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Abstract

Methods for the study of nuclear quantum dynamics can be categorised by the

nature of the basis set expansion they employ. The wavefunction can be expanded

in a static set of time-independent basis functions, the time evolution being de-

scribed solely via the expansion coefficients. Alternatively, basis functions can be

propagated in time, along with the coefficients, via equations of motion for their

parameters. Time-independent basis sets are plagued by exponential scaling, while

the equations of motion for time-dependent basis functions are challenging to in-

tegrate and, if not derived variationally, can violate energy conservation laws. This

work presents a novel basis set sampling method which represents a compromise

between these two categories. A set of sampling trajectories, evolving on the po-

tential energy surface of the system, are used to place basis functions in regions of

phase space, relevant to wavefunction propagation. These functions then act as a

time-independent basis set, the wavefunction being evolved via exact, variational

equations of motion for the expansion coefficients. This approach is applied to

a challenging quantum dynamics benchmark, namely the relaxation dynamics of

photoexcited pyrazine, and yields highly encouraging results. In order to address

divergence from exact dynamics at longer timescales, which is attributed to the

classical sampling trajectories being a sound approximation to quantum propaga-

tion of the wavefunction only in the short-time limit, a modification of this method

is proposed. Shorter iterations of trajectory sampling and wavefunction propaga-

tion are used, linked by a minimisation algorithm that continuously optimises the

basis set, preventing unfavourable scaling. This adaptive sampling approach is

again applied to the pyrazine benchmark with a significant increase in perform-

ance and accuracy. Highly encouraging results are also obtained for a quantum

tunnelling benchmark system, which are improved upon even further, and at little

extra cost, by the use of path integral sampling trajectories.





Chapter 1

Introduction

This chapter provides an introductory overview of the field in which the work

presented herein resides. Light-matter interactions, which are the ultimate target

of this research, are briefly discussed and their importance in science and techno-

logy highlighted by means of three examples. In the context of existing methods

for the study of photophysics and photochemistry, some common drawbacks and

limitations are highlighted, which this work seeks to address. Finally, the present-

ation of the remainder of this work is briefly discussed, giving an overview of the

chapters to follow.
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CHAPTER 1. INTRODUCTION

1.1 Interactions of light and matter

Given the continued discovery of quantum phenomena, the potential applications

of the work presented herein are numerous. Quantum effects have been found

to either constitute the driving force of, or having significant impact on, physical

processes covering virtually all fields of science.1–4 However, the one field of par-

ticular interest that this work is aimed towards is photophysics and by extension

photochemistry. As suggested by their names, deriving from the Greek phós (ϕω̂ς)

for light, these disciplines are concerned with treating the interaction of light and

matter. Of the many physical processes known to science, there are few which

have as profound and widespread an impact as this interaction.5 Furthermore, as,

at least on a timescale reasonable to human civilisation, the sun can be considered

an infinite source of energy in the form of light, the potential for technological de-

velopment, harnessing this power, certainly dwarfs that of the heavily relied upon

fossil fuels of the current era, but likely also outshines that of other renewable

energy sources.

To support these statements, the harnessing of light, both in nature, via the

process of photosynthesis, and in modern technology, which aims to mimic the

former through solar cells, will be briefly discussed.

1.1.1 Photosynthesis

The definition of the term “photosynthesis” varies significantly depending on the

scientific context in which it is used, and has evolved over time, as scientific dis-

coveries have continuously broadened the array of processes it might reasonably

be applied to.6 For the purpose of this brief discussion, the interpretation adopted

here will be that of a mechanism, by which an organism captures energy in the

form of light and uses it to drive chemical reactions.

Of the many approaches that may be taken to introduce the concept of photo-

synthesis, the one possibly most indicative of its impact on all life on earth, and

indeed the one chosen here, is to investigate its emergence during the early stages

of earth’s planetary history and the very beginnings of life. While their origin is

one of the most highly debated topics in science, the earliest life forms, for which

no fossil record exists, are thought to have relied on the chemical environment

in which they existed, in order to survive and drive the processes of metabolism,

information storage and replication, the presence of which constitutes the most

common biological definition of life.7

Some of the earliest confirmed evidence of life are stromatolites, which are

thought to be the result of photosynthetic processes. The oldest examples of

these structures date back around 3.5 billion years, suggesting that during this

2
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Figure 1.1: The general mechanism of photosynthesis involves the capture of light

via pigments in the chlorosome antenna complex, from which the electronic energy

is then transported via a network of more pigment molecules to the reaction centre.

There, this energy is used to drive chemical reactions such as the recycling of the

coenzymes adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide

(NADH).

early stage of life, photosynthesis had, in some form or another, already evolved.8

While a number of theories for the evolution of the complex metabolic pathways

and chemical structures involved with photosynthesis exist,9 the importance of

photosynthetic processes in driving evolution is widely accepted. Harnessing the

sun as their major source of energy allowed organisms to become more independent

from their local chemical environment and eventually allowed them to develop

more complex metabolic pathways, which in turn paved the way for more complex

life to evolve.10

The number of complex chemical and physical processes involved in photosyn-

thesis is, as for most biological phenomena that are the result of millions of years

of evolution, numerous. A general, diagrammatic outline of some of the stages of

photosynthesis is shown in Figure 1.1. For many of these processes, theoretical

and computational methods can contribute significantly towards the elucidation

of the complex underlying mechanisms. To name just one example, a key aspect of

the photosynthetic pathway involves the transfer of energy from the regions of the

organism, responsible for harvesting it, to the areas which undertake the chemical

reactions that are powered by it. This excitation energy transfer has been linked

to quantum effects11 and recent work has shown that a network-based quantum
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Figure 1.2: Dye sensitised solar cells typically consist of TiO2 nanoparticles to

which light-absorbing, organic dye molecules, like perylene, are attached via small

organic anchoring groups, which are surrounded by an electrolyte medium. Light

is absorbed by the dye molecules, which are oxidised and the resulting electron

is transferred, via the conduction band of the TiO2 particles, to the electrode.

The ionised dye molecules accept an electron from the electrolyte solution, which

in turn, after diffusion to the opposing electrode, is recycled by the electrons re-

entering the circuit.

dynamics model significantly helps in accounting for and expanding further on

experimental observations.12

The evolution of the ability to capitalise, via photosynthesis, on interactions

of light and matter should be considered one of the major paradigm shifting de-

velopments that allowed life to flourish, from simple, single-celled organisms, to

the vast complexity with which it is observed today. As with most biological pro-

cesses that have been optimised to such an extent via evolution, this therefore has

sufficient value to modern technology, as the next section shall discuss.

1.1.2 Solar cells

As mentioned above, the current reliance of human civilisation on a dwindling

supply of fossil fuels is almost universally accepted as unsustainable.13 Thus, the

search for an alternative, cost effective renewable energy source is the focus of

major international research efforts. Given that energy in the form of sunlight is

available, essentially independent of location and more or less unlimited, photovol-

taic solar cells thus theoretically constitute a potential solution to this problem.

Furthermore, as theoretical and experimental research has elucidated many of the
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basic concepts underlying natural light harvesting,14,15 mimicking them in the con-

text of modern technology and on a scale leading beyond pure research, towards

industrial applicability, is increasingly being considered within reach.16

The materials used in the construction of photovoltaic cells vary widely, and

significant progress has been made in increasing the efficiency for most materials

and cell architectures.17 The most common type of commercial photovoltaic cells

are based on silicon which, while consistently leading other materials in terms of ef-

ficiency,18 is also associated with non-trivial costs. Organic photovoltaics (OPVs)

constitute a potentially far more cost-effective alternative to the aforementioned

silicon cells, and significant research efforts are devoted to improving the efficiency

of such devices.19

Charge transfer states, one of the key features of OPVs, constitute an excel-

lent example of the benefit in the design of such devices that may be gained via

theoretical study. Significant progress has been made in predicting the mechanism

by which such charge transfer states are formed using theoretical, quantum mech-

anics based models20,21 and the importance of quantum effects involving nuclear

motion has been highlighted in the context of this process.21

Dye-sensitised solar cells are another example of OPVs where theoretical meth-

ods have been very successful in paving the way for more efficient and less time-

consuming design of new technology. The key feature of such devices is the organic

chromophore dye, often developed by mimicking the structural and chemical prop-

erties of photosynthetical light-harvesting complexes, which is bound to nanocrys-

talline TiO2. Figure 1.2 illustrates the mechanism by which dye sensitised solar

cells harvest light and convert it to electric power. There have been a number

of very successful theoretical models proposed for these systems, including one

which allows for rapid screening of potential new dye molecules,22,23 as well as the

anchoring group used to secure it to the TiO2.

Furthermore, charge recombination, that is the migration of the electron from

the TiO2 semiconductor back to the chromophore that injected it, is the major

source of efficiency loss for dye-sensitized solar cells. A theoretical model predicting

the rate of this process for a given dye molecule has been developed,24 again relying

on quantum mechanical methods to screen potential dyes. The ability to predict

the rate of charge recombination for a large number of dye molecules, without the

need to experimental study, will both help reduce the costs and significantly speed

up the development of more advance dye-sensitised solar cells.
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1.1.3 Ultrafast spectroscopy and the role of theory

The design of OPVs is only one example of technological processes which require

in-depth understanding of the photophysics of small organic molecules they fea-

ture. Recent advances in spectroscopy now allow increasingly detailed insights

into the photodynamics of such molecules to be gained experimentally. Modern

spectroscopic techniques allow the dynamics of atoms and molecules to be probed

on the femtosecond scale,25,26 which allows the finer details of many light-matter

interactions to be investigated. While the level of detail obtainable from such

ultrafast experiments is significant and deductions can often be made with re-

gards to the underlying mechanisms, they are not able to provide insight into the

dynamics on the atomistic and sub-atomic particle scale. This is why theoretical

methods are often used in conjunction with experimental results, in order to gain a

more complete understanding of the photophysical and photochemical interactions

governing the behaviour of the system. This often involves multiple levels of one

informing the other, such as theoretical levels which are built from spectroscopic

data for a given molecule, which can then be used to further investigate and make

predictions for systems of a similar nature.

An excellent, recent example of the benefits that may be reaped from combin-

ing theoretical simulations with ultrafast spectroscopic methods is the in depth

investigation of the relaxation dynamics in ethylene.27,28 Although comparatively

simple, this system possesses two conical intersections between the ground and first

excited, π → π∗ electronic states, leading to non-trivial dynamics upon photoex-

citation of the molecule. The first avenue of investigation concerned the lifetime

of the excited state, which had previously been both measured experimentally, at

∼ 50 fs,29 and predicted using simulations, the latter however yielding a far longer

lived excited state, at 89 fs.30 This discrepancy between experimental results and

theoretical predictions was attributed to two factors affecting the former. Firstly,

the energy of the pump pulse, that is the radiation used to excited the molecule

from its ground to its excited state, had previously been linked to the initial ex-

cited state geometry being close to one of the aforementioned conical intersections,

thus artificially speeding up relaxation back to the ground state. Secondly, the

probe pulse, which is used to ionise the molecule on the excited state to allow

its detection, had previously involved multiphoton excitation, which significantly

increases the complexity of the theoretical model required to account for the res-

ulting dynamics.

In order to address these issues, a new set of spectroscopic measurements,

using femtosecond vacuum ultraviolet pump probe spectroscopy, employing both

a higher energy pump as well as a single photon excitation probe pulse, and

6
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theoretical simulations using on-the-fly ab initio multiple spawning (see Chapter

2 for more detail), were carried out.27 While resulting in far better agreement

between the predicted excited state lifetimes, this investigation highlighted that

the photoion yield, being the measured observable in the experiment, still decays

faster than the excited state in simulations. This was linked to an energetic

condition whereby the excited molecule is not universally ionizable, even with the

higher energy probe pulse used.27

A theoretical study can, as mentioned above, also give significant insights at

the atomic and molecular scale. The investigation described above also made use

of this fact, by measuring the ratio of detected photoions. The higher energy probe

pulse employed allowed breaking of the C-C bond in the excited ethylene molecule,

which allows for more in depth conclusions to be drawn about the pathways via

which the molecule decays, following π → π∗ excitation, back to the ground state

state. Obtaining excellent agreement between experiment and simulation for these

ion ratios, experimental evidence for two, theoretically predicted, non-radiative

decay pathways, one involving pyramidalization the other hydrogen migration

across the C-C bond, were observed for the first time.28

The availability of quantum dynamics methods which can model light-matter

interactions for chemically interesting systems, at reasonable computational cost,

thus allows for more detailed conclusions about the detailed dynamics involved

to be drawn. This is especially relevant given the rapid advances in the field of

photoelectron spectroscopy,25,26 which allow for combined experimental and the-

oretical studies like the one described above. This work seeks to address this need

by introducing a novel quantum dynamics approach, aimed at avoiding existing

issues of both limited accuracy and unfavourable computational scaling.

1.2 Theoretical methods in photophysics

Amongst the early efforts in the theoretical study of dynamic quantum effects,

a significant proportion were focused on describing the interactions of molecules

with light, particularly in the context of nuclear dynamics.31–33 Given the wide sci-

entific interest in light-matter interactions and the potential of theoretical methods

to complement experimental studies of systems involving the former, significant

progress has since been made in the field of nuclear quantum dynamics, which will

be discussed in more detail in Chapter 2.

When studying the interactions of light and matter on the microscopic scale,

the main challenge lies in solving the time-dependent Schrödinger equation (TDSE),

which will be introduced again in more detail later. While classical mechanics,

such as the widely used molecular dynamics method, is often sufficient to simu-

7



CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.3: (a) Time independent quantum dynamics methods expand the wave-

function statically, (b) the expansion coefficients associated with each basis func-

tion result in the correct amplitudes in coordinate space and (c) time evolution of

the wavefunction occurs via changing of these coefficients.

lated molecular processes, the nature of the electromagnetic field and its interac-

tion with molecules, which is discussed in Chapter 2 in more detail, means that for

photophysical processes, quantum mechanical effects must be taken into account.

The TDSE states that

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (1.1)

where Ψ(r, t) is the wavefunction, defined in terms of the system (nuclear and

electronic) coordinates, r, at time t, Ĥ is the Hamiltonian operator and ~ is the

reduced Planck constant. The natural complexity of the wavefunction requires it

to be approximated via expansion in a set of mathematically simple functions, in

order to solve the TDSE. Quantum dynamics methods can thus be categorised by

the type of wavefunction expansion, or ansatz, they employ and how the resulting

approximate wavefunction is then propagated in time.

1.2.1 Time-independent basis sets

As illustrated in Figure 1.3, the specific example given being the ground and ex-

cited state of the harmonic oscillator, one approach is to expand the wavefunction

in terms of a large set of basis functions, the positions of which are and remain

fixed, often on a grid, throughout the time evolution. The expansion coefficients

associated with each function are then propagated in time, usually via equations

of motion derived from application of a time-dependent variational principle34–37

to the expanded wavefunction. The wavefunction ansatz for such methods may

thus be written as

Ψ(r, t) ≈ ψ(r; t) =
∑
j

cj(t)φj(r) , (1.2)

where φ(r) are the time-independent basis functions and c(t) are the associated,

time-dependent expansion coefficients. A number of successful quantum dynamics

8
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(a) (b) (c)

Figure 1.4: (a) The wavefunction is expanded as a small number of time-dependent

basis functions which (b) move in phase space over time. (c) As a result, basis

functions continuously adapt to the changing shape of the wavefunction.

approaches have been developed based on this rather simple scheme,38–41 some of

which will later be discussed in more detail.

While the aforementioned, relative simplicity of this expansion and propaga-

tion of the wavefunction is undeniable, it comes at great expense with respect to

the size of the system that may be treated. As basis functions remain fixed in

phase space and it usually is not possible to predict, without actually calculating

dynamics, which regions of phase space will be relevant to the propagation of the

wavefunction, the entirety of accessible phase space must be populated with the

basis set. This, quite straightforwardly, leads to extremely unfavourable exponen-

tial scaling of the basis set size with respect to the dimensionality of the system.

Without a scheme for adaptively changing which parts of the basis set need to

be treated and which may be ignored at every step of wavefunction propagation,

which do exist and are in part discussed in Chapter 2, methods based on this

time-independent ansatz are thus limited to calculations of systems consisting of

only a few atoms.41

1.2.2 Time-dependent basis sets

Figure 1.4 shows the second common wavefunction expansion and propagation

scheme shared by many quantum dynamics approaches.42–46 The basis functions

are now propagated in time, via equations of motion derived for their parameters

and expansion coefficients. The result of this is a dynamic basis set that moves in

phase space alongside the wavefunction, which may thus be written as

Ψ(r, t) ≈ ψ(r; t) =
∑
j

cj(t)φj(r; t) , (1.3)

where the basis functions, φj(r; t), are now time-dependent.

In comparison to time-independent basis sets, the advantage of this ansatz

9
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originates from the continuously changing distribution of basis functions in phase

space. As the basis set adapts to the shape of the wavefunction, basis functions

naturally occupy the areas of phase space where the amplitude of the wavefunction

is largest, so far fewer functions are required to describe it at any given time. Time-

dependent methods not only avoid the exponential scaling discussed above, but

in fact scale rather favourably with system size, especially when making use of

multidimensional basis functions.

There are, however, some disadvantages associated with the time propagation

of the basis functions. More specifically, the limiting factor for methods, relying on

the ansatz above, are the equations of motion for the basis function parameters. If,

similarly to the expansion coefficients, these equations are derived via application

of a time-dependent variational principle to the TDSE featuring the expanded

wavefunction, while yielding, within the finite basis limit, formally exact results,

practically, their integration is numerically challenging, as they tend to be ill-

conditioned. This issue may be avoided by instead deriving non-variational and

thus classical or semi-classical equations of motion, however, these, in addition

to introducing yet another approximation, have been shown to violate the energy

conservation laws, implicit in the TDSE.47

This work presents an alternative method for wavefunction expansion and

propagation for the purposes of quantum dynamics. While not strictly belonging

to either of the above categories, it is inspired by methods from both and is best

thought of as a compromise between their associated advantages and limitations.

10
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1.3 Overview of the work presented hereafter

The remainder of this work is structured as follows. Chapter 2 contains a brief

introduction to the theoretical background underlying the work presented in later

chapters. A number of key historical and current quantum dynamics methods,

either related to or in some way inspiring the work presented herein, are also

discussed. Chapter 3 introduces a novel scheme for sampling quantum dynamics

basis sets via simple trajectories and demonstrates their effectiveness for a chal-

lenging benchmark problem. Chapter 4 addresses one of the key assumptions of

this new method, found to be the key factor limiting accuracy. A modification to

the algorithm, designed to overcome said limitation, is presented and applied to

two quantum dynamics benchmarks. Chapter 5 investigates the use of a different

type of sampling trajectories, specifically aimed at improving the description of

strong quantum effects such as tunnelling, within the novel sampling method by

applying it to a benchmark system, designed specifically with tunnelling in mind.

Finally, Chapter 6 summarises the methods and results presented in preceding

chapters and outlines possible avenues for future work.
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Chapter 2

Theory

This chapter lays out the essential theoretical background of the work presen-

ted thereafter, beginning with a discussion of the laws and equations of quantum

mechanics. As the goal of this work is to investigate dynamic, time-dependent

phenomena, an overview of the field of quantum dynamics is presented. Focus

here is on current and historical methods, either similar in approach or somehow

inspiring the strategies presented herein. Finally, given that the phenomena tar-

geted by the work presented herein concern light-matter interactions, this chapter

concludes with a brief section on the theoretical framework underlying photophys-

ics.
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CHAPTER 2. THEORY

2.1 Quantum mechanics

A number of experimental observations throughout the late nineteenth and early

twentieth century highlighted the fact that the well established mathematical

framework of classical mechanics was inadequate when describing the behaviour of

elemental particles, atoms and molecules. The first notion of the quantised nature

of such microscopic systems followed from experiments investigating black-body

radiation. Only discrete, not continuous, excitations of the electromagnetic field,

could account for the spectral densities, that is the relative intensity with which

individual frequencies are observed in black-body radiation at a given temper-

ature. A similar observation was made when heat capacities were found to be

overestimated by a model representing each atom as a classical harmonic oscil-

lator. Again the notion of quantisation could rationalise the lower than predicted

heat capacities at low temperatures, if each harmonic oscillator required a specific,

minimum amount of energy in order to contribute to heat transfer.

Further evidence for the quantisation of the electromagnetic field was the ob-

servation of the photoelectric effect, that is the emission of an electron from a

charge surface, if exposed to ultraviolet radiation. Again this effect was only

found to occur if the radiation applied exceeded a certain frequency, however, no

such threshold was found for the intensity of radiation.

In order to explain the increasingly obvious link between electromagnetic ra-

diation and the behaviour of matter on the microscopic scale, Louis de Broglie

suggested that all moving particles were associated with a wave, the momentum,

p, of the former being linked to the wavelength, λ, of the latter via

λ =
h

p
, (2.1)

where h is the Planck constant. This proposed wave-like nature of matter was

soon confirmed, when electrons were observed to display diffraction (see below),

when projected at atomic crystal lattices.

Unifying observations from many experiments it was concluded that electrons,

and, as became clear over time, all of the microscopic systems alluded to above,

behave sometimes according to the familiar laws of classical mechanics, associated

with macroscopic particles, but other times akin to waves. Quantum mechanics

accounts for this duality in the behaviour of microscopic systems and links the

mathematical framework governing it to macroscopic observations and phenom-

ena.
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2.1. QUANTUM MECHANICS

2.1.1 Heisenberg’s uncertainty principle

The wave-like nature of microscopic particles led Werner Heisenberg to propose

that if, for example, an electron with linear momentum shares some characteristics

with a moving wave, which is defined infinitely in space, then one should not be

able to know exactly both said linear momentum and the position of the electron

in space at any given time. This, eventually led to the celebrated Heisenberg

uncertainty principle which states that,

∆x∆px ≥
1

2
~ , (2.2)

where ~ is the reduced Planck constant and ∆x is the root mean squared deviation

of the positiona, that is to say

∆x =
√
〈x2〉 − 〈x〉2 ,

where the notation 〈x〉 denotes the average of x. This may in fact be generalised

for any two observables of the two non-commuting operators, Â and B̂, such that

∆A∆B ≥ 1

2

∣∣∣〈[Â, B̂]〉∣∣∣ , (2.3)

[Â, B̂] denoting the commutator of Â and B̂, defined as

[Â, B̂] = ÂB̂ − B̂Â ,

an operator being generally defined as a function mapping states, or a space of

states, to others.

2.1.2 Schrödinger’s wavefunction approach

Erwin Schrödinger formulated a mathematical foundation of quantum mechanics,

based on the concept of wavefunctions.48–53 While the behaviour of these wave-

functions does derive from the well-established field of classical wave mechanics,

their physical interpretation in quantum mechanics is somewhat more complex.

That is to say for a wavefunction, Ψ(r, t), where r are the spatial coordinates of

the system and t is time, only the square of this often complex-valued function,

|Ψ(r, t)|2 has physical meaning. The wavefunction does contain all information

about the system, which can be extracted using operators (for more detail see

below).

Expressing quantum mechanics based on wave mechanics allowed for the ob-

servations described above to be rationalised in terms of superposition effects. The

aAnd vice versa of the momentum.
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(a)

(b) Interfering waves Resulting signal

(c)

Figure 2.1: Superposition effects of waves: (a) Constructive, in phase, and (b)

destructive, out of phase, interference of sine waves based on their phase; (c)

diffraction in the context of the classic single slit experiment.

latter are a direct result of the superposition principle,

f(x+ y) = f(x) + f(y) , (2.4)

f(cx) = cf(x) , (2.5)

where f(x) is, by definition, a linear function and c is a scalar. In the context

of waves, superposition results in constructive or destructive interference and dif-

fraction,b as illustrated in Figure 2.1.

2.1.3 Postulates of quantum mechanics

In the context of the wavefunction, the postulates of quantum mechanics are as

followsc:

1. Any given state of a system is defined by the corresponding wavefunction

Ψ(r, t). Ψ and λΨ, where λ is a scalar, correspond to the same state and

thus the wavefunction is usually chosen to be normalised, such that∫
Ψ∗(r, t)Ψ(r, t)dτ =

∫
|Ψ(r, t)|2dτ = 1 , (2.6)

bDepending on the field, interference and diffraction are used for superposition phenomena,

a common distinction being based on the number of sources. That is, superposition effects due

to a small number of sources are often referred to as interference, while those due to a large

number of sources are called diffraction. These terms are a matter of preference only.
cThe number, order and phrasing of these postulates vary significantly in literature, but are

all expressions of the underlying fundamental nature of quantum mechanics, simply approached

in different contexts.
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where
∫

dτ refers to integration over the entire coordinate space of the wave-

function.

2. The probability dP of the particle (or system) being found in the volume

element dτ at the point (or configuration) r and at time t, can be defined as

being proportional to the square of the wavefunction as

dP ∝ |Ψ(r, t)|2dτ . (2.7)

This is the most common interpretation of the wavefunction, as the complex

square will be a real, positive number while Ψ itself can be complex and

negative.

3. For every observable, there exists a Hermitian operator, Â, satisfying∫
a∗Âb dτ =

[∫
b∗Âa dτ

]∗
, (2.8)

where a and b are functions in the domain of Â.d

4. The only experimentally measurable values of the observable associated with

operator, Â, will be the eigenvalues, a, of Â arising from

ÂΨ = aΨ , (2.9)

assuming the system is in an eigenstate of Â, described by Ψ. In the case

where Ψ is not an eigenstate of Â, it may, because the set {Ψj } is complete,

be expanded as

Ψ =
∑
j

cjΨj , (2.10)

where Ψj are eigenfunctions of Â with eigenvalues aj and cj are complex

expansion coefficients, determining the weight of each eigenstate. In such

a case, the average value of repeated experimental measurements may be

calculated from the expectation value of the operator,

〈Â〉 =

∫
Ψ∗ÂΨdτ∫
Ψ∗Ψdτ

, (2.11)

in general, which can be simplified to
∫

Ψ∗ÂΨdτ , for any normalised wave-

function, where
∫
|Ψ|2dτ = 1.

dEq. 2.8 formally defines a symmetric operator. While the two are often used interchange-

ably in literature, the definition of a true Hermitian, or self-adjoint operator is somewhat more

complex.
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5. The wavefunction evolves in time according to the time-dependent Schrödinger

equation,

i~
∂

∂t
Ψ = ĤΨ , (2.12)

where ~ is the reduced Planck constant, ~ = h
2π

, and Ĥ is the Hamiltonian

operator, corresponding to the total energy of the system.

In combination with Schrödinger’s wavefunction based interpretation of quantum

mechanics, these postulates formally allow the behaviour of microscopic systems

to be described. Given knowledge of the wavefunction of any system, any exper-

imental observables may be calculated using the corresponding Hermitian oper-

ators. Dynamic information may be extracted by solving the partial differential

equation above and extracting the value of operators as the wavefunction evolves

in time. However, owing to the fact that Ψ fully describes the state of the system,

including any observable quantities that may be measured, wavefunctions of even

the most simple molecular systems are mathematically too complex to allow Eq.

2.12 to be solved analytically. Thus a number of approximations are required.

2.1.4 Variable separation and wavepackets

In general, the wavefunction, Ψ(r, t) is a function of the system’s spatial coordin-

ates, r, and time, t. A common approach in simplifying this function is to assume

that solutions of the TDSE may be written as a product of functions of only spatial

coordinates and time,

Ψ(r, t) = ψ(r)χ(t) . (2.13)

Substituting (2.13) into (2.12) and separating the resulting equation by depend-

ence on coordinates and time yields two equations for a time-independent Hamilto-

nian,

Ĥψ(r) = Eψ(r) , (2.14)

i~
d

dt
χ(t) = Eχ(t) , (2.15)

where E is the eigenvalue of Ĥ, representing the total energy of the system, for

ψ(r), which are eigenfunctions of Ĥ. Eq. 2.14 is the time-independent Schrödinger

equation (TISE), which, for static systems, may be solved instead of the TDSE to

obtain time-independent properties of the system via the wavefunction.

Solving Eq. 2.15 and substituting back into (2.13) yields,

Ψ(r, t) = ψ(r)χ0 exp

(
− i
~
Et

)
. (2.16)

It is therefore possible to obtain dynamical information by solving the TISE and

then solving Eq. 2.16. However, the spatial coordinates of most systems still
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present too much of a challenge for the TISE to be solved analytically. As noted

above, the wavefunction, and by extension ψ, refer to the same state, independent

of a scalar multiplier. χ0 is such a scalar the equation above, thus allowing it to be

absorbed into the normalisation factor of ψ such that Ψ(r, t) = ψ(r) exp(− i
~Et).

Determining the probability density, |Ψ(r, t)|2, of this definition of the wave-

function however yields a seemingly paradoxical result.

|Ψ(r, t)|2 =

(
ψ(r) exp(− i

~
Et)

)∗
ψ(r) exp(− i

~
Et) = |ψ(r)|2 . (2.17)

The apparent lack of time-dependence in the probability density originates from

the fact that the TISE is an eigenvalue problem, that is to say that there are a

number of ψj(r) eigenstates with corresponding eigenvalues, Ej, for any given Ψ.

Thus, instead of using a single such eigenstate, a linear combination may be used,e

such that

Ψ(r, t) =
∑
j

[
cjψj(r) exp(− i

~
Ejt)

]
. (2.18)

Now the probability density will, in addition to terms originating from each spatial

wavefunction, ψj(r), contain interference terms which can be thought of as being

caused by the superposition of the wave-like solutions to the TDSE. For a two

eigenstate expansion for example, the wavefunction may be written as

Ψ(r, t) = c1ψ1(r) exp(− i
~
E1t) + c2ψ2(r) exp(− i

~
E2t) , (2.19)

resulting in a probability density of

|Ψ(r, t)|2 = |c1|2|ψ1(r)|2+|c2|2|ψ2(r)|2+2Re

[
c∗1c2ψ

∗
1(r)ψ2(r) exp(− i

~
(E2 − E1)t)

]
,

(2.20)

where now the final interference term contains the time dependence of the prob-

ability density. This distribution of states with differing energies and physical

properties is termed a wavepacket.

2.1.5 Born-Oppenheimer approximation

While the time-space variable separation assumption allows for the wavefunc-

tion to be simplified, the Born-Oppenheimer approximation is concerned with the

Hamiltonian operator, Ĥ. In general, for a molecular system in the absence of any

perturbations, the Hamiltonian may be written as

Ĥ =−
∑
j

~2

2me

∇2
e,j +

∑
k>j

e2

|rj − rk|

−
∑
j

~2

2Mj

∇2
N,j +

∑
k>j

ZjZke
2

|Rj −Rk|
−
∑
jk

Zke
2

|rj −Rk|
, (2.21)

eThe eigenstates are per definition, orthogonal and normalised.
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where rj and Rk are the positions of electron j and nucleus k respectively, ∇2
e,j and

∇2
N,k are the Laplacians with respect to the coordinates of electron j and nucleus

k respectively, Mj and Zj are the mass and charge of nucleus j, and me and e

are the mass and charge of the electron respectively. The terms in this equation

are often assigned specific symbols, based on the interactions, the contribution of

which to the total energy they represent, such that

Ĥ = T̂e + V̂e + T̂N + V̂N + V̂eN , (2.22)

where T̂e and V̂e are the electronic kinetic and potential energy operators, T̂N

and V̂N the nuclear kinetic and potential energy operators and V̂eN the operator

describing the interactions of nuclei and electrons.

