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Abstract

We describe a method for performing nuclear quantum dynamics calculations using
standard, grid-based algorithms, including the multi configurational time-dependent
Hartree (MCTDH) method, where the potential energy surface (PES) is calculated
“on-the-fly”. The method of Gaussian process regression (GPR) is used to construct
a global representation of the PES using values of the energy at points distributed
in molecular configuration space during the course of the wavepacket propagation.
We demonstrate this direct dynamics approach for both an analytical PES function
describing 3-dimensional proton transfer dynamics in malonaldehyde, and for 2- and
6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In
the case of salicylaldimine we also perform calculations in which the PES is constructed
using Hartree-Fock calculations through an interface to an ab initio electronic structure
code. In all cases, the results of the quantum dynamics simulations are in excellent
agreement with previous simulations of both systems, yet do not require prior fitting
of a PES at any stage. Our approach (implemented in a development version of the
Quantics package) opens a route to performing accurate quantum dynamics simulations
via wavefunction propagation of many-dimensional molecular systems in a direct and
efficient manner.
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1 Introduction

The computer simulation of the dynamical behaviour of molecules is vital in providing un-

derstanding of processes which are important across chemistry, materials science and biology.

Such simulations can be performed using methods based on classical mechanics, but many

processes which are important in biological systems, for example proton transfer mechanisms

in enzyme catalysis1,2 or the photochemistry of DNA3,4 and plant sunscreen molecules,5,6 are

fundamentally quantum mechanical in nature. It follows that simulation methods including

the effects of quantum mechanics are needed to provide an accurate representation of the

system being studied.

To model quantum molecular dynamics we must solve the time-dependent Schrödinger

equation (TDSE) for nuclear motion,

i~
∂Ψ (q, t)

∂t
= ĤΨ (q, t) , (1)

where {q} is the set of degrees-of-freedom (DOFs) of nuclear motion. Methods for following

the time evolution of the wavefunction have been developed and refined over the past few

decades, but among the most successful are those based on expanding the wavefunction in

terms of a grid of basis functions localised in molecular configuration space. The method of

choice in this field is the multi-configuration time-dependent Hartree (MCTDH) approach7–13

which allows the treatment of systems of a few tens of DOFs and converges to the exact

answer given a large enough basis set. Recently, so-called multi-layer MCTDH has been

developed as an extension of the original method, allowing the description of the dynamics

of systems with several hundred DOFs.14–18

The central difficulty of carrying out quantum dynamics calculations using grid-based

methods is the need to define the form of the Hamiltonian operator, Ĥ, prior to carrying

out the wavepacket propagation. The nuclear wavefunction evolves on a potential energy

surface (PES) defined by the solution of the electronic Schrödinger equation at points in
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nuclear configuration space. As the wavefunction is a delocalised entity, the global form of

the PES must be known in order to define the Hamiltonian. The fitting of some appropriate

functional form to electronic energies is a common way of determining the PES, for example

using the vibronic coupling Hamiltonian (VCHAM) method,11,12,19,20 but this can be an

arduous process if many nuclear DOFs and/or multiple electronic states are to be included

in the Hamiltonian. The process can be simplified if a convenient choice of coordinate system

is chosen to model the dynamics, but such a choice can often yield a kinetic energy operator

with a complicated form.21

To overcome the problems associated with PES fitting and coodinate system choice,

direct dynamics (DD) methods have been developed recently.22,23 These approaches circum-

vent the long-winded PES fitting procedure by generating the PES during the course of the

dynamics calculation. They avoid the global fitting of the PES by expanding the nuclear

wavefunction in terms of basis functions of particular localised form which mean that only a

localised knowledge of the potential around the centre of the functions is needed. This local

representation also means that the choice of coordinate system is less important as there

is no need to seek a simple global function to represent the PES, meaning that coordinate

systems where the kinetic energy operator has a simple convenient form (e.g. Cartesian

coordinates or normal modes) can be used. Among the most successful DD methods in use

are the trajectory surface hopping (TSH)24–42 and ab initio multiple spawning (AIMS)43–47

methods which have both been used in studies on photochemistry in complex environments.

The former method uses multiple classical trajectories to model the nuclear dynamics, with

ab initio electronic energies being used to provide the forces along the trajectories. AIMS

uses an expansion of the nuclear wavefunction in terms of Gaussian wavepackets, the centres

of which evolve classically while the coefficients of the Gaussians in the wavefunction ex-

pansion are propagated quantum mechanically, with local approximations to the PES used

to evaluate the associated matrix elements. Both methods can model the transfer of the

wavefunction between multiple electronic states; TSH by allowing trajectories to hop be-
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tween the states and AIMS by spawning new Gaussian functions on different states. A fully

quantum mechanical DD method has also been implemented, based on the variational multi-

configuration Gaussian (vMCG) method,48,49 whereby, similar to AIMS, the wavefunction

is represented by a linear combination of Gaussian wavepackets. The vMCG method, how-

ever, employs variational quantum evolution of both the Gaussian basis functions and the

expansion coefficients. The DD-vMCG method50–62 relies on using a Shepard interpolation

of the PES to calculate the matrix elements required for propagation; the electronic energy,

and its gradient and Hessian, are periodically evaluated at the centre of the Gaussian func-

tions, and the local harmonic approximations to the PES that can then be formed around

these points are combined in a weighted sum to give an approximate global PES. Despite

their success, these three popular methods outlined each have issues which makes them less

than ideal when used to model nuclear dynamics; TSH and AIMS rely on classical dynamics

which makes them less able to model such features as tunnelling, while the fully quantum

vMCG method suffers from numerical issues related to the use of a non-orthogonal basis of

