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AGGREGATION OF MARKOV FLOWS I: THEORY

R.S.MACKAY AND J.D.ROBINSON

Abstract. A Markov flow is a stationary measure, with the associated flows and mean
first passage times, for a continuous-time regular jump homogeneous semi-Markov pro-
cess on a discrete state-space. Nodes in the state-space can be eliminated to produce a
smaller Markov flow which is a factor of the original one. Some improvements to elim-
ination methods of Wales are given. The main contribution of the paper is to present
an alternative, namely a method to aggregate groups of nodes to produce a factor.
The method can be iterated to make hierarchical aggregation schemes. The potential
benefits are efficient computation, including recomputation to take into account local
changes, and insights into the macroscopic behaviour.

Keywords: Markov flow, aggregation methods, clustering, model reduction

1. Introduction

Aggregation of Markov processes is an old theme, e.g. [AS], and so is the philosophy of
hierarchical aggregation [Si]. Yet, many of the schemes of which we are aware (e.g. [St])
do not look as efficient or accurate as they could be.

The idea of aggregation of a Markov process is to cluster selected nodes into groups
and devise an effective Markov process between the groups, that preserves aspects of the
group-scale dynamics (also known as “lumping” [KS]). Hierarchical aggregation iterates
this procedure to make a hierarchy of descriptions of the same system at successively
coarser levels.

Potential outcomes are insight into the macroscopic behaviour, and efficient ways
to compute quantities for the system, including efficient re-computation if parts of the
system are changed.

There is much active research on aggregation methods more broadly (e.g. see [M]),
under names like algebraic multigrid [Wa], coarse-graining [Sh], multilevel or multi-scale
analysis [EELRV], lumpability or lumping (e.g. in chemical kinetics [LLJ]), modular
decomposition [Il], agglomerative clustering [FVH], homogenisation theory [Al], model
reduction (as this special issue), dimension reduction [Cu], highway hierarchies [SS], re-
cursive block LU decomposition [DHS, GW], hierarchical incomplete LU decomposition
[Saad], scaling laws and renormalisation (e.g. the series [M91, M95, CM] on Frenkel-
Kontorova models), and upscaling [OZ]. Many of the methods introduce approxima-
tions. Nevertheless, highway hierarchies and the well established Kron reduction [DB]
for steady AC power flows (also known as Gauss-Rutishauser elimination or Ward equiv-
alent [MBB]) are exact, as are the above cited methods for Frenkel-Kontorova chains,
and so is recursive block LU decomposition.
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2 R.S.MACKAY AND J.D.ROBINSON

We say an aggregation method is exact if it produces a factor of the original system.
A factor of a system A is a system B with a map h from A onto B such that the
image under h of a solution for A is a solution for B. In dynamical systems theory,
such a map h is called a semi-conjugacy. The application of h to a solution in other
contexts requires interpretation. For example, for Markov flows to be addressed here,
the stationary measure at a node of B should be the stationary measure of its pre-image
in A.

Presented here is an exact method for aggregation of Markov flows, which can in
principle be iterated hierarchically. After writing the paper, we became aware of the
stochastic complementation method of [Me], which is closely related but different in
some ways. We reserve a comparison until the end.

A Markov flow (the terminology appears to go back to [Sg]) is a steady state for a
continuous-time regular jump homogeneous semi-Markov process on a discrete state-
space V , i.e. a stationary measure with the associated flows and mean first passage
times. For the purposes of steady states, the process is characterised by mean waiting
time Ts > 0 at site s and transition probabilities Pst from s to t. One can allow Pss 6= 0,
or make Pss = 0 by dividing Ts and Pst by 1 − Pss; also Ts may be infinite in which
case Pst do not have meaning. Throughout this paper we shall represent a semi-Markov
process by a weighted graph G = (V,E) with weight Ts at node s ∈ V and weight Pst

at edge (s, t) ∈ E. If a pair (s, t) /∈ E then Pst = 0. An equivalent formulation is by
transition rates qst = Pst/Ts. “Semi-Markov” means the waiting-time distribution is not
assumed to be exponential; all that matters for the steady states is its mean.