Formally the full wavefunction Ψ(r,R, t) depends explicitly on all electronic r

and nuclear R degrees of freedom (DOFs) and time t. As shown in the section

above, the spatial and temporal parts of the wavefunction are often assumed to

be separable. If the time-independent wavefunction Ψ(r,R) is similarly separable

between nuclear and electronic coordinates, then

Ψ(r,R) = ψ(r)χ(R) , (2.23)

ψ(r) being the electronic wavefunction at a given nuclear geometry, and thus

depending parametrically on R, sometimes also written as ψ(r; R) and χ(R) rep-

resenting the nuclear wavefunction.f Substituting this into the TISE yields,

Ĥ [ψ(r)χ(R)] = E [ψ(r)χ(R)] , (2.24)

for any Ψ(r,R) which is an eigenstate of the Hamiltonian. The total Hamiltonian

may be separated in a number of ways, including grouping terms which depend

on the electronic coordinates r, such that

Ĥ =
[
T̂e + V̂e + V̂eN

]
+
[
T̂N + V̂N

]
= Ĥe + ĤN , (2.25)

where Ĥe and ĤN are termed the electronic and nuclear Hamiltonian respectively.

Application of Ĥe to the expanded wavefunction will, due to the separation of elec-

tronic and nuclear coordinates, yield instead of a single energy value, an electronic

energy function, depending parametrically on nuclear coordinates,

Ĥe [ψ(r)] = E(R) [ψ(r)] . (2.26)

fWhilst sharing the same notation as the wavefunctions in the previous section, it should be

noted that these are in no way related.
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Extending this to the full Hamiltonian, application of the nuclear kinetic energy

operator, T̂N , to the expanded wavefunction, results in three gradient-like terms

Ĥ [ψ(r)χ(R)] = [E(R) + VN ] [ψ(r)χ(R)]

−
∑
j

~2

2Mj

[
ψ(r)∇2

N,jχ(R) + 2∇N,jψ(r) · ∇N,jχ(R) + χ(R)∇2
N,jψ(r)

]
, (2.27)

where VN is the nuclear potential energy, which in combination with E(R) forms

the potential energy surface of nuclear quantum mechanics.

The terms which involve differentiation of the electronic wavefunction with

respect to nuclear coordinates disappear for one state. For multiple states the fact

that they are in general dependent on the ratio of nuclear and electronic masses

means that they are usually comparatively small and can be approximated as

zero.g Thus, by integrating out ψ(r), Eq. 2.27 simplifies to

Ĥχ(R) = [TN + E(R) + VN ]χ(R) , (2.28)

where TN is the nuclear kinetic energy. The elimination of the last two terms of Eq.

2.27 is the Born-Oppenheimer approximation in the context of nuclear quantum

mechanics.h

2.1.6 Adiabatic and diabatic representations

The quantum dynamics, that is solving the TDSE to obtain the properties of

the system as a function of time, of photophysical systems, like those mentioned

in Chapter 1, often involve the breakdown of the Born-Oppenheimer approxima-

tion. To visualise this, electronic states may be represented in two fundamentally

different ways.

As mentioned above, the electronic wavefunction in the Born-Oppenheimer

approximation, ψ(r), depends parametrically on the nuclear coordinates and may

thus be written as ψ(r; R). Thus, breakdowns of the Born-Oppenheimer ap-

proximation may be accounted for exactly, by, instead of simply separating the

wavefunction, Ψ(r,R), expanding it in what is called the adiabatic basis, such that

Ψ(r,R) =
∞∑
j

ψj(r; R)χj(R) . (2.29)

gAnother rationalisation is as follows: As electrons are very light and fast in comparison

to nuclei, any change in nuclear geometry will induce an instantaneous rearrangement of the

electrons. Thus, on the nuclear coordinate scale, the gradient of the electronic wavefunction

with respect to nuclear coordinates vanishes and terms depending on it may be ignored.
hIn the case of electronic structure theory, the same mass-ratio argument is used to justify

forgoing determination of the nuclear kinetic energy.
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Figure 2.2: (a) The adiabatic representation of a bound (S0) and dissociative (S1)

electronic state of a diatomic, as a function of internuclear separation, R and (b)

the corresponding diabatic picture.

Adiabatic electronic states are defined in such a way that they preserve the order

of energy levels. As a consequence, adiabatic PESs do not cross, as shown in

Figure 2.2(a). Around nuclear geometries where electronic states approach each

other in energy, this causes discontinuities in the energy of the states, referred to

as avoided crossings. The, as per the Born-Oppenheimer approximation, usually

negligible contributions to the energy arising from gradients in the electronic wave-

function with respect to the nuclear coordinates, ∇Nψ(r; R), make a significant

contribution in such areas.

This so-called non-adiabatic coupling term is given by

〈ψj(r; R) | ∇Nψk(r; R)〉 =

〈
ψj(r; R)

∣∣∣∇NĤ
∣∣∣ψk(r; R)

〉
Ek − Ej

, (2.30)

for two states ψj(r; R) and ψk(r; R) with associated energies Ej and Ek. Thus,

as the energies of the two states approach each other, the coupling term increases

and at points of intersections, where Ej = Ek, a singularity appears.

Alternatively, the electronic basis may be chosen in such a way that it is truly

independent of nuclear coordinates, being defined at a fixed nuclear geometry,

R0. This crude adiabatic basis may thus be written as ψ(r; R0),
i resulting in a

expansion of the wavefunction in the form of

Ψ(r,R) =
∞∑
j

ψj(r; R0)χj(R) . (2.31)

While at first glance seemingly rather similar to the adiabatic expansion of the

wavefunction, they key difference is that due to the full independence of the elec-

iIn this case the notation ψ(r) would also be truly appropriate.
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tronic basis from the nuclear coordinates, terms involving ∇Nψ(r; R0)
j vanish.

The result of this, as shown in Figure 2.2(b), is that electronic states now readily

cross, their order thus no longer being conserved.

One of the most important uses of the diabatic representation is that in re-

gions of high non-adiabatic coupling, by switching to it, the singularity in the

coupling may be avoided, being replaced by smooth, potential-like terms. How-

ever, as both these representations are only strictly valid in the infinite basis limit,

non-adiabatic couplings can usually not be eliminated completely. Nevertheless,

the diabatic representation is rather useful in avoiding singularities in the non-

adiabatic coupling.

Both expansions of the wavefunction have benefits and drawbacks, the adia-

batic expansion typically requiring fewer states to accurately describe the wave-

function, however in regions of avoided crossings, the ill-behaved gradients in the

electronic part with respect to nuclear coordinates often result in the calculation

of matrix elements being rather challenging. In such areas, the diabatic expansion

is far more well behaved, however, in general it results in significantly more states

being required.

2.1.7 Basis set expansion of the nuclear wavefunction

While the section above has outlined strategies for expansion of the electronic part

of the total wavefunction, the nuclear part also suffers from the inherent complexity

of the total wavefunction alluded to in Section 2.1.3. In practical applications

the nuclear wavefunction is thus also usually expanded in a basis set of simple,

mathematically well behaved functions. In addition to simplifying solution of the

TDSE by reducing it from a single challenging multivariable problem to one of

solving a number of linear equations, decomposing the nuclear wavefunction into a

number of functions, the time dependence of which is treated individually, results

in the time-evolving wavepacket needed to extract time-dependent information

from the wavefunction, as shown in Section 2.1.4.

Section 2.2 will investigate in more detail the various strategies for expanding

the nuclear wavefunction and propagating the resulting approximate wavefunction

in time, alluded to in Chapter 1.

2.1.8 Dirac notation

In the interest of clarity and accessibility of equations, integrals in this Chapter

have so far been presented in traditional integral notation,
∫
Adτ , representing the

jThis naturally includes higher powers of the differential operator, such that (∇N )nψ(r;R0) =

0 for all n > 0.
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integral of A over all relevant coordinates. Quantum mechanics commonly makes

use of the alternative Dirac notation, both in the interest of brevity, as many

quantum mechanical equations involve multiple, sometimes nested, integrals and

to reflect the fact that often, quantum mechanical symbols only take on their true

meaning once represented in terms of an operator, the most common of which is

position, x̂.

For the remainder of this work, Dirac notation will be used for either of these

purposes, the specific integral definition being,

A = |A〉 , (2.32)

A∗ = 〈A| , (2.33)∫
A∗Bdτ = 〈A|B〉 , (2.34)∫

A∗ÔBdτ = 〈A|Ô|B〉 , (2.35)

where Ô is an operator and dτ refers to all relevant coordinates, unless otherwise

specified.

2.2 Quantum dynamics

2.2.1 Early methods and “frozen” Gaussians

Some of the earliest work in quantum dynamics involved very simple expansion,

or rather approximation of the nuclear wavefunction in terms of Gaussian func-

tions.33,54,55 In these early schemes, the wavefunction is expressed as a single Gaus-

sian, the parameters of which follow equations of motion derived directly from the

TDSE. A number of trajectories, each associated with a single such Gaussian are

then run, in order to model the wavepacket evolving in time.

The general form of a one-dimensional Gaussian function, as commonly used

in quantum dynamics is

g(r; t) = exp

[
i

~
α(t) (r − r(t))2 +

i

~
p(t) (r − r(t)) +

i

~
γ(t)

]
, (2.36)

where r(t) and p(t) are the real valued position and momentum, the former corres-

ponding to the centre of the Gaussian, of the trajectory the Gaussian is associated

with, while α(t) and γ(t) are complex numbers, usually chosen in such a way as

to satisfy 〈g|g〉 = 1.

There are a number of benefits to be gained from using Gaussian basis func-

tions, which include but are not limited to:
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• They are analytic, as

lim
r→±∞

g(r; t) = 0 .

• Their integrals can be determined analytically (see Appendix I).

• The product of two Gaussians yields another Gaussian, as

ga(r; t) · gb(r; t) = gc(r; t) .

• As a direct consequence, extension of the one-dimensional form shown above

to a multi-dimensional one is trivial.

• Similarly, the Fourier transform of a Gaussian is another Gaussian.

On further, key advantage of Gaussian basis functions is that they are naturally

associated with a point in phase space, (r(t), p(t)), which allows them to readily

be associated with trajectories, by “surrounding” a time evolving trajectory with

a Gaussian.k Initially Gaussians with all parameters explicitly depending on time

were used,54 however, it was soon found that restricting the width parameter

α(t) to a constant, time-independent value, α(t) ≈ α0, significantly simplified the

problem, avoiding for example the potential for negative widths, Re(α(t)) < 0

which disrupts the Gaussian functional form, while still yielding comparatively

accurate results.33

Multi-dimensional “frozen” Gaussian functions have thus been used extensively

as basis functions in quantum dynamics,41,42,44–46,56–59 however, other choices, such

as discrete variable representations (DVRs) have also been popular.60 The latter

generally represent a basis of continuous functions which is transformed so as to

have each function be localised at a point on a grid in coordinate space.

2.2.2 Time-dependent self-consistent field methods

One alternative approach in expanding the wavefunction is the use of Hartree

products,l as in the time-dependent self-consistent field (TDSCF) method,38 where

the nuclear wavefunction is defined, in a time-dependent basis, as

Ψ(r; t) =

f∏
j

ψj(rj; t) , (2.37)

kThis is often also though of as evolving the phase space point (r(t), p(t)) corresponding to

the centre of the Gaussian, and thus the entire function, in time, along the path of a trajectory.
lOwing to the use of Hartree products in the wavefunction expansion, the term time-

dependent Hartree (TDH) is also used for methods of this kind.
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where f is the number of spatial DOFs contained in r. The basis functions are

defined as

φj(rj; t) = exp [iγ(t)]ψj(rj; t) =
∑
k

Cjk(t)χk(rj) exp

[
− i
~
Ej
kt

]
, (2.38)

each being constructed from a linear combination of the χ(rj) eigenstates of the

corresponding one-dimensional Hamiltonian operator, Ĥj, and its eigenvalues, the

energies, Ek
j , obtained from solving

Ĥjχ(rj) = Ejχ(rj) . (2.39)

Insertion of this expansion into the TDSE yields

i~
∂

∂t
φj(rj; t) = ĤSCF

j (t)φj(rj; t) , (2.40)

the method owing its name to the self-consistent definition of the Hamiltonian,

ĤSCF
j (t),

ĤSCF
j (t) = T̂j + V̂j +

∑
k 6=j

〈
φk

∣∣∣ V̂jk ∣∣∣φk〉 . (2.41)

While this approach was successfully applied to the dissociation of linear van der

Waals molecules,38 the use of one-dimensional Hamiltonians, Ĥj, limits its use as

a basis constructed in this way cannot properly treat coupling between DOFs.

2.2.3 “Standard” multi-configuration methods

To improve on the performance of the TDSCF method and others based on a

similar expansion of the wavefunction in terms of a Hartree product, a multi-

configurational approach may instead be taken. Instead of using a single Hartree

product of f functions, the wavefunction is expanded in terms of all possible

configurations of f one-dimensional functions, such that

Ψ(r1, ..., rf ; t) =

N1∑
j1=1

...

Nf∑
jf=1

Cj1...jf (t)

f∏
κ=1

χ
(κ)
jκ

(rκ) . (2.42)

The sum of sums of products notation here indicates that for a given number of

DOFs, f , and a number of one-dimensional functions, Nκ, in each DOF, κ, all

possible combinations (often referred to as configurations) that contain a function

for each degree of freedom are formed and associated with time-dependent coeffi-

cients, Cj1...jf (t). This results in a total number of coefficients and thus a rough

computational scaling of

NC =

f∏
j=1

Nj , (2.43)
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however, the scaling is often simplified as N f , and thus said to scale exponentially

with f . Methods relying on this expansion typically use DVR basis functions

and have been shown to perform well for small systems.40,60 This expansion is

often considered the “gold standard” of quantum dynamics, as it involves very

few approximation and theoretically, similarly to configuration interaction based

electronic structure theory, captures all possible interactions within a given basis.

However, as already illustrated by Eq. 2.43, this method scales incredibly unfavour-

ably with the size of the system investigated, and in practice is computationally

limited to treating only a few DOFs.

2.2.4 Multi-configuration time-dependent Hartree

In order to overcome the unfavourable scaling of the “standard” method, the

multi-configuration time-dependent Hartree (MCTDH) approach39,61–65 reduces

the number of one-dimensional functions per DOF by generating configurations

from so-called single-particle functions (SPFs). The latter, while still one-dimen-

sional, are now time-dependent and as a result, far fewer are needed per DOF, in

order to describe the wavefunction to within a given accuracy compared to the

“standard” method. This is a direct consequence of the basis set of SPFs moving

in coordination space as the wavefunction evolves in time, on paths ideal for the

description of the wavefunction at any given point in time, as illustrated in Figure

1.4. The MCTDH wavefunction ansatz may be written as

Ψ(r1, ..., rf ; t) =

n1∑
j1=1

...

nf∑
jf=1

Aj1...jf (t)

f∏
κ=1

φ
(κ)
jκ

(rκ; t) . (2.44)

The SPFs are, as per their definition above, time-dependent, owing to the fact that

they in turn are linearly expanded in a basis of simpler, time-independent DVR

functions, with the time-dependence originating from the associated expansion

coefficients. A given SPF is defined as

φ
(κ)
jκ

(rκ; t) =
Nκ∑
lκ=1

c
(κ)
lκjκ

(t)χlκ(rκ) , (2.45)

where Nκ is the number of primitive basis functions per DOF κ. There are thus

two levels of time-dependence in the wavefunction ansatz (2.44), one at the level of

the f -dimensional configurations of SPFs and one associated with the coefficients

of the primitive basis functions defining a SPF at any given time. This causes re-

dundancy in the wavefunction expansion, thus, in order to derive uniquely defined

equations of motion, a number of conditions must thus be imposed on the SPFs.
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In general these are〈
φ
(κ)
j (rκ; t = 0)

∣∣∣φ(κ)
l (rκ; t = 0)

〉
= δjl , (2.46)〈

φ
(κ)
j (rκ; t)

∣∣∣∣ ∂∂tφ(κ)
l (rκ; t)

〉
= −i

〈
φ
(κ)
j (rκ; t)

∣∣∣ Ô(κ)
∣∣∣φ(κ)

l (rκ; t)
〉
, (2.47)

where Ô(κ) may generally be any Hermitian operator, but in practice is often

chosen to be Ô(κ) = 0. In addition to simplifying the problem, the constraint

(2.47) ensures that expression of the wavefunction’s time-dependence occurs as

much as possible on the level of the coefficients, Aj1...jf (t), the SPF’s variation in

time only accounting for a small remainder.

The key benefit of MCTDH lies in the fact that, while, similar to the “stand-

ard” method, still scaling exponentially, as per Eq. 2.43, because the number

of SPFs required is much lower, this scaling is less unfavourable. The MCTDH

method formally scales as fnN + nf with respect to the memory required, com-

pared to the N f scaling of the “standard” method. While the MCTDH approach

has been shown to perform excellently for a variety of systems,61,62,65,66 there have

also been significant efforts to further increase the accuracy and efficiency of this

method.

One such strategy of improvement involves allowing SPFs to depend on more

than just one DOF. The so-called mode combination approach re-expresses the

SPFs in combined (also known as logical) coordinates, representing multiple DOFs.

This significantly reduces the number of Aj1...jf (t) coefficientsm however the SPFs

are now no longer simple linear combinations, but rather multi-dimensional pro-

ducts of the primitive basis functions. The latter results in the more complex

SPF time-propagation, mode combination thus essentially allowing a balance to

be struck between the time-evolution of SPF and the Aj1...jf (t) coefficients.

The added challenge of propagating the multi-dimensional primitive basis a-

rising from mode combination may be addressed by adding additional layers of

MCTDH. Multi-layer MCTDH67–69 (ML-MCTDH) involves using equations of mo-

tion very similar to those for the SPF coefficients in regular MCTDH, to propagate

in time the multi-dimensional functions making up lower layers. One key system

that will also be discussed later in the context of this work that serves to high-

light the benefit of the ML-MCTDH approach is the relaxation dynamics following

photoexcitation of pyrazine. Comparing MCTDH65 and ML-MCTDH70 calcula-

tions for the full 24-dimensional system, the former required 11 million coefficients

and approximately 630 CPU hours the latter only 22 thousand coefficients and 7

minutes.64

mAlthough mode combination results in notation changes in Eq. 2.44, these are forgone here,

in the interest of brevity.
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One final modification that warrants discussion in this section concerns an

alternative approach to mode combination. Instead of having multi-dimensional

SPFs, certain degrees of freedom, such as environmental or bath modes may not

require configurational treatment at all. Instead, these DOFs can be expressed

in terms of multi-dimensional Gaussian functions, which evolve in time via vari-

ational equations of motion, much like in the previously discussed work of Heller.54

The result of this is the so-called Gaussian MCTDH71–73 (G-MCTDH) wavefunc-

tion ansatz

Ψ(r1, ..., rf−1, rf ; t) =

n1∑
j1=1

...

nf−1∑
jf−1=1

nf∑
j=1

Aj1...jf−1
(t)×

(
f−1∏
κ=1

φ
(κ)
jκ

(rκ; t)

)
gfj (rf ) ,

(2.48)

where gfj (rf ) is a multi-dimensional Gaussian function, describing any “second-

ary”, bath DOFs. While this is written in terms of a single set of secondary modes,

multiple groupings are also possible and extension to such a case does not signific-

antly complicate the above ansatz. Comparing the performance of G-MCTDH73

to full MCTDH,65 again for the 24-dimensional pyrazine benchmark problem, the

former was able to achieve comparable accuracy at significantly lower costs, further

suggesting that, in particular due to the lower memory requirements, G-MCTDH

calculations should in theory be scalable closer to the convergence limit than their

full MCTDH counterparts. Furthermore in comparison to MCTDH, G-MCTDH

can be applied to overall larger systems, especially if a significant number of DOFs

act as bath modes.

One key drawback of both the methods based on the MCTDH ansatz and

those employing some other form of Hartree products is that in order to determine

potential energy matrix elements, the PES must be expressible in a sum of product

form. Thus the PES must be fitted to the grid of the lowest level of basis functions,

which, for many realistic problems, requires non-trivial amounts of computational

time and memory. Finally it is worth noting, especially in the context of the

photophysical systems the work presented herein is aimed at, that the methods

presented so far can, quite easily be used to calculate dynamics on more than one

electronic state.

2.2.5 Variational multi-configuration Gaussian method

Taking the theme set by mode combination in MCTDH and inclusion of multi-

dimensional Gaussian functions for secondary, environmental DOFs in G-MCTDH

to its natural conclusion, the wavefunction may be expanded exclusively in multi-
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dimensional Gaussian functions,44 such that

Ψ(r; t) =
N∑
j

Aj(t)gj(r; t) , (2.49)

where gj(r; t) are multi-dimensionaln Gaussians, the time-evolution of which is

achieved by deriving variational34–37 equations of motion for their parameters.

The quantum dynamics method resulting from this ansatz, termed the vari-

ational multiconfiguration Gaussian (vMCG) method has been successfully applied

to a number of benchmark problems44,73,74 and, in the case of the pyrazine model65

discussed above, has been found to exhibit exceptional scaling with respect to the

number of basis functions needed to achieve accurate dynamics.73,75

One particular benefit of v-MCG over MCTDH based methods is that, due to

the known functional form of the Gaussians, integrals over the potential energy

operator can easily be determined analytically, similarly to the overlap, as shown

in Appendix I .

This approach indeed requires so few basis functions that it is generally very

suitable for direct dynamics applications, that is where instead of the potential

energy part of Hamiltonian being obtained analytically or from a fitted surface, the

corresponding terms are calculated on-the-fly, using electronic structure methods.

Direct dynamics vMCG76 (DD-vMCG) has been applied to a variety of challenging

problems,76–78 yielding promising results. It finally is worth noting that, while the

basis set in v-MCG can be thought of as evolving on trajectories, these are not

independent of one another, as in the case of the methods discussed in Section

2.2.8, as the variational34–37 derivation of the equations of motion for the basis

function parameters means that the basis set may only evolve in time as one

cohesive unit.

The main drawback of v-MCG, as is discussed in more detail below, relates

to the nature of the equations of motion for the basis function parameters. They

often tend to be numerically challenging to solve, the matrices which must be

calculated and inverted during their solution possessing a strong tendency to be

singular, especially as the basis set scales towards being complete.

2.2.6 Recent Gaussian based methods

Given that the work presented herein also employs a “frozen” multi-dimensional

Gaussian basis set, there are a number of recent quantum dynamics methods that

warrant mentioning in this context.

nThese functions correspond to the multi-dimensional version of Eq. 2.36. Both “frozen”33

and thawed versions may be used.
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The basis expansion leaping multi-configuration Gaussian (BEL-MCG) method

relies on the overcompleteness of Gaussian basis sets.41 More specifically the wave-

function is expanded in a basis of static Gaussians, the parameters of which are

entirely time-independent. The evolution of the wavefunction is expressed solely

via the expansion coefficients, as per Eq. 1.2, the equations of motion being de-

rived variationally.34–37 The basis functions are distributed in phase space so as

to describe the wavefunction well, however the span of the basis set is limited

to regions of non-vanishing amplitudes of the wavefunction at that time. As the

wavefunction evolves, via the equations of motion for the expansion coefficients,

the basis set is regularly “expanded”, selecting a new distribution which is again

limited to regions of space with wavefunction amplitudes above a threshold. The

result of this strategy is a static basis set which, in principle, contains far fewer

basis functions than would be required if all relevant system space was occupied

with basis functions.

So far this approach has only been tested for up to 3-dimensional problems,

however the notion of an adaptive, but static, basis set is certainly promising, and

the work presented herein aims to achieve something rather similar, albeit in a

non-regular manner, not relying on grids of basis functions.

A recent application of trajectory-guided, and thus at least somewhat related to

the work presented herein, Gaussian basis sets is the quantum trajectory Gaussian

basis (QTGB) method,58 which employs Bohmian mechanics to sample a time-

dependent Gaussian basis set. While this strategy has shown some promise for

2-dimensional benchmark problems, its applicability to higher-dimensional and

otherwise more complex systems remains to be seen.

A final interesting approach is the recently introduced pseudospectral sampling,

which uses Dirac delta functions, χi = δ(r − ri), to simplify the calculation of

matrix elements.59,79 These functions are positioned at the centre of Gaussian

functions, which allows the potential matrix element, normally 〈gi(r)|V̂ (r)|gj(r)〉
which thus involves the integral over Gaussian basis functions, to instead be de-

termined as V (ri) |gj(ri)〉, that is the potential at the coordinates of the delta

function, times the corresponding Gaussian. Overall this reduces the number of

potential energy calculations necessary. This approach has been successfully ap-

plied to a number of low-dimensional benchmark problems79 and more recently

been extended to be able to treat multi-state non-adiabatic systems.59
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2.2.7 Matching pursuit split-operator Fourier transform

When expanding the Hamiltonian operator, Ĥ, in the TDSE in terms of the kinetic

and potential energy operators, T̂ and V̂ , one may write Eq. 2.16 as

Ψ(r, t+ δt) = exp

[
− i
~
δt
(
T̂ + V̂

)]
Ψ(r, t) , (2.50)

for the wavefunction at some small time, δt after a known state, Ψ(r, t). Recog-

nising that for non-commuting operators Â and B̂, like T̂ and V̂ ,

exp
[
Â+ B̂

]
∼ exp

[
1

2
Â

]
exp

[
B̂
]

exp

[
1

2
Â

]
. (2.51)

The Fourier transform of the exponential term containing the kinetic energy oper-

ator can be shown to equal a simple multiplication by an exponential function, thus

the matrix elements associated with the former can be relatively easily calculated.

This approach, which involves continuously flipping between the position and mo-

mentum representation of the wavefunction in order to carry out propagation, is

the termed the split operator Fourier transform (SOFT) method.80

Some more recent work has combined the SOFT strategy with matching pur-

suit (MP) method81 for selecting from an overcomplete basis set the minimal

subset that represents the wavefunction to within a desired threshold.82,83 A more

detailed example of the MP algorithm can be found in Chapter 4. The use of the

MP algorithm in favour of the Monte-Carlo based importance sampling, normally

associated with the SOFT method, was found to significantly improve the scaling

of this method, both for a synthetic tunnelling benchmark,82 which will be dis-

cussed later, in the context of the work presented herein, as well as an analytic

2-dimensional Hamiltonian model for intramolecular proton transfer.83

2.2.8 Quantum dynamics using independent trajectories

Many systems of real-word interest, especially those involving interactions with

light or the electromagnetic field in general, involve multiple electronic states. Fur-

thermore, breakdown of the Born-Oppenheimer approximation is rather common,

that is the dynamics of the system occur around geometries where electronic states

can rapidly change with respect to the nuclear coordinates. Such non-adiabatic

dynamics often involve high frequency oscillation of the wavefunction between elec-

tronic states, which presents a challenge for quantum dynamics methods. There

are a number of quantum dynamics approaches which are rely on independent

trajectories to account for dynamics across multiple electronic states, and given

the ultimate goal of the work presented herein being light-matter interactions, it

is worthwhile briefly discussing some common approaches. Given that the work
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Figure 2.3: Multi-state quantum dynamics methods: (a) MCE trajectories, evolve

on a state averaged PES, (b) AIMS trajectories evolve classically, spawning copies

of themselves to account for non-adiabatic transitions and (c) TSH trajectories

“hop” from state to state with a probability proportional to the non-adiabatic

coupling.

presented herein is only loosely related to these methods, in depth discussion is

forgone in the interest of brevity here, especially since the scope of methods oc-

cupying this area of quantum dynamics is relatively regularly surveyed by far more

experienced authors.75

The Ehrenfest approximation, which is discussed in more detail in Chapter

3, has been used to derive a set of equations of motion for a “frozen” Gaussian

basis set, resulting in the multi-configuration Ehrenfest (MCE) method.45 While

initially developed and applied as a way of treating systems with many environ-

mental modes, the extension to multiple electronic states was quickly achieved,84

and very successfully applied to the pyrazine benchmark discussed above. One of

the key benefits of this approach is its simplicity: the trajectories propagating the

basis set evolve on a state-averaged, mean-field PES, the extent of each function

on the states determined by a set of time-dependent coefficients, the equations

of motion are determined variationally. Figure 2.3 (a) illustrates the nature of

the MCE trajectories. The MCE approach has recently been interfaced with ab

initio electronic structure routines (AI-MCE), thus allowing dynamics to be calcu-

lated on the fly, the application of AI-MCE to excited state dynamics of ethylene

yielding encouraging results.85

Another approach to multi-state dynamics relies on classical trajectories to

propagate its basis functions, the equations of motion for the expansion coefficients

being determined variationally as usual. In order to account for non-adiabatic

transitions, the effective non-adiabatic coupling is calculated and if this value

reaches a certain threshold, each trajectory has a chance to spawn identical copies

of itself on the state it is coupling with. This approach is referred to as the multiple

spawning (MS) method.43,86 The direct dynamics version of this approach is known
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as ab initio multiple spawning56 (AIMS), which has been applied very successfully

to a number of challenging systems.27,28,87,88 The MS strategy is visualised in

Figure 2.3(b).

Recently a hybrid method, combining the state-averaged potentials of the MCE

method and the basis set expansion strategy from AIMS has been introduced,

referred to as ab initio multiple cloning46,89 (AIMC). More specifically, this method

addresses the shortcomings of MCE in regions of low non-adiabatic coupling where

the wavepacket is spread significantly across multiple states. In such a case, the

state-averaged potential does not reproduce the branching of the wavepacket that

should occur due to the different shapes of the PESs. The multiple spawning like

cloning spawning algorithm allows for this to be corrected however: In AIMC, after

the wavepacket has passed through a region of strong non-adiabatic coupling, the

wavepacket bifurcates into two initially identical copies, each predominantly on one

of the two electronic states involved in the coupling event. Recently, this approach

has been applied to the photodissociation of pyrrole with some encouraging initial

results.89

As an alternative to spawning or cloning in order to account for non-adiabatic

transitions, the wavepacket may be expanded in a set of trajectories moving on a

single surface, which in regions of strong non-adiabatic coupling have the capability

to “hop” and thereby change the electronic state they evolve on. This constitutes

one of the earliest approaches to non-adiabatic dynamics and has come to be re-

ferred to as trajectory surface hopping (TSH).42,90–93 Again, the propagation of

the time-dependent basis functions occurs via classical mechanics, although in the

case of TSH the basis functions are purely electronic, while the equations of mo-

tion for the coefficients are derived variationally. At any point, the probability of

a “hop” to any given surface may be calculated as a function of the non-adiabatic

coupling. Given its relatively long developmental history, a large number of modi-

fications and improvements have been made to TSH,94 it having been applied to

numerous systems. Recently, some rather complex photodynamics problems have

been tackled with a direct dynamics version of TSH with encouraging results.95,96

In conclusion then, MCE,AIMS and AIMC all share a similar wavefunction

ansatz,

Ψ(r; t) =
∑
j

Aj(t)φj(r; t) ,

where the basis functions φ(r; t) are multi-dimensional “frozen” Gaussians, the

time dependence of which is achieved by evolving the centre with classical, or

in the case of MCE, semi-classical equations of motion. TSH employs a similar

expansion, however the basis is made up of orthonormal electronic basis functions.

Time evolution of the coefficients, Aj(t), for all methods occurs via variational

34



2.3. PHOTOPHYSICS

equations of motion.34–37 In order to account for non-adiabatic coupling, each

method employs a different strategy to approximate transitions of the wavepacket

between electronic states, which are illustrated in Figure 2.3.

2.3 Photophysics

Given that, as outlined in Chapter 1, the ultimate goal of the work presented in

the following chapters is to facilitate further study of light-matter interactions, it

seems appropriate to begin by discussing the theoretical framework governing such

phenomena. As however, the novel methods introduced in this work are just that,

new and thus only tested against a limited number of benchmark problems, the

following is only a general and by no means in-depth overview, intended mostly

to provide perspective on the context of the advances outlined herein.

