta J, Osterhaus ADM. Seroprotection rate, mean fold increase,

seroconversion rate: which parameter adequately expresses seroresponse to influenza vaccination?

Virus Res. 2004; 103: 125–132. https://doi.org/10.1016/j.virusres.2004.02.024 PMID: 15163500

29. Gladstone BP, Ramani S, Mukhopadhya I, Muliyil J, Sarkar R, Rehman AM, et al. Protective effect of

natural rotavirus infection in an Indian birth cohort. N Engl J Med. 2011; 365: 337–346. https://doi.org/

10.1056/NEJMoa1006261 PMID: 21793745

30. Crampin AC, Dube A, Mboma S, Price A, Chihana M, Jahn A, et al. Profile: the Karonga Health and

Demographic Surveillance System. Int J Epidemiol. 2012; 41: 676–685. https://doi.org/10.1093/ije/

dys088 PMID: 22729235

31. Heinsbroek E, Tafatatha T, Chisambo C, Phiri A, Mwiba O, Ngwira B, et al. Pneumococcal Acquisition

Among Infants Exposed to HIV in Rural Malawi: A Longitudinal Household Study. Am J Epidemiol.

2016; 183: 70–78. https://doi.org/10.1093/aje/kwv134 PMID: 26628514

32. Bernstein DI, Smith VE, Sherwood JR, Schiff GM, Sander DS, DeFeudis D, et al. Safety and immunoge-

nicity of live, attenuated human rotavirus vaccine 89–12. Vaccine. 1998; 16: 381–387. PMID: 9607059

33. Bernstein DI, Sack DA, Rothstein E, Reisinger K, Smith VE, O’Sullivan D, et al. Efficacy of live, attenu-

ated, human rotavirus vaccine 89–12 in infants: a randomised placebo-controlled trial. Lancet. 1999;

354: 287–290. https://doi.org/10.1016/S0140-6736(98)12106-2 PMID: 10440305

34. Muench H. Catalytic Models in Epidemiology. Harvard University Press; 1958.

35. Gladstone BP, Muliyil JP, Jaffar S, Wheeler JG, Le Fevre A, Iturriza-Gomara M, et al. Infant morbidity in

an Indian slum birth cohort. Arch Dis Child. 2008; 93: 479–484. https://doi.org/10.1136/adc.2006.

114546 PMID: 17916587

36. Henry FJ, Bartholomew RK. Epidemiology and transmission of rotavirus infections and diarrhoea in

St. Lucia, West Indies. West Indian Med J. 1990; 39: 205–212. PMID: 2082564

37. Martinez PP, King AA, Yunus M, Faruque ASG, Pascual M. Differential and enhanced response to cli-

mate forcing in diarrheal disease due to rotavirus across a megacity of the developing world. Proc Natl

Acad Sci U S A. 2016;113. https://doi.org/10.1073/pnas.1618558114

38. Patel M, Glass RI, Jiang B, Santosham M, Lopman B, Parashar U. A systematic review of anti-rotavirus

serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy. J Infect Dis. 2013; 208:

284–294. https://doi.org/10.1093/infdis/jit166 PMID: 23596320

39. Bar-Zeev N, Jere KC, Bennett A, Pollock L, Tate JE, Nakagomi O, et al. Population Impact and Effec-

tiveness of Monovalent Rotavirus Vaccination in Urban Malawian Children 3 Years after Vaccine Intro-

duction: Ecological and Case-Control Analyses. Clin Infect Dis. 2016; 62: S213–S219. https://doi.org/

10.1093/cid/civ1183 PMID: 27059359

40. Ngabo F, Tate JE, Gatera M, Rugambwa C, Donnen P, Lepage P, et al. Effect of pentavalent rotavirus

vaccine introduction on hospital admissions for diarrhoea and rotavirus in children in Rwanda: A time-

series analysis. Lancet Glob Heal. 2016; 4: e129–e136.

41. Mpabalwani EM, Simwaka CJ, Mwenda JM, Mubanga CP, Monze M, Matapo B, et al. Impact of Rotavi-

rus Vaccination on Diarrheal Hospitalizations in Children Aged less than 5 Years in Lusaka, Zambia.

Clin Infect Dis. 2016; 62: S183–S187. https://doi.org/10.1093/cid/civ1027 PMID: 27059354

42. Moon S- S, Groome MJ, Velasquez DE, Parashar UD, Jones S, Koen A, et al. Prevaccination Rotavirus

Serum IgG and IgA Are Associated With Lower Immunogenicity of Live, Oral Human Rotavirus Vaccine

in South African Infants. Clin Infect Dis. 2016; 62: 157–165. https://doi.org/10.1093/cid/civ828 PMID:

26400993

43. Armah G, Lewis KDC, Cortese MM, Parashar UD, Ansah A, Gazley L, et al. A Randomized, Controlled

Trial of the Impact of Alternative Dosing Schedules on the Immune Response to Human Rotavirus Vac-

cine in Rural Ghanaian Infants. J Infect Dis. 2016; 213: 1678–1685. https://doi.org/10.1093/infdis/

jiw023 PMID: 26823335

44. Bines JE, Danchin M, Jackson P, Handley A, Watts E, Lee KJ, et al. Safety and immunogenicity of

RV3-BB human neonatal rotavirus vaccine administered at birth or in infancy: a randomised, double-

blind, placebo-controlled trial. Lancet Infect Dis. 2015; 15: 1389–1397. https://doi.org/10.1016/S1473-