We allow sources and sinks. A source is a node s with an external source rate qs
at which matter is added. A sink is a node where all arriving matter is eliminated.
Note that the total mass in the system need not be 1. Formally, sources and sinks
can be incorporated into the case without them by adding an extra node n with Pns =
qs/
∑

r∈R qr for sources s (with R being the set of sources), Tn = 1, and Ptn = 1 for sinks
t (Tt is arbitrary, but say 1), and multiplying the resulting probabilities by

∑
r∈R qr/πn,

where πn is the stationary probability of being at n. Alternatively, for source rate 1, the
occupation at the source is just the mean first return time. For a survey of computational
methods for mean first passage time, albeit in the discrete time context, see [Hu1].

The aim of aggregation methods is to cluster selected nodes into groups to produce a
smaller Markov flow with equivalent stationary probability distribution (i.e. the proba-
bility of being in a group is the sum of the probabilities of being in its nodes), equivalent
stationary fluxes (i.e. the probability flux along an edge of the aggregated system is
the sum of the fluxes along the edges of the original system that it represents), and
equivalent mean first passage times.

Following [AS], there are schemes to do this, but requiring a global computation for
each reduction (e.g. [St]). This strikes us as inefficient.

There are two local schemes for reduction of Markov flows of which we are aware
[W1, W2], but they are elimination methods rather than aggregation, and furthermore
they work by eliminating one site at a time, so are hierarchical in only a limited sense.
We shall review them and give a few refinements, in particular to allow simultaneous
elimination of a set of nodes and computation of the stationary probability distribution.
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Then we present a local aggregation scheme. The only price to pay is that it requires
viewing the Markov flow as having the edges as the nodes, but having made this change
of viewpoint, successive aggregation produces a Markov flow on the set of remaining
edges.

Formally, what we are aggregating is nodes of a semi-Markov process on edges but we
refer to it as aggregation of the associated Markov flow.

We end this introduction by a comparison with lumping methods in monomolecular
chemical kinetics. Monomolecular kinetics is Markov dynamics. A starting point for this
is [WK]. They aggregate chemical species into pseudo-species in such a way as to make
the resulting dynamics close to a factor of the original dynamics. Exact lumpability
of the dynamics is extremely rare, however. On the other hand, part of the point of
our work is that one can always do exact lumping of the steady state for a system
with sources and sinks, which for many purposes may suffice, including those from the
petroleum industry motivating [WK]. Secondly, they state that lumping always leads
to loss of information. A second point of our work, however, is that it is easy to keep
track of how to recover the information about the steady states of the original system.
Work on lumping in chemical kinetics has continued, with [LR, LLJ] being a sample of
references, but the above two points do not appear to have been appreciated yet. The
ideas have also been extended to ecology [A+] and to cell dynamics [B+], but again
concentrating on the dynamics rather than steady states.

2. Wales’ elimination methods

Wales’ methods eliminate nodes one at a time. He uses physicists’ notation Pts for Pst,
so we translate his results to the probabilists’ convention, which we consider preferable
because we read Pst as the transition probability from s to t (represent probability
distributions by row instead of column vectors and make transition matrices act on
probability distributions to the left instead of the right).

The first method [W1] (called “graph transformation”) assumes the convention that
Pss = 0 for all s ∈ V . To eliminate node x, put

T ′s =
Ts + PsxTx
1− PsxPxs

,(1)

P ′st =
Pst + PsxPxt

1− PsxPxs
,

for s 6= x and t 6= x, s. It requires examination of only those s from which it is possible
to jump to x and those t which can be jumped to from s or x. He proved that for any
initial s 6= x, if B is a subset not containing x nor s, and the probability of eventually
hitting B from s is 1, then the new Markov process computes the correct mean first
passage time TsB from s to the set B.