2.3.1 Electromagnetic field

In the context of his theory of gravity, Isaac Newton postulated the concept of

action at a distance, whereby physical interactions may occur in the absence of

contact between objects. His observations suggested that such interactions occur

instantaneously and are unaffected by the medium separating the objects. How-

ever, Faraday found over the course of several experiments that in the case of

electromagnetic interactions, this framework was not sufficient to describe his ob-

servations. He thus suggested that interactions travelled, originating from charged

sources, through the intervening medium at finite speed and could thus be affected

by the nature of said medium.

Out of this new perspective of a “field” of interactions, arose a number of

physical laws which were finally unified by Maxwell in his equations of the elec-

tromagnetic (EM) field,

∇ ·B(r, t) = 0 (2.52)

∇ ·D(r, t) = ρ(r, t) (2.53)

∇× E(r, t) = − ∂

∂t
B(r, t) (2.54)

∇×H(r, t) = J(r, t) +
∂

∂t
D(r, t) , (2.55)

where E, B, D, H and J are vector fields and ρ is a scalar field, all depending on

spatial coordinates r and time t. The terminology used to refer to the individual

fields in (E,B,D,H), making up the mediating field varies, however the constitu-

ents of the source field, (J, ρ), are usually referred to as the charge distribution,

or charge density, ρ, and the current density, J. Often written in other forms, Eq.
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2.52 is known as the magnetic Gauss’s law, Eq. 2.53 as Gauss’s law, Eq. 2.54 as

Faraday’s law and Eq. 2.55 as Ampere’s law. These equations, along with sup-

plementary constitutive relationships form a complete, mathematically rigorous

description of the behaviour of the electromagnetic field.

Although these equations can be used to formally derive, albeit via some rather

challenging mathematics, essentially all properties of interacting electromagnetic

fields and matter, when the latter is on the microscopic scale, thankfully some

approximations can be made. Chief among these is the electric dipole approx-

imation. It states that the electric field, E(r, t), is uniform over the extent of

each individual molecule. In addition to this, intermolecular electron exchange is

neglected. The dipole moment, defined as

p(r) =

∫
ρ(r0)(r0 − r)dV , (2.56)

for a continuous charge density, which, in the case of point charges, may be es-

timated as

ρ(r) =
N∑
j

qjδ(ri − r) , (2.57)

ofN discrete charges confined to volume V , is the only molecular multipole coupled

to the electromagnetic field. A further result of the electric dipole approximation

is the absence of any magnetic interactions.

This approximation is known to be sound when the wavelength of radiation is

significantly larger than molecular dimensions. The shortest wavelength of sun-

light, even in the absence of atmospheric absorption and filtering is still only

around 100 nm,97 thus the electric dipole approximation is bound to be reason-

able for all but the largest bio- or macrocmolecular systems.

2.3.2 Spectroscopic transitions

There are essentially three interactions that can occur between a molecular system

and the electromagnetic field.

1. The EM field can be absorbed by the molecule, increasing its internal

energy levels.

2. A molecule in an excited state may spontaneously lose energy via emis-

sion of radiation, the direction of which depends on the spatial orientation

of the molecule.

3. Similarly, the EM field may induce relaxation of the molecule followed by

emission, the direction of the emitted radiation being aligned with the

inducing radiation.
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In order to calculated the probability and rate of a transition between initial

state i and final state f , each of these possibilities may be considered in turn. In

the case of absorption, the probability of a transition occurring is proportional

to the energy density of the EM field, ρ(ν) at the required frequency (energy), ν.

Spontaneous emission on the other hand only depends on the number of molecules

in the excited state, ni. Finally, the probability of induced emission is proportional

to both ρ(ν) and ni.

The net rate of absorption from the lower i to the higher f state, ξf←i may

thus be written in terms of a number of linear coefficients,

ξf←i = Aifniρ(ν)− Sfinfρ(ν)− Efinf , (2.58)

where Aif , Sfi and Efi are the probability coefficients of absorption, stimulated

emission and spontaneous emission respectively. It logically follows that the rate

of emission, in the absence of any non-radiative transitions, is ξi←f − ξf←i.
It can be shown that

Aif = Sfi =

(
c3

8πhν3

)
Efi , (2.59)

where c is the speed of light and h is the Planck constant.

Absorption probability coefficients, Aif , represent the interaction of the EM

field with the molecule and may thus be expressed in terms of the transition

moment, µif , such that

Aif =

(
2π

3~2

)
µ2
if , (2.60)

where the transition moment is defined as the expectation value of the dipole

moment operator,

µif = 〈Ψi | p̂ |Ψf〉 , (2.61)

where Ψi and Ψf are the wavefunctions for states i and f respectively.

This final definition allows the rates and probabilities of interactions between

the EM field and a molecular system to be extracted from the wavefunctions of the

states involved. Within the scope of this work, which focuses on the propagation

of the wavefunction in time, this level of theory is considered to be sufficient, in

order to predict or model any light-matter interactions.
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Chapter 3

Trajectory-guided Sampling

This chapter introduces a method of sampling basis sets for quantum dynamics us-

ing simple trajectories, propagated on the potential energy surface of the system.

Initially, the motivation underlying the development of this new approach is out-

lined, followed by a detailed description of the algorithm which is responsible for

the practical implementation of the former. To demonstrate the efficacy of the tra-

jectory sampling method, results for the challenging pyrazine quantum dynamics

benchmark are presented, followed finally by an investigation into the individual

effects of the specific parameters and overall performance of the algorithm.

The contents of this chapter have, in part, been published:

M. A. C. Saller and S. Habershon, J. Chem. Theo. Comput., 11, 8-16 (2015)
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3.1 Introduction

As already touched on in Chapters 1 and 2, quantum dynamics approaches may be

subdivided in a number of ways, one of which concerns the nature with which the

basis functions are treated. Some methods evolve the basis functions in time, as

the wavefunction is propagated,42–46while others choose the basis functions para-

meters at the outset, effectively generating a grid-like basis set, and propagate

only the expansion coefficients in time.38–41 Both strategies bring with them cer-

tain advantages, however, as the novel method proposed here aims to avoid the

disadvantages associated with traditional approaches, it will be discussed within

the context of the latter.

Relying solely on the expansion coefficients for propagation of the wavefunc-

tion, expanded in a static, time-independent basis set, requires the latter to de-

scribe the time evolution in phase space over the entire time domain of interest.

This leads to extremely unfavourable exponential scaling with respect to basis set

size, as without a way of choosing a priori where in phase space to place basis

functions, usually a grid, covering the entirety of relevant space, is used. Thus

these methods are, without some modification to the grid over time,41 severely

limited with regards to the number of DOFs that may be treated explicitly.

In the case of dynamic basis sets, that is expansion of the wavefunction in

terms of basis functions that move in phase space over time, this scaling problem

is potentially avoided, as the basis moves in phase space alongside the wavefunc-

tion, thus requiring only enough basis functions to describe it at one moment in

time.44 There arises however the question of how to propagate the basis functions

in time. Usually, equations of motion for their parameters, often positions and

momenta, may be readily obtained using variational or approximate treatment

of the TDSE. Should these equations be derived using variational principles,34–37

while the resulting dynamics of the basis functions are formally exact, the solution

often proves practically challenging due to numerical issues of ill-conditioning.74

While this may be avoided by employing non-variational equations of motion, the

latter have been shown to violate the energy conservation condition, imposed by

the TDSE.47

The trajectory sampling method proposed here represents a compromise be-

tween the two aforementioned categories. The aim of this approach is to avoid both

the issue of exponential scaling as well as those associated with basis functions

propagation. The latter is achieved by avoiding moving the basis functions during

the solution of the TDSE altogether, thus employing a purely static basis set for

wavefunction propagation. In order to improve on the scaling of methods using this

expansion of the wavefunction, instead of using a grid of basis functions, covering
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(a) (b)

(c) (d)

Figure 3.1: Trajectory sampling: (a) Based on the initial wavefunction, a set of

trajectories sample phase space, storing basis functions along their path. (b) The

resulting time-independent basis set is propagated in time by (c) setting expansion

coefficient to represent the initial wavefunction and (d) evolving these coefficients

variationally.

phase space, a set of simple, classical-like sampling trajectories are evolved on

the PES of the system, in order to sample regions of phase space, relevant to

wavefunction propagation, and populate them with basis functions.

This strategy for sampling the basis set, which is illustrated in Figure 3.1, is

expected to significantly improve scaling at little to no extra cost, as the dynamics

driving the trajectories are simple and in essence governed by classical mechanics.

The reason this is possible is that, while classical mechanics would constitute

a poor choice to evolve the wavefunction in time, being inherently incapable of

describing quantum behaviour, during the sampling stage, the trajectories are not

required to follow the exact quantum solution, only to, at some point during their

propagation, visit the regions of phase space relevant to the latter. Furthermore,

the chance of this may be arbitrarily increased by sampling a larger number of
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trajectories, with varying initial conditions, representative of the wavefunction at

the start of propagation.

The remainder of this chapter focuses on introducing the algorithm respons-

ible for implementing the trajectory sampling method described above, followed

by testing the validity of the assumptions underlying it and investigating its per-

formance for a challenging benchmark problem.

3.1.1 Gaussian wavepacket basis functions

As discussed in Chapter 2, there are numerous advantages to be gained from using

multi-dimensional Gaussian wavepacket basis functions as the basis of quantum

dynamics.

The Gaussian wavepacket (GWP) basis functions used in this work are defined

as

|g(r; t)〉 =

f∏
j=1

[(
2αj
π~

) 1
4

exp

[
−αj

1

~
(rj − rj(t))2 + pj(t)

i

~
(rj − rj(t))

]]
, (3.1)

where f is the number of degrees of freedom, αj is the width of the GWP in

DOF j and r(t) and p(t) are f -dimensional vectors, representing the position and

momentum associated with the centre of the GWP, referred to from here on out as

its phase space coordinates. It is important to note that, while the basis functions,

according to the notation above, are parametrically time dependent, that is only

meant to reflect the sampling stage, the propagation stage treating each basis

function as time-independent.

Throughout this work, the width of the GWPs, αj, remains unchanged as a

function of time, thus these basis functions can be referred to as being “frozen”.54

Additionally, α, takes the same value across all degrees of freedom f . Although it

is possible to vary the individual widths, given that they remain fixed over time,

the lack of any intuitive way of choosing what to set the width for a given DOF

to, eliminates most benefits that may be reaped by doing so. Given the key role

the width of GWPs plays in their behaviour with respect to quantum dynamics,74

allowing them to change as a function of time (thus “thawing” the Gaussian),

may add flexibility to the method presented herein, though this would come at

additional computational cost and complexity.

Appendix I outlines the expression used to calculate the integral over these

GWPs, as well as the formula determining the overlap of two such functions.

In the case of multiple electronic states, the electronic wavefunction is expanded

in a set of orthonormal basis functions, which for the purposes of this method, only

act as labels in determining which PES contributes to the Hamiltonian (see Section

3.3). These electronic basis functions are omitted whenever they do not impact
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the expression at hand. Nevertheless, a single (nuclear) basis function, |g(r; t)〉, is

thus technically always associated with a corresponding electronic basis function,

|α〉.

3.2 Implementation of trajectory sampling

Firstly, a distinction must be made between the algorithm that implements the

sampling strategy described above, and that which, immediately following the

former, handles the propagation of the sampled basis set. The latter, henceforth

referred to as the propagation algorithm, is the well established solution of ap-

plying the time-dependent variational principle34–37 to the TDSE, expanded in

a time-independent basis, and has been used in a number of other quantum dy-

namics approaches.38,40,79 Both algorithms are discussed in turn here, however

given the extensive literature available on the propagation algorithm, the focus is

primarily on the implementation of the basis set sampling.

3.2.1 Sampling algorithm

Starting from the initial, nuclear wavefunction, ψ0(r) ≡ ψ(r, t = 0), the first

challenge lies in sampling from this function of coordinate space, r, positions and

momenta, (q, p), to allow classical time propagation of sampling trajectories. The

quasiprobability distribution resulting from application of the Wigner function,

fW (q, p), to ψ0, allows phase space variables q and p to be sampled with correct

quantum probabilities,98 where

fW (q, p) =
1

π~

∫ +∞

−∞
ψ∗ (r + s)ψ (r− s) e i~psds . (3.2)

Given the choice of Gaussian basis functions, the wavefunction can be represented

as a linear combination of GWPs, |g(r)〉, with complex expansion coefficients, c,

such that

|ψ0 (r)〉 =

N0∑
j

cj |gj(r)〉 . (3.3)

Note that, with reference to Section 3.1.1, in the majority of cases, the GWPs

defining the initial wavefunction are assigned only positions, resulting in zero

valued momenta in Eq. 3.1. The label of the GWPs as |gj(r)〉 is meant to reflect

this and highlight the fact that the nature by which the positions for these initial

GWPs are chosen, results in them effectively being defined in coordinate space.

In cases where the nature of the system requires multiple Gaussians to describe

the initial wavefunction (N0 > 1), before application of fW (q, p), a single basis

function, |g〉, is chosen first. A variety of selection criteria may be employed here,
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a simple and common strategy being to sample |g〉 according to its overlap with

ψ0, specifically 〈g |ψ0〉, a more detailed discussion of such a selection process can

be found in Chapter 4.

A set of m trajectories are generated by sampling the initial conditions as de-

scribed above and initialising new Gaussian basis functions at the corresponding

coordinates, which are then independently propagated on the PES. Setting aside

systems with multiple electronic states for now, the propagation occurs completely

classically, by integrating Newtons equation of motion in the well established mo-

lecular dynamics (MD) method, using the popular Velocity-Verlet algorithm,99

outlined in Appendix II. All that is required at this stage is that the force due

to the PES of the system may be obtained at the coordinates of the sampling

trajectory GWP. For a discussion of alternative methods of sampling trajectory

propagation, see Chapter 5.

The sampling trajectories are propagated for nt timesteps. While setting nt

to be equal to the number of timesteps the TDSE will be solved for, np, may be

the most immediately obvious choice, the trajectory sampling method in no way

limits nt to a specific set of values, with respect to np or otherwise. Similar to

the number of timesteps to propagate for, the timestep duration of the sampling

trajectories ∆tt may be, but is not required to be equal to that with which the

TDSE is solved, ∆tp. The impact the magnitudes of nt with respect to np and ∆tt

with respect to ∆tp have on the accuracy of TDSE propagation and the concept

of ‘oversampling’ are discussed in Section 3.4. The total trajectory sampling time

is thus defined as tt = nt∆tt, while the duration of propagation, and thus the total

time for which dynamics are calculated, is given by tmax = np∆tp.

As the sampling trajectories are propagated, the guiding GWPs are stored with

a probability of 1/ns at every timestep, where ns may be interpreted as the average

sampling frequency. Stored GWPs retain the position and momentum of the

guiding trajectory they originate from, as well as inheriting any other parameters,

which are not propagated during the sampling stage, such as width (in the case

of “frozen” Gaussians). The size of the basis set resulting from an iteration of

trajectory sampling, Ns, may thus be approximated as

Nt ≈ m
nt
ns
. (3.4)

3.2.2 Propagation algorithm

Upon completion of the sampling algorithm outlined above, the basis set for

propagation of the wavefunction is formed by including first the N0 functions

defining the initial wavefunction, with coefficients as per Eq. 3.3, followed by the

approximately Nt trajectory sampled GWPs, |gj〉, which are initially assigned zero
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valued coefficients, cj(t), in order to reflect that at time t = 0, the wavefunction

remains unchanged from its initial conditions. The wavefunction at the start of

the propagation algorithm, expanded in the full basis set, may thus be written as

|ψ(t = 0)〉 = c0 |ψ0〉+
N≈Nt∑
j

cj(t = 0) |gj〉 . (3.5)

To propagate the wavefunction in time, this basis set expansion is inserted into

the TDSE, which yields

i~
∂

∂t

[
Ntotal∑
j

cj(t) |gj〉
]

= Ĥ

[
Ntotal∑
j

cj(t) |gj〉
]
, (3.6)

where the indices of summation for ψ0 and the trajectory sampled basis functions

have been combined for convenience and the total basis set size, Ntotal ≈ N0 +

Nt. The wavefunction only depends explicitly on time through the expansion

coefficients, cj(t), the basis functions remaining fixed in phase space now that the

sampling algorithm has been completed.

The Dirac-Frenkel variational principle34,35 may then be applied in order to de-

rive equations of motion for the coefficients, however note that alternative versions

do exist,36,37 the derivation of equations of motion from them following closely the

one given below. This variational principle minimises〈
δΨ

∣∣∣∣ Ĥ − i~ ∂∂t
∣∣∣∣Ψ〉 = 0 (3.7)

In the time-independent basis set expansion of the wavefunction,

|δΨ〉 =
∑
j

δcj(t) |gj(r)〉 . (3.8)

thus 〈∑
j

δcj(t)gj(r)

∣∣∣∣∣ Ĥ
∣∣∣∣∣∑

k

ck(t)gk(r)

〉

−i~
〈∑

j

δcj(t)gj(r)

∣∣∣∣∣ ∂∂t
∣∣∣∣∣∑

k

ck(t)gk(r)

〉
= 0 , (3.9)

∑
j,k

[
δc∗jck

〈
gj

∣∣∣ Ĥ ∣∣∣ gk〉]− i~∑
j,k

[
δc∗j ċk 〈gj | gk〉

]
= 0 , (3.10)

where ċk = d
dt
ck. Therefore, for the arbitrary variation δcj,

∑
j

δc∗j

(∑
k

[
ck

〈
gj

∣∣∣ Ĥ ∣∣∣ gk〉]− i~∑
k

ċk 〈gj | gk〉
)

= 0 , (3.11)
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and therefore this simplifies to the matrix equation

Hc = i~Sċ , (3.12)

This may be rearranged to yield

ċ = − i
~

S−1Hc , (3.13)

where H is the Hamiltonian matrix, the elements of which are defined as

Hij = 〈αi| 〈gi|Ĥ|gj〉 |αj〉 , (3.14)

and S is the overlap matrix, the elements of which are

Sij = 〈αj| 〈gj|gi〉 |αi〉 , (3.15)

where αj denotes the electronic state occupied by |gj〉 and due to the orthonor-

mality of electronic states in the vibronic pyrazine Hamiltonian, 〈αi|αj〉 = δi,j.

The first computationally expensive step of the propagation algorithm involves

the calculation of the Hamiltonian and overlap matrices, H and S, followed by

inversion of S. In the case of analytic Hamiltonians such as the vibronic pyrazine

Hamiltonian discussed in Section 3.3, this step is the most computationally ex-

pensive, the sampling trajectories being relatively cheap by comparison. Should

the determination of Hamiltonian matrix elements occur on-the-fly however, the

electronic structure calculations required to determine the potential energy and

non-adiabatic coupling coefficients (in case of a multi-state system) are highly

likely to constitute the rate limiting step of the algorithm.

The set of first order differential equations, defined by Eq. 3.13, is then solved

iteratively using the common Runge-Kutta method,100 for np timesteps of dura-

tion, ∆tp, resulting a total time tmax of dynamics. More specifically the 4th order

Runge-Kutta method is used, the details of which are outlined in Appendix III.

3.3 Pyrazine dynamics benchmark

3.3.1 Photophysics of pyrazine

Pyrazine, C4N2H4, shown in Figure 3.2(a), forms part of the azaaromatic and

more specifically the azabenzene class of molecules, which have continued to be the

subject of strong interest in the field of spectroscopy for a number of years.101–105

Structurally similar to benzene, C6H6, azabenzenes possess a rather diverse num-

ber of transitions, both radiative and radiationless, between their ground and

low-lying excited states, as highlighted in Figure 3.2(b). Of particular interest in
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Figure 3.2: (a) Molecular structure of pyrazine, C4N2H4 and (b) diagram of low-

lying electronic states and transitions of azabenzenes.

this case is the radiationless decay from the second excited singlet state, S2, to

the first excited singlet state, S1, following excitation from the ground state, S0.

In pyrazine the ultraviolet (UV) absorption spectrum hints at the rapid nature

of this transition by the distinct structure observed in the region of the S1 state,

contrasted with the relatively broad, featureless signal corresponding to the S2

state.101,105 Recent time resolved photoelectron spectroscopy results have con-

firmed the extremely fast timescale of this relaxation, the lifetime of the S2 state

having been measured at 22±3 fs in a gaseous molecular beam of pyrazine seeded

in He.104 Such fast transitions can often be attributed to the presence of a conical

intersection in the PES of the system, due to strong coupling of the two states

involved. In this case, presence of a conical intersection has indeed been confirmed

computationally.106

It is well known that the symmetries of the S2 and S1, being 1B2u(ππ
∗) and

1B3u(nπ
∗) respectively, allow them to be linearly coupled by modes exclusively of

B1g symmetry. The only deformation of the pyrazine molecule that satisfies this

condition is the asymmetric out-of-plane bending mode of the hydrogen atoms,

commonly termed ν10a, shown in Figure 3.3(h). The remaining modes may how-

ever indirectly contribute to the coupling between the two states, especially those

with identical Ag symmetry, as they may affect the energy separation of S2 and

S1, without affecting the symmetry of the B1g mode coupling the two states.106

3.3.2 Vibronic Hamiltonian

Computational study of the relaxation dynamics of pyrazine involves solving the

TDSE, which in turn requires a Hamiltonian to describe the PES arising from
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Figure 3.3: Vibrational modes, including symmetry point groups, of pyrazine in

the S0 ground state, obtained using Møller-Plesset 2nd order perturbation the-

ory,107 with a D95∗∗ basis set108 in Gaussian03.109
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these dynamics. A number of different models have been proposed,62,103,106,110,111

however by far the most complete and effective to this date is the second order (bi-

linear), vibronic Hamiltonian, capable of incorporating all 24 degrees of freedom,

parameterised using ab initio electronic structure calculations,65 given by

Ĥ =

f∑
i=1

[
−ωi

2

∂2

∂q2i
+
ωi
2
q2i

]
+

(
−∆ 0

0 ∆

)
+
∑
i∈G1

(
ai 0

0 bi

)
qi

+
∑

(i,j)∈G2

(
aij 0

0 bij

)
qiqj +

∑
i∈G3

(
0 ci

ci 0

)
qi +

∑
(i,j)∈G4

(
0 cij

cij 0

)
qiqj ,

(3.16)

where qi is the normal-mode coordinate of the ith vibrational mode, ωi corres-

ponding to the associated frequency and 2∆ is the energy splitting between S1

and S2 at the origin of nuclear coordinate-space. The PES is described in terms of

the normal modes by linear, ai and bi, and bilinear, aij and bij, expansion terms,

while the coupling between states is expressed linearly and biliearly by ci and cij

respectively. The subdivision of the 24 modes in Eq. 3.16 reflects the symmetry

of the system: The set G1 thus contains all modes with identical, Ag, symmetry,

G2 is comprised of pairs of modes resulting in Ag symmetry, G3 corresponds to

the single, ν10a, mode with B1g symmetry and G4 is the set of all pairs of modes,

the product of which has B1g symmetry.

One stand-out feature of this particular Hamiltonian is the fact that it can

incorporate a varying number of degrees of freedom as follows: Representing an

improvement on a previously developed system,110 a 4-dimensional (f = 4) version

has been shown to qualitatively reproduce experimental spectra.65 In this version

of the above Hamiltonian, aside from the B1g coupling mode, ν10a, the three modes

of Ag symmetry with the largest linear coupling, ν6a, ν1 and ν9a, act as tuning

modes. Coupling coefficients for the remaining two modes with Ag symmetry,

ν2 and ν8a, are small enough to indicate little involvement of the corresponding

vibrations in coupling the two electronic states.110,112 A second version of this

Hamiltonian incorporates 12 vibrational modes, including in addition to those

mentioned above, (ν10a, ν6a, ν1, ν9a), all remaining modes with g symmetry, (ν2,

ν3, ν4, ν5, ν6b, ν7b, ν8a, ν8b), to reflect the fact that S1 and S2 are both of u symmetry

and thus the coupling between them must overall be of g symmetry. Finally, all

24 degrees of freedom can be incorporated, resulting in the most accurate version

of the above Hamiltonian, that treats all vibrations explicitly.

This Hamiltonian has been used in conjunction with MCTDH calculations

to calculate the pyrazine S2 absorption spectrum, employing the three versions

outlined above, by Cederbaum et al.65 It was found to yield excellent results for

the dynamics of pyrazine, in the case of the full 24-dimensional Hamiltonian,
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approaching numerical accuracy with respect to experimental spectra.

Given the excellent agreement with experiment and flexibility of the model,

the vibronic pyrazine Hamiltonian has become a standard benchmark for quantum

dynamics methods. It has been studied extensively using a variety of different

approaches73,75,113–115 and thus presents an excellent opportunity to gauge the

performance and rigour of the trajectory sampling method set forth in this chapter.

3.3.3 Initial conditions

In order to simulate the dynamics following photoexcitation from the S0 ground

state to the S2 excited state, the initial wavefunction, |ψ0〉, is set to a single GWP

on the S2 state, with width α = 0.5 in every DOF, such that

|ψ0〉 = |g0〉 |2〉 , (3.17)

where |g0〉, placed at the origin of nuclear coordinate space and assigned zero

valued momenta, is given by

|g0(r)〉 =

f∏
j

[(
1

π~

) 1
4

exp

(
− 1

2~
r2k

)]
. (3.18)

These initial conditions are intended to reflect a vibrational wavepacket on the

ground state, projected onto the S2 state, which in turn constitutes a simple, but

effective model for photoexcitation. The wavepacket formed on the upper state

could also be seen as the result of f excitations from the ground state to each

individual vibrational state of the S2 electronic state.

3.3.4 Ehrenfest dynamics

Given that the object of the benchmark described above is to calculate the relaxa-

tion dynamics from S2 to S1 after excitation from the ground state, it is clear that

the Velocity-Verlet driven MD propagation of the sampling trajectories, alluded to

in Section 3.2.1, must be adapted to suit a system with multiple electronic states.

While there exists a variety of strategies to accomplish this, some of which have

been discussed in Chapter 2, the Ehrenfest approach45 was chosen here, for the

relative simplicity with which it can be adapted from purely classical MD.

The core of Ehrenfest’s theorem lies in linking the expectation values of oper-

ators in quantum formalism, more specifically position, q̂, and momentum, p̂, with

their variable counterparts in classical mechanics, q and p. It is relatively simple

to show that

i~
d

dt

〈
Ô
〉

=
〈

Ψ
∣∣∣ [Ô, Ĥ] ∣∣∣Ψ〉 , (3.19)
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for any operator Ô without explicit time-dependence, where Ĥ is the Hamiltonian

operator and Ψ is the wavefunction. In the case of q̂ and p̂ this yields equations

of motion, which may be classically integrated.

Applying this theorem to the case of multiple electronic states, one may derive

a set of equations, which allow the position and momentum to evolve classically

on an artificial PES, which represents the quantum potential, averaged across the

electronic states, such that
∂qκ
∂t

=
pκ
mκ

(3.20)

∂pκ
∂t

= −∂VEhr
∂qκ

, (3.21)

where mκ is the mass of degree of freedom κ and Vehr is the aforementioned state-

averaged potential, which, in this particular case of the two states in pyrazine, is

defined as

VEhr =
|a1|2V11 + |a2|2V22 + 2Re (a∗1a2V12)

|a1|2 + |a2|2
, (3.22)

where Vij is the ijth element of the potential energy matrix, defined by 〈Ψ|V̂ |Ψ〉,
and ai are expansion coefficients, which, in combination with the GWP basis

functions described in Section 3.1, form a wavepacket spanning both states,

|φ(t)〉 = [a1(t) |1〉+ a2(t) |2〉] |g(q,p; t)〉 . (3.23)

Equations of motion for these coefficients may be derived similarly to those of

the GWP basis functions. The major difference lying in the nature of the basis

set expansion

|Ψ(r, t)〉 =
∑
j

[a1(t) |1〉+ a2(t) |2〉] cj(t) |gj(q,p; t)〉 , (3.24)

where now, as the basis functions gj(q,p, t) are evolving in time as part of the

sampling trajectories and are thus time-dependent. Furthermore, the electronic

basis functions αj are orthonormal, 〈αi|αj〉 = δij. In the interest of brevity these

are absorbed into the basis functions φ below, which thus also become orthonor-

mal.

This introduces another term in the expansion of the Dirac-Frenkel variational

principle,34,35 such that〈∑
j

δaj(t)φj(r; t)

∣∣∣∣∣ Ĥ
∣∣∣∣∣∑

k

ak(t)φk(r; t)

〉

−i~
〈∑

j

δaj(t)φj(r; t)

∣∣∣∣∣ ∂∂t
∣∣∣∣∣∑

k

ak(t)φk(r; t)

〉
= 0 , (3.25)
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∑
j,k

[
δa∗jak

〈
φj

∣∣∣ Ĥ ∣∣∣φk〉]− i~∑
j,k

[
δa∗j ȧk 〈φj |φk〉+ δa∗jak

〈
φj

∣∣∣ φ̇k〉] = 0 ,

(3.26)∑
j

δa∗j

(∑
k

[
ak

〈
φj

∣∣∣ Ĥ ∣∣∣φk〉]− i~∑
k

[
ȧk 〈φj |φk〉+ ak

〈
φj

∣∣∣ φ̇k〉]) = 0 ,

(3.27)

Ha = i~
(
ȧ + Ṡa

)
, (3.28)

i~ȧ =
[
H− i~Ṡ

]
a , (3.29)

ȧ = − i
~

[
H− i~Ṡ

]
a , (3.30)

where H is the Hamiltonian matrix in the electronic basis, such that Hij =

〈g| 〈i|Ĥ|j〉 |g〉, and Ṡ is the time-dependent overlap matrix, with elements

Ṡij = δij

[
f∑
κ=1

〈
g

∣∣∣∣ ∂g∂qκ
〉
∂qκ
∂t

+

〈
g

∣∣∣∣ ∂g∂pκ
〉
∂pκ
∂t

]
. (3.31)

Again, akin to the treatment of the expansion coefficients of the GWP basis,

described in Section 3.2.2, these equations of motion are integrated using the RK4

method.

3.3.5 Calculated quantities

In order to compare the performance and accuracy of the quantum dynamics

obtained from the trajectory sampling algorithm with MCTDH results, which

are, as outlined above, extremely close to experimental data, the approach of

Cederbaum et al. for calculating the S2 absorption spectrum65 was replicated

here. The photoabsorption spectrum can be obtained by the Fourier transform

I(ω) ∝ ω

∫ +∞

−∞
C(t)eiωtdt , (3.32)

where the wavefunction autocorrelation function, C(t), is given by

C(t) =
〈

Ψ(r,R; t = 0)
∣∣∣ e− i

~ Ĥt
∣∣∣Ψ(r,R; t = 0)

〉
= 〈Ψ(r,R; t = 0) |Ψ(r,R; t)〉 .

(3.33)

To account for the finite resolution of experimental spectrometers, the spectral

lines resulting from Eq. 3.32 can be convoluted, which, given that the autocorrela-

tion function is directly calculated, amounts to a dampening of C(t). The function
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chosen here, again following the literature approach,65 was

d(t) = exp

[
−|t|
td

]
, (3.34)

where td is a user selected parameter. Furthermore, since the Fourier transform

range is finite, the resulting spectrum is prone to numerical anomalies, which can

however be minimised, by introducing a further function, s(t), which smoothly

reduces C(t) to zero at tmax, defined by

s(t) = cos

[
πt

2tmax

]
. (3.35)

Here, tmax is the total time, the TDSE is solved for. Bringing all these functions

together, the S2 absorption spectrum, I(ω) was calculated as

I(ω) = ω

∫ +∞

−∞
[s(t)d(t)C(t)] eiωtdt . (3.36)

In addition to comparison to MCTDH spectra,65 the diabatic electronic state

populations can provide detailed information on the nature of the dynamics oc-

curring as a function of time. In the two-state pyrazine model, the population of

state α, Pα(t) can be calculated as

Pα(t) =
N∑
i

N∑
j

[
c∗i cj 〈gi | gj〉 δλi,αδλj ,α

]
, (3.37)

where λj denotes the electronic state which is occupied by basis function j. In the

analysis below, the population of the lower excited state, S1, was chosen, however

this choice is completely arbitrary, as the population of S2 will give identical

information as to the nature of the dynamics. For the Hamiltonian containing

only two electronic states, outlined above, the two populations are exactly additive,

such that P1(t) + P2(t) = 1, for any given time t. This condition is a direct result

of the normalisation of the wavefunction, |Ψ|2 = 1.