Gaussian functions (particularly relating to the linear dependence of the functions causing

singularities in the equations-of-motion50,63).

Ideally a method is required which combines the stability and fully quantum nature of

grid-based dynamics methods, such as MCTDH, with the ease of use and convenience of the

DD methods described above. Although the DD-vMCG method uses an approximation to

the full PES, the Shepard interpolation used is not suitable for MCTDH as it does not have

the required sum-of-products form for efficient propagation of the MCTDH wavefunction.

This desirable aspect of the PES for MCTDH will be considered more fully later but, briefly,

it means that the PES is represented as a linear combination of functions which are products

of separate terms in each DOF.

In this work, we present a new direct grid-based dynamics method based around the use

of Gaussian Process Regression (GPR)64–71 to expand the PES. The roots of this method

lie within the field of Bayesian statistics, but the method can be used to generate a rep-
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resentation of the PES based upon a linear expansion of Gaussian functions distributed

across configuration space, yielding a PES in the sum-of-products form required for efficient

MCTDH simulations. Here, we test this methodology in simulations of two molecules where

intra-molecular proton transfer on the electronic ground state acts as a mechanism for tau-

tomerisation, namely malonaldehyde8–10,17,72–75 and salicylaldimine,50,60,76 both of which are

useful systems for study using quantum dynamics methods due to the role of tunnelling in

the proton dynamics. This work complements a concurrent piece of work carried out by

us, which demonstrated how a similar GPR-based methodology, combined with a propa-

gated diabatisation scheme and a simple two-dimensional wavefunction propagation, could

be used to study excited state dynamics in the butatriene cation;77 this work expands dra-

matically on our previous report by demonstrating that the same GPR approach is suitable

for performing MCTDH simulations, thereby opening up a wide range of future applications.

The remainder of this article is as follows. In the next section we will briefly recap grid-

based dynamics methods, with particular emphasis on MCTDH. We then describe those

aspects of GPR which are relevant to the construction of the PES or quantum dynamics,

followed by details of the implementation of our MCTDH-based DD strategy. In Section 3,

we present the results of dynamics calculations for the proton transfer in malonaldehyde and

salicylaldimine, comparing the results of our new DD method with results obtained using pre-

fitted PESs. We also demonstrate results of dynamics carried out on GPR PESs generated

using ab initio electronic structure data generated “on-the-fly” (i.e. by direct interface to

an electronic structure code during wavefunction propagation). Finally, we conclude by

outlining work which will be carried out to further broaden the applicability of the method.
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2 Methodology

2.1 Grid-Based Quantum Dynamics: The Standard Method and

MCTDH

The theory of grid-based methods for solving the nuclear TDSE has been described in detail

elsewhere;7,78 here, we highlight those points most relevant to our proposed grid-based DD

scheme.

Perhaps the most straightforward way to solve the nuclear TDSE is to expand a trial

wavefunction in terms of a time-independent product basis, {χ(κ)
jκ
},

Ψ(q1, · · · , qf , t) =

N1∑
j1

· · ·
Nf∑
jf

Cj1,··· ,jf (t)

f∏
κ=1

χ
(κ)
jκ

(qκ)

=
∑
J

CJ (t)XJ (q)

(2)

where {Cj1,··· ,jf} is a set of complex, time-dependent coefficients and f is the number of

DOFs in the system; we will discuss the nature of the basis functions later. We have also

introduced the compound index, J=j1, · · · , jf on the second line of Eq. 2 to aid clarity in the

expressions which follow. To model the dynamics we require equations-of-motion (EOMs)

which can be integrated, and to obtain those we use the wavefunction ansatz of Eq. 2 in

Dirac-Frenkel variational principle (DFVP),79,80

〈δΨ|Ĥ − i~ ∂
∂t
|Ψ〉 = 0. (3)

After some algebra, we obtain the following EOM to describe the evolution of the wavefunc-

tion coefficients

i~ĊJ =
∑
L

〈XJ |Ĥ|XL〉CL. (4)

This set of coupled, first-order differential equations can be solved with standard integrators,
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and with a sufficiently large basis provides a numerically exact solution to the TDSE. We

will refer to this method for solving the TDSE as the standard method hereafter.