This can facilitate computation. For example, if one successively eliminates all nodes
except s and those in B, then TsB is the resulting T ′s. Alternatively, one can eliminate
all but B and a small set A containing s and compute the column vector TAB of mean
first passage times from a ∈ A to the set B by the standard formula

TAB = (I − P ′AA)−1T ′A
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(e.g. [KS], or just note that it satisfies TaB = T ′a +
∑

a′∈A P
′
aa′Ta′B). A recursive re-

grouping method and a recursive enumeration algorithm were used in [CW] to guide the
choice of order in which to eliminate nodes.

Wales also produced a second method (“new graph transformation”), that allows
Pss 6= 0 [W2]. It is preferable in several respects. For example, it conserves TsB even for
B containing s. To eliminate node x, put

T ′s = Ts +
PsxTx

1− Pxx
(2)

P ′st = Pst +
PsxPxt

1− Pxx
,

for s, t 6= x, including t = s. Even if Pss = 0 initially, the scheme may produce P ′ss 6=
0. Computational superiority of this method over a suite of sparse LU solvers was
demonstrated in [SW].

In addition, Wales showed how his schemes improve the computation of committor
probabilities. This concept applies to the case of a Markov process with more than one
communicating component of the set of recurrent nodes. The committor probabilities
starting in a node s are the probabilities for the communicating components into which
the path is absorbed.

One feature that was not obtained in Wales’ papers is the stationary probability
distribution for the new system (uniquely defined in the case that the recurrent set
has a unique communicating component), as it was not of particular interest in his
applications. It could be useful in other problems, however. This can be done relatively
easily. Here is one way (another is given in section 5).

Taking Wales’ second scheme because it allows a little more generality, to compute
the stationary probability πs at node s for the original Markov process from the Markov
process after elimination of all but s and a subset B, let Tss be the mean time of first
return to s (counting the self-edge ss as a return). Then Tss = T ′s +

∑
b∈B P

′
sbTbs and

Tbs = T ′b +
∑

b′∈B P
′
bb′Tb′s, so

Tss = T ′s + P ′sB(I − P ′BB)−1T ′B,

where P ′sB is the row vector of P ′sb for b ∈ B, P ′BB is the part of the new matrix of
transition probabilities between nodes of B, and T ′B is the new vector of mean waiting
times in nodes of B (Tss may be infinite if for example B contains an absorbing node).
Then

πs = Ts/Tss.

From this, one can also obtain the stationary fluxes φsb from s to b ∈ B and φbs from
b ∈ B to s, as φsb = πsPsb/Ts, φbs = πbPbs/Tb.

Wales’ methods strike us as variants of Kron reduction, which has been used since 1939
in electrical circuit analysis (e.g. [DB]). The context there is undirected weighted graphs,
whereas Wales addressed directed weighted graphs. Kron reduction has the advantage
over Wales’ methods that one can eliminate any number of nodes simultaneously, subject
to inversion of a corresponding matrix.

Actually, the same extension can be made to Wales’ methods, as we now show for his
second method.
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Definition 1 (Extended new graph transformation). Given a Markov flow specified by a
weighted directed graph G = (V,E) with each node s ∈ V having a mean waiting time Ts
and each edge (s, t) ∈ E having a transition probability Pst associated to it, to eliminate
a subset X ⊂ V of nodes, update the mean waiting time of nodes s /∈ X by

(3) T ′s = Ts + PsX(I − PXX)−1TX ,

and update the transition probability from s /∈ X to t /∈ X by

(4) P ′st = Pst + PsX(I − PXX)−1PXt.

Note that I − PXX is invertible if there is positive probability to eventually leave X
from each of its nodes, and by standard arguments for Markov processes this implies
probability 1 to leave from each of its nodes. Note also that if there is zero probability of
jumping from s straight into X then the waiting time at s remains unchanged. Similarly,
the transition probability from s to t remains unchanged if there is zero probability of
jumping from s straight into X or from somewhere in X straight to t.