3.3.6 4-dimensional results

The first step in testing the validity and accuracy of the trajectory sampling

algorithm, set out above, was to benchmark its performance against MCTDH

results65 for the 4-dimensional vibronic pyrazine Hamiltonian. This was chosen

for its relative accessibility in terms of computational resources required, while

still providing a challenging benchmark problem for quantum dynamics methods.

Additionally, this version of the Hamiltonian has been studied using a number of

different approaches,73,75,113–115 thus allowing the results of the strategy discussed
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here to be put into the broader context of quantum dynamics methods commonly

found in literature.

A set of 4 calculations was carried out using 1500 timesteps, lasting 0.1 fs each,

of trajectory sampling, followed by the same number of wavefunction propagation.

The basis function sampling frequency was 1/ns = 1/50 while the GWP width was

chosen to be α = 0.5 for all DOFs. The four calculations differed only in the

number of sampling trajectories employed, which were m = 33, 200, 400 and 800,

resulting in approximately 1000, 6000, 12000 and 24000 GWPs respectively in the

final basis set (Ntotal) upon completion of the sampling algorithm. These input

parameters along with the exact basis set sizes are summarised in Table 3.1.

As outlined in Section 3.3.5, the wavefunction autocorrelation function, C(t),

was calculated, and from this the S2 photoabsorption spectrum, I(ω), was obtained

via Fourier transform, using a dampening constant of td = 30 fs, as this was the

value chosen for the original MCTDH benchmark results.65 Figure 3.4 shows C(t)

and the corresponding I(ω) for the four calculations, compared to MCTDH data.

Inspecting the accuracy of C(t) from trajectory sampling with respect to MCTDH,

it is clear that even at relatively small basis set sizes, the short time behaviour

up to around 50 fs is captured relatively well. At longer timescales however, the

method presented here fails to capture both the frequency and amplitude of the

oscillations in C(t). As the basis set size increases the error in the autocorrelation

function does decrease, to the point where, in the case of 24000 basis functions,

the MCTDH results are reproduced qualitatively, across the entire time domain.

Given the relative simplicity of the sampling algorithm outlined above, as well as

its low computational costa, this is highly encouraging.

The S2 photoabsorption spectra, also shown in Figure 3.4, interestingly do not

reflect the same trend as the autocorrelation functions they were obtained from.

Even in the case of the smallest basis sets, the spectra from trajectory sampling

aSection 3.4.4 contains a more detailed analysis of computational expenses

Table 3.1: Input parameters and final basis set sizes for trajectory sampling calcu-

lations of the 4D pyrazine Hamiltonian, the results of which are shown in Figures

3.4 and 3.6.

nt ∆tt/fs ns np ∆tp/fs m Ntotal

1500 0.1 50 1500 0.1 33 1019

1500 0.1 50 1500 0.1 200 5850

1500 0.1 50 1500 0.1 400 12140

1500 0.1 50 1500 0.1 800 24144
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Figure 3.4: Wavefunction autocorrelation functions, C(t), and corresponding S2

photoabsorption spectra, I(ω), for 4 trajectory sampling calculations of the 4D

pyrazine Hamiltonian at varying basis set size Ntotal, compared to MCTDH res-

ults.65
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Figure 3.5: Effects of the dampening and sampling functions, d(t) and s(t), on

the wavefunction autocorrelation function, C(t), for the 4D pyrazine Hamiltonian,

obtained using basis set sizes of (a) Ntotal ≈ 1000 and (b) Ntotal ≈ 24000.

are in excellent agreement with the MCTDH benchmark. Furthermore, increasing

the number of basis functions does not significantly improve the results beyond

Ntotal ≈ 6000. Closer inspection of the dampening and sampling functions, d(t)

and s(t), discussed in Section 3.3.5, gives some insight into the origin of this

discrepancy. Figure 3.5 shows the dampened and undampened autocorrelation

functions for the two most extreme basis set sizes, Ntotal ≈ 1000 and Ntotal ≈
24000. It is clear that the long-time oscillations of C(t) are effectively completely

dampened out, thus making the absorption spectrum only truly sensitive to the

short time dynamics up to about t = 75 fs.

While comparison to experimentally observable properties of the system is

always useful in assessing the accuracy of any given computational method, the

extent of detail lost during the dampening, in order to replicate finite spectrometer

resolution, suggests that there is significantly more detailed information about the

dynamics of the system accessible to computational methods. The state popula-

tions, being a more direct measure of the real time dynamics across the entirety

of the system, should give more insight into the relaxation dynamics of pyrazine,

following photoexcitation. Thus the populations of the lower excited S1 state,

P1(t), were calculated as per Eq. 3.37 for the four calculations discussed above,

and are shown in Figure 3.6.

It becomes immediately clear that the populations give a much more detailed

description of the dynamics, as the basis set size dependence of the accuracy with

respect to MCTDH, observed in the autocorrelation functions of Figure 3.4, is far

more pronounced in Figure 3.6. Smaller basis set sizes result in the reabsorbance

feature occurring between 75 fs and 100 fs being inadequately described and the
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Figure 3.6: Populations of the lower S1 excited state of pyrazine, P1(t), for the

4D pyrazine Hamiltonian, using varying basis set size, Ntotal, compared to exact

MCTDH data.65

population spuriously levelling off upon reaching a value of P1(t) ≈ 0.75. Some

similarity with the scaling observed for the autocorrelation functions can however

be found on examination of the short time accuracy of the populations. Even

the smallest basis set employed (Ntotal ≈ 1000) is able to accurately reproduce

the MCTDH dynamics up to the shoulder-like feature occurring at approximately

t = 25 fs. The cause of this short time accuracy, or more correctly, the long-time

drop off in accuracy is likely related to the nature of the sampling trajectories.

As the Ehrenfest dynamics employed here, while taking into account multiple

electronic states, include no quantum effects, the longer they are propagated for,

the more the divergence of quantum and classical trajectory paths is likely to

affect the basis function placement. Thus, as the basis set is required to describe

the evolution of the wavefunction in time for the entire timescale of propagation,

at longer times, the regions of phase space, sampled by the classical trajectories,

result in inaccurate dynamics.

As the basis set size is increased, the overall accuracy with respect to the
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MCTDH benchmark scales favourably, the largest calculation (Ntotal ≈ 24000)

yielding results that are numerically accurate within the variation introduced by

the stochastic nature of the trajectory sampling, which is addressed in more de-

tail in Section 3.4. Encouragingly, the calculation employing only half as many

basis functions (Ntotal ≈ 12000) still captures all essential features of the relaxa-

tion dynamics with qualitative accuracy. The improvements that are gained from

increasing the basis set size beyond this point are marginal, suggesting that the

method has converged.

Overall these results for the 4-dimensional pyrazine Hamiltonian are extremely

encouraging. The relatively simple trajectory sampling method is clearly able

to provide qualitatively accurate quantum dynamics results for this challenging

benchmark problem, even using relatively small basis sets and thus incurring little

computational cost. Furthermore, the method converges rather quickly with re-

spect to basis set size, approaching quantitative accuracy for the largest basis sets,

which are, due to the cheap nature of the sampling algorithm, still very computa-

tionally feasible. A more detailed investigation of the scaling and convergence of

this method is presented in Section 3.4.

3.3.7 24-dimensional results

In order to test the performance of the trajectory sampling algorithm for systems

of higher-dimensionality, the full 24-dimensional Hamiltonian was also considered.

This constitutes an extremely challenging benchmark for any quantum dynamics

method, given the high number of DOFs which, to obtain correct dynamics, must

be treated explicitly across both electronic states. The availability of benchmark

MCTDH results, known to be numerically exact with respect to experiment,65

facilitates a direct measure of the accuracy of the algorithm set forth herein.

In keeping with the approach chosen for the 4-dimensional version of this

Hamiltonian, a set of 4 calculations were run, employing similar input parameters,

the details of which are shown in Table 3.2.

Figure 3.7 shows the wavefunction autocorrelations functions, C(t), compared

to MCTDH results,65 for varying basis set size. Given the limited insight into

the detailed dynamics of the system that can be gained from the photoabsorption

spectra due to the necessity of dampening and sampling functions, as outlined

in Section 3.3.6, the aforementioned are omitted here. Inspecting these results,

it becomes immediately clear that the 24-dimensional Hamiltonian constitutes

a far more challenging problem, as the accuracy with which the dynamics are

reproduced scales far more slowly with basis set size.

The smaller sized basis sets, that in the case of the 4-dimensional model, were
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Figure 3.7: Wavefunction autocorrelation functions, C(t), for the 24-dimensional

pyrazine Hamiltonian, using varying basis set sizes, Ntotal, compared to MCTDH

benchmark results.65

able to provide at least qualitative accuracy, now produce decidedly incorrect

dynamics, although the short time accuracy, alluded to in the section above, is

retained to a certain extent. The oscillations in C(t) are clearly overestimated

and in the case of the smaller basis set sizes, C(t) looks rather similar to the

4-dimensional data shown in Figure 3.4. As basis set size is increased, the cor-

rect shape of the autocorrelation function is recovered to the point of qualitative

accuracy, however the amplitude of oscillation remains too high.

Figure 3.8 shows the corresponding populations of the lower excited S1 state,

P1(t). Again it is clear that the smaller basis sets are incapable of properly de-

scribing the dynamics even in the very short-time limit, as the small reabsorbance

feature at around t ≈ 5 fs is not described at all, and result in spurious dynamics

at longer time-scales. For the larger basis sets employed, the dynamics are rel-

atively accurate in the short-time limit, up to approximately t = 40 fs, and at

longer timescales, while not introducing spurious fine structure like the smaller

basis sets, fail to capture the significant reabsorbance feature at t ≈ 75 fs.
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Figure 3.8: Populations of the lower S1 excited state, P1(t), for the 24-dimensional

pyrazine Hamiltonian, using varying basis set sizes, Ntotal, shown in comparison

with exact MCTDH data.65

Table 3.2: Input parameters and final basis set sizes for trajectory sampling calcu-

lations of the 24D pyrazine Hamiltonian, the results of which are shown in Figures

3.7 and 3.8.

nt ∆tt/fs ns np ∆tp/fs m Ntotal

1500 0.1 50 1500 0.1 33 940

1500 0.1 50 1500 0.1 200 5904

1500 0.1 50 1500 0.1 400 12059

1500 0.1 50 1500 0.1 800 23673
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Overall, whilst not performing as well, treating the full 24-dimensional Hamilto-

nian, as in the 4D case, it is worth noting that qualitative accuracy could still be

achieved, given that enough basis functions were sampled. This is rather encour-

aging, as it suggests that even for large, multi-dimensional problems, the trajectory

sampling method can in principle generate basis sets, that allow accurate dynamics

to be calculated, albeit in the short-time limit. As already mentioned in Section

3.3.6, the inaccurate dynamics observed in the long-time limit for both versions

of the pyrazine Hamiltonian investigated here, are likely due to the divergence of

the semi-classical Ehrenfest sampling trajectories from the correct quantum be-

haviour. This results in a shift of the basis set in phase space, away from regions

relevant to wavefunction propagation, thus reducing the accuracy of the dynamics

resulting from the propagation algorithm. Chapter 4 addresses this aspect of the

trajectory sampling algorithm with a simple but effective modification.

3.4 Algorithm parameters and performance

The pyrazine benchmark discussed above clearly demonstrates that the trajectory

sampling algorithm outlined in Section 3.2 may be used to obtain qualitatively

accurate quantum dynamics without suffering from some of the drawbacks of tra-

ditional approaches, as mentioned in Section 3.1. This however raises questions

with respect to the detailed performance and scaling of this strategy, as well as to

how its computational performance compares to other popular quantum dynam-

ics methods, all of which will be addressed below. Furthermore, the algorithm

is driven by a number of complementary input parameters, the effects of which

are investigated in detail, as significant insights into the details of the algorithm’s

performance may be gained from this.

3.4.1 Scaling and convergence with respect to basis set size

As already discussed in Section 3.3, the accuracy of the dynamics produced by the

trajectory sampling algorithm scale expectedly favourably with increasing basis

set size. As this approach is, at its core, a finite basis set method, this is not

at all surprising, however the numerical nature of this scaling, rate and limits of

convergence will be of great use in comparing to alternative quantum dynamics

strategies, as well as allowing a detailed measure of the improvements introduced

by the modification, proposed in Chapter 4. The extent to which the accuracy of

the algorithm is affected by basis set size has already been observed to be greatest

in the case of the 4-dimensional version of the pyrazine Hamiltonian, the results

for which are presented in Section 3.3.6. This particular benchmark was thus
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chosen for the detailed investigation into basis set scaling, set forth below.

In order to ensure that stochastic variations are kept to a minimum, 4 inde-

pendent iterations of the algorithm were run and the results averaged. Following

closely the parameters of those presented in Section 3.3.6, all calculations in-

volved 1500 timesteps of sampling followed by 1500 of wavefunction propagation

(nt = np = 1500 fs), both employing timesteps of 0.1 fs (∆tt = ∆tp = 0.1). The

sampling frequency was set to 1/50 (ns = 50), while the number of sampling tra-

jectories was varied from m = 33 to m = 800, resulting in total basis set sizes

from Ntotal ≈ 1000 to Ntotal ≈ 24000. The number of sampling trajectories, m, as

well as the resulting average basis set size, N total = 1
4

∑
Ntotal, are shown in Table

A.1 of Appendix IV .

Then, to assess the overall accuracy of these calculations, the mean absolute er-

ror (MAE) and mean absolute percentage error (MAPE) with respect to MCTDH

populations, PM
1 (t) were calculated for each data set using

MAE =
1

No

No∑
j

|P1(j)− PM
1 (j)| MAPE = 100

1

No

No∑
j

∣∣∣∣P1(j)− PM
1 (j)

PM
1 (t)

∣∣∣∣ ,
(3.38)

where No is the number of data points available for the population, P1(t). The

resulting error values were then averaged for each set of 4 calculations (MAE and

MAPE) and standard deviations, σ, for were calculated for both, as a measure of

the extent of stochastic variation, using the general formula

σ =
1

4

4∑
j

√(
Ej − E

)2
, (3.39)

where Ej is the error (MAE or MAPE) for the jth data set (out of 4) and E is

the average error calculated as E = 1
4

∑4
j Ej. The values for the averaged errors

and the corresponding standard deviations are also shown in Table A.1

Figure 3.9 shows the scaling of both errors in the population of the lower excited

S1 state. The fast rate of convergence for smaller basis sets (N total < 10000),

is highly encouraging, approaching exponential scaling. This suggests that the

trajectory sampling method scales excellently when aiming to obtain qualitatively

accurate dynamics. Convergence at larger basis set sizes (N total > 10000), even

more encouragingly, does not slow down as much as might be expected in the

case of purely exponential scaling of the accuracy, instead the rate of convergence

appears to depend roughly linearly on the number of basis functions. Finally,

the low values of the percentage errors across the entire range of basis set sizes,

shown in Figure 3.9, indicate that for this particular benchmark, the algorithm

presented herein can provide results within 1% of the exact dynamics at relatively

low computational cost.
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Figure 3.9: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian as a function of total basis set size, N total, and (b) corresponding

mean absolute percentage errors.

3.4.2 Basis function sampling frequency

As mentioned in Section 3.2.1, the size of the basis set sampled during the tra-

jectory algorithm is influenced by three parameters. The number of timesteps

the trajectories are propagated for, nt, the total number of trajectories employed,

m, and the frequency with which basis functions are, on average, stored for each

trajectory, 1/ns. Of these three, m and ns, are not linked in any way to the propaga-

tion algorithm, while nt is often chosen to be equal to the number of timesteps

the TDSE will we solved for. The effects of changing the latter will be addressed

in Section 3.4.3, however it stands to reason that the sampling algorithm will

not perform equally well for all values of m and ns, thus warranting methodical

investigation.

Considering for a moment the two most extreme choices possible for these

two parameters, these constitute either only running a single trajectory which

samples a very dense but narrow basis set across phase space, or a large number

of trajectories, which each only yield a single basis function. Both these cases are

subject to significant limitations on the accuracy that may be achieved using the

basis sets they produce. Using only a single trajectory involves only a single set of

initial conditions being sampled from the initial wavefunction, which is unlikely to

yield a large enough spread of the basis set across phase space. A large number of

trajectories, each sampling only a single basis function on the other hand, is likely

to result in too random a distribution of the basis set, as the sampling across any

given trajectory is stochastic, every timestep storing a basis function with equal

probability, 1/ns.
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Figure 3.10: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian as a function of the number of the sampling frequency parameter,

ns; the sampling trajectories employed, m, is determined by Eq. 3.4 and (b)

corresponding mean absolute percentage errors, using an average basis set size of

Ntotal ≈ 18000.

To investigate the effect the ratio of the number of sampling trajectories to

the sampling frequency has on the accuracy of the trajectory sampling algorithm,

a set of calculations for the 4-dimensional pyrazine Hamiltonian were run at a

constant basis set size, Ntotal ≈ 18000, varying the values of m and ns, as outlined

in Table A.2. The remaining parameters follow those employed for the calculations

in Section 3.3.6 and are summarised in Table 3.3. Similarly to the investigation

presented in Section 3.4.1, in order to keep variation due to the stochastic nature

of the sampling algorithm to a minimum, 4 identical calculations were run for each

of the 16 m :ns ratios investigated, and the results averaged. Again in keeping with

the methodology employed above, the average MAE, MAPE and corresponding

standard deviations were calculated using Eqs. 3.38 and 3.39.

Figure 3.10 shows the result of the 4× 16 calculations run for the 4D pyrazine

Hamiltonian. The MAE and MAPE suggest that the hypothesis with respect to

the accuracy dependence on the ratio of m :ns was indeed correct. Both extremes

of this ratio result in clearly less accurate dynamics, due to the basis set not cover-

Table 3.3: Input parameters for trajectory sampling calculations of the 4D

pyrazine Hamiltonian, the results of which are shown in Figure 3.10.

nt ∆tt/fs np ∆tp/fs Ntotal

1500 0.1 1500 0.1 ≈ 18000
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ing the areas of phase space, relevant to wavefunction propagation. Interestingly,

using few trajectories with very frequent basis set sampling seems to result in far

less accurate dynamics, highlighting the importance of properly sampling the ini-

tial conditions of the wavefunction. Taking into account the standard deviations

shown in Figure 3.10, it can be seen that, as long as the limit of extremely few

trajectories is avoided, the ratio of m :ns otherwise results in relatively comparable

accuracy, with only a small decrease due to a large number of sparsely sampling

trajectories. Finally it is worth pointing out the the number of sampling traject-

ory timesteps, nt, acts as a soft limiter for the sampling frequency parameter, ns,

as cases where ns > nt allow for sampling trajectories which store no basis func-

tions whatsoever. While this does not hinder the trajectory sampling algorithm,

the relatively precise control over the total basis set size, illustrated in Eq. 3.4 is

forfeited in such a calculation.

3.4.3 Timestep ratios and “oversampling”

Another set of parameters modifying the behaviour of the trajectory sampling

method are the timestep durations for both the sampling and propagation al-

gorithm, ∆tt and ∆tp respectively, introduced in Section 3.2.2. The latter is often

dictated by the system under investigation, however ∆tt may essentially be chosen

freely, although should the value differ significantly from that of ∆tp, a negative

impact on performance might be expected. Assuming similar basis set sizes, Ntotal,

a drastically smaller timestep duration ∆tt can be interpreted as sampling phase

space in a very dense manner, similar to a high sampling frequency, 1/ns. Con-

versely, significantly longer sampling timesteps represent sparser sampling, as the

distance covered in phase space, between potential basis function sampling points,

is larger.

In order to investigate this hypothesis, following the approach outlined above,

a set of 4 × 11 calculations was run, varying the values of ∆tt, as well as nt and

m, in order to maintain a total basis set size of Ntotal ≈ 18000. The details of

the input parameters used can be found in Table 3.4. Again the average MAE

and MAPE error as well as the corresponding standard deviation were calculated,

Table 3.4: Input parameters for trajectory sampling calculations of the 4D

pyrazine Hamiltonian, the results of which are shown in Figure 3.11.

ns np ∆tp/fs Ntotal

50 1500 0.1 ≈ 18000
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Figure 3.11: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian using varying timestep durations, ∆tt, and (b) corresponding mean

absolute percentage errors, with an average basis set size of Ntotal ≈ 18000.

using Eqs. 3.38 and 3.39, the results of which are shown in Figure 3.11 and can

in detail be found in Table A.3. Inspecting first of all the absolute values of the

error, the above hypothesis appears to hold, although the aside from the very

extreme cases where ∆tt >> ∆tp and ∆tt << ∆tp, the effect of changing ∆tt seems

to be minimal. Further confirmation of this can be found via inspection of the

standard deviations in the errors. The latter are comparatively large, suggesting

that a significant proportion of the variation in the MAE and MAPE is due to the

stochastic nature of the sampling trajectories.

Overall this is encouraging, as the choice of the propagation timestep for some

systems may not be obvious, but will clearly significantly affect the nature of

the dynamics. Given that, within reasonable limits, the choice of the sampling

timestep, ∆tt, is unlikely to significantly change the accuracy of the trajectory

sampling algorithm, it can, in the case described above, be kept constant as ∆tp

is varied in order to find the optimal value.

One final aspect of the sampling algorithm that warrants investigation relates

to the duration for which the sampling trajectories are propagated, with respect to

the timescale of the TDSE solution. Again, while it may seem natural to sample

phase space for the same amount of time as the wavefunction will be propagated

for, the trajectory sampling algorithm does not strictly require this to be the case.

Given the classical nature of the sampling trajectories, it is likely that the rate at

which they explore phase space will vary from that of the actual dynamics of the

wavefunction, the latter being quantum in nature and thus inherently different.

There are two possible cases here, the first, in which the sampling trajectories

are propagated for a longer period of time than the TDSE solution, is termed “over-
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Figure 3.12: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian varying the duration of the sampling trajectories via the total num-

ber of sampling timesteps, nt as well as the number of trajectories, m, and (b)

corresponding mean absolute percentage errors, with an average basis set size of

Ntotal ≈ 18000.

sampling”, the converse is, by logical extension, referred to as “undersampling”.

In order to explore these concepts, a set of calculations was run, following closely

the well documented approach taken for the other investigations presented in this

Section. Thus, a set of 4×14 calculations was run, varying the number of timesteps

of trajectory sampling, nt and the number of trajectories run, m, in order to main-

tain a total basis set size of Ntotal ≈ 18000, the remaining parameters being shown

in Table 3.5. In keeping with the methodology used above, the average MAE

and MAPE error were calculated using Eq. 3.38, while the extent of stochastic

variation was determined via the standard deviation from Eq. 3.39. Average basis

set sizes and resulting errors are shown in Table A.4.

Figure 3.12 shows clearly that varying the duration of the sampling trajector-

ies has a significant impact on the accuracy with which the resulting basis set is

able to represent the wavefunction moving in phase space. Unsurprisingly, “un-

dersampling”, that is sampling for drastically less time than the wavefunction will

be propagated for considerably increases the error, as, the trajectories simply do

not reach certain areas of phase space, which are however visited by the wavefunc-

Table 3.5: Input parameters for trajectory sampling calculations of the 4D

pyrazine Hamiltonian, the results of which are shown in Figure 3.12.

ns np ∆tp/fs ∆tt/fs Ntotal

50 1500 0.1 0.1 ≈ 18000
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tion. The absence of any basis functions in the aforementioned areas reduces the

accuracy with which the wavefunction can be described, as it approaches them,

thus reducing the overall accuracy of the dynamics.

Conversely, “oversampling” by allowing the sampling trajectories to evolve for

longer than the duration for which the TDSE will be solved, does improve the

accuracy with respect to exact MCTDH results,65 however this increase in the

quality of the dynamics is marginal and evolving the trajectories for too long

negates this benefit. The latter can be rationalised by considering for one the fact

that due to the increased number of timesteps, nt, in order to maintain a constant

basis set size, Ntotal, overall fewer trajectories are run, which has, in Section 3.4.2,

been shown to negatively effect the quality of results, due to insufficient initial

conditioning sampling. Furthermore, as trajectories start exploring more and more

of phase space, the proportion of basis functions in any given area decreases, thus,

given that using classical-like trajectories is likely to result in sampling of at least

some irrelevant areas, will decrease the number of basis functions in areas that are

relevant to wavefunction propagation.

The practices of “over-” and “undersampling” were found to indeed affect

the accuracy of the trajectory sampling algorithm, the former providing a slight

improvement unless nt >> np, while the latter consistently negatively impacted

the results, for reasons discussed above.

In conclusion, the trajectory sampling algorithm, while conceptually extremely

simple, incorporates a number of parameters which may be used to tune its per-

formance. With regards to applying this method to a variety of different problems,

this is considered an advantage as it provides flexibility and allows the perform-

ance to be tuned to specifically suit the system at hand. There are undoubtedly

more correlations that could be investigated, both between different parameters

as well as the input and the accuracy with which the algorithm performs for any

given problem, however the basic relationships described above should allow this

method to be applied to most quantum dynamical systems, without too much

further benchmarking being necessary.

3.4.4 Computational performance and cost

A significant motivation for the introduction of the trajectory sampling method

discussed above is to minimise computational costs and improve performance over

other, time-independent quantum dynamics methods,,41,58 which in turn should

allow larger systems to be treated. Thus, in order to assess both the aforemen-

tioned computational factors, the four calculations discussed in detail in Section

3.3.6 are investigated here in terms of both the required processing time, as well
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Figure 3.13: Total CPU time and (b) maximum system memory required by

trajectory sampling calculations of the 4D pyrazine Hamiltonian, the input para-

meters of which are shown in Table 3.1.

as the maximum system memory used during runtime.

All calculations were performed on single compute nodes, containing either

two Intel Xeon E5-2630 v3 2.4 GHz 8-core processors, for a total of 16 cores

per calculation, or two Intel Xeon E7-4809 v3 2.0 GHz 8-core processors, for a

total of 16 cores (or 32 threads) per calculation. 16 core nodes were equipped

with a maximum of 64GB of DDR4 RAM, or 4GB per core, while 32 thread

nodes supported up to 1024GB of DDR4 RAM, or 32GB per core. The adaptive

sampling algorithm is implemented using the FORTRAN programming language

and accelerated using OpenMP and LAPACK.

Table 3.1 summarises the input parameters and total basis set size of the

four calculations investigated, while Figure 3.13 shows the total CPU time and

maximum requested memory per calculation.

3.5 Conclusions

This chapter has introduced a novel algorithm that allows basis sets for quantum

dynamics simulations to be sampled using simple classical-like trajectories, evolving

on the PES of the system. The proposed benefits of this approach are twofold.

The paths of the sampling trajectories, while not fully quantum, are guided by

the shape of the PES and thus the resulting basis set is not subject to the ex-

ponential scaling that limits the approach of methods relying on grids of static

basis functions. Furthermore, as the GWPs remain fixed in phase space once the

sampling stage of this method is complete, the time evolution of the wavefunction

being expressed solely via propagation of the expansion coefficients, the numer-
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ical issues, encountered when solving variational equations of motion for basis set

parameters, are avoided entirely. This method also conserves energy, which while

implicit in the TDSE, is not necessarily the case for methods, propagating basis

functions with non-variational equations of motion.47

In order to test the validity of the assumptions laid out above and measure

the performance of the algorithm presented here, the challenging vibronic pyrazine

Hamiltonian, modelling the relaxation dynamics following excitation to the second

excited state,65 was chosen as a first benchmark problem. Due to availability of

numerically exact MCTDH reference results,65 both the reduced, 4-dimensional

model and the full Hamiltonian, incorporating all 24 normal modes of the molecule,

were treated with the new trajectory sampling approach. Encouragingly, in the

case of the 4-dimensional version, even comparatively small basis sets were able

to capture the dynamics of the system with qualitative accuracy. The method

furthermore scaled excellently with respect to basis set size, readily converging

towards nearly quantitative results. These two observations suggests that this

approach for sampling basis sets is indeed subject to more favourable scaling than

comparable time-independent methods.39,41,58 The full 24-dimensional model of

the pyrazine Hamiltonian proved a more challenging problem, however the tra-

jectory sampling algorithm did yield qualitatively accurate dynamics. While this

required larger basis sets than in the case of the 4-dimensional Hamiltonian, the

computational cost of these calculations was still comparatively low, considering

the large size of the system and complexity of the model.

The input parameters for the trajectory sampling algorithm were systematic-

ally investigated, revealing favourable scaling and convergence, as well as a num-

ber of insights into the nature of the sampling of phase space achieved with it.

The balance between the number of independent sampling trajectories and the

frequency of basis function storage was found to have a key impact on the accur-

acy of the algorithm. Very few trajectories, sampling GWPs very regularly, were

found to significantly limit the accuracy of the dynamics resulting from the basis

set sampled in this way, which was linked to insufficient sampling of the initial

conditions of wavefunction. Using, in the other extreme, a large number of tra-

jectories, each infrequently sampling phase space, was also found to degrade the

quality of results, albeit not by as much. Overall this suggests that, as long as the

initial conditions are sampled in a rigorous manner, the algorithm is rather flexible

with respect to the number of trajectories (and thereby the sampling frequency)

employed.

The duration of each sampling timestep was found to not significantly affect

the accuracy of the method, as long as its value is not extremely different from

the duration of the timestep with which the TDSE is solved. In the case of sys-
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tems where the ideal propagation timestep is not known a priori, this allows the

sampling timestep to be kept constant while varying the former, thus reducing the

difficulty of the optimisation procedure. Allowing the duration of the sampling

trajectories vary with respect to the timescale of TDSE solution was found to

significantly influence the accuracy of the trajectory sampling algorithm. Unsur-

prisingly, if the sampling trajectories are propagated for a significantly shorter time

than the wavefunction evolves for, the resulting basis set is not very well suited

to describing the dynamics. Increasing the sampling time beyond the propagation

limit did yield slightly more accurate basis sets, however this increase was only

marginal.

There are however a number of assumptions associated with the trajectory

sampling method, which are to an extent, highlighted by the results for the

pyrazine benchmark. For both the diabatic state populations and especially for

the wavefunction autocorrelation functions calculated, the algorithm was found

to perform excellently in the short-time limit. Deviation from the exact solutions

was, in the majority of cases, limited to longer timescales. This is easily explained,

as the key assumption this method is based on, expects the classical-like traject-

ories to sample, based on the PES of the system, regions of phase space relevant

to quantum propagation of the wavefunction. In the short time limit, classical

mechanics are well known to constitute a fair approximation for quantum beha-

viour, however at longer timescales, the two diverge, resulting in the placement

of essentially useless basis functions, in phase space completely irrelevant to the

solution of the TDSE.