3099(15)00227-3 PMID: 26318715

45. Angel J, Franco MA, Greenberg HB. Rotavirus immune responses and correlates of protection. Curr

Opin Virol. 2012; 2: 419–425. https://doi.org/10.1016/j.coviro.2012.05.003 PMID: 22677178

46. Velazquez FR, Matson DO, Calva JJ, Guerrero L, Morrow AL, Carter-Campbell S, et al. Rotavirus infec-

tions in infants as protection against subsequent infections. N Engl J Med. 1996; 335: 1022–1028.

https://doi.org/10.1056/NEJM199610033351404 PMID: 8793926

47. Steele AD, Cunliffe N, Tumbo J, Madhi SA, De Vos B, Bouckenooghe A. A review of rotavirus infection

in and vaccination of human immunodeficiency virus-infected children. J Infect Dis. 2009; 200 Suppl:

S57–62. https://doi.org/10.1086/605027 PMID: 19817615

Estimating rotavirus incidence using serial anti-rotavirus IgA titres

PLOS ONE | https://doi.org/10.1371/journal.pone.0190256 December 29, 2017 13 / 14

https://doi.org/10.1016/j.virusres.2004.02.024
http://www.ncbi.nlm.nih.gov/pubmed/15163500
https://doi.org/10.1056/NEJMoa1006261
https://doi.org/10.1056/NEJMoa1006261
http://www.ncbi.nlm.nih.gov/pubmed/21793745
https://doi.org/10.1093/ije/dys088
https://doi.org/10.1093/ije/dys088
http://www.ncbi.nlm.nih.gov/pubmed/22729235
https://doi.org/10.1093/aje/kwv134
http://www.ncbi.nlm.nih.gov/pubmed/26628514
http://www.ncbi.nlm.nih.gov/pubmed/9607059
https://doi.org/10.1016/S0140-6736(98)12106-2
http://www.ncbi.nlm.nih.gov/pubmed/10440305
https://doi.org/10.1136/adc.2006.114546
https://doi.org/10.1136/adc.2006.114546
http://www.ncbi.nlm.nih.gov/pubmed/17916587
http://www.ncbi.nlm.nih.gov/pubmed/2082564
https://doi.org/10.1073/pnas.1618558114
https://doi.org/10.1093/infdis/jit166
http://www.ncbi.nlm.nih.gov/pubmed/23596320
https://doi.org/10.1093/cid/civ1183
https://doi.org/10.1093/cid/civ1183
http://www.ncbi.nlm.nih.gov/pubmed/27059359
https://doi.org/10.1093/cid/civ1027
http://www.ncbi.nlm.nih.gov/pubmed/27059354
https://doi.org/10.1093/cid/civ828
http://www.ncbi.nlm.nih.gov/pubmed/26400993
https://doi.org/10.1093/infdis/jiw023
https://doi.org/10.1093/infdis/jiw023
http://www.ncbi.nlm.nih.gov/pubmed/26823335
https://doi.org/10.1016/S1473-3099(15)00227-3
https://doi.org/10.1016/S1473-3099(15)00227-3
http://www.ncbi.nlm.nih.gov/pubmed/26318715
https://doi.org/10.1016/j.coviro.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22677178
https://doi.org/10.1056/NEJM199610033351404
http://www.ncbi.nlm.nih.gov/pubmed/8793926
https://doi.org/10.1086/605027
http://www.ncbi.nlm.nih.gov/pubmed/19817615
https://doi.org/10.1371/journal.pone.0190256


48. Steele AD, Madhi SA, Louw CE, Bos P, Tumbo JM, Werner CM, et al. Safety, Reactogenicity, and

Immunogenicity of Human Rotavirus Vaccine RIX4414 in Human Immunodeficiency Virus-positive

Infants in South Africa. Pediatr Infect Dis J. 2011; 30: 125–30. https://doi.org/10.1097/INF.

0b013e3181f42db9 PMID: 20842070

49. Cunliffe NA, Gondwe JS, Kirkwood CD, Graham SM, Nhlane NM, Thindwa BD, et al. Effect of concomi-

tant HIV infection on presentation and outcome of rotavirus gastroenteritis in Malawian children. Lancet.

2001; 358: 550–555. PMID: 11520526

Estimating rotavirus incidence using serial anti-rotavirus IgA titres

PLOS ONE | https://doi.org/10.1371/journal.pone.0190256 December 29, 2017 14 / 14

https://doi.org/10.1097/INF.0b013e3181f42db9
https://doi.org/10.1097/INF.0b013e3181f42db9
http://www.ncbi.nlm.nih.gov/pubmed/20842070
http://www.ncbi.nlm.nih.gov/pubmed/11520526
https://doi.org/10.1371/journal.pone.0190256