The above scheme is justified by requiring that the mean waiting time T ′s at node
s /∈ X for the new system be

(5) T ′s = Ts +
∑
x∈X

PsxT̄x,

where T̄x is the mean time to first escape from X starting in x. Thus T̄x = Tx +∑
x′∈X Pxx′ T̄x′ , which yields the vector T̄X = (I −PXX)−1TX . Inserting this into (5) we

obtain equation (3). Similarly, if we require that

(6) P ′st = Pst +
∑
x∈X

PsxP̄xt,

where P̄xt is the probability that the first exit from X starting from x is to t, then since
P̄xt = Pxt +

∑
x′∈X Pxx′P̄x′t we find that P̄Xt = (I − PXX)−1PXt. As before, inserting

this into (6) we obtain equation (4).
The equations (5, 6) show that T ′s is positive for each s and P ′st is positive for each

permissible transition. Furthermore, summing (6) over t /∈ X shows that
∑

t/∈X P ′st = 1.
So a system of the same form as before is obtained.

Just as in Wales’ scheme, this extended scheme has the crucial property that upon
eliminating a collection of nodes X the mean first passage time from a node s /∈ X to a
set B disjoint from X remains unchanged.

To implement this extension requires inverting a matrix of size |X|, but it might be
a useful shortcut in some circumstances. Note that in the case that there are no direct
edges between nodes of X, the formulae (3,4) reduce to applying (2) to the nodes of X,
in any order, as one should expect.

Wales’ methods also strike us as very similar to that of [Sh1, Sh2, Hu2] and the relation
is worth exploring.

3. New aggregation scheme

The main point of this paper is to present a new aggregation scheme, as opposed to
an elimination scheme, which requires only local computations and is exact, in the sense
of producing a factor of the original system.



6 R.S.MACKAY AND J.D.ROBINSON

Choose a set A ⊂ V of nodes that we wish to aggregate to one super-node, which
we denote again by A. We will achieve this at the expense of possibly (i) introducing
self-edges and multiple edges from or to nodes outside A, (ii) making the mean waiting
time in A depend on the edge by which A is entered, and (iii) making the transition
probabilities from A depend on the entry edge as well as the exit edge.

Formally, this just means the new system is a Markov flow between edges instead of
between nodes, i.e. on its line-graph (the line-graph of a graph G is the graph G′ whose
nodes are the edges of G and which have an edge from e to f if the end-node of e in
G is the start-node of f). A Markov flow between nodes can trivially be considered as
between its edges. Simply assign to each edge the waiting time at its destination node
and make the transition probability from an edge e entering a node s to an edge f leaving
s be the probability of moving along f from s to the destination of f (alternatively one
could assign to each edge the waiting time of the origin node, but we make the preceding
choice). If e and f do not lie end to end then the transition probability between them is
zero. We shall call this Markov flow on G′ the induced Markov flow on the line-graph.
When convenient we will sometimes also like to refer to the Markov flow on edges of
G. This is exactly the same as the induced Markov flow on the line-graph, however we
think of it as a Markov flow on G but where the states are the edges of G rather than
the nodes.

The aggregation scheme to be presented has the feature that if one starts with a
Markov flow between edges one obtains a Markov flow between edges. The edges between
nodes of A are shrunk to zero, eliminating those edges and aggregating the nodes. We
will say an edge is in A if it connects two nodes of A. We say a set A of nodes is leaky
if there is positive probability from any edge of A to eventually leave A.

Definition 2 (Aggregation scheme). Given a Markov flow specified by a weighted di-
rected graph G = (V,E), waiting times Te on edges and transition probabilities Pef

between edges, aggregation of a subset A ⊂ V of nodes is defined by performing the
following updates for edges e, f ∈ E minus those between nodes of A:

T ′e = Te + PeA(I − PAA)−1TA(7)

P ′ef = Pef + PeA(I − PAA)−1PAf .