There exist a variety of potential causes for this divergence, one or more of

which, depending on the nature of the system, may be influencing the effectiveness

of the sampling trajectories at longer times. There is however a rather straight-

forward modification that can be made to the trajectory sampling method, which

addresses these issues. Chapter 4 introduces this improved version of the algorithm

discussed here and investigates the extent to which it improves performance for a

number of challenging quantum dynamics benchmarks.
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Chapter 4

Adaptive Trajectory Sampling

This chapter introduces a modified version of the trajectory sampling method

presented in Chapter 3, capitalising on the validity of classical mechanics as an

approximation to the quantum solution in the short time limit. After a brief

introduction to the underlying ideas, the algorithm implementing this adaptive

sampling strategy is presented. The new method is then applied to two challenging

quantum dynamics benchmarks and finally, its performance and the effects of input

parameters are systematically investigated.

The contents of this chapter have, in part, been published:

M. A. C. Saller and S. Habershon, J. Chem. Theo. Comput., 13, 3085–3096

(2017)
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4.1 Introduction

Chapter 3 introduced the trajectory sampling method, employing classical-like

trajectories evolving on the PES of the system, to sample basis sets for quantum

dynamics simulations. Although this rather simple approach was shown to perform

encouragingly well for the challenging benchmark modelling relaxation dynamics

of pyrazine, a number of shortcomings were identified. While the short-time accur-

acy of this method was found to be excellent, even for relatively small basis sets,

in the long-time limit performance dropped off significantly, which, in higher-

dimensional cases, could not even be counteracted by drastically increasing the

basis set size.

This apparent limitation to short timescales was linked to the assumption,

underlying this particular approach, that classical-like trajectories, evolving on the

PES of the system, will sample regions of phase space, relevant to the quantum

dynamics of the wavefunction. Classical mechanics are well known to constitute a

relatively good approximation to quantum mechanics, in the short-time limit,42,43

however at longer times, there are a number of causes for the divergence of these

two.

Classical mechanics are, for example, inherently unable to properly treat tun-

nelling through an energy barrier, when the barrier height exceeds the energy of

the classical trajectory. Even in cases where enough energy is available to overcome

such a barrier, the path described by a classical trajectory is fundamentally differ-

ent from the true quantum tunnelling path. Furthermore the inability of classical

mechanics to properly treat zero point energy has been well documented.116,117

The unrestricted flow of zero point energy between degrees of freedom, allowed by

classical mechanics, can, in extreme cases, lead to violation of the uncertainty prin-

ciple and readily introduces significant differences between the motion of quantum

and classical trajectories in phase space.

This chapter recognises the limitations of the trajectory sampling method,

caused by this essentially unavoidable classical-quantum divergence in the long-

time limit. A modification of the algorithm outlined in Chapter 3 is proposed,

the aim of which is to, instead of using a single set of trajectories to sample the

basis set across the entire time domain of desired dynamics, split each calculation

into a number of shorter instances of trajectory sampling followed by wavefunc-

tion propagation. This limits the sampling stage to relatively short times, thus

hopefully minimising the error due to classical-quantum divergence and improving

the overall accuracy of the method.

In order to facilitate seamless dynamics, a novel algorithm for minimising and

optimising the basis set at the end of a single instance of trajectory sampling and
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propagation is introduced, based on the matching pursuit scheme, used previously

by other quantum dynamics methods.82,83 The aim of this step is to select, from

the basis set used to propagate the wavefunction up to the current moment in time,

only those basis functions which are essential to describe the wavefunction at the

current point. These functions, which should constitute only a small proportion

of the old basis set, then become the initial wavefunction of the next instance

of the method, from which the initial conditions of the sampling trajectories are

sampled.

For the remainder of this chapter, the algorithms responsible for the implement-

ation of multiple instances of the trajectory sampling method, strung together, and

the minimisation and optimisation of the inherited basis set are first discussed

in detail. Where convenient, the trajectory sampling and adaptive sampling al-

gorithms will be referred to as TSA and aTSA respectively, the latter having been

chosen as the it represents a modification and still incorporates the idea of using

simple classical like trajectories as the driver for basis set sampling. Then, the

new, adaptive sampling method is applied to two challenging quantum dynamics

benchmarks. First, in order to allow the performance and accuracy increase over

the old method to be quantified, the vibronic Hamiltonian describing the relax-

ation dynamics following photoexcitation of pyrazine is revisited. Secondly, as

minimising the negative impact of classical-quantum divergence should improve

the ability of this method to treat systems with strong quantum effects, a syn-

thetic benchmark for quantum tunnelling is investigated. Finally, the performance

dependence on input parameters of this new adaptive sampling algorithm is sys-

tematically probed, giving further insight into the nature of this new sampling

strategy.

4.2 Adaptive sampling

The detailed description of the trajectory sampling method found in Section 3.2 is

still relevant here, as the adaptive algorithm is mainly concerned with facilitating

the seamless transition between instances of the former. Thus, the details of these

single “bursts”, as they shall be referred to from now on, are not discussed in de-

tail here, although the relevant sections of the previous chapter will be highlighted

where ever it is deemed necessary. This section is split into two parts, which are

however intimately linked. The first introduces the overall algorithm, implement-

ing the adaptive sampling method, while the second focuses on the details of the

matching pursuit step, bridging the gap between two bursts.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: The adaptive trajectory sampling algorithm: (a) Starting with a wave-

function expanded in a basis, the number of basis functions is minimised and their

parameters optimised, resulting in (b) a more compact wavefunction expansion.

(c) Sampling trajectories are initialised from the basis functions making up the

wavefunction, which sample phase space and store basis functions along their path

for a short amount of time, resulting in (d) a set of additional basis functions,

which then may be used in conjunction with the minimised basis to propagate the

wavefunction in time by (e) assigning all functions coefficients and (f) propagat-

ing them in time variationally. This procedure is then iterated to give long-time

dynamics.

4.2.1 Trajectory burst algorithm

In comparison to the trajectory sampling method, where basis set sampling and

wavefunction propagation is carried out only once, the adaptive sampling al-

gorithm splits any given calculation into several instances of the former, as shown

in Figure 4.1. In the interest of generality, the order of steps discussed below will

be applicable to one such burst, which has been preceded by at least one com-

pleted iteration. The initial burst differs slightly from this, however in this special

case, algorithm is identical to a short calculation, purely following the trajectory

sampling scheme, discussed in detail in Chapter 3.

Initially, the basis set from the previous burst, that is the static basis functions

and coefficients after wavefunction propagation has been completed, is read in,

representing the exact initial wavefunction for this iteration. As this set is usually

over complete with respect to the number of basis functions required to describe
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the wavefunction at the current point in time, the number of basis functions

is reduced to NMP , using the matching pursuit minimisation and optimisation

algorithm, outlined in detail in Section 4.2.2.

From the resulting, minimal basis set, initial conditions for a set of m traject-

ories are then sampled, using the Wigner quasi-probability distribution, covered

in Section 3.3.3. These trajectories are then propagated on the PES of the system

for nt timesteps of length ∆tt, resulting in a total sampling time of tt = nt∆tt.

Note that tt in the case of the adaptive sampling algorithm is drastically shorter

than in Chapter 3. As before, basis functions are stored with a probability of 1/ns

as trajectories evolve, resulting, at the end of the sampling stage, in a static basis

set of size Nt ≈ mnt
ns

.

To allow a seamless transition between bursts, the wavefunction at the time

of the restart, should be represented as accurately as possible, thus the set of

basis functions from the MP algorithm are added to the trajectory sampled ones,

resulting in a total basis set size of Ntotal = NMP +Nt. The expansion coefficients

of the optimised set of NMP GWPs are retained, in order to reflect the initial

wavefunction at time zero (for this burst), and those of the Nt trajectory sampled

basis functions are set to zero.

Following the algorithm presented in Section 3.2.2, the wavefunction is then

propagated in time, using only the expansion coefficients, for np timesteps lasting

∆tp each, resulting in a total propagation time of tp = np∆tp. The wavefunction

at the end of this propagation is then saved, in order to act as the input for the

following iteration of the adaptive sampling method.

4.2.2 Matching pursuit minimisation and optimisation

Capitalising on the overcomplete nature of the basis set inherited from the previous

burst, alluded to above, the MP algorithm is used to select the minimal number

of GWPs required to represent the wavefunction to within a user-determined ac-

curacy. This is further sped up by optimising the selected function’s parameters,

thus allowing each function to contribute to the wavefunction description as much

as possible. Matching pursuit, originally a method for signal decomposition,81

has been used as part of quantum dynamics calculations in the past, MP-SOFT

constituting the most notable example, where the MP algorithm forms a key part

of the method.82,83

The MP minimisation and optimisation algorithm gets initialised at the be-

ginning of an aTSA calculation, assuming at least one iteration has already been

completed. The input thus consists of the basis set describing the wavefunction

at the end of the propagation stage of the previous iteration. This initial set of
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basis functions and coefficients defines the wavefunction to within the highest ac-

curacy the aTSA is capable. The goal of the MP minimisation and optimisation

algorithm is to select from this large set, the lowest number of basis functions

that determine an approximate wavefunction to within an accuracy threshold and

determine the optimal expansion coefficients for this minimal basis set. To begin,

the full inherited basis set defining the wavefunction is,

Ψ =
N(I)∑
j

c
(I)
j φ

(I)
j , (4.1)

where φ
(I)
j are GWP basis functions and c

(I)
j the corresponding expansion coeffi-

cients at the end of wavefunction propagation of the previous burst.

The initial basis set is then expanded in order to introduce a wider variety of

phase space parameters and allow the MP algorithm to operate a higher efficiency,

as well as reducing the number of optimisation steps necessary, as will become clear

later. This is achieved, similarly to initial condition sampling for trajectories, using

the Wigner quasi-probability distribution. From Ψ basis functions are selected at

random and from the Wigner distribution corresponding to the chosen function,

positions and momenta are sampled for a new GWP, which is added to the initial

set with a zero valued coefficient. While in this case, the selection of basis functions

to sample new parameters from is random, it is also possible for the former to occur

in a biased manner, based for example on the overlap of the particular chosen

function, φ†, with the initial wavefunction, 〈φ†|Ψ〉. This process is continued until

the initial set has grown by a user determined factor, γ, such that N (I) → γN I .

The parameter γ takes a value of 3.0 for all calculations presented in this chapter,

with the exception of those in Section 4.5.5, where its effects are investigated in

detail. At this point it is helpful to introduce the set {φ(I) } containing all basis

functions defining Ψ.

Let the initial expanded wavefunction therefore be defined by the initial basis

set

Ψ(I) =
N(I)∑
j

c
(I)
j φ

(I)
j .

This will remain unchanged throughout the algorithm, as it forms the overlap tar-

get for which the algorithm measures its convergence. Thus define two more basis

sets, the active and minimal sets, indicated by superscripts (A) and (M) respect-

ively. The former represents the remainder of the wavefunction after subtraction

of the latter, which is the approximation of the full wavefunction.

Ψ(M) =
N(M)∑
j

c
(M)
j φ

(M)
j ,
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(a) Ψ(M) {φ }(M) Ψ(A) {φ }(A) (b) Ψ(M) {φ }(M) Ψ(A) {φ }A

Figure 4.2: The two major stages of the MP minimisation and optimisation al-

gorithm: (a) From the active basis set, {φ }(A), the basis function possess the

largest overlap with Ψ(A) is selected, removed from {φ }(A) and (b) optimised with

respect to overlap with Ψ(A) and added to {φ }(M).

Ψ(A) =
N(I)∑
j

c
(I)
j φ

(I)
j −

N(M)∑
j

c
(M)
j φ

(M)
j ,

{φ }(A) = {φ }(I) − {φ }(M) .

Note however that the last line actually reflects the removal of functions from

{φ }(I) before optimisation, which will be discussed in more detail later.

Figure 4.2 illustrates the two essential stages of the algorithm: MP basis function

selection and optimisation. Note that at the start of the algorithm, N (A) = N (I)

and N (M) = 0 and in general, at the start of each iteration of the algorithm

N (A) = N (I) −N (M). The algorithm proceeds as follows

1. Select from {φ }(A) the basis function, φ(A)† that maximises the overlap with

the remainder wavefunction

φ(A)† = argmax
φ∈{φ }(A)

〈
φ
∣∣Ψ(A)

〉
.

2. Optimise the parameters, (r†,p†) of φ(A)†(r†,p†) to yield φ‡(r‡,p‡), which

maximises the overlap with the remainder wavefunction, such that

φ‡(r‡,p‡) = argmax
〈
φ(A)†(δr†, δp†)

∣∣∣Ψ(A)
〉
.

3. Remove φ(A)† from the active set,

{φ }(A) → {φ }(A) − φ(A)† ,

N (A) → N (A) − 1 ,
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add φ‡ to the minimal basis set

{φ }(M) → {φ }(M) + φ‡ ,

N (M) → N (M) + 1 ,

and determine the new expansion coefficients of the minimal wavefunction

via projection. If

Ψ(M) = Ψ(I) ,

then
N(M)∑
j

c
(M)
j φ

(M)
j =

N(I)∑
j

c
(I)
j φ

(I)
j .

Projecting from the left with {φ }(M) yields

N(M)∑
k

N(M)∑
j

c
(M)
j

〈
φ
(M)
k

∣∣∣φ(M)
j

〉
=

N(M)∑
k

N(I)∑
j

c
(I)
j

〈
φ
(M)
k

∣∣∣φ(I)
j

〉
,

which may be simplified to matrix notation and rearranged to yield

c(M) =
(
S(M)

)−1
w ,

where S(M) is the minimal basis overlap matrix and w is a vector of length

N (M) with elements wk = 〈φ(M)
k |Ψ(I)〉.

4. Check for convergence of the algorithm. If∣∣〈Ψ(M)
∣∣Ψ(I)

〉∣∣ ≥ ζ ,

where ζ is the user-defined convergence criterion, the algorithm has con-

verged and Ψ(M) should be accepted as the minimal representation of Ψ(I),

else go to step 1.

4.3 Pyrazine benchmark

In order to allow the adaptive sampling algorithm to be compared to the trajectory

sampling method, the first benchmark problem chosen is the vibronic pyrazine

Hamiltonian, studied extensively with the latter. A detailed discussion of this

model can be found in Section 3.3. Given that the lower, 4-dimensional version

was used during the systematic investigation of the trajectory sampling algorithm’s

performance and the impact of parameters, presented in Section 3.4, the focus

will remain on this version of the Hamiltonian, however the more challenging

24-dimensional version will be briefly discussed as well.
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4.3.1 4-dimensional results

In order to assess the improvement over the trajectory sampling algorithm, af-

forded by the adaptive sampling method, a set of calculations was run, following

closely those presented in Section 3.3.6. Timestep durations for both the sampling

and propagation stages were ∆tt = ∆tp = 0.1 fs and the total time for which dy-

namics were obtained was 150 fs. A set of Nb = 15 bursts of equal length, tb = 10

fs was employed, resulting in a total of 14 instances of the MP minimisation and

optimisation algorithm, each with a convergence factor of ζ = 0.95.

Consequently, each individual burst consisted of nt = 100 timesteps of tra-

jectory sampling followed by np = 100 steps of wavefunction propagation. The

number of trajectories employed, m, and the basis function sampling frequency,
1/ns = 1/10, were kept constant across all bursts as well. The number of sampling

trajectories was varied, taking values of m = 100, 300, 900 and 1800. A distinc-

tion must be made between the number of basis functions resulting from trajectory

sampling and those inherited from any previous iterations of the algorithm as a

result of the MP step. To this end, the input parameters for these calculations are

shown in Table 4.1, along with the average (across all 15 bursts) number of total,

trajectory sampled and inherited basis functions, Ntotal, Nt and NMP respectively.

Figure 4.3 shows the populations of the lower excited S1 state of pyrazine, com-

pared to exact MCTDH results.65 Discussion of the wavefunction autocorrelation

functions and corresponding S2 photoabsorption spectra is foregone here, as it was

shown in Section 3.3.6 that the population provides the most in-depth measure of

the accuracy with which the dynamics are described, across all of phase space.

It is immediately apparent that the adaptive sampling algorithm significantly

outperforms the trajectory sampling method. Even the smallest basis set size

employed captures many of the essential features of the dynamics in a qualitat-

ive manner. Furthermore, the adaptive method also appears to scale much more

Table 4.1: Input parameters and average total, trajectory sampled and inherited

basis set sizes for adaptive sampling calculations of the 4D pyrazine Hamiltonian,

the results of which are shown in Figures 4.3 and 4.4.

Nb nt ∆tt/fs ns np ∆tp/fs ζ m Ntotal Nt NMP

15 100 0.1 10 100 0.1 0.95 100 1749 996 752

15 100 0.1 10 100 0.1 0.95 300 3192 2972 220

15 100 0.1 10 100 0.1 0.95 900 9135 9023 112

15 100 0.1 10 100 0.1 0.95 1800 18111 18009 101
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Figure 4.3: Populations of the lower S1 excited state of pyrazine, resulting from ad-

aptive sampling calculations of the 4-dimensional model Hamiltonian with varying

basis set sizes, compared to exact MCTDH data.65

favourably, with an increase to only 3000 basis functions resulting in almost quant-

itative accuracy. This is a strong indication that this algorithm converges more

quickly towards the finite basis set limit, shared by both these approaches. Further

evidence of this is provided by the relatively small increase in accuracy, compared

to Ntotal ≈ 3000, associated with the significantly larger basis sets shown in Figure

4.3(c) and (d).

For a more direct comparison between the two methods, Figure 4.4 shows

results for both the trajectory sampling and adaptive sampling method, at com-

parable total basis set sizes, Ntotal, with respect to MCTDH data. Here the ad-

vantages of the relatively frequent minimisation and optimisation of the basis set

describing the wavefunction are even more apparent, as adaptive sampling results

consistently outperforms the corresponding trajectory sampled data. In order to

quantify this increase in accuracy, the MAE and MAPE with respect to MCTDH

of both sets of data were calculated at each basis set size, using Eqs. 3.38, the
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Figure 4.4: Comparison of the accuracy in the populations of the S1 state of

pyrazine for the 4-dimensional Hamiltonian for the trajectory sampling and ad-

aptive sampling algorithm, with respect to MCTDH reference results.65

results being shown in Table 4.2. Again this data supports the observations made

above, as both errors are significantly lower using the adaptive sampling algorithm

over the trajectory sampling method.

Close inspection of Figure 4.3 reveals a phenomenon that warrants further

discussion. Careful examination reveals small discontinuities in the population

which, in this case, occur every 15 fs. This feature is closely linked with the

MP minimisation and optimisation algorithm. As the former results in a minimal

basis set which only reproduces the wavefunction to within the user set parameter

ζ, which in this case was chosen to be 0.95, the populations resulting from this

minimal set will differ from those due to the full set. This essentially yields two

populations at the same point in time. One results from the full basis set at the

end of the previous burst and thus is due to the more accurate description of the

wavefunction. Conversely, the population at the start of the next iteration is due

to the MP minimised and optimised basis set, which is inherently less accurate in

Table 4.2: Mean absolute and mean absolute percentage errors for TSA and aTSA

calculations of the 4D vibronic pyrazine Hamiltonian at varying total basis set sizes

with respect to exact MCTDH results.65

MAE MAPE / %

m Ntotal TSA aTSA TSA aTSA

300 ≈ 3000 0.045 0.019 6.3 3.5

900 ≈ 9000 0.025 0.015 3.4 2.4
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describing the wavefunction. At the time of the transition between iterations of

the algorithm, the former is thus chosen as the reported value.

As mentioned in Section 4.2.1, after completion of the MP algorithm, the

expansion coefficients resulting from the latter are retained, while the trajectory

sampled basis functions are initially assigned a value of zero. This, while reflecting

the fact that, at the time of the restart, the wavefunction should be described only

by the basis set resulting from MP, introduces a spurious shift away from the exact

population, which often takes a number of timesteps of wavefunction propagation

to correct itself. A good exampled of this occurring can be found in Figure 4.3(a),

at 20 fs, which corresponds to the transition between the second and third iteration

of the algorithm. Here a visible discontinuity occurs, resulting in a sharp peak in

the otherwise smooth shape of the population in this area, however the general

shape of and trend in P1(t) is recovered after approximately 1-2 fs.

This aspect of the adaptive sampling algorithm is unavoidable, as the basis set

resulting from MP will always describe the wavefunction with limited accuracy. By

increasing the convergence parameter of the minimisation and optimisation stage,

ζ, the magnitude of this discontinuity may however be decreased, and naturally

it is also affected by the number of iterations of the algorithm, Nb, and thus the

number of MP iterations necessary. The effects of both these parameters are

investigated in more detail in Section 4.5.

4.3.2 24-dimensional results

As already outlined in Section 3.3.7, the full 24-dimensional version of the vibronic

pyrazine Hamiltonian constitutes an extremely difficult benchmark problem for

quantum dynamics methods. The increased number of degrees of freedom signi-

ficantly limited the accuracy of the trajectory sampling algorithm. Nevertheless,

using a relatively larger basis set, the dynamics of the system could be reproduced

qualitatively with respect to MCTDH.65

As the number of dimensions increases, so does the computational expense of

all quantum dynamics methods, however the adaptive sampling algorithm, presen-

ted here, is expected to be impacted more significantly than most. The reasons for

this are twofold but both relate to the MP minimisation and optimisation step.

Firstly, while, as shown above, drastically improving the performance of the

algorithm for any given basis set size, this stage involves repeated calculation

of overlap matrices over parts of, or indeed the entire basis set. A number of

these calculations occur during every iteration of the MP algorithm. The higher-

dimensionality of the 24D Hamiltonian was found to, in general, require signific-

antly more basis functions to achieve qualitative accuracy in Section 3.3.7. Thus,
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every iteration of the MP algorithm involves repeated calculation of inherently

large matrices, the elements of which are high-dimensional integrals over the GWP

basis functions. The computational cost of this is non-trivial and, in the case of

the 24-dimensional Hamiltonian, the MP minimisation and optimisation algorithm

was indeed found to be the computational bottleneck.

The second reason, while closely related to the first and, at its core, also relating

to repeated matrix element evaluation, concerns the optimisation algorithm. As

alluded to in Section 4.2.2, the specific method chosen, to optimise GWP positions

and momenta with respect to the overlap of the function with the total wavefunc-

tion, was steepest descent. As, opposed to more advanced algorithms, such as

the conjugate gradient method, this does not involve finding optimal parameter

directions, in which to optimise the function in question, but rather considers each

degree of freedom and within that each parameter in turn. In addition to directly

scaling with respect to the number of degrees of freedom, this again results in each

iteration involving calculation of many integrals over the basis functions.

Although the performance of the adaptive sampling algorithm is expected to,

for these reasons, be significantly limited by computational cost in the case of the

full 24-dimensional Hamiltonian, a successful calculation was run; however the

input parameters had to be adjusted for optimal computational performance. A

total of Nb = 15 iterations of the adaptive sampling algorithm, each consisting

of nt = np = 100 timesteps, lasting ∆tt = ∆tp = 0.1 fs, were carried out. The

sampling frequency was 1/ns = 1/500 and the MP minimisation and optimisation

convergence criterion was ζ = 0.75. The latter was necessary in order to deal with

the computational bottleneck associated with the MP algorithm, as discussed

above, although it is recognised that this, in comparison to the 4D calculations,

lower value of ζ will limit the accuracy of the aTSA. Finally the number of sampling

trajectories was m = 1000. These input parameters and the resulting average basis

set sizes are summarised in Table 4.3.

Figure 4.5 shows a comparison of the TSA and aTSA results with an average of

Ntotal = 9000 basis functions. As discussed above, the lower MP minimisation and

optimisation convergence criterion that had to be employed in order to counteract

Table 4.3: Input parameters and average total, trajectory sampled and inherited

basis set sizes for adaptive sampling calculations of the 24D pyrazine Hamiltonian,

the results of which are shown in Figure 4.5.

Nb nt ∆tt/fs ns np ∆tp/fs ζ m Ntotal Nt NMP

15 100 0.1 10 100 0.1 0.75 1000 9030 8774 256
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Figure 4.5: Comparison of the accuracy in the populations of the S1 state of

pyrazine for the 24-dimensional Hamiltonian for the (a) trajectory sampling and

(b) adaptive sampling algorithm, with respect to MCTDH reference results.65

the computational bottleneck of the MP algorithm will limit the performance of

the aTSA results. Nevertheless, comparing the TSA and aTSA S1 populations, the

benefits of the aTSA are still relatively clear. While in the case of the TSA, after

approximately 40 fs, the population diverges from the exact MCTDH result,65 the

aTSA qualitatively reproduces the shape of the population, although the extent

of relaxation to S1 from S2 is underestimated. The key features of the population

dynamics are captured by the aTSA, as the reabsorbance features around 5 fs and

75 fs are clearly observed.

Given the computational challenge associated with the MP minimisation and

optimisation algorithm, especially for systems with many degrees of freedom, these

results are considered very encouraging. It should also be noted that adapting

existing MP algorithm to either allow restarts via checkpoint files stored on disk

or to make use of more highly parallel computing environments would significantly

reduce the bottleneck introduced during this stage of the aTSA.

4.4 Tunnelling benchmark

As mentioned in Section 4.1, the short nature of the sampling trajectories in the

case of the adaptive sampling algorithm should minimise the error due to classical-

quantum divergence at longer times. Thus, this method should be able to treat

systems which are subject to strong quantum effects much more effectively than

the trajectory sampling method, presented in Chapter 3. To investigate this hy-

pothesis, a synthetic benchmark system, modelling the tunnelling of a quantum

particle through a barrier, was chosen as the second benchmark for the adaptive
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Figure 4.6: (a) Potential energy, Vdw(q1), as a function of the tunnelling coordinate

of the double well benchmark and (b) V (q) for Model I, with q2 = 1 in order to

demonstrate the asymmetric effect of the harmonic bath.

sampling method. One further reason the performance of this sampling strategy

for tunnelling problems is the fact that most other trajectory-based quantum dy-

namics methods are not capable of capturing tunnelling effects.42,43,45,46,56,118

This model, which has been studied using other quantum dynamics approaches

in the past,47,82,119 consists of a one-dimensional energy barrier, through which

the particle tunnels, coupled to a number of harmonic oscillators, representing the

environment, such that

V (q) = Vdw(q1) + Venv(q) . (4.2)

The potential energy barrier in the tunnelling coordinate is a double well, given

by

Vdw(q1) =
1

16η
q41 −

1

2
q21 . (4.3)

where η = 1.3544, following previous investigations of this model.47,82,119 The

shape of this potential is shown in Figure 4.6(a). Coupling to the remaining DoFs

introduces an asymmetry, raising the energy of the tunnelling target well, as shown

in Figure 4.6(b). While inherently flexible with respect to the number of degrees

of freedom that make up the harmonic oscillator environment, the nature of the

coupling between the former and tunnelling coordinate can be either linear or

quadratic.

The initial conditions of this system are chosen in such a way that the energy

expectation value of the initial wavefunction, ψ0 is lower than the height of the
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barrier in the tunnelling coordinate. Thus, tunnelling due to classical mechanics

will be negligible, instead being driven almost entirely by the quantum nature of

the system. This wavefunction is a single, normalised GWP, given by

ψ0(q) =

f∏
j=1

[( α
π~

) 1
4

exp
[
−α
~

(
qj − q†j

)]]
, (4.4)

where q†1 = −2.5, q†j>1 = 0 and α = 0.5. Furthermore, the mass of each degree of

freedom was set to mj = 1.

In order to quantify the amount of tunnelling as function of time, the tunnelling

autocorrelation function, Ct(t), is calculated as

Ct(t) =
〈
ψ
′

0(q)
∣∣∣ψ(q, t)

〉
, (4.5)

where ψ
′
0(q) is the mirror image of the initial wavefunction, given by Eq. 4.4 with

values of q†1 = 2.5 and q†j>1 = 0. The value of this function can be interpreted as

a direct measure of the extent to which the wavefunction has tunnelled through

the barrier at any given moment in time.

As this model does not feature multiple electronic states, instead of the Ehren-

fest trajectories employed for the vibronic pyrazine Hamiltonian, classical MD

trajectories are used. While the Velocity Verlet scheme is retained, the equations

of motion are now

∂qκ
∂t

=
pκ
mκ

(4.6)

∂pκ
∂t

= −∂V
∂qκ

, (4.7)

where V is potential as described by Eq. 4.2. The sampling trajectories for this

benchmark are thus purely classical and therefore inherently incapable of describ-

ing a strong quantum event such as tunnelling. The reason the adaptive sampling

algorithm should nevertheless correctly describe quantum dynamics, given that a

sound basis set was sampled, lies with the propagation stage described in detail in

Section 3.2.2. Although the basis set in this case will be sampled purely classically,

the propagation of the wavefunction, expanded in the former, occurs via formally

exact, variational equations of motion, derived from the TDSE. The performance

of the algorithm for this model will thus give a good indication to what extent,

in the absence of long-time classical-quantum deviation, regions of phase space,

relevant to wavefunction propagation, may be accessed using classical trajectories.
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4.4.1 Linear coupling

The first version of this model investigated involves linear coupling between pairs

of modes, such that the environmental potential energy is given by

Venv(q) =

f∑
j=2

[
1

2
q2j + aqj−1qj

]
, (4.8)

where, in accordance with previous work on this problem, a = 0.2.47,82,118,119

Thus, the nature of the coupling is such that the tunnelling coordinate is only

directly coupled to one degree of freedom (j = 2), while the rest are only indirectly

coupled and the strength of this indirect interaction decreases with increasing j.

Two separate versions of this benchmark are considered here. The simplest case,

where f = 2 and there are no indirectly coupled degrees of freedom, is termed

Model I from here on. Whilst rather uncomplicated and not fully representative

of tunnelling in a real system, the simplicity associated with this low-dimensional

model does grant unobstructed insight into the ability of the adaptive sampling

algorithm to treat quantum tunnelling effects. Secondly, in order to more closely

represent a system which exhibits linear-like coupling of the degrees of freedom,

the case of f = 5, referred to as Model II, is also investigated.

Calculations for Model I employed sampling and propagation timesteps of

∆tt = 0.002 a.u. and ∆tp = 0.002 a.u. A set of Nb = 12 iterations of the ad-

aptive sampling algorithm were employed, each consisting of nt = 104 timesteps

of trajectory sampling and np = 104 timesteps of wavefunction propagation, result-

ing in a total timespan of 240 a.u. of dynamics calculated. A set of 4 calculations

was run, employing a MP convergence factor of ζ = 0.99 and sampling frequency

of 1/ns = 1/500. The number of sampling trajectories was varied, taking values of

m = 8, 12, 16 and 20. The resulting average (over all 12 bursts) total, trajectory

sampled and inherited basis set sizes, Ntotal, Nt and NMP respectively, are shown,

along with critical input parameters, in Table 4.4.

Table 4.4: Input parameters and average total, trajectory sampled and inherited

basis set sizes for adaptive sampling calculations of Model I, the results of which

are shown in Figure 4.7.

Nb nt ∆tt/a.u. ns np ∆tp/a.u. ζ m Ntotal Nt NMP

12 10000 0.002 500 10000 0.002 0.99 8 171 160 11

12 10000 0.002 500 10000 0.002 0.99 12 252 241 11

12 10000 0.002 500 10000 0.002 0.99 16 331 319 12

12 10000 0.002 500 10000 0.002 0.99 20 418 406 12
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Figure 4.7: Tunnelling autocorrelation functions for Model I, calculated using

the adaptive sampling algorithm with varying average total basis set sizes, Ntotal,

compared to exact CI results.119

Figure 4.7 shows the resulting tunnelling autocorrelation functions, compared

to numerically exact configuration interaction (CI) results.119 For the low-dimen-

sional Model I, the adaptive sampling algorithm performs excellently. All but the

smallest basis set, Ntotal ≈ 170 shown in Figure 4.7(a), clearly capture the qualitat-

ive nature of the tunnelling dynamics. Increasing to Ntotal ≈ 250, while improving

on the overall description of the tunnelling, still fails to capture the longer time

dynamics. The two largest basis sets employed however, excellently reproduce

the behaviour of the wavefunction, correctly showing it having tunnelled almost

completely through the barrier after around 100 a.u. and returning to its original

position after a further 110 a.u.

