THE UNIVERSITY OF **Weapon-Wound Matching of Sharp Force Trauma to** WARWICK **Bone using Micro-CT – A Methodology and Pilot Study**

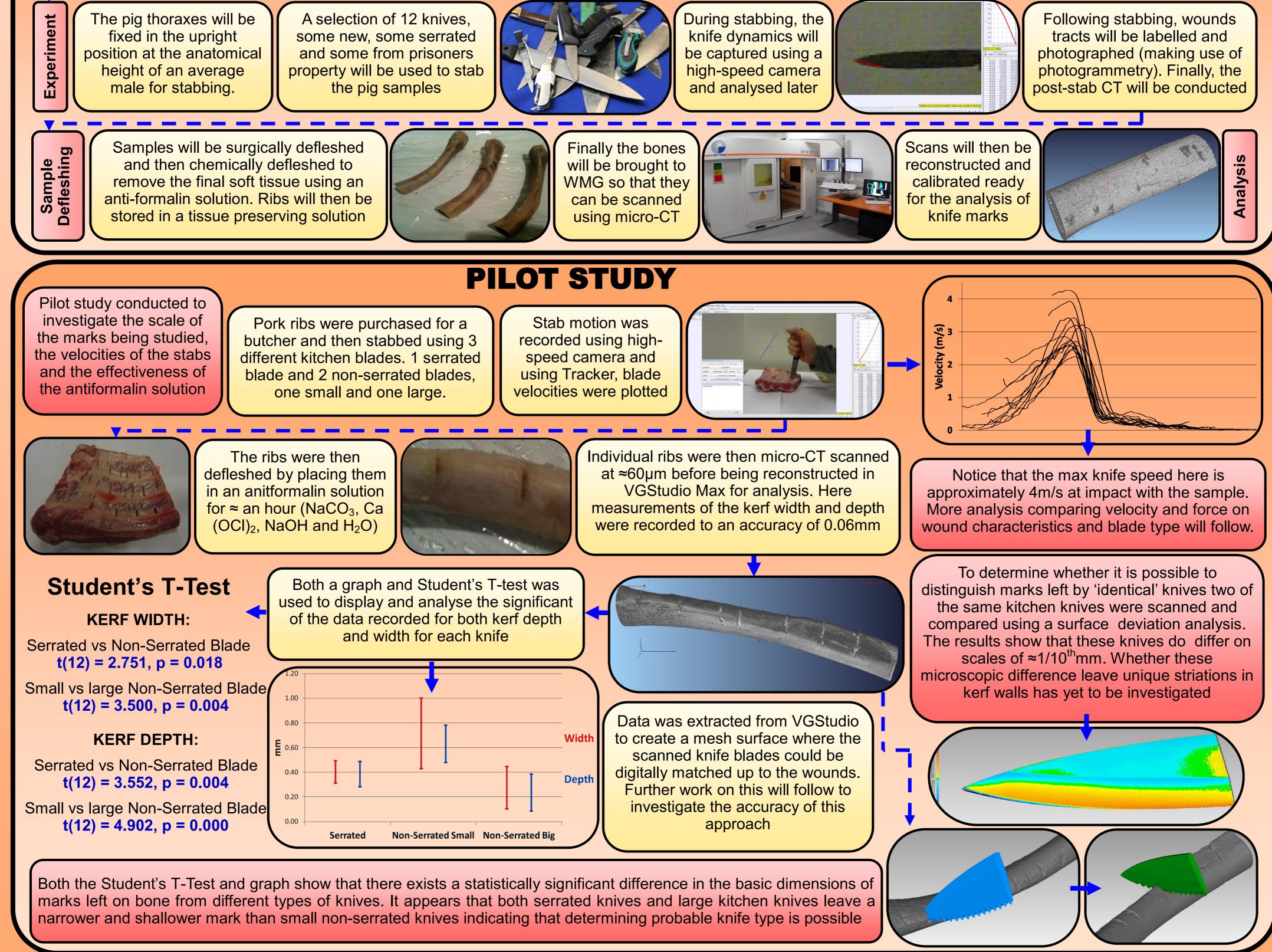
D.G. Norman^{1*} B. Bernett², J. Barnes-Warden³ & M.A. Williams⁴

¹School of Engineering, University of Warwick ²University Hospital Coventry and Warwickshire ³Operational Technology, Metropolitan Police Service, ⁴WMG, University of Warwick