Here PeA denotes the row vector of Peu for edges u ∈ A, PAA is the part of the
transition matrix for transitions between edges in A, TA is the column vector of mean
waiting times on edges in A, and PAf is the column vector of Puf for edges u ∈ A. Note
that similarly to elimination, the update of mean waiting time need only be performed
when e is entering A and the update of transition probability need only be performed
when e is entering A and f is leaving A.

An illustration of the aggregation scheme is given in Figure 1. Nodes 5, 6 and 7 are
aggregated into a supernode, and edges e,f and g are eliminated. The illustration can
be considered part of a larger graph with other edges into and out of nodes 1,2,3 and 4,
but no additional ones into or out of nodes 5,6 and 7. For components in order e,f ,g,
the matrix PAA in this case is given by

PAA =

 0 0 Peg

0 0 0
0 0 0

 .
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edge b

edge c

Node 1

edge e edge f

Node 5

Node 4

edge d

Node 7Node 6

Node 3

Node 2 edge g

edge a

edge b

edge c

Node 1

Node 4

edge d

Supernode 567

Node 3

Node 2

edge a

Figure 1. Part of a graph and the result of aggregating nodes 5,6,7.

So

(I − PAA)−1 =

 1 0 Peg

0 1 0
0 0 1

 .
Equation (7) tells us how to update the waiting times on edges a,b and the transition
probabilities from a, b to c, d.

The derivation of (7) is very similar to that of (3) and (4) for elimination of a group
of nodes. In detail, the mean waiting time T ′e on edge e entering A for the new system
has to take into account the mean time to be spent in A before exiting. Thus T ′e =
Te +

∑
u∈A PeuT̄u, where T̄u is the mean time to first escape from A starting on u.

Now T̄u = Tu +
∑

v∈A PuvT̄v, so the vector T̄A = (I − PAA)−1TA. Thus T ′e = Te +

PeA(I − PAA)−1TA. Similarly, P ′ef = Pef +
∑

u∈A PeuP̄uf , where P̄uf is the probability
that the first exit from A starting on edge u ∈ A is to edge f . This satisfies the
equation P̄uf = Puf +

∑
v∈A PuvP̄vf , so the vector P̄Af = (I − PAA)−1PAf . Thus

P ′ef = Pef + PeA(I − PAA)−1PAf . Note that (I − PAA) is invertible under the condition
that A is leaky. If A is not leaky there is no great point in computing when and to where
one exits A. Note also that one can check that

∑
f P
′
ef = 1 for the new system.

A downside of the aggregation scheme is that it may generate multiple edges between
two nodes of the new system. For example, if there are edges from a node s not in A
to two nodes in A, the new system will have two edges from s to A. Similarly, if there
are edges from two nodes in A to a node t not in A, the new system will have two edges
from A to t. One might hope that multiple edges could be aggregated into single edges.
In general, however, this is not possible: if edges fi from a node s to a node t are to be
aggregated into a single edge f then for every edge e into s we must have Pef =

∑
i Pefi ,

and for all edges e into s and g from t we must have
∑

i PefiPfig = PefPfg, but if there
is more than one edge e into s this gives incompatible assignments to Pfg in general.
One solution is to aggregate s and t into one node, thereby not aggregating the edges
fi but eliminating them. This may produce other multiple edges elsewhere, however.
Probably one should take care not to generate too many multiple edges in the choice of
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which nodes to aggregate. The scheme may also generate self-edges, but as with Wales’
second method, this is not necessarily a disadvantage.

Further aggregation can be performed, including putting super-nodes into clusters.
They have no different status from the original nodes. One can also perform aggregation
of disjoint subsets simultaneously, as the updates for edges entering or leaving disjoint
sets of nodes do not interact.

At any stage of aggregation, the mean first passage time from an edge e to a set B of
edges not containing e is given by solving the usual system of equations

TeB = Te +
∑
f /∈B

PefTfB

for the vector of mean first passage times TeB.
One can think of the mean first passage time from a node s to a node t as being

the occupation density at s resulting from injecting flux at rate 1 at s and taking out
all matter arriving at t. Thus it corresponds to the simplest case of a source and sink.
We can tackle multiple sources and sinks, however, along the lines indicated in the
Introduction.