Only Ntotal ≈ 420 basis functions, as shown in Figure 4.7(d), are needed to

converge to essentially exact dynamics with respect to the CI reference data.119

Interestingly, the number of GWPs required to describe the wavefunction to within

an accuracy of ζ = 0.99 remains effectively constant for all 4 calculations. This

speaks, for one, to the relative simplicity of the wavefunction, however also in-
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dicates that the MP minimisation and optimisation algorithm for this particular

problem readily converges, allowing for the small total basis set sizes shown in

Table 4.4. Overall, the performance of the adaptive sampling algorithm for Model

I is very encouraging, as it clearly demonstrates that the purely classical sampling

trajectories employed, are capable of generating a basis set which can accurately

describe the, inherently quantum, tunnelling dynamics of the wavefunction.

To investigate to what extent this excellent performance is retained as the

number of DOFs increases, a set of 4 calculations was run for Model II. In this

case, the number of iterations of the adaptive sampling algorithm was Nb = 24,

with the same sampling and propagation timestep duration of ∆tt = ∆tp = 0.002

a.u., each iteration consisting of nt = np = 5000 steps of sampling and propagation.

Each such iteration thus consisted of 10 a.u. of sampling and propagation, leading,

as above, to a total simulation time of 240 a.u. A sampling frequency of 1/ns = 1/500

was used, while the MP convergence factor was ζ = 0.99. Again the number of

sampling trajectories was varied as m = 100, 200, 400 and 800. The average basis

set sizes as well as important input parameters for these calculations are shown in

Table 4.5.

Figure 4.8 shows the tunnelling autocorrelation functions, Abs [Ct(t)] for these

4 calculations, compared to exact CI results.119 The increased number of degrees

of freedom clearly results in an increase of the minimum number of basis functions,

required to accurately describe the wavefunction. The calculation shown in Fig-

ure 4.8(a), while still comparatively small, captures the essential dynamics of the

tunnelling, however both the timescale and the oscillatory fine structure of the

autocorrelation function are not accurately reproduced. Increasing the average

number of basis functions to Ntotal ≈ 2000, as shown in Figure 4.8(b), does sig-

nificantly improve the description of the tunnelling, as the timescale of the latter

is now qualitatively reproduced. Notably, conversely to the CI reference,119 the

autocorrelation function does not quite return to Abs [Ct(t)] = 0 around 210 a.u.,

Table 4.5: Input parameters and average total, trajectory sampled and inherited

basis set sizes for adaptive sampling calculations of Model II, the results of which

are shown in Figure 4.8.

Nb nt ∆tt/a.u. ns np ∆tp/a.u. ζ m Ntotal Nt NMP

24 5000 0.002 500 5000 0.002 0.99 100 1026 995 31

24 5000 0.002 500 5000 0.002 0.99 200 2025 1989 36

24 5000 0.002 500 5000 0.002 0.99 400 4003 3974 29

24 5000 0.002 500 5000 0.002 0.99 800 8016 7990 26
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Figure 4.8: Tunnelling autocorrelation functions for Model II, calculated using the

adaptive sampling algorithm with varying average total basis set sizes, Ntotal, with

respect to an exact CI benchmark.119

indicating that there are still limitations to the accuracy of the aTSA at this basis

set size.

Further increase of the latter to Ntotal ≈ 4000, shown in Figure 4.8(c), improves

on the qualitative accuracy of the tunnelling dynamics, the wavefunction now fully

returning to its original configuration around 210 a.u., although the oscillatory

structure is still not captured accurately. Increasing the basis set beyond this point

appears to not significantly improve results, as is evident from Figure 4.8(d), thus

suggesting that the adaptive sampling algorithm has converged for this particular

problem. Again, similarly to Model II, the number of basis functions selected by

the MP minimisation and optimisation algorithm to facilitate a smooth transition

between iterations of the aTSA, NMP remains relatively constant for varying total

basis set sizes, Ntotal.

While exact dynamics, with respect to the CI reference, were not obtained, the

tunnelling behaviour was captured with qualitative accuracy, using a still rather

small basis set. Given the relatively low computational cost associated with basis
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sets smaller than Ntotal ≈ 10000 and the purely classical sampling trajectories,

this is considered rather encouraging.

4.4.2 Quadratic coupling

The second type of coupling considered for the tunnelling benchmark outlined

above involves quadratic coupling between the tunnelling coordinate and every

environmental oscillator. In this case the potential energy due to the environment

is given by

Venv(q) =

f∑
j=2

[
1

2
q2j + aq1q

2
j

]
, (4.9)

where, again following previous investigations of this system, a = 0.05.47,82,118,119

From here on referred to as Model III, this constitutes a far more challenging prob-

lem than either Model I or II. Now the tunnelling coordinate is directly coupled

to every other degree of freedom, the coupling itself is quadratic instead of linear

and the strength of the latter is constant across all f − 1 coordinates. In order to

demonstrate the applicability of the adaptive sampling algorithm beyond systems

with only a few degrees of freedom, already represented by Model I and II, the

number of DOFs for Model III was chosen to be f = 20. While still a synthetic

benchmark, Model III is far more representative of real higher-dimensional sys-

tems involving quantum tunnelling and consequently a significant challenge for

any quantum dynamics method.

As a result of this, a common approach,118 when sampling the basis set for

solving this problem, is to sample basis functions not only from the initial wave-

function, centred around q1 = −2.5 and qj>1 = 0, but also from the mirrored

wavefunction, representing complete tunnelling to the other well, centred around

q1 = −2.5 and qj>1 = 0. This, while resulting in excellent dynamics,118 somewhat

reduces the sampling challenge, as the basis set generated by this approach inher-

ently supports tunnelling, independent of whether the sampling strategy captures

it or not. However, Model III still constitutes a challenging benchmark with re-

spect to the accuracy with which a given method captures the dynamics of the

wavefunction, irrespective of the basis set’s inclusion of tunnelling effects.

To assess both the performance of the aTSA for this benchmark, as well as

comparing to the TSA, two calculations, one for each approach, were run. Both

calculations were run for a total sampling time of 120 a.u. and employed sampling

and propagation timesteps of ∆tt = ∆p = 0.002 a.u., as well as m = 50 sampling

trajectories. The TSA calculation consisted of nt = np = 60000 timesteps of

sampling and propagation and a sampling frequency of 1/ns = 1/4000. For the aTSA

calculation, on the other hand, Nb = 60 sampling and propagation iterations of
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nt = np = 1000 timesteps were run, storing basis functions with a frequency

of 1/ns = 1/200 and employing a MP minimisation and optimisation convergence

criterion of ζ = 0.995. These input parameters are summarised in Table 4.6.

Finally, it is worth noting that, in accordance with the sampling strategy set out

above and with previous investigations of this benchmark,118 the initial burst of

sampling involved selecting basis functions from both wells in the potential energy.

As with the two models of linear coupling, the tunnelling autocorrelation func-

tion, Ct(t), was calculated for both methods, the results of which are shown in

Figure 4.9. Comparing again to exact CI data,119 the challenging nature of Model

III is immediately apparent. The TSA completely fails to capture the tunnelling

dynamics of the system beyond about 10 a.u., as too large a proportion of the

wavefunction tunnels to the opposite well, furthermore failing to return to its ori-

ginal configuration, instead remaining effectively trapped. The latter is indicated

by the decreasing amplitudes of the oscillations in Ct(t) in Figure 4.9(b).

The aTSA, on the other hand, does not exhibit either of the two shortcomings

above, capturing at the very least, the broad qualitative features of Ct(t). While by

no means following the CI results119 exactly, the extent to which the wavefunction

tunnels is reproduced relatively well, with the exception of the last 25 a.u. of time.

Given the relatively small basis sets employed for both calculations, as Ntotal = 994

and 884, for the TSA and aTSA respectively (trajectory sampled and MP inherited

basis set sizes are shown in Table 4.6), this is extremely encouraging.

The underlying conditions of Model III, that is the high number of DOFs

and the complex, quadratic coupling of the tunnelling coordinate to all others,

makes this a relatively realistic benchmark for systems exhibiting strong quantum

tunnelling. The adaptive sampling method, while, to an extent, addressing the

classical-quantum divergence, negatively affecting the TSA, still relies on sampling

trajectories driven by purely classical mechanics. Thus, even the limited qualit-

ative accuracy achieved here indicates that sufficiently frequent resampling of the

Table 4.6: Input parameters and basis set sizes for calculations of Model III, using

the TSA and the aTSA, the results of which are shown in Figure 4.9.

nt ∆tt/a.u. ns np ∆tp/a.u. m Ntotal

TSA 60000 0.002 4000 60000 0.002 50 994

aTSA 1000 0.002 200 1000 0.002 50 884

Nb ζ Nt NMP

aTSA 60 0.995 759 125
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Figure 4.9: Tunnelling autocorrelation function for Model III, calculated using (a)

the adaptive sampling algorithm and (b) with the trajectory sampling algorithm,

both with respect to an exact CI benchmark.119

wavefunction makes strong quantum effects accessible with such relatively simple

and computationally inexpensive tools.

4.5 Algorithm parameters and performance

The approach taken in this section follows very closely that used in Section 3.4.

The 4-D pyrazine benchmark was again used here, to allow comparison to the

results in the previous chapter.

4.5.1 Basis set size consistency

One of the key advantages of the adaptive sampling algorithm is that due to

the regular resampling of the basis set using trajectories, the overall number of

basis functions required to describe the wavefunction to a given accuracy is much

lower than in the case of the trajectory sampling method. The MP minimisation
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Figure 4.10: Comparison of the numbers of trajectory sampled GWP basis func-

tions and those inherited from the MP minimisation and optimisation algorithm,

for the adaptive sampling calculations of the 4D pyrazine Hamiltonian, presented

in Section 4.3 inputs for which are shown in Table 4.1 and results in Figure 4.3

and Table 4.2.

and optimisation algorithm, while allowing for seamless transitions between these

iterations, does also have the potential to systematically grow the basis set, which

would, in the long-time limit, counteract the aforementioned benefit.

More specifically, if the number of inherited basis functions was to grow at every

restart, resulting in a steadily increasing total basis set size, this method would

clearly be of limited use, especially concerning systems where a large number

of iterations are required. On the other hand, if the number of basis functions

required to describe the wavefunction at the transition between bursts remains

relatively constant, there are no inherent limitations to the number of iterations

of the adaptive sampling algorithm that may be used, ignoring computational

demands.

To investigate which is the case, the results for the calculations shown in Figure

4.3 and Table 4.2 can be investigated further. Figure 4.10 shows the constitution

of the basis set at the end of each iteration of the MP algorithm for 4 different
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total basis set sizes. In the case of the three larger basis sets, the number of in-

herited basis functions does remain relatively constant over all 15 iterations and,

more importantly, only constitutes a small percentage of the total basis set. Fur-

thermore, it is interesting to note that the iterations between which the number

of MP inherited basis functions did fluctuate, albeit not significantly, correspond-

ing to areas of complex dynamics, when comparing to the populations shown in

Figure 4.3. This indicates that when there is significant flux of the wavefunction

between the two electronic states, the number of basis functions required to de-

scribe the former increases, which is unsurprising, given that each function, while

multi-dimensional, is only associated with one of the two diabatic states.

The case of the smallest basis set, corresponding to the calculation employing

only m = 100 sampling trajectories, does not follow this general trend. Here the

number of basis functions inherited during each iteration of the MP minimisation

and optimisation algorithm does significantly contribute to the overall basis set

size, making up as much as 56% of all basis functions. Furthermore, the number

of functions inherited steadily increases for each iteration, thus making this calcu-

lation increasingly expensive. Although only 15 iterations of the algorithm were

employed in this case, the total basis set at the end of the final sampling stage is

more than twice the size of that sampled initially. Clearly, this calculation would

not be sustainable in the long-time limit, as the basis set would continue to grow,

increasing computational costs.

This non-conformance of the smallest calculation to the otherwise observed

trend is however considered rather encouraging, as it serves as a system of easy

self-diagnosis. Thus, if calculating dynamics without reference data to compare to,

should the number of inherited basis functions continue to grow in a similar man-

ner, it is likely that the number of sampling trajectories employed is insufficient

to properly describe the dynamics of the wavefunction. Given that the number of

trajectories to use, as well as the balance between this and the sampling frequency,
1/ns, which is discussed in more detail below, is not likely to be known a priori

for most systems, a diagnostic tool of this kind is guaranteed to be useful when

applying the trajectory sampling algorithm to a wider variety of problems.

4.5.2 Scaling and MP convergence

Given the increased performance of the aTSA over the TSA observed for the 4D

pyrazine Hamiltonian benchmark in Section 4.3, the scaling of this new method

with respect to total basis set size, Ntotal, warrants further investigation. In addi-

tion, possibly the most critical parameter of the aTSA is the convergence criterion

of the MP minimisation and optimisation algorithm, ζ, as it directly controls
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Figure 4.11: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian from adaptive sampling calculations, employing basis sets of varying

size and (b) corresponding mean absolute percentage errors, both for MP conver-

gence criteria of ζ = 0.95 and ζ = 0.97.

the accuracy with which the wavefunction is retained between two iterations of

sampling and propagation.

To investigate the effects of Ntotal and ζ, two sets of 4 × 10 calculations were

run, ζ taking values of 0.95 and 0.97. All calculations employed Nb = 15 iterations

of the aTSA, which consisted of nt = np = 100 timesteps of trajectory sampling

and propagation, each timestep lasting ∆tt = ∆tp = 0.1 fs, thus resulting in a total

simulation time of 150 fs. The basis function sampling frequency was 1/ns = 1/10

and the number of sampling trajectories was varied from m = 100 to m = 1000

in steps of 100. Due to the increased number of basis functions inherited with

ζ − 0.97 one additional set of calculations was run with m = 50. These input

parameters are summarised in Table 4.7.

Following the approach used throughout Section 3.4, the average MAE and

MAPE error, as well as corresponding standard deviations, were calculated us-

ing Eqs. 3.38 and 3.39, all with respect to exact MCTDH results.65 Again, the

total basis set size, averaged across sets of four calculations with identical input

Table 4.7: Input parameters for adaptive sampling calculations of the 4D pyrazine

Hamiltonian, the results of which are shown in Figures 4.11 and 4.12.

Nb nt ∆tt/fs ns np ∆tp/fs ζ

15 100 0.1 10 100 0.1 0.95

15 100 0.1 10 100 0.1 0.97
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Figure 4.12: Mean absolute percentage errors in the P1 population of the 4D

pyrazine Hamiltonian, comparing the performance of the aTSA and the TSA for

MP minimisation and optimisation convergence criteria of (a) ζ = 0.97 and (b)

ζ = 0.97.

parameters, was calculated as N total = 1
4

∑
Ntotal. It is important to note that

this average is different from what has been and continues to be referred to as

the average total basis set size, Ntotal, where the latter refers to only one aTSA

calculation, the average being taken over the Nb iterations of the algorithm.

Figure 4.11 shows these errors as a function of N total for both ζ = 0.95 and

ζ = 0.97. Furthermore, Figure 4.12 compares the average MAPE of both sets of

calculations to TSA results with comparable total basis set sizes, N total, previously

shown in Figure 3.9. The values of the average MAE, average MAPE, standard

deviation and basis set sizes are also shown in Tables A.5 and A.6.

The increased accuracy of the aTSA over the TSA at a given basis set size,

previously observed in Section 4.3, is clearly evident from Figure 4.12. Both sets of

calculations clearly outperform the TSA results by a significant margin. Even more

encouragingly, the rate at which the TSA appears to converge for this problem

is much higher, the average MAPE sharply dropping around N total ≈ 2500, as

opposed to the more gradual decrease, observed for the TSA. Overall this is highly

encouraging, as it quantitatively confirms that the aTSA constitutes a consistent

performance and accuracy increase over the TSA for a variety of total basis set

sizes.

In addition to this, the MP minimisation and optimisation convergence cri-

terion, ζ, appears to have a significant impact on the performance of the aTSA.

Close inspection of Figure 4.11 reveals that the accuracy of the dynamics ob-

tained does not drastically improve as ζ is increased, the rate of convergence of
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the aTSA on the other hand does seemingly depend on the choice of ζ. More spe-

cifically, while in the case of ζ = 0.95, the algorithm effectively converges around

N total ≈ 3000, further increase in the total basis set size not translating into no-

ticeably higher accuracy, with a higher convergence criterion of ζ = 0.97, the

average MAE and MAPE continue to decrease, albeit not as rapidly as initially,

suggesting that the algorithm has not yet fully converged.

Given that certain systems, such as the tunnelling dynamics discussed in Sec-

tion 4.4, are bound to be more sensitive to the accuracy with which the wave-

function description is retained between iterations of the aTSA, this is rather

encouraging. As the ζ parameter that controls this aspect of the algorithm is in-

creased, the maximum accuracy theoretically achievable will, as shown above, also

increase. The aTSA can thus, within limits imposed by available computational

resources, be adapted to a variety of systems and its theoretical performance be

tuned through the MP minimisation and optimisation convergence criterion.

4.5.3 Resampling frequency

The MP minimisation and optimisation stage of the adaptive sampling algorithm

is mainly controlled by two parameters. The number of iterations of the algorithm

that are employed, Nb, and the convergence criterion, ζ, which controls the accur-

acy with which the wavefunction must be reproduced by the minimised basis set,

and is discussed in more detail below.

For a given system the most likely parameters to be known a priori are the total

time for which dynamics need to be calculated and the timestep of wavefunction

propagation, which is often linked to the duration of the shortest action, likely to

influence the dynamics in any significant way, that the system is capable of. The

timestep duration for the sampling trajectories may be chosen to be equal to the

latter, but is not limited to this value, as has already been discussed, with respect

to the TSA, in Section 3.4.3 and is also investigated for the aTSA below. Once the

total number of timesteps to sample and propagate for has been determined, the

number of iterations of the adaptive sampling algorithm determined the duration

of each individual burst, which can also be though of as the frequency with which

the basis set is resampled.

Given that the performance increase due to these resampling events stems

from the constraining of the sampling trajectories to the short-time limit, min-

imising errors due to classical-quantum divergence, the aTSA is expected to be

relatively sensitive with respect to the choice of this frequency. Clearly, too small

a value of Nb, corresponding to too infrequent resampling, will allow for the afore-

mentioned errors due to divergence to again impact the dynamics. Conversely,
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choosing a value which is too large is likely to result in disproportionate computa-

tional expense, given that, as outlined above, the MP minimisation and optimisa-

tion algorithm often acts as the bottleneck limiting performance of the algorithm.

Furthermore, as each iteration of the MP algorithm introduces a systematic er-

ror, due to the approximate nature of the inherited basis set, it stands to reason

that a large number of bursts will result in the introduction of a significant error,

assuming ζ remains unchanged.

In order to investigate the effect of the resampling frequency, a set of 4 × 6

calculations was run, varying the number of iterations of the aTSA, Nb and thus

the number of sampling and propagation timesteps, nt and np respectively. In

order to maintain an approximately constant total basis set size of Ntotal ≈ 3000,

the number of sampling trajectories, m, was varied as well. Timestep durations

were ∆tt = ∆tp = 0.1 fs, while the basis function storage frequency was 1/ns = 1/10

and the MP minimisation and optimisation convergence criterion was ζ = 0.95.

These input parameters are summarised in Table 4.8.

Following the approach used above, the average MAE and MAPE, along with

corresponding standard deviations were calculated using Eqs. 3.38 and 3.39, all

with respect to exact MCTDH results.65 Figure 4.13 shows these errors as a func-

tion of the number of algorithm iterations Nb, the data and corresponding average

basis set sizes also being shown in Table A.7. The trend predicted above is clearly

reflected by this data, as both a large number of short sampling and propagation

bursts as well as very few long ones result in a clear loss of accuracy. Using between

Nb = 30 and Nb = 15 bursts appears to strike the balance between resampling

the wavefunction often enough to prevent large errors due to classical-quantum

divergence, while at the same time avoiding the significant systematic error due

to the finite accuracy of the MP minimisation and optimisation step.

In order to address the computational expense of the MP algorithm, alluded

to above, a second balance may be considered. The total basis set size, Ntotal

drastically affects the rate at which classical-quantum divergence degrades the

accuracy of the TSA, as is discussed in detail in Chapter 3. Thus, if the goal is to

Table 4.8: Input parameters and average total basis set sizes for adaptive sampling

calculations of the 4D vibronic pyrazine Hamiltonian, the results of which are

shown in Figures 4.13 and 4.14.

∆tt/fs ns ∆tp/fs ζ Ntotal

0.1 10 0.1 0.99 ≈ 3000

0.1 10 0.1 0.99 ≈ 9000
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Figure 4.13: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian using varying the number of iterations of the aTSA and (b) corres-

ponding mean absolute percentage errors, with an average total basis set size of

Ntotal ≈ 3000.

minimise the computational cost of the MP minimisation and optimisation step,

using a larger total basis set size, Ntotal, should result in more accurate single burst

performance, thus requiring fewer restarts of the aTSA algorithm.

To investigate this, a second set of 4× 6 calculations was run, using identical

parameters to those employed above, with the exception of the number of sampling

trajectories, which was scaled, so as to result in an average total basis set size of

Ntotal ≈ 9000. Again, average MAE and MAPE, as well as corresponding standard

deviations were calculated, the results being shown in Figure 4.14 and Table A.8.

On inspection of these errors it becomes immediately clear that the hypothesis

laid out above does indeed hold. In the case of the larger basis sets employed here,

the number of iterations of the aTSA algorithm required to accurately reproduce

the dynamics is rather low. To illustrate this, the average MAPE errors shown in

Figure 4.14 may be compared to those for TSA calculations in Figure 3.9. Using a

total of Ntotal ≈ 9000 basis functions yielded an average MAPE of approximately

4% for the TSA, while only 5 instances of wavefunction resampling using MP

reduced this error to about 2% for the aTSA.

The calculation employing the fewest, Nb = 4, bursts did result in increased

errors, thus suggesting that the balance between classical-quantum divergence and

MP systematic errors still plays a role for larger basis set sizes, albeit a less signi-

ficant one. The total basis set size, Ntotal, may thus, within reason, be leveraged

against the number of MP minimisation and optimisation steps required, in order

to maximise computational performance. Given that the MP step constitutes the

computational bottleneck for most calculations, as discussed in Section 4.3, this is
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Figure 4.14: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian using varying the number of iterations of the aTSA and (b) corres-

ponding mean absolute percentage errors, with an average total basis set size of

Ntotal ≈ 9000.

highly encouraging as it adds some flexibility to the set up of aTSA calculations.

4.5.4 “Oversampling”

The concepts of “over-” and “undersampling” have previously been introduced in

Section 3.4.3. These terms, referring to the cases of nt > np and nt < np respect-

ively, may also be extended to the adaptive sampling algorithm. “Undersampling”

has previously been found to result in a significant decrease in dynamics accur-

acy for the TSA and is thus omitted here. “Oversampling” however, as it has

been linked to an increase in accuracy in Section 3.4.3, albeit not a drastic one, is

considered for the aTSA as well.

Given that the sampling in the case of the aTSA is limited to much shorter

times, the effects of “oversampling” may be more significant, especially considering

the MP minimisation and optimisation algorithm, which naturally greatly benefits

from a more diverse basis function library. Aside from the classical-quantum diver-

gence inevitably experienced by the sampling trajectories, it stands to reason that

while certain quantum-relevant areas of phase space may be accessible to classical

mechanics, the time taken for a trajectory, driven by the latter, to reach these may

be significantly longer than under exact quantum propagation. Therefore, extend-

ing the duration of the sampling stage beyond that of wavefunction propagation,

may result in a basis set, which more accurately reflects the distribution of the

wavefunction in phase space, at the end of the TDSE solution.

In order to investigate the extent to which “oversampling” can improve the

accuracy of the adaptive sampling algorithm, a set of 4 × 12 calculations of the
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Figure 4.15: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian varying the number of sampling timesteps, nt, resulting in “over-

sampling” and (b) corresponding mean absolute percentage errors, with an average

total basis set size of Ntotal ≈ 9000.

4-dimensional pyrazine Hamiltonian benchmark were run, the latter being chosen

for the reasons already discussed above. A total of Nb iterations of the aTSA

were run for each calculation, made up of np = 100 timesteps of wavefunction

propagation, each lasting ∆tp = 0.1 fs. The duration of the sampling timesteps

was identical, ∆tt = 0.1 fs, while the number of such steps, nt, and the number of

sampling trajectories employed, m, were varied, in order to maintain an average

total basis set size of Ntotal ≈ 9000. Finally, the basis functions sampling frequency

was 1/ns = 1/500 and the MP minimisation and optimisation convergence criterion

was ζ = 0.99. These input parameters are also summarised in Table 4.9

Following the approach above, the average MAE and MAPE, along with cor-

responding standard deviations, were calculated using Eqs. 3.38 and 3.39, the

results being shown in Figure 4.15 and Table A.9. As suggested above, for the

adaptive sampling algorithm, “oversampling” can result in a significant increase

in accuracy. Focusing on Figure 4.15(b), using nt = 3000 sampling timesteps in

comparison to np = 100 propagation steps, resulted in a MAPE comparable to the

Table 4.9: Input parameters and average total basis set sizes for adaptive sampling

calculations of the 4D vibronic pyrazine Hamiltonian, the results of which are

shown in Figure 4.15.

Nb ∆tt/fs ns np ∆tp/fs ζ Ntotal

15 0.1 500 100 0.1 0.99 ≈ 9000
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Figure 4.16: Average basis set constitution, comparing average numbers of (a) tra-

jectory sampled, Nt, and (b) inherited basis functions, NMP , for adaptive sampling

calculations of the 4D pyrazine Hamiltonian, varying the number of sampling

timesteps, the results of which are shown in Figure 4.15.

best results obtained using the TSA, shown in Figure 3.9(b). Notably however,

the latter involved a total basis set size of Ntotal ≈ 24000 GWPs, while the average

number of functions employed by this specific implementation of the aTSA was

only Ntotal ≈ 9000. Given the relatively low computational cost of the sampling

trajectories, “oversampling” could thus constitute a cheap way to increase the

performance of any given aTSA calculation, barring any negative impact on other

parts of the algorithm.

This caveat warrants further investigation when considering the effect that

“oversampling” inevitably has on the distribution of the trajectory sampled basis

set in phase space. More specifically, as the duration of the sampling trajectories

starts increasing far beyond the duration of wavefunction propagation, nt >> np,

the resulting basis set will be more dispersed in phase space. As a result, after

propagation, the MP minimisation and optimisation algorithm will have fewer

functions, which overlap significantly with the wavefunction at the end of propaga-

tion, thus increasing the number of iterations required. As already discussed above,

for most problems, the computational cost associated with the MP algorithm far

outweighs that of any other part of the aTSA, thus constituting the rate-limiting

bottleneck. It stands to reason that the increase in accuracy gained by excessive

“oversampling” will be overshadowed by unfavourable computational cost, due to

the MP algorithm.

To investigate this further, Figure 4.16 shows the average number of trajectory

sampled and MP inherited basis functions, Nt andNMP respectively, for each of the

“oversampling” cases shown in Figure 4.15. Nt remains relatively constant, which
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is to be expected, given that the number of sampling trajectories, m, was scaled

so as to roughly maintain a constant basis set size across all calculations. The

number of basis functions resulting from the MP minimisation and optimisation

algorithm, NMP , and therefore the number of computationally expensive iterations

of the latter, does however increase significantly with the extent of oversampling.

While this was not found to drastically limit performance in this lower-dimen-

sional version of the pyrazine benchmark, it is expected that for more complex

systems, such as the full 24D Hamiltonian, the approximately 400% increase in

NMP for nt = 3000 would result in infeasible computational cost. Therefore, as

suggested above, while “oversampling” is certainly more beneficial for the aTSA

than the TSA, the increase in accuracy resulting from it comes at the cost of rising

computational expense.

4.5.5 Basis function library expansion

As outlined in Section 4.2.1, before the MP minimisation and optimisation al-

gorithm is iterated, the basis set at the end of the previous burst is expanded

using a parameter, γ. This generates a library of basis functions, based on and

still containing the aforementioned set, but providing a more diverse selection of

basis functions to the MP algorithm. This is associated with little additional com-

putational cost, as the functions added to the library are all assigned zero valued

coefficients and thus, while adding to the overall size of the basis set handled by

the MP algorithm, do not contribute to the overlap matrices, the calculation and

inversion of which constitutes the computational bottleneck of this stage.

Nevertheless, the effect of this parameter on the accuracy of the adaptive

sampling algorithm is worth investigating, especially as it does not significantly

increase computational costs, but has the potential to drastically speed up the

most expensive part of the majority of calculations, namely the MP minimisation

and optimisation step.

To investigate this, a set of 4× 9 calculations of the 4D pyrazine Hamiltonian

were run, with values of γ, varying from γ = 1.0 to γ = 5.0 in steps of 0.5. Each

Table 4.10: Input parameters and average total basis set sizes for adaptive

sampling calculations of the 4D vibronic pyrazine Hamiltonian, the results of which

are shown in Figures 4.17 and 4.18.

Nb nt ∆tt/fs ns np ∆tp/fs ζ m Ntotal

15 100 0.1 10 100 0.1 0.95 300 ≈ 3000
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Figure 4.17: (a) Mean absolute error in the P1 population of the 4D pyrazine

Hamiltonian varying the basis library expansion factor, γ, of the MP minimisa-

tion and optimisation algorithm and (b) corresponding mean absolute percentage

errors, with an average total basis set size of Ntotal ≈ 3000.

calculation consisted of Nb = 15 iterations of the aTSA, made up of m = 300

trajectories with nt = np = 100 timesteps of sampling and propagation, each

lasting ∆tt = ∆tp = 0.1 fs. The basis function sampling frequency was 1/ns = 1/10

and a MP minimisation and optimisation convergence criterion of ζ = 0.95. These

input parameters are summarised in Table 4.10.

In accordance with the approach taken throughout this section, the average

MAE and MAPE were calculated using Eqs. 3.38 and 3.39, the results of which

are shown in Figure 4.17 and Table A.10. Inspecting these errors, it becomes

immediately clear that the basis library expansion parameter does not significantly

affect the accuracy of the adaptive sampling algorithm. Furthermore, the rather

large standard deviations suggest that changing γ simply increases the variation in

the accuracy between calculations. This, naturally, is not ideal, as it complicates

judging the accuracy of any given calculation.

To investigate the effect of this parameter on the MP minimisation and optim-

isation algorithm, for the calculations above, basis set compositions, specifically

the average number of trajectory sampling and MP inherited basis functions, Nt

and NMP respectively, were calculated.

Figure 4.18 shows these compositions. Inspecting, especially the number of

basis functions yielded by the MP algorithm, NMP , shown in Figure 4.17(b), it

becomes clear that there is merit in changing the basis library expansion factor,

as values of γ > 1.0 result in fewer basis functions required to describe the wave-

function between bursts. As outlined above, the MP algorithm is computationally

rather expensive and often constitutes the computational bottleneck of a given
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Figure 4.18: Average basis set constitution, comparing average numbers of (a) tra-

jectory sampled, Nt, and (b) inherited basis functions, NMP , for adaptive sampling

calculations of the 4D pyrazine Hamiltonian, varying the basis library expansion

parameter, γ, the results of which are shown in Figure 4.17.

calculation. Thus, as changing γ does not significantly degrade the accuracy of

the aTSA, the latter may be sped up slightly by selecting a value of γ > 1.0. Given

however that drastically increasing this parameter will require storage of very large

matrices, values such as γ = 3.0, which was chosen for the calculations presented

throughout this work, are likely to yield the best balance between speeding up the

MP algorithm and limiting overall memory requirements.