INTRODUCTION

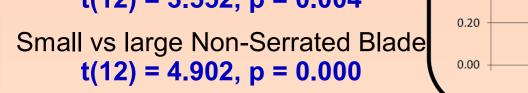
UK Home Office Statistics 2012 reported 636 homicides between April 2010 – March 2011; 37% of these involved the use of a sharp instrument such as a knife with 14% of investigations not resulting in prosecution¹. Sharp force trauma in forensic anthropology concerns the analysis of the marks (kerfs) caused by 'sharp' weapons like knifes, ice-picks etc². Tool mark analysis and weapon-wound matching is a developing area and allows anthropologist to establish, either weapon class, or exact weapon used to commit the homicide³. This is traditionally done macroscopically but is rarely sufficient to determine weapon class⁴ and hence current research trends investigating the use of imaging techniques for post-mortem examination⁵. Newer techniques such as micro-CT, could allow much more detailed investigations into bone trauma indicating great potential for research into weapon-wound matching⁶. Our study aims to use micro-CT and 3D/CAD programs to analyse sharp force trauma which, to our knowledge, will be the first attempt at investigating 3D weapon-wound matching. The applications of this study can potentially lead to new techniques in forensic anthropology for weapon-wound matching and hence aid in criminal investigations.

SUMMARY


Nearly 40% of murders in the UK result from sharp force trauma caused by knives (Home Office 2012). Weapon-wound matching in Forensic anthropology attempts to estimate weapon class from the wound characteristics but few studies have investigated quantitative methods for performing this analysis on the microscopic scale. In this study five cadaveric pig torsos, prepared to mimic human anatomy, will be stabbed in the upright position with 12 different knives by two volunteers. Knife dynamics will be recorded using a Casio highspeed camera (1000fps), with wound tracts being recorded using photogrammetry. Samples will be defleshed exposing the regions on the ribs where the knives have made contact, thus marking the bone, so micro-CT can be performed. All samples will undergo a pre and post-stab CT. The analysis will be performed using various quantitative and qualitative methods to establish the feasibility of weapon-wound matching. Results are pending, however it's hypothesized that, on the macroscopic scale, and individual bladed weapons have their own unique edge profiles which should leave unique striations on the bone for weapon-wound matching. If this is the case, and we can quantify this, then applications in forensic investigation for weapon-wound matching is a natural progression.

5 whole pig thoraxes prepared to mimic human anatomy will be sourced from a medical meat supplier and delivered to the surgical training facilities UHCW

Pig samples will have excess subcutaneous fat and skin replaced with sheep's skin to more closely replicated the skin resistance of human skin (right)



METHODOLOGY

Medium-density polyethylene will be inserted into the pig's chest cavity to replicate human organs and a T-shirt material will then be stitched around the samples acting as clothing.

The samples will then undergo the 'pre-stab' medical grade CT at UHCW

To be undertaken on 14th November 2012

FURTHER WORK AND APPLICATIONS

The pilot study hints at the potential of micro-CT in providing detailed information on the dimensions of the cuts left behind on bone by various knives. Whether striations are visible on the kerf wall has yet to be considered but will follow. The impact of velocity on bone damage will also be investigated. Also the use of mesh and CAD software for weaponwound matching will be explored along with possible 3D printing of marks left. Furthermore, having compared two 'same knives' it appears that their are microscopic differences between them that may results in unique cut mark features that could be used to determine the individual knife used. Following the results of this experiment (commencing November 14th) further work potentially using human cadavers will be conducted to control for the differences between pig tissue and bone and human. If the research indicated that micro-CT is a powerful tool in aiding in weapon-wound matching for sharp force trauma then methods for application in forensic cases will be investigated.

[X] = [Z] = [X] = [X]

Smith, K., Osborne, S., Lau, I., & Britton, A., 2012. Home Office Statistical Bulletin – Homicides, Firearm Offences and Intimate Violence 2010/11. Available at: http:// www.homeoffice.gov.uk/publications/science-research-statistics/research-statistics/crime-research/hosb0212/hosb0212?view=Binary (Assessed: 16 April 2012). Bartelink et al 2001. Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology. Journal of Forensic Science. 46(6), Saville, P.A., et al 2007. Cutting crime: the analysis of the "uniqueness" of saw marks on bone. International Journal of Legal Medicine. 121(5), pp.349-57. ⁴Alunni-Perret, V., et al 2005. Scanning Electron Microscopy Analysis of Experimental Bone Hacking Trauma. Journal of Forensic Science. 50(4), pp.796-801 ⁵Scheider, J., et al 2009. Injuries due to sharp trauma detected by post-mortem mulitslice computed tomography:a feasibility study. International Journal of Legal Medicine. 11, pp.4 ³Brown, K.R., 2010. The use of μCT in forensic anthropology: identifying cause of death. Skyscan user meeting, July 7-9, Mechelin, Belgium. ⁷Thali et al 2003. Forensic Microradiology: Micro-Computed Tomography (Micro-CT) and Analysis of Patterned Injuries Inside of Bone. Journal of Forensic Science. 48(6), pp.1336

Thanks to Elanine Blair, Jennifer Hoyle and Mike Donnelly for offering their assistance with the upcoming experiment. Also thanks to Tony Hanley for donating prisoners' knives.

METROPOLITAN

POLICE

*Corresponding Author: **Danielle Norman**

Email: D.Norman.3@warwick.ac.uk