The aggregation scheme can also be used to compute stationary probabilities. For
example, the fraction on edge e is Te/Tee where Tee is the mean time of first return
to e, whose computation can be done via aggregation. Alternatively, the procedure of
section 5 can be applied.

4. Aggregation of nodes as elimination of edges

It was mentioned in the previous section that the new aggregation method eliminates
the edges between the nodes to be aggregated and that the derivation of (7) is very
similar to that of (3,4). Actually, the new method is precisely elimination of nodes in
the line-graph, using the version (3,4). This is made precise in the following proposition.
It shall sometimes be convenient to include the weights explicitly by writing a quadruple
G = (V,E, T, P ) to characterise our Markov flow.

Proposition 1. Let G = (V,E, T, P ) be a Markov flow, and let X ⊂ V . If one aggregates
X then one obtains a Markov flow on edges which naturally induces a Markov flow
Ga = (V a, Ea, T a, P a) on the line-graph. Alternatively one may first naturally induce
a Markov flow on the line-graph G′ = (V (G′), E(G′)) of G. Let B be the set of edges
in X. If one eliminates the collection of nodes in G′ induced by the edges B in G
then one obtains a new Markov flow Ge = (V e, Ee, T e, P e). The graphs Ga and Ge are
isomorphic.

The proposition is illustrated in Figure 2.
First let us set up some notation. Let GX = (VX , EX) denote the weighted directed

graph resulting from aggregating X. Also, the standard procedure for constructing G′

from G yields a bijection L : E → V (G′) (L for “line-graph”), which we call the natural
bijection from edges of G to nodes of G′. When talking about any graph, not necessarily
G, we shall also refer to the natural bijection from the edges of the original graph to the
nodes of its line-graph.
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ϕ
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u

v

A L2
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Figure 2. Illustration of Proposition 1

Proof of Proposition 1 . We will show that there is an isomorphism ϕ between (V a, Ea)
and (V e, Ee) as directed graphs without weights. Then we show ϕ preserves weights
too. It is worth noting at this point that even if G were a multigraph (i.e. with possibly
more than one directed edge from a node to another node), both Ga and Ge are merely
graphs, and not multigraphs (this is a symptom of the fact that construction of both
Ga and Ge involves taking a line-graph, and not augmenting the set of edges after this
action). So when showing our claimed isomorphism is indeed an isomorphism we know
there can be at most a single edge between any two nodes.

First we find a bijection between E \ B and V a, as follows. Upon aggregation of X
in G the edges that are eliminated are exactly the edges in X, that is B. So there is
a bijection A : E \ B → EX (A for “aggregation”). Upon taking the line-graph of GX

we have a natural bijection (defined above) L1 : EX → V a, thus yielding the bijection
ϕ1 = L1 ◦A we sought.

Similarly we construct a bijection between E \ B and V e. Let L2(B) denote the
collection of nodes in G′ induced by edges B. There is a natural bijection L2 : E \B →
V (G′) \ L2(B). Then as we eliminate exactly the set L2(B) of nodes in the line-graph
to form Ge there is trivially a bijection E : V (G′) \ L2(B) → V e (E for “elimination”)
and thus we find a bijection ϕ2 = E ◦ L2. Hence ϕ = ϕ2 ◦ ϕ−11 is a bijection V a → V e.

Now we show that this bijection is indeed an isomorphism. Let u, v ∈ V a. We will
show that (u, v) ∈ Ea if and only if either (i) ϕ−11 (u) is an edge entering X and ϕ−11 (v)

is an edge leaving X, or (ii) the edges ϕ−11 (u) and ϕ−11 (v) in G lie end to end with the
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destination node of ϕ−11 (u) being the origin of ϕ−11 (v). We shall also prove the analogous
statement but taking instead u, v ∈ V e and replacing ϕ1 with ϕ2 in the above. These
two facts together imply ϕ is an isomorphism.