Overall this parameter is considered rather useful, as, within reasonable limits,

it allows the computational cost of the adaptive sampling algorithm to be distrib-

uted between the number of operations required per iteration and the necessary

system memory.

4.5.6 Computational performance and cost

In order to quantitatively assess the computational cost associated with the ad-

aptive sampling algorithm, a number of previously discussed calculations were

analysed for total CPU time taken and maximum system memory required. All

calculations were performed on single compute nodes, containing either two Intel

Xeon E5-2630 v3 2.4 GHz 8-core processors, for a total of 16 cores per calculation,

or two Intel Xeon E7-4809 v3 2.0 GHz 8-core processors, for a total of 16 cores

(and 32 threads) per calculation. 16 core nodes were equipped with a maximum

of 64GB of DDR4 RAM, or 4GB per core, while 32 thread nodes supported up to

1024GB of DDR4 RAM, or 32GB per core. The adaptive sampling algorithm is

implemented using the FORTRAN programming language and accelerated using

OpenMP and LAPACK.
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In total, a set of 8 calculations was analysed, consisting of 4 different total basis

set sizes, each of which was investigated for two values of the MP minimisation and

optimisation convergence criterion. These calculations, or in some cases ones with

identical input parameters, were already discussed in Section 4.5.2. The specific

input parameters and average basis set sizes of the calculations investigated are

summarised in Table 4.11.

The resulting total CPU time per calculation and maximum system memory

used for each calculation are shown in Figure 4.19. The total computation time

provides further evidence that the MP minimisation and optimisation algorithm

does indeed constitute the computational bottleneck, even for this low-dimensional

4D version of the pyrazine Hamiltonian. Not only were the calculations resulting

in only 1000 trajectory sampled basis functions longer than those resulting in

3000, but increasing the MP convergence criterion from ζ = 0.95 to ζ = 0.97,

also resulted in consistent and significant increases in the total CPU time, for

comparable basis set sizes. Memory requirements on the other hand seem to be

less sensitive to the MP algorithm, only increasing slightly as ζ was altered. This

is to be expected, as, while contributing to the number of large matrices that must

be stored in memory, the MP step is by no means the only part of the algorithm

requiring this.

Comparing the computational requirements of the aTSA to those of the TSA

discussed in Chapter 3, while both the maximum memory usage and overall com-

putation time were higher for the aTSA, the benefit from using the latter far

outweighs these costs. Overall the the adaptive sampling algorithm performs well

for the kind of systems investigated in this chapter. Both memory and comput-

ing time requirements are well within the bounds of what is commonly available

in terms of computational infrastructure and feasible with respect to the general

timescale of research.

4.6 Conclusions

This chapter has introduced a modification to the trajectory sampling method,

presented in Chapter 3. The adaptive sampling algorithm recognises the limita-

tions placed on the former by the deviation of the classical-like sampling traject-

ories, employed to place basis functions in phase space, from the exact quantum

solution in the long time limit. By constraining the sampling to short timescales

and splitting the desired calculation into a number of shorter iterations of sampling

and wavefunction propagation, this challenge can however be overcome. In order

to ensure smooth transition between these bursts, a minimisation and optimisa-

tion algorithm, based on the popular matching pursuit approach,81–83 has been
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Figure 4.19: (a) Total CPU time and (b) maximum system memory required by

adaptive sampling calculations of the 4D pyrazine Hamiltonian, the input para-

meters of which are shown in Table 4.11.

Table 4.11: Input parameters and average total, trajectory sampled and inherited

basis set sizes for adaptive sampling calculations of the 4D pyrazine Hamiltonian,

the results of which are shown in Figure 4.19.

Nb nt ∆tt/fs ns np ∆tp/fs ζ m Ntotal Nt NMP

15 100 0.1 10 100 0.1 0.95 100 1646 993 653

15 100 0.1 10 100 0.1 0.95 300 3230 3005 225

15 100 0.1 10 100 0.1 0.95 900 9145 9030 115

15 100 0.1 10 100 0.1 0.95 1800 18136 18034 102

15 100 0.1 10 100 0.1 0.97 100 2615 996 1619

15 100 0.1 10 100 0.1 0.97 300 3691 2996 695

15 100 0.1 10 100 0.1 0.97 900 9295 8996 299

15 100 0.1 10 100 0.1 0.97 1800 18208 17979 229
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presented. In order to investigate both the validity of the approximation, under-

lying this modified method, as well as quantify and compare its performance and

accuracy to that of the trajectory sampling algorithm, two challenging quantum

dynamics benchmarks were chosen.

First, the vibronic Hamiltonian modelling the relaxation dynamics of pyrazine,

already extensively studied with the underlying method, was investigated. Com-

paring performance of the adaptive sampling algorithm for the 4-dimensional ver-

sion of this model to the trajectory sampling method, the advantages gained from

frequent minimisation and optimisation of the wavefunction became immediately

evident. Then number of basis functions required to reach near quantitative ac-

curacy with respect to exact MCTDH data was significantly lower, with as few as

3000 GWPs yielding extremely precise dynamics.

Extending this new modification to the full 24-dimensional version of the

pyrazine Hamiltonian was found to significantly increase the computational de-

mands of the adaptive sampling algorithm. It was discovered that the matching

pursuit minimisation and optimisation stage is especially sensitive to the number

of degrees of freedom, as it involves repeated calculation of large matrices, the

elements of which are multi-dimensional integrals between pairs of basis functions

across all system coordinates.

Although the matching pursuit minimisation and optimisation algorithm scales

unfavourably with the number of degrees of freedom, encouragingly a calculation

for the 24-dimensional pyrazine Hamiltonian revealed that even with the accur-

acy of said algorithm being severely limited by computational constraints, a clear

improvement over the trajectory sampling algorithm was still achieved. More spe-

cifically, the population dynamics produced by the adaptive sampling algorithm

qualitatively reproduced most features of the exact MCTDH results65 using ap-

proximately 9000 basis functions, something could previously not be achieved with

the trajectory sampling algorithm, even using as many as 24000 basis functions.

Given the potential to further optimise and accelerate the matching pursuit al-

gorithm, this is highly encouraging, as it suggests that this strategy should be

applicable to systems even larger than the pyrazine benchmark.

The second benchmark was chosen to investigate the hypothesis that, as the

adaptive sampling algorithm should reduce errors due to classical-quantum di-

vergence of the sampling trajectories, this method can be used to calculated the

dynamics of systems, subject to strong quantum effects. Thus, a synthetic double

well benchmark, modelling the tunnelling of a quantum particle through a one-

dimensional energy barrier, was treated with this new approach. Two types of

coupling, linear and quadratic, as well as a varying number of degrees of freedom

were investigated.
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For the simplest, linear, 2-dimensional model, near quantitative accuracy could

be achieved with a relatively small basis set. Increasing the number of dimensions

to 5 without altering the nature of the coupling was found to increase the challenge

somewhat, however qualitatively accurate dynamics could still be obtained at low

computational cost. The final 20-dimensional model, featuring quadratic coupling

to all environmental degrees of freedom, proved a significantly more difficult prob-

lem, however the adaptive sampling algorithm was able to capture the basic, qual-

itative nature of the dynamics of this system, which given the complexity of the

model, is considered highly encouraging. Furthermore, the trajectory sampling al-

gorithm completely fails to capture the tunnelling beyond the very short time limit,

thus indicating, even using classically driven sampling trajectories, resampling the

wavefunction with sufficient frequency can, at least qualitatively, describe strong

quantum events such as tunnelling.

Investigating in more detail the various input parameters and overall scaling

of the new adaptive sampling algorithm resulted in a number of interesting and

favourable discoveries. Encouragingly the basis set size was found to be relatively

constant between bursts, the MP algorithm only contributing a small fraction of

basis functions every time. Additionally, an insufficient number of GWPs will

result in this behaviour to break down, thus allowing for the easy identification of

cases where the number of trajectory sampled basis functions must be increased.

The algorithm was found to consistently outperform the trajectory sampling

approach, yielding significantly more accurate results at similar total basis set size.

Increasing the convergence criterion of the MP algorithm was found to raise the

theoretical maximum accuracy of the algorithm, allowing the rate of convergence

to be tuned by the user. A balance between the number of resampling events and

the accuracy of the algorithm was discovered, where both too frequent and too

infrequent sampling degrades the performance.

The concept of “oversampling”, introduced for the trajectory sampling al-

gorithm, was found to be significantly more beneficial in the case of adaptive

sampling. While increasing the performance of the algorithm, this benefit is, to

an extent, leveraged against increased computational cost, as more iterations of the

costly MP algorithm are required under strong “oversampling” conditions. The

expansion step preceding this MP minimisation and optimisation step was found

to, while not significantly affecting the accuracy of the algorithm, be useful in

balancing the computational expense between the number of required operations

and necessary system memory.

While the general performance increase over the trajectory sampling method

resulting from the adaptive sampling algorithm clearly indicates that there is sig-

nificant merit to limiting the sampling stage to short timescales, there are still a
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number of limitations to this strategy. As discussed in Chapter 2 and mentioned in

Section 4.1, the inability of classical trajectories to properly treat zero point energy

can allow for regions of phase space being visited which are inherently inaccessible

to the corresponding quantum trajectories. Furthermore, as investigation of the

tunnelling benchmark in Section 4.4 has made abundantly clear, certain quantum

effects, such as tunnelling, are simply not replicated by purely classical dynamics,

which limits the effectiveness of the basis sets sampled using the latter. As this is

a well known fact however, there exist a number of semi-classical approaches to

overcoming this limitation some of which may quite easily be adapted as driving

mechanics for the sampling trajectories.

One such method, which may be particularly suitable, given its similarity to

classical mechanics, is the path integral molecular dynamics (PIMD) framework,

based on Feynman path integral theory. Trajectories driven by this approach

should, in theory, sample phase space in a way that more accurately follows the

exact quantum path. This may be especially relevant in the case of strong quantum

tunnelling effects, such as is the case for the benchmark presented in Section 4.4,

which is why Chapter 5 is dedicated to the implementation of PIMD trajectories

as part of the adaptive sampling algorithm.
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Chapter 5

Path Integral Sampling

Trajectories

This chapter investigates the use of path integral molecular dynamics as the driv-

ing trajectories for the adaptive sampling algorithm. After introducing the un-

derlying theory of such trajectories, the algorithm responsible for implementing

them in the framework of the adaptive sampling method is presented. In order

to investigate whether they can provide an improvement over classical sampling

trajectories, the double well tunnelling benchmark from the previous chapter is

investigated.
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5.1 Introduction

The adaptive sampling algorithm was shown to constitute a significant improve-

ment over the TSA in Chapter 4. Comparing results for the vibronic pyrazine

benchmark, the aTSA required only a fraction of the basis functions needed by

the TSA to reach quantitative accuracy with respect to exact MCTDH results.65

In order to demonstrate that this novel method is not limited in its application to

non-adiabatic systems, a benchmark system featuring strong quantum tunnelling

was also investigated.

While the aTSA results for this synthetic double well benchmark were encour-

aging, they also highlighted a key limitation of the aTSA as used in Chapter 4,

specifically employing classical trajectories. For the lowest, 2-dimensional ver-

sion of the double well Hamiltonian, featuring linear coupling of the tunnelling

coordinate to the environment, quantitative accuracy with respect to exact CI

results119 could be achieved using the aTSA. However as the number of degrees

of freedom was increased to 5, the performance of the algorithm degraded some-

what, the highest accuracy achievable only capturing qualitative dynamics. This

loss of accuracy was even more noticeable in the case of the 20-dimensional, quad-

ratically coupled version of the double well Hamiltonian, where the aTSA, while

still significantly outperforming the TSA, altogether failed to capture some of the

tunnelling features of the system, only retaining rough quantitative accuracy with

respect to exact CI results.119

The origin of this degradation in performance as the complexity of the system

increases can be explained when considering the nature of the sampling traject-

ories employed. As discussed at length in Chapter 4, the classical trajectories

driving the sampling are rather ill-suited for modelling strong quantum effects,

such as the tunnelling in the double well benchmark. The reasons for this are

manifold, however all stem from the inherent difference between classical and

quantum mechanics.

One such limitation of classical trajectories is the possible leakage of the zero

point energy from one degree of freedom into another.116,117 This, in addition to

violating the law of conservation of ZPE, implicit in the TDSE, allows for regions

of phase space to be sampled which violate the uncertainty principle. Placing basis

functions in such areas, which is formally allowed and, depending on the number

and length of sampling trajectories, even likely when using classical mechanics as

the driver of sampling, has the potential to, on top of introducing an essentially

superfluous basis function, partially corrupt the basis set, as its presence allows

for nonphysical deformations of the wavefunction.

A further issue with using classical sampling trajectories, albeit related to the
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one discussed above, concerns the inherent difference in phase space paths taken

by classical and quantum mechanics and the differing rate at which phase space

may be sampled. Certain areas of space may be inaccessible to classical traject-

ories, but readily visited by quantum trajectories. A good example of such a

case are systems, like the double well benchmark, where two local minima in the

PES are separated by a energy barrier, the height of which exceeds the energy

of the wavefunction in one of these minima. The other minimum, while formally

inaccessible to classical trajectories, is often readily tunnelled to by quantum tra-

jectories. Even in cases where the classical trajectory has sufficient energy to cross

the barrier, that energy may result in the trajectory failing to remain in the other

well, returning over the barrier to its original position.

Even in cases where the phase space region of interest is formally accessible by

classical mechanics, for the example above this would constitute an energy barrier

lower than the energy of the wavefunction in one minimum configuration, the rate

at which this area may be sampled by a classical trajectory may be significantly

lower than the corresponding quantum rate. Thus, the difference in paths taken

and rate of phase space sampling between classical and quantum trajectories is

likely to also negatively impact the effectiveness of the former as a choice of driving

force for the aTSA.

The immediately obvious alternative of propagating the sampling trajectories

using exact quantum derived equations of motion would reduce the aTSA method

to one employing time-dependent basis functions. This, on top of rendering the

sampling stage obsolete, as dynamics may just as well be collected during the

propagation of the basis functions, would be associated with a number of issues,

which have, in the context of time-dependent quantum dynamics methods, been

discussed in Chapters 1 and 2.

The most desirable solution to this issue thus constitutes replacing the clas-

sical sampling trajectories of the aTSA with a semi-classical alternative, which,

while capturing quantum effects such as tunnelling, avoids the issues commonly

associated with time-dependent quantum dynamics methods. While a number of

choices for such a substitution exist, the approach chosen here was to employ path

integral molecular dynamics (PIMD),120,121 amongst other reasons for its relative

algorithmic similarity to purely classical molecular dynamics.

The remainder of this chapter focuses on first introducing the concept of PIMD,

by putting it in the context of path integrals, from which it derives. The algorithm

implementing this new type of trajectories in the aTSA is then outlined, followed

by application to the tunnelling double well benchmark discussed in detail in

Chapter 4.
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5.2 Path integral sampling trajectories

5.2.1 Path integral Hamiltonian

The fundamental underlying principle of semi-classical methodologies lies in, by

some means, averaging over a set of classically evolving trajectories in order to

approximate quantum dynamical information. The essence of the path integral ap-

proach lies in this average being taken over a number of paths, connecting the start

and end point of the dynamics under investigation. Ring polymer molecular dy-

namics capitalises on the isomorphism of the path integral description of quantum

mechanics and the classical behaviour of a hypothetical ring polymer.120,121 In the

context of the aTSA, PIMD only serves as a sampling tool and is not used to col-

lect dynamical information, in depth discussion of the finer points of the method

is therefore omitted here.

The harmonic PIMD Hamiltonian is given by

Hn(q,p) =
n∑
j=1

[
p2j
2m

+
1

2
mω2

n (qj − qj−1)2 + V (qj)

]
, (5.1)

where (qj, pj) are the phase space coordinates of the jth bead, ωn = 1
βn~ , which

in turn depends on the inverse temperature βn = 1
n
β = 1

nkbT
and the index j is

bound cyclicly such that (q0, p0) = (qn, pn). The phase space coordinates of the

centroid of this ring may be determined as a simple average over all beads such

that

qn =
1

n

n∑
j=1

qj pn =
1

n

n∑
j=1

pj . (5.2)

As this Hamiltonian is purely classical, equations of motion may be readily derived.

In the case of the beads these are

∂qj
∂t

=
pj
m
, (5.3)

∂pj
∂t

= −mω2
n (2qj − qj−1 − qj+1)−

∂V (qj)

∂qj
. (5.4)

While for the centroid they are given by

∂qn
∂t

=
pn
m
, (5.5)

∂pn
∂t

= − 1

n

n∑
j=1

∂V (qj)

∂qj
. (5.6)

However, in practice, the time evolution of the centroid is dictated by the motion

of the beads, that is to say, rather than propagating the centroid using the Eqs.

5.5 and 5.6, it is recalculated for each new set of bead coordinates, using Eq. 5.2.
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5.2.2 Path integral sampling algorithm

Employing PIMD sampling trajectories in the aTSA requires only minor adjust-

ments of the algorithm described in Section 4.2. After the initial conditions of

a given sampling trajectory haven been sampled from the Wigner distribution

of either the initial wavefunction or of a selected inherited basis function, a ring

polymer is generated by placing a number of n identical copies of the resulting

GWP at the sampled phase space coordinates.

At this point it becomes necessary to estimate the temperature of the GWP in

order to allow evaluation of the Hamiltonian given in Eq. 5.1. While playing a crit-

ical role in applications of PIMD where dynamics are calculated directly from the

trajectories, in the aTSA, a reasonable approximation of temperature is likely to

suffice, given that the trajectories only fulfil a sampling role and are not directly

involved in the calculation of dynamics. Thus, the relatively simple equiparti-

tion theorem describing the relationship between the average kinetic energy and

temperature of an ideal gas was adapted to fit this case, such that〈
g
∣∣∣ T̂ ∣∣∣ g〉 =

3

2
kBT , (5.7)

where |g〉 is the selected GWP, kB is the Boltzmann constant and the kinetic energy

operator takes the general form T̂ = − ~2
2m
∇2. From this, the inverse temperature,

β may be calculated as

β =
3

2 〈g|T̂ |g〉
. (5.8)

After initially placing all n beads of the new ring polymer at the phase space

coordinates of the GWP representing the desired initial conditions, the next step is

to equilibrate the polymer. This is achieved by integrating the equations of motion

for each bead, given by Eqs. 5.3 and 5.4, using the Velocity Verlet algorithm,

discussed in detail in Appendix II. The parameters used for this equilibration

are identical to those used for the sampling trajectories. In order to prevent the

polymer moving away from the coordinates, specified by the initial conditions,

after each equilibration step, the centroid of the ring polymer is calculated using

Eq. 5.2 and the positions of each bead are shifted by the vector corresponding to

the difference between the new centroid and the initial positions. This is illustrated

in Figure 5.1.

To determine when to terminate equilibration, the radius of gyration, rg, of

the ring polymer is calculated at each step using

r2g =
1

n

n∑
j

[
f∑
k

(
qjk − qnk

)2] 1
2

, (5.9)
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(a) (b) (c)

Figure 5.1: Illustration of the PIMD equilibration algorithm: (a) Each bead is

evolved using the Velocity Verlet algorithm, (b) the centroid of the ring is cal-

culated based on the new bead positions, (c) each bead is shifted by the vector

connecting the new and old centroid, returning the former to the latter.

where qjk refers to the position of the jth bead of the polymer in DOF k and

similarly, qnk refers to the position of the centroid in DOF k. As initially all beads

of the ring polymer have identical positions, rg starts at zero and increases as the

ring expands. This is monitored and once the fractional increase in rg between two

steps falls below a user set parameter, ξ, the equilibration algorithm is considered

to be complete.

The equilibrated ring polymer is then propagated in time, again using the

Velocity Verlet algorithm to integrate the equations of motion for each bead,

given by Eqs. 5.3 and 5.3. Other than these equations of motion being of a

slightly different form than those discussed in Section 4.4, individual sampling

steps proceed identically, using the same input parameters for the number of

sampling timesteps and their duration, nt and ∆tt respectively. When storing

basis functions, which is again controlled by the storage frequency parameter,
1/ns, the fact that each trajectory now consists of an evolving ring polymer, each

bead having different phase space coordinates, allows a choice with regards to

which parameters to choose for the stored GWP basis function.

The most immediately obvious choice is to store a basis function with positions

and momenta corresponding to the centroid of the ring polymer, which may be

calculated using Eq. 5.2. Alternatively, a single bead may be chosen at random

and the corresponding phase space coordinates then used as the parameters of

the stored basis function. As it is not immediately clear a prioiri which of these

approaches will yield more accurate results, both will be investigated.

Another parameter that’s key to the performance of the path integral traject-

ories is the number of beads employed in the ring polymer. As again, there is not

instinctive way of choosing this for this particular implementation of PIMD, the

normal approach of using the vibrations of the system to inform this choice not
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applying here, the number of beads was simply scaled until no further increase in

accuracy was observed.

5.3 Tunnelling benchmark

In order to assess whether the use of PIMD trajectories to drive the sampling stage

of the aTSA can significantly improve the accuracy with which strong quantum ef-

fects, specifically tunnelling, can be treated, the synthetic double well benchmark

discussed at length in Section 4.4 was investigated again. The parameters defining

the potential, as well as the terminology referring to three separate versions of this

Hamiltonian as Model I, II and III are retained, thus detailed discussion of the

system is omitted here. Also retained is the method of analysis, specifically calcu-

lating the tunnelling autocorrelation function, Ct(t), using the approach outlined

in Section 4.4, specifically Eq. 4.5.

5.3.1 Linear coupling

Starting with Model I, the use of PIMD sampling trajectories resulted in a no-

ticeable improvement of the accuracy with which exact CI results119 were repro-

duced. Two calculations, both employing Nb = 12 bursts of trajectory sampling,

each consisting of nt = np = 10000 steps of trajectory sampling and wavefunction

propagation, were run. Timestep durations were ∆tt = ∆tp = 0.002 a.u. with a

sampling frequency of 1/ns = 1/500 and a MP minimisation and optimisation conver-

gence criterion of ζ = 0.99. Both calculations employed ring polymers constituted

of n = 4 beads which were equilibrated until the fractional variation in the radius

of gyration was less than ξ = 0.001. The method of basis function storage was

Table 5.1: Input parameters and average total, trajectory sampled and inherited

basis set sizes for adaptive sampling calculations of Model I, using PIMD sampling

trajectories, the results of which are shown in Figure 5.2.

Nb nt ∆tt/a.u. ns np ∆tp/a.u. ζ m n ξ

12 10000 0.002 500 10000 0.002 0.99 8 4 0.001

12 10000 0.002 500 10000 0.002 0.99 12 4 0.001

Ntotal Nt NMP

181 169 12

249 237 12
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Figure 5.2: Tunnelling autocorrelation functions for Model I, comparing the effect

of using classical ((a) and (c)) and PIMD ((b) and (d)) sampling trajectories in

the aTSA, varying the number of sampling trajectories, m, compared to exact CI

results.119

to randomly select a given bead of the ring polymer. These calculations differed

only in the number of sampling trajectories employed, which, in order to allow

comparison to the data presented in Section 4.4.1, m = 8 and m = 12. These

input parameters and the resulting average basis set sizes are summarised in Table

5.1.

The results of these two calculations and, to allow the improvement afforded

by the use of PIMD sampling trajectories to be quantified, results for calculations

with the classical aTSA employing identical input parameters, previously shown

in Figure 4.7, are shown in Figure 5.2. Comparing the results for classical and

PIMD sampling with the same number of sampling trajectories, the benefit of the

latter becomes immediately obvious. In the case of m = 8 sampling trajectories,

PIMD sampling results in a basis set which qualitatively captures the tunnelling

dynamics, however fails to correctly describe the short time oscillations of the

wavefunction. This does nevertheless represent a significant improvement over

122



5.3. TUNNELLING BENCHMARK

classical sampling, which fails to describe the tunnelling with nearly as much ac-

curacy, introducing both a superfluous peak around 75 a.u. as well as significantly

underestimating the rate with which the wavefunction tunnels through the barrier.

This observation is further cemented when considering the results using m = 12

sampling trajectories. The quality of results from classical sampling improves

slightly, however it is still not comparable to that achieved using m = 8 PIMD

sampling trajectories. In fact, referring back to Figure 4.7, to reach similar ac-

curacy to that shown in Figure 5.2(b), at least m = 16 classical trajectories are

necessary. The results from m = 12 PIMD trajectories on the other hand now

capture both long and short time oscillations of the wavefunction, reproducing the

exact CI reference results119 quantitatively.

Overall these results are highly encouraging, as they clearly indicate that a

significant improvement in the accuracy with which the sampled basis set can

describe wavefunction evolution may be derived from using semi-classical PIMD

sampling trajectories. Given that this is not associated with a drastic increase

in computational cost, especially considering the previously discussed cost of the

MP minimisation and optimisation algorithm, which remains unaffected by the

nature of sampling trajectories, this suggest that PIMD constitutes an effective

and worthwhile choice of sampling for the aTSA.

Moving to the more challenging version of the linear coupling Hamiltonian,

Model II, again 2 calculations with input parameters similar to those of calcula-

tions presented in Section 4.4 were run. In keeping with the latter, both calcula-

tions involved Nb = 24 bursts of trajectory sampling and wavefunction propaga-

tion, each consisting of nt = np = 5000 steps lasting ∆tt = ∆tp = 0.002 a.u. Both

calculations also employed a basis function storage frequency of 1/ns = 1/500. The

Table 5.2: Input parameters and average total, trajectory sampled and inherited

basis set sizes for adaptive sampling calculations of Model II, using PIMD sampling

trajectories, the results of which are shown in Figure 5.3.

Nb nt ∆tt/a.u. ns np ∆tp/a.u. ζ m n ξ

24 5000 0.002 500 5000 0.002 0.99 100 4 0.001

24 5000 0.002 500 5000 0.002 0.995 200 10 0.001

Ntotal Nt NMP

1038 1002 36

2116 2007 109
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remaining input parameters differed so as to probe two levels of stringency with

which the aTSA and PIMD trajectories operated.

The first calculation involved m = 100 sampling trajectories, with a MP min-

imisation and optimisation criterion of ζ = 0.99. It employed a n = 4 bead

PIMD ring polymer, which was equilibrated until the fractional radius of gyration

variation was below ξ = 0.001 and used the parameters of a randomly chosen

bead for each stored basis function. The second calculation featured m = 200

sampling trajectories, with ζ = 0.995, n = 20, ξ = 0.001 and also used random

bead parameters for basis function storage. This second calculation thus involved

both an inherently more quantum-like ring polymer and a more accurate imple-

mentation of the MP minimisation and optimisation algorithm, as well as overall

more sampling trajectories and thus basis functions. The input parameters and

the resulting average basis set sizes for both these calculations are summarised in

Table 5.2.

Figure 5.3 compares the tunnelling autocorrelation function, calculated for

both these calculations using Eq. 4.5, to those obtained with classical sampling

trajectories, previously discussed in Section 4.4.1 and shown in Figure 4.7(a) and

(b). The observations made above for Model I are very much replicated in the

results for Model II. Again, as can be seen when comparing Figure 5.3(a) and

(b), PIMD sampling trajectories result in a basis set which, for a given number

of basis functions, much more effectively describes the tunnelling behaviour of

the wavefunction. The PIMD sampled basis set clearly captures the tunnelling of

the wavefunction qualitatively (only the short time oscillations not being accur-

ately described), which classical sampling fails to do, underestimating the rate of

tunnelling, which is observed as a shift in Ct(t) of approximately 25 a.u.

In fact, using only m = 100 PIMD sampling trajectories and thus a basis set

consisting, on average, of only 1000 basis functions, yielded results as, if not more,

accurate than those obtained with m = 800 classical trajectories and a basis set of

8000 GWPs, which are shown in Figure 4.8(d). More specifically, while similarly

to classical sampling, PIMD trajectories only captured the qualitative aspects

of tunnelling, the “period” of tunnelling, that is the point in time at which the

wavefunction has returned completely to its original configuration, at around 210

a.u., is reproduced almost exactly, with respect to the CI reference,119 in the case

of the latter.

This suggests, as in the case of Model I, significantly quicker convergence of the

aTSA with PIMD trajectories, which is further supported by the minimal increase

in accuracy observed between Figure 5.3(b) and (d). The latter, as discussed

above, is the result of a calculation, both employing overall more basis functions,

as well as a larger, that is composed of more beads, ring polymer. Additionally
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Figure 5.3: Tunnelling autocorrelation functions for Model II, comparing the effect

of using classical ((a) and (c)) and PIMD ((b) and (d)) sampling trajectories in the

aTSA, varying, amongst other parameters, the number of sampling trajectories,

m and beads n (further input parameters are given in Table 5.2), compared to

exact CI results.119

more stringent control parameters of the equilibration and the MP minimisation

and optimisation algorithm were used as well.

These results further cement the observation, made above for Model I, that

using PIMD sampling trajectories in combination with the aTSA significantly

improves the accuracy with which strong quantum effects such as tunnelling can

be described. Furthermore, as the number of beads in the ring polymer required in

both cases was comparatively low, the increase in computational cost over purely

classical trajectories is minimal, especially in comparison to that associated with

the MP minimisation and optimisation algorithm.
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5.3.2 Quadratic coupling

In Chapter 4, the 20-dimensional, quadratic coupling version of the double-well

Hamiltonian, termed Model III, was found to constitute a significantly more chal-

lenging benchmark problem than either Model I or II. This is a result of both the

increased number of DOFs and the nature of the coupling between them. The

latter plays a particularly interesting role, as in the case of Model III, each DOF

is coupled directly to the tunnelling coordinate, which makes this version of the

benchmark more representative of a real system, where some coupling, albeit of

varying strength, would be expected for most pairs of DOFs.

The intention of introducing the PIMD sampling trajectories in the context

of the aTSA is to improve the description of strong quantum effects such as tun-

nelling. The performance for Model III of the algorithm with this new type of

sampling trajectories should be indicative of the their applicability to realistic

systems featuring strong quantum effects.

In order to investigate the performance of the aTSA with PIMD sampling

trajectories, a calculation, consisting of Nb = 12 bursts was run, each consisting

of nt = np = 5000 timesteps of trajectory sampling and propagation, each lasting

∆tt = ∆tp = 0.002 a.u. Basis functions were stored with a frequency of 1/ns = 1/50,

while the MP minimisation and optimisation convergence criterion was ζ = 0.99.

A total of m = 100 PIMD sampling trajectories were run, each consisting of a ring

of n = 4 beads, which were equilibrated with a radius of gyration partial variation

condition of ξ = 0.001. For each storage event, a random bead was chosen. These

input parameters and the resulting average basis set sizes are summarised in Table

5.3.

Figure 5.4 shows the tunnelling autocorrelation functions, calculated using Eq.

4.5 for calculations employing the TSA, aTSA with classical and PIMD traject-

ories. As already discussed in Chapter 4, the aTSA significantly improves the

Table 5.3: Input parameters and average total, trajectory sampled and inherited

basis set sizes for an adaptive sampling calculation of Model III, using PIMD

sampling trajectories, the results of which are shown in Figure 5.4(c).

Nb nt ∆tt/a.u. ns np ∆tp/a.u. ζ m n ξ

12 5000 0.002 50 5000 0.002 0.99 100 4 0.001

Ntotal Nt NMP

10424 9962 462
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Figure 5.4: Tunnelling autocorrelation functions for Model III, calculated using (a)

the trajectory sampling algorithm, (b) the adaptive trajectory sampling algorithm

with classical sampling trajectories and (c) the aTSA with PIMD sampling tra-

jectories, all compared to an exact CI benchmark.119

description of the tunnelling over the TSA. The latter overestimates the extent

of tunnelling and fails to capture the oscillations of the wavefunction between

the two wells of the tunnelling coordinate. Encouragingly, the inclusion of PIMD

trajectories significantly improves the descriptions of these oscillations. While for

classical sampling the aTSA only qualitatively reproduced the tunnelling dynam-

ics, the PIMD sampled basis reached close to quantitative accuracy with respect
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Figure 5.5: Distribution of basis functions across the q1 tunnelling coordinate of

Model III, for a single iteration of the aTSA with (a) classical and (b) PIMD

sampling trajectories.

to the CI reference.119

The main discrepancy between the PIMD aTSA and CI results lies in the amp-

litudes of the tunnelling autocorrelation function. Towards the end of a iteration

of the aTSA propagation stage, a slight shift with respect to the benchmark results

also becomes apparent, however this is often corrected by the MP minimisation

and optimisation followed by trajectory sampling during the beginning of the next

iteration.

In order to visualise the benefit of the PIMD sampling trajectories over the

purely classical approach taken in Chapter 4, Figure 5.5 shows the positions of

the basis functions in the tunnelling coordinate, q1 for the first iteration of the

calculations shown in Figure 5.4 (b) and (c). As can clearly be seen from comparing

Figure 5.5 (a) to (b), even for the first iteration of the aTSA the difference in

basis function placement is significant. Using PIMD sampling trajectories not

only distributes the basis set more evenly across the left well, where the initial

wavefunction is located, but also populates the other well and areas corresponding

to the energy barrier, thus allowing for tunnelling to be described by the resulting

basis set with far greater accuracy. Given that the PIMD sampling trajectories

scale linearly with the number of beads, the benefits afforded by implementation

of the aTSA far outweigh the costs.

Overall these results are highly encouraging, not only due to the significant

increase in accuracy over the classic sampling results, but also because, as for

Model I and II, only n = 4 beads were required per PIMD trajectory to achieve

this improvement. This means that even for a relatively high-dimensional prob-

lem like Model III, these trajectories will not incur a significant increase in the

computational resources required.
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5.4 Conclusions

The aim of this Chapter was to test the applicability of the PIMD Hamiltonian as

the driving mechanic for the sampling trajectories of the aTSA. PIMD trajector-

ies can capture quantum events using a simple expansion of the particle as a ring

polymer of identical beads, connected by harmonic springs, which evolve according

to classical equations of motion. Given the well documented120,121 ability of PIMD

trajectories to increase the accuracy with which strong quantum effects such as

tunnelling are described, they were expected to provide an excellent choice for the

sampling algorithm of the aTSA. One of the main shortcomings of the latter, dis-

covered in Chapter 4, relating to the classical nature of the sampling trajectories.

While the wavefunction expansion of the aTSA is formally exact in the finite

basis limit, the time evolution of the wavefunction being expressed solely through

the expansion coefficients, which move according to variational equations of mo-

tion,34–37 the classical mechanics driving the basis set sampling severely limit the

accuracy with which strong quantum effects such as tunnelling can be described.

In order to address this, a simple implementation of the PIMD formalism was

developed for use as the sampling stage of the aTSA. The PIMD trajectories

are not used to collect dynamical information, instead they are only required for

the placement of basis functions in regions of phase space, relevant to wavefunc-

tion propagation. Thus, a number of simplifications could be made, the first of

which concerns the estimation of the temperature, required as part of the PIMD

Hamiltonian. In this case, the temperature was estimated by simply calculat-

ing the kinetic energy of the basis function providing the initial conditions of the

sampling trajectory, which was then inserted into a relationship borrowed from

the ideal gas.

The second approximation that could be made concerns the equilibration of

the ring polymers, previous to propagation of the sampling trajectories. Again a

relatively simple strategy was chosen here, whereby the ring is evolved in time,

using the Velocity Verlet algorithm, for one timestep, then the centroid is calcu-

lated and every bead shifted by the vector connecting the new centroid to the one

immediately before movement of the ring. This is repeated until the variation of

the ring’s radius of gyration fell below a user-determined threshold.

Applying this formalism to the tunnelling double well benchmark studied in

Chapter 4, yielded highly encouraging results. For the smallest, linear coupling

model, exact dynamics with respect to the CI reference119 was converged to much

faster using PIMD trajectories than their classical counterparts from Chapter 4.

The same was found for the higher-dimensional version of the linearly coupled

double well Hamiltonian, where qualitatively accurate results were again obtained
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using far fewer basis functions with the PIMD aTSA and a small improvement

was observed for the timescale of the tunnelling.

Finally, applying the PIMD sampling trajectories to the most challenging,

high-dimensional quadratic coupling version of the double well benchmark yielded

excellent results. In this case a significant improvement, not only in scaling but

also in the overall quality of dynamics achievable, was observed with respect to

classical sampling.

These initial results obtained suggest that using PIMD trajectories as the driv-

ing mechanics of the sampling stage in the aTSA can, as predicted, significantly

improve its ability to treat strong quantum effects such as tunnelling. Given how-

ever that this version of the aTSA has only been tested for three version of the

same benchmark so far and that the dependence on input parameter has so far

not been systematically tested, further work should be carried out before generally

adopting PIMD trajectories.

Given however that all results presented in this chapter suggest that only a

few beads in the ring polymer are required in order to capture tunnelling, further

investigation is considered to be highly worthwhile, especially given the signific-

antly more favourable scaling of the sampling stage of the aTSA than either the

propagation of the wavefunction or the MP minimisation and optimisation al-

gorithm, the latter of which was found to somewhat limit performance in Chapter

4. Thus, if the increased sampling accuracy of the PIMD trajectories could be

leveraged against the computational expense incurred by the MP algorithm, this

could serve to increase the maximum size of systems that may be investigated with

the aTSA, as well as improving performance and reducing computational costs.

130



Chapter 6

Conclusions and Further Work

This chapter states again the goal of this work, putting it into the wider context

of the field it resides in. Then follows a summary of the methods and results

presented herein and the conclusions that can be drawn from them. Finally a

number of avenues for potential further work are highlighted.
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6.1 Summary and conclusions

The quantised nature of the electromagnetic field means that for many interactions

between light and molecules, quantum effects need to be taken into account when

studying such processes theoretically. The benefit of applying theory to light-

matter interactions can translate into significant cost and time savings in both

industrial and academic research and development. Significant efforts are thus

directed towards improvement of the theoretical methods that model the quantum

dynamics of photophysical and photochemical systems.

Existing methods for nuclear quantum dynamics can be broadly categorised

based on how the wavefunction is expanded. The natural complexity of the latter

requires it to be expressed in a basis of mathematically well behaved functions,

the ensemble of which can be treated in order to simulate the time-evolution of

the wavefunction. The manner in which this is achieved and the nature of this

basis set for most common approaches falls into one of two categories, each with

its own advantages and limitations.

If the basis functions remain fixed in phase space, the propagation of the

wavefunction occurs via the expansion coefficients associated with the basis set,

for which equations of motion are derived, using the time-dependent variational

principle.34–37 The benefit of such time-independent basis sets38–41 is twofold. The

aforementioned equations of motion are well behaved and easy to integrate and

within the limit of a sufficiently large basis set, the dynamics resulting from their

propagation are formally exact. There are however two significant limitations of

such methods. The number of basis functions typically required are rather large,

as, without a way of choosing a priori where in phase space to place coordinates,

a grid of functions, sufficiently dense to cover all feasibly accessible space, must be

employed. Furthermore, and closely related to this, methods of this type exhibit

extremely unfavourable exponential scale with the number of degrees of freedom

of the system, thus severely limiting the size of molecules that may be treated

using them.

Alternatively, the basis functions can be allowed to, in addition to the expan-

sion coefficients, evolve in time, resulting in a time-dependent basis set.42–46,74

This is achieved by deriving a set of equations of motion for the parameters de-

fining the basis functions. The resulting basis set moves in phase space and can

therefore adapt to the changing amplitude of the wavefunction. The benefit of

this is that in comparison to time-independent basis sets, far fewer functions are

required in order to achieve a given level of accuracy. In addition to this, these

methods typically exhibit scaling with respect to system size, which while not ne-

cessarily favourable, still allows them to outperform time-independent methods.
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This benefit does however come at a price. The equations of motion for the basis

function parameters have a tendency to be ill-conditioned, which leads to their

integration being numerically challenging.74 Furthermore, if these equations are

not derived using the same variational approach34–37 that is employed for the ex-

pansion coefficients, the resulting trajectories have been shown to violate energy

conservation laws.47

This work has presented an alternative method for sampling basis sets for

nuclear quantum mechanics,57 which while borrowing aspects from both these

archetypes, avoids some of their commonly associated limitations. The key idea

is to sample a time-independent basis set, in a manner which is inspired by the

wavefunction propagation it is intended for and avoids having to place too many

functions. To achieve this, a set of simple trajectories, with initial conditions

sampled from the wavefunction, evolve on the potential energy surface of the

system, storing basis functions in phase space along their path. The key idea being

that, as the trajectories are not used to actually calculate dynamics, they need no

follow the exact quantum path. As long as some of these sampling trajectories visit

the regions of phase space, relevant to the propagation of the wavefunction, and

basis functions are stored there, the subsequent propagation via the expansion

coefficients will be accurate. This approach maintains all the benefits of time-

independent basis sets, while avoiding scaling issues, as the basis set only occupies

regions of phase space relevant to propagation of the wavefunction.

In order to test the effectiveness of this approach, it was applied to the challen-

ging quantum dynamics benchmark problem, modelling the relaxation dynamics

of photoexcited pyrazine. This small, organic molecule decays, upon excitation

to its second excited state, rapidly, via a conical intersection, to the lower lying

excited state. In addition to proving both a low and higher-dimensional ver-

sion of the Hamiltonian to test the novel method proposed herein against, this

particular problem has been studied with a number of other quantum dynamics

approaches62,65,70,73,84,106,110,112–114 and exact results are available.65

The trajectory sampling method57 yielded some extremely encouraging results

for the lower-dimensional version of the pyrazine benchmark, approaching numer-

ical accuracy. For the higher-dimensional version, only qualitative accuracy could

be achieve, however, in combination with the relatively low computational expense

associated with the calculations carried out, these results are still highly compet-

itive, especially when comparing to other, purely time-independent methods.

One common feature of these results for the pyrazine benchmark was that

the dynamics obtained were, even for the higher-dimensional version, essentially

exact in the short-time limit, errors only appearing at longer times. This was

linked to the main assumption of this method, namely that the classical sampling
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trajectories constitute a sound approximation to the quantum propagation of the

wavefunction. While this is well known to be true in the short-time limit, at

longer times a number of effects, such as leakage of zero point energy into other

degrees of freedom,116,117 cause the divergence of quantum and classical paths in

phase space. This results in inefficient basis function placement at longer times,

which translates into sub par dynamics being produced during the wavefunction

propagation stage.

In order to address this shortcoming, a modification to the trajectory sampling

algorithm was thus presented.122 The rather simple underlying principle being that

the existing method can yield accurate dynamics, as long as it is confined to short

periods of time. Therefore, the modified algorithm involves short “bursts” of

trajectory sampling and subsequent wavefunction propagation via the expansion

coefficients, strung together in order to make up the desired simulation time. In

order to prevent the basis set from continuously expanding, which would reintro-

duce the exponential scaling that plagues traditional time-independent methods,

a novel algorithm was developed to minimise and optimise the set of functions

carried over from one iteration to the next.

Based on the matching pursuit method,81 which has been used as part of

other quantum dynamics methods before,82,83 this relatively simple scheme results

in a basis set which, while remaining time-independent as far as wavefunction

propagation is concerned, can as part of the multiple iterations of the algorithm

adapt to the change in the wavefunction, not dissimilar to a time-dependent basis

set.

Applying this adaptive trajectory sampling method122 to the pyrazine bench-

mark yielded extremely encouraging results. For the lower-dimensional version of

the Hamiltonian, near quantitative accuracy could be achieve with a fraction of

the basis functions required by the trajectory sampling method, consequently also

incurring significantly lower computational expense. For the higher-dimensional

version of the benchmark a marked increase in the accuracy of the dynamics ob-

tained was observed, with essentially all qualitative features being reproduced.

In order to further test the performance of this method, a double-well bench-

mark modelling the tunnelling of a quantum particle through a one-dimensional

energy barrier was also considered. Again this system was chosen not only for

the significant challenge it poses for most quantum dynamics methods, but also

because it has previously been studied with a number of approaches47,82,119 and

exact results are again available.119

The adaptive sampling method122 preformed well for two versions of this bench-

mark, featuring linear coupling between the tunnelling coordinate and its envir-

onment. In the lower-dimensional case, exact results were reproduced using small
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basis sets, while for the higher-dimensional version, highly qualitatively accurate

dynamics were calculated, albeit using larger basis sets.

For the significantly more challenging, quadratic ally coupled version of the

double-well benchmark however, the adaptive sampling algorithm did not perform

as well. While still significantly outperforming the simpler trajectory sampling

method,57 the results obtained only roughly reproduced the qualitative features

of the exact dynamics. This was attributed to the fact that the combination of

the significantly higher number of degrees of freedom and more complex coupling

make this version of the benchmark much more representable of a realistic sys-

tem. While the short bursts of sampling and propagation, interspaced with min-

imisation and optimisation of the basis set, can address some classical-quantum

divergence effects, their ability so correctly sample strong quantum events, such

as the tunnelling in this case, will always be limited.

In order to address this shortcoming, path integral molecular dynamics117,120

were employed to drive the sampling trajectories. In this relatively simple scheme,

each particle is expanded into a ring of identical beads, connected by harmonic

springs. Evolving this ring classically has been shown to result in sampling of

quantum effects at essentially classical costs. As the trajectories only act as a

sampling mechanism and do not actually calculate dynamics, which is normally

the role of path integrals, a number of approximations could be introduced. Firstly,

the temperature, from which the stiffness of the ring is derived, was approximated

based on the kinetic energy of the basis function following the trajectory. Secondly,

in order to equilibrate the polymer, it was simply evolved normally for a single

step, then its centroid was calculated and the entire ring shifted by the vector

connecting this new centroid to the old one. This was repeated until the variation

in the rings radius of gyration fell below a threshold.

This rather simple implementation of path integral dynamics was found to

result in significant improvements for the description of the tunnelling dynamics

of the double-well benchmark. For the lower-dimensional version of linear coup-

ling, the trajectory sampling algorithm converged to the exact result significantly

quicker than with classical sampling trajectories. For the higher-dimensional, lin-

ear coupling benchmark, in addition to similarly improved convergence, a small

increase in the accuracy of the dynamics was also observed.

Finally and most encouragingly, for the quadratically coupled, high-dimensional

tunnelling problem, the quality of the dynamics was significantly increased, ap-

proaching quantitative agreement with exact results. This more drastic increase

in the performance of the adaptive sampling algorithm with path integral tra-

jectories may be linked to the more realistic nature of this particular version of

the benchmark. The benefit of using these semi-classical trajectories may in fact
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only truly come into play once the complexity of the problem reaches a certain

threshold, the path integral otherwise not significantly affecting the sampling with

respect to purely classical sampling trajectories.

In addition to the improvements in quality, a further encouraging aspect of

the results for the double-well benchmark was that the number of path integral

beads required in order to reap the benefits outlined above was extremely small,

which meant that the use of the path integral sampling trajectories came at little

additional cost. Given that strong quantum effects are a common occurrence in

real systems of interest, this points towards the use of this type of trajectories

as a relatively cheap solution to the challenge of modelling the behaviour in such

environments.

Overall the trajectory based scheme for sampling quantum dynamics basis sets

presented and systematically improved upon herein57,122 has been demonstrated

to be quite effective for the types of problems often encountered in the study

of photophysical and photochemical processes. In contrast to traditional time-

independent38–41 and time-dependent42–46,74 methods, this novel approach to the

issue of expanding and evolving the wavefunction has demonstrated that a com-

promise between the advantages and limitations of these two categories is indeed

possible and, as outlined above, certainly warrants further investigation.

6.2 Further work

There are a number of potential avenues for further work regarding the trajectory

sampling method presented herein. There are of course a number of benchmark

problems, highlighting different challenges to quantum dynamics methods, which

should be investigated. In addition, while systematic investigations for both the

trajectory sampling and adaptive trajectory sampling algorithm with classical tra-

jectories have been carried out, probing the effects of the various input paramet-

ers, no such work has yet been undertaken for path integral sampling trajectories.

Given the insights into the workings of these methods gained from these studies,

this is certainly considered worthwhile.

Another direction to pursue would be the investigation of the effect of different

methods as the driving mechanics of the sampling trajectories. Trajectory surface

hopping42,90–93 and ab initio multiple spawning43,56,86–88 could for example replace

the Ehrenfest dynamics employed in order to account for the multiple electronic

states of the pyrazine benchmark.

A third area to expand into is direct dynamics.85,95,96 This would involve de-

termining Hamiltonian matrix elements, and in the case of multiple electronic
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states, the coupling elements between them, from electronic structure calculations

during each timestep of trajectory sampling. The choice of Gaussian basis func-

tions is helpful in achieving this, not only are these functions associated with a

classical centre, thus allowing the required integrals to be determined around this

point, these integrals can also usually be solved analytically. This avenue of fur-

ther development is considered particularly worthwhile as it would allow for the

departure from analytical Hamiltonians and extend the range of systems that can

be treated using this method to all those which are computationally feasible.
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Appendices

I Gaussian wavepacket integration and overlap

For a general Gaussian basis function,

|g(r; t)〉 =

f∏
j=1

[(
2αj
π~

) 1
4

exp

[
−αj

1

~
(rj − rj(t))2 + pj(t)

i

~
(rj − rj(t))

]]
,

the overlap

〈gi(r; t) | gj(r; t)〉 ,

may be determined as a product of one dimensional overlaps, such that

〈gi(r; t) | gj(r; t)〉 =

f∏
k=1

〈gi(rk; t) | gj(rk; t)〉k .

This in turn may be expanded as

〈gi(rk; t) | gj(rk; t)〉k =

(
2αi
π~

) 1
4
(

2αj
π~

) 1
4

ec
∫
e−ar

2
k+brk drk ,

where

a =
1

~
(αi + αj) ,

b =
1

~

(
2αir

(i)
k + 2αjr

(j)
k + i(p

(j)
k − p

(i)
k )
)
,

c =
1

~

(
−αir(i)k

2 − αjr(j)k
2

+ ip
(i)
k r

(i)
k − ip

(j)
k r

(j)
k

)
.

This may be analytically solved, as it constitutes the general Gaussian integral,

such that

〈gi(rk; t) | gj(rk; t)〉k =

(
2αi
π~

) 1
4
(

2αj
π~

) 1
4

ec
√
π

a
e
b2

4a .
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II Velocity Verlet algorithm

The Velocity Verlet algorithm integrates Newton’s equations of motion

drk
dt

=
pk
mk

,

dpk
dt

= −dV (r)

drk
,

where rk is the position, pk the momentum and mk the mass in DOF k and V (r)

is the potential energy.

The Velocity Verlet algorithm proceeds as follows

rk(t+ δt) = rk + δt
pk(t)

mk

− 1

2
δt2

dV (r(t))

drk
,

pk(t+ 1
2
δt)

mk

=
pk(t)

mk

− 1

2
δt

dV (r(t))

drk
,

pk(t+ δt)

mk

=
pk(t+ 1

2
δt)

mk

− 1

2
δt

dV (r(t+ δt))

drk
.
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III Iteration using the 4th order Runge-Kutta method

The iteration of the equations of motion both for the basis set expansion coeffi-

cients (see above) and the Ehrenfest coefficients (see below) are solved numerically

using the 4th-order Runge-Kutta algorithm.

For a problem where

ẏ = f(y, t) ,

y(t0) = y0 .

For a given timestep δt,

y(tn+1) ≈ yn+1 = yn +
1

6
δt (k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + δt ,

where

k1 = f (yn, tn) ,

k2 = f

(
yn +

1

2
δtk1, t+

1

2
δt

)
,

k3 = f

(
yn +

1

2
δtk2, t+

1

2
δt

)
,

k4 = f (yn + δtk3, t+ δt) .
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IV Scaling of the trajectory sampling algorithm with basis

set size

Table A.1: Number of sampling trajectories, m, used in sets of 4 calculations to

obtain the data shown in Figure 3.9, the resulting average basis set size, N total

and average errors with corresponding standard deviations.

m N total MAE σMAE MAPE (%) σMAPE (%)

33 1008 0.0660 0.0021 10.1 0.7

67 1980 0.0520 0.0018 7.83 0.10

100 3028 0.0474 0.0032 6.89 0.56

133 3917 0.0422 0.0035 6.03 0.53

167 5043 0.0370 0.0048 5.18 0.70

200 6008 0.0357 0.0026 4.94 0.38

233 7044 0.0302 0.0031 4.05 0.50

267 7998 0.0317 0.0042 4.16 0.54

300 8989 0.0288 0.0027 3.79 0.31

333 9965 0.0312 0.0037 3.97 0.44

367 11019 0.0340 0.0080 4.30 0.96

400 11906 0.0273 0.0035 3.50 0.40

433 13005 0.0285 0.0033 3.58 0.39

467 13943 0.0248 0.0020 3.12 0.24

500 15076 0.0220 0.0027 2.81 0.33

533 15994 0.0216 0.0024 2.75 0.31

567 17021 0.0169 0.0021 2.18 0.27

600 18099 0.0209 0.0031 2.66 0.39

633 18977 0.0163 0.0018 2.09 0.23

667 20055 0.0160 0.0021 2.06 0.25

700 20994 0.0133 0.0013 1.72 0.17

733 22074 0.0125 0.0032 1.62 0.41

767 23175 0.00980 0.00110 1.28 0.16

800 24005 0.00962 0.00074 1.25 0.10
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V Scaling of the trajectory sampling algorithm with basis

function sampling frequency

Table A.2: Number of sampling trajectories, m, and sampling frequency paramet-

ers, ns, used in sets of 4 calculations to obtain the data shown in Figure 3.10,

the resulting average basis set size, N total and average errors with corresponding

standard deviations.

m ns N total MAE σMAE MAPE (%) σMAPE (%)

12 1 18028 0.0404 0.0019 5.57 0.26

60 5 18104 0.0186 0.0034 2.39 0.46

120 10 17998 0.0178 0.0014 2.33 0.18

180 15 17939 0.0156 0.0035 2.02 0.43

240 20 18061 0.0180 0.0029 2.32 0.33

300 25 18099 0.0159 0.0010 2.04 0.11

360 30 17922 0.0170 0.0030 2.17 0.37

480 40 17938 0.0181 0.0031 2.30 0.38

600 50 18015 0.0200 0.0021 2.56 0.25

900 75 18150 0.0189 0.0015 2.41 0.18

1200 100 18111 0.0166 0.0015 2.13 0.18

3000 250 17900 0.0200 0.0015 2.54 0.18

6000 500 18064 0.0187 0.0016 2.39 0.21

9000 750 17914 0.0222 0.0017 2.81 0.23

12000 1000 17948 0.0217 0.0014 2.74 0.18

18000 1500 17996 0.0223 0.0023 2.83 0.30
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VI Scaling of the trajectory sampling algorithm with timestep

duration and “over-” and “undersampling”

Table A.3: Sampling timestep duration, ∆tt, number of sampling timesteps ,nt,

and number of sampling trajectories, m, used in sets of 4 calculations to obtain the

data shown in Figure 3.11, the resulting average basis set size, N total and average

errors with corresponding standard deviations.

∆tt/fs nt m N total MAE σMAE MAPE (%) σMAPE (%)

0.001 150000 6 17939 0.0454 0.0067 6.45 1.10

0.010 15000 60 18113 0.0215 0.0021 2.77 0.25

0.025 6000 150 17947 0.0170 0.0018 2.20 0.23

0.050 3000 300 17988 0.0150 0.0021 1.93 0.26

0.075 2000 450 18046 0.0195 0.0036 2.50 0.43

0.100 1500 600 17996 0.0171 0.0014 2.19 0.18

0.150 900 1000 17927 0.0144 0.0019 1.86 0.26

0.200 750 1200 18130 0.0198 0.0020 2.51 0.23

0.500 300 3000 18048 0.0167 0.0010 2.13 0.12

1.000 150 6000 17951 0.0170 0.0018 2.17 0.23
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Table A.4: Number of sampling timesteps ,nt, and number of sampling traject-

ories, m, used in sets of 4 calculations to obtain the data shown in Figure 3.12,

the resulting average basis set size, N total and average errors with corresponding

standard deviations.

nt m N total MAE σMAE MAPE (%) σMAPE (%)

500 1800 17936 0.0829 0.0106 10.3 1.3

1000 900 17943 0.0162 0.0022 2.03 0.26

1250 720 18092 0.0191 0.0011 2.43 0.14

1500 600 18077 0.0209 0.0023 2.63 0.30

1750 515 17970 0.0194 0.0027 2.49 0.33

2000 450 18040 0.0172 0.0022 2.21 0.29

2500 360 17890 0.0167 0.0026 2.20 0.36

3000 300 17970 0.0081 0.0012 1.09 0.15

4000 225 17936 0.0084 0.0018 1.14 0.25

5000 180 18073 0.0110 0.0024 1.48 0.32

6000 150 18020 0.0122 0.0017 1.62 0.23

7500 120 17834 0.0161 0.0040 2.19 0.55

10000 90 18024 0.0132 0.0022 1.78 0.29
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VII Scaling of the adaptive sampling algorithm with basis

set size and MP convergence criterion, ζ

Table A.5: Number of sampling trajectories, m, used in sets of 4 calculations with

ζ = 0.95 to obtain the data shown in Figure 4.11, the resulting average basis set

sizes and average errors with corresponding standard deviations.

m N total N t NMP MAE σMAE MAPE (%) σMAPE (%)

100 1711 995 716 0.0358 0.0023 6.48 0.39

200 2365 1999 366 0.0185 0.0030 3.59 0.54

300 3231 2998 233 0.0189 0.0014 3.31 0.24

400 4182 3993 189 0.0192 0.0026 3.13 0.40

500 5161 4992 169 0.0178 0.0023 2.75 0.36

600 6136 5995 141 0.0189 0.0008 3.07 0.09

700 7115 6986 129 0.0199 0.0020 3.16 0.36

800 8122 8000 122 0.0178 0.0016 2.74 0.27

900 9149 9030 119 0.0171 0.0018 2.70 0.26

1000 10123 10002 121 0.0184 0.0014 2.86 0.21
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Table A.6: Number of sampling trajectories, m, used in sets of 4 calculations with

ζ = 0.97 to obtain the data shown in Figure 4.11, the resulting average basis set

sizes and average errors with corresponding standard deviations.

m N total N t NMP MAE σMAE MAPE (%) σMAPE (%)

50 1171 501 670 0.0519 0.0029 9.98 0.94

100 2503 996 1507 0.0399 0.0049 7.20 1.01

200 2941 1994 947 0.0210 0.0017 3.74 0.30

300 3715 3005 710 0.0187 0.0015 3.04 0.10

400 4564 3989 575 0.0188 0.0010 2.95 0.18

500 5521 5007 514 0.0174 0.0017 2.71 0.30

600 6443 5991 452 0.0164 0.0003 2.55 0.08

700 7393 7013 380 0.0163 0.0012 2.51 0.17

800 8318 7983 335 0.0152 0.0023 2.31 0.36

900 9291 8968 323 0.0156 0.0010 2.40 0.14

1000 10310 10009 301 0.0142 0.0005 2.17 0.09

155



VIII Scaling of the adaptive sampling algorithm with restart frequency

Table A.7: Number instances of the aTSA, Nb, number of sampling and propagation timesteps, nt and np respectively, and number of

sampling trajectories, m, used in sets of 4 calculations to obtain the data shown in Figure 4.13, the resulting average basis set sizes and

average errors with corresponding standard deviations.

Nb nt, np m N total N t NMP MAE σMAE MAPE (%) σMAPE (%)

60 25 1200 3005 2997 8 0.0352 0.0032 5.68 0.55

30 50 600 3046 3010 36 0.0208 0.0022 3.84 0.48

20 75 400 3090 2999 91 0.0229 0.0011 4.10 0.32

15 100 300 3235 3007 228 0.0203 0.0029 3.47 0.50

8 200 150 4770 3426 1344 0.0321 0.0049 5.02 0.76

5 300 100 4222 2996 1226 0.0386 0.0024 5.59 0.39

4 400 75 5559 4012 1547 0.0336 0.0017 4.91 0.21

3 500 60 3876 3009 867 0.0271 0.0035 4.02 0.52
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Table A.8: Number instances of the aTSA, Nb, number of sampling and propagation timesteps, nt and np respectively, and number of

sampling trajectories, m, used in sets of 4 calculations to obtain the data shown in Figure 4.14, the resulting average basis set sizes and

average errors with corresponding standard deviations.

Nb nt, np m N total N t NMP MAE σMAE MAPE (%) σMAPE (%)

60 25 3600 9011 9003 8 0.0351 0.0018 5.87 0.42

30 50 1800 9013 8981 32 0.0212 0.0023 3.90 0.35

20 75 1200 9078 9005 73 0.0192 0.0017 3.29 0.30

15 100 900 9120 9001 119 0.0179 0.0019 2.78 0.27

8 200 450 10913 10327 586 0.0153 0.0022 2.21 0.24

5 300 300 10066 9022 1044 0.0183 0.0021 2.44 0.26

4 400 225 13212 11959 1253 0.0098 0.0005 1.29 0.07

3 500 180 9740 9028 712 0.0088 0.0005 1.25 0.06
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IX Scaling of the adaptive sampling algorithm with re-

spect to “oversampling”

Table A.9: Number of sampling timesteps, nt, and number of sampling trajector-

ies, m, used in sets of 4 calculations to obtain the data shown in Figure 4.15, the

resulting average basis set sizes and average errors with corresponding standard

deviations.

nt m N total N t NMP MAE σMAE MAPE (%) σMAPE (%)

100 900 9119 8993 125 0.0185 0.0014 2.92 0.23

120 750 9103 8988 115 0.0186 0.0015 2.91 0.24

140 643 9086 8973 113 0.0187 0.0005 2.93 0.09

160 563 9118 9004 113 0.0189 0.0017 2.98 0.26

180 500 9114 9002 112 0.0183 0.0013 2.88 0.22

200 450 9129 9017 112 0.0177 0.0009 2.76 0.14

300 300 9142 9009 132 0.0168 0.0003 2.64 0.06

400 225 9147 8993 153 0.0145 0.0018 2.22 0.29

500 180 9138 8973 164 0.0160 0.0030 2.54 0.53

1000 90 9276 9004 271 0.0111 0.0014 1.81 0.19

2000 45 9379 9005 374 0.0133 0.0024 2.16 0.42

3000 30 9536 8975 561 0.0084 0.0017 1.39 0.25
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X Scaling of the adaptive sampling algorithm with the

basis library expansion parameter, γ

Table A.10: Basis set expansion parameter, γ, used in sets of 4 calculations to

obtain the data shown in Figure 4.17, the resulting average basis set sizes and

average errors with corresponding standard deviations.

γ N total N t NMP MAE σMAE MAPE (%) σMAPE (%)

1.0 3257 2992 264 0.0177 0.0012 3.06 0.29

1.5 3271 3012 258 0.0212 0.0026 3.46 0.49

2.0 3254 2999 255 0.0177 0.0011 3.06 0.24

2.5 3234 3008 226 0.0189 0.0022 3.22 0.33

3.0 3248 3009 239 0.0205 0.0039 3.60 0.58

3.5 3247 3003 244 0.0202 0.0039 3.36 0.53

4.0 3240 3011 229 0.0209 0.0025 3.46 0.49

4.5 3244 2997 247 0.0196 0.0030 3.16 0.50

5.0 3238 2997 240 0.0196 0.0033 3.35 0.58
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