Suppose (u, v) ∈ Ea, then certainly the edges L−11 (u) and L−11 (v) in EX lie end to end

with the destination s of L−11 (u) equalling the origin of L−11 (v). We consider two cases.
First suppose that s 6= X (remember, when we aggregate a collection of nodes X in G we
denote by X also the supernode in GX). Then, upon undoing the aggregation, the nodes
ϕ−11 (u) = A−1◦L−11 (u) and ϕ−11 (v) = A−1◦L−11 (v) still lie end to end. In the case s = X

then clearly ϕ−11 (u) = A−1 ◦ L−11 (u) is an edge entering X and ϕ−1(v) = A−1 ◦ L−11 (v)

is an edge leaving X since this is the only way that the destination of L−11 (u) and origin

of L−11 (v) are both X.
Conversely suppose u, v are such that either (i) or (ii) holds. If we are in case (i) then

the destination of L−11 (u) = A ◦ ϕ−11 (u) and the origin of L−11 (v) = A ◦ ϕ−11 (v) are both
X. Since this means they lie end to end, upon taking the line-graph we recover that
(u, v) ∈ Ea. If we are in case (ii) then again the destination of L−11 (u) and the origin

of L−11 (v) must coincide (but not be equal to X, of course). Just as before, this implies
that (u, v) ∈ Ea. Through highly similar arguments one can prove the corresponding
statement originally taking instead nodes u, v ∈ Ee and replacing ϕ1 with ϕ2, thus
proving that ϕ is an isomorphism.

The final thing to check is that T a
u = T e

ϕ(u) and P a
uv = P e

ϕ(u)ϕ(v) for all u, v ∈ V a. This

is almost trivial to see once one notices that when one naturally induces a Markov flow
on edges of G, the mean waiting times and transition probabilities are just Te = TL2(e)

and Pef = PL2(e)L2(f) for all e, f ∈ E. So finally, comparing equations (3,4) and (7) we
see the updates are identical. �

The main conclusion to draw here is that to perform aggregation one can instead trans-
fer to the line-graph, perform elimination and then undo the line-graph transformation.
In a loose way one can think of this as meaning that aggregation and elimination are
conjugate in the sense that LA = EL where A,E,L represent performing aggregation,
elimination, and moving to the line-graph respectively.

5. Relation to block LU decomposition

Another significant observation is that elimination schemes for Markov flows, whether
on a graph or a line-graph, are closely related to block LU decomposition, as defined in
[DHS, GW] for example. In particular, this connection makes clear how to keep track
of quantities for parts for the system after they have been eliminated.

Let us review block LU decomposition, following [DHS]. To solve a linear system
Ax = b for x, split the components into two groups {1, 2} chosen so that A11 is easy to
invert. The idea is that we will eliminate the first group of components to reduce the
problem to some linear system A′x2 = y2 but keep enough information to recover x1
too. First solve

L21A11 = A21
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for L21 (which is easy by hypothesis), and then write

(8)

[
A11 A12

A21 A22

]
=

[
I 0
L21 I

] [
A11 A12

0 A′

]
with

A′ = A22 − L21A12.

To solve Ax = b for x, first put

y2 = b2 − L21b1,

then solve
A′x2 = y2

for x2 (this involves recursion because A′ will in general need simplifying in the same
way as we did with A), then solve

A11x1 = b1 −A12x2

for x1, which is easy because we supposed A11 is easy to invert.
Next, we apply block LU decomposition to the problem of computing the stationary

probability distribution for a semi-Markov process. For non-eliminated nodes, this boils
down to an application of Wales’ second method, but the block LU procedure shows
how to compute it for eliminated nodes too. Suppose mean waiting time Ts at node
s ∈ V and probability Pst for the next node t (allow Pss 6= 0). Stationary probability
π corresponds to πs = ρsTs with ρP = ρ and ρT = 1. We can solve for ρ by LU
decomposing the augmented matrix [I − P T ] into parts for two disjoint node sets X
and Y where X ∪ Y = V . X is assumed to be leaky (so I − PXX is invertible) and
I − PXX is assumed to be easy to invert. The form of the desired LU decomposition is:

(9)

[
I − PXX −PXY TX
−PY X I − PY Y TY

]
=

[
I 0

−LY X I

] [
I − PXX −PXY TX

0 I − P ′Y Y T ′Y

]
The block components are found by solving

LY X(I − PXX) = PY X

for LY X and then putting
P ′Y Y = PY Y + LY XPXY

and
T ′Y = TY + LY XTX .

To find ρ we solve
ρY P

′
Y Y = ρY , ρY T

′
Y = 1

for ρY (recursively in general) and then extend by

ρX = ρY LY X .

At the end we put πs = ρsTs.
The same applies to a semi-Markov process on a line-graph. Just use the edges as the

nodes. Thus we can compute the stationary probability using our aggregation scheme. If
the process on the line-graph came from one on a graph then the stationary probability
at a node is given by summing the stationary probabilities on the edges entering that
node.
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Lastly, we can use the same insight to compute mean first passage times to a subset
B of nodes from all nodes outside B, not just non-eliminated ones. The vector of mean
first passage times TB

a from nodes a ∈ A = Bc to a set of nodes B is the solution of
(I − PAA)TB

A = TA. Suppose we eliminate set X of nodes, disjoint from B, and we let
C be the complement of X ∪B. Use the above LU decomposition, but just the part for
C in Y . So solve

(I − P ′CC)TB
C = T ′C

for TB
C (recursively in general). Then solve

(I − PXX)TB
X = TX + PXCT

B
C

for TB
X . One remaining issue to address is what happens if we eliminated some nodes of

B, but we leave that for later investigation.

6. Dynamics

Lastly, one might ask whether an aggregation scheme can be devised that keeps the
dynamics, not just the steady state. Even in the Markov case, this can not be done
with the above schemes because the dynamics of an N -state Markov chain has N − 1
eigenvalues (counting multiplicity) so reduction of N must lose some of the dynamics.
It can be done, however, if we replace the mean waiting time by the Laplace transform
of the distribution of waiting times. This is because each Laplace component solves a
steady state problem. The downside is that aggregation introduces rational functions
of the Laplace transform variable s, whose degree increases as the number of nodes
decreases.

7. Conclusion

A promising method for aggregation of Markov flows has been presented, which lends
itself to iteration to produce a hierarchy.

After writing the paper we became aware of [Me] on stochastic complementation. Like
our method, this is an adaptation of block LU decomposition to stochastic matrices.
Meyer’s paper treats discrete time, whereas ours treats continuous time, but that is not
a great difference. Instead of eliminating part of the system and working out how to keep
track of properties for the eliminated part, he divides the system into two parts with
equal status and some coupling between them. He treats only stationary distribution
whereas we also treat mean first passage times, though again that is not a big extension.
The main innovative feature of our paper that we think is useful is to perform the
elimination on the line graph rather than the original graph.

The next steps for our aggregation method are to compute mean first passage times
using the hierarchy of resolutions, determine useful criteria to choose the nodes to ag-
gregate at each step, and estimate the computational complexity of the resulting hi-
erarchical scheme. A clear criterion for choosing the nodes to aggregate is to choose
groups of nodes which have relatively few edges to and from the outside, compared to
their internal edges. Heuristics and principles which may be useful include clustering
algorithms [FVH, CKMM], community detection [FH, POM], and dissection methods
[GBDD]. The literature on methods for sparse linear systems [DRS] will be very useful
too.
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A subsequent paper will report on tests of the method, including choices of hierarchy.
For instance, we plan to compare with benchmark examples in [SW] on configurational
transitions for Lennard-Jones clusters and a β-sheet peptide.
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