The standard method suffer from exponential scaling in computational effort as the num-

ber of DOFs is increased, meaning that for practical purposes f is limited to about 5. To

reduce the effects of this scaling and expand the utility of quantum dynamics methods to

larger molecular systems, the MCTDH method was introduced.7 This method employs the

following ansatz to represent the wavefunction

Ψ(Q1, · · · , Qf , t) =

n1∑
j1

· · ·
nm∑
jm

Aj1,··· ,jm (t)
m∏
κ=1

ϕ
(κ)
jκ

(Qκ, t)

=
∑
J

AJ (t) ΦJ (Q, t) .

(5)

Here, the wavefunction is defined as a linear combination of Hartree products of time-

dependent basis functions; this is in contrast to the time-independent basis functions of

Eq. 2. The basis functions, which are termed single-particle functions (SPFs), are functions

of single modes of motion, each of which comprises a small number (typically from one

to four) of individual DOFs (i.e. Qκ = (qκ1 , · · · , qκp)). Use of a time-dependent basis in

MCTDH ensures that the number of basis functions can be kept small, meaning that the

exponential scaling with system size which afflicts the standard method is minimized.

Individual SPFs are expanded in terms of an underlying, time-independent basis, {X(κ)
iκ
},

the members of which are functions of the individual modes,

ϕ
(κ)
jκ

(Qκ, t) =
Nκ∑
iκ

c
(κ,jκ)
iκ

(t)X
(κ)
iκ

(Qκ) . (6)

The basis functions used to represent the SPFs are the same as those used for expanding the

wavefunction in the standard method (Eq. (2)). SPFs describing a mode which consists of

more than one DOF are expanded in terms of products of basis functions along each DOF,

much like the expansion of the total wavefunction in Eq. (2). The basis functions along each
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DOF are standard, continuous functions, such as Hermite polynomials or sine functions,

which are transformed into the so-called discrete variable representation (DVR), whereby

the matrix elements of the position operator within the basis are generated and the resulting

matrix diagonalised. The eigenfunctions, localised at evenly spread points in configuration

space (hence forming a ‘grid’), are the DVR basis functions. As these DVR functions are

zero at all gridpoints except the one at which they are centred, the wavepacket is simply

represented by the coefficients of each DVR basis function.

As with the standard method, a set of EOMs is needed to propagate the MCTDH wave-

function, and again the DFVP is used to derive these equations. This time we obtain two

sets of EOMs, one for the wavefunction expansion coefficients, {AJ}, and another for the

SPFs. In their most general form these equations read

i~ȦJ =
∑
L

〈ΦJ |Ĥ|ΦL〉AL −
f∑
κ=1

nκ∑
l=1

g
(κ)
jκl
AJκl , (7a)

i~ϕ̇(κ) =
(
1− P (κ)

) [
ρ(κ)−1〈Ĥ〉(κ) − ĝ(κ)1

]
ϕ(κ)

+
(
ĝ(κ)1

)
ϕ(κ),

(7b)

where ĝ(κ) is a constraint operator, present due to the redundancy in the ansatz, Eq. (5), from

having both time-dependent coefficients and basis functions. In the EOM for the coefficients

we also have g
(κ)
jκl

= 〈ϕ(κ)
jk
|ĝ(κ)|ϕ(κ)

l 〉 and AJκl = Aj1,··· ,jκ−1,l,jκ+1,··· ,jnκ . In the EOM for the SPFs

we use the projector onto the space of SPFs in mode κ, P̂ (κ), the inverse of the density matrix

in that mode, ρ(κ)−1, and the mean-field matrix with elements, 〈Ĥ〉(κ)jl =〈Ψ(κ)
j |Ĥ|Ψ

(κ)
l 〉. In

this final expression we have used the single-hole functions Ψ
(κ)
l =

∑
Jκ AJκl ΦJκ , where ΦJκ

is the Hartree product of SPFs in all modes apart from mode κ.

Of crucial importance in the work we present here are the matrix elements involving

the Hamiltonian operator in the EOMs above, in particular the potential energy term. To

evaluate the matrix elements of the potential energy operator, V̂ , it is necessary to know the

form of the PES, a function in all modes of the system, before carrying out the dynamics
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calculations. The potential matrix elements are integrals over all DOFs (except mode κ in

the case of the mean field operators in Eq. (7b)),

〈ΦJ |V̂ |ΦL〉 =

∫
· · ·
∫

Φ∗
JV (q1, q2, · · · , qf ) ΦLdq1 · · · dqf . (8)

Evaluating this multidimensional integral is cumbersome and can become a bottleneck in

the dynamics calculation. However, if we can represent the potential in the so-called sum-of-

products form, where individual terms are just products of functions of the individual DOFs

(not of the modes, which may contain more than one DOF), such as

V (q1, q2, · · · , qf ) =
∑
i

ai

f∏
κ=1

Vi (qκ) (9)

where the coefficients, {ai}, are independent of the DOFs, then the integral in Eq. (8) reduces

to a sum-of-products of one-dimensional integrals

〈ΦJ |V̂ |ΦL〉 =
∑
i

ai

f∏
κ=1

∫
ϕ
(κ)∗
j Vi (qκ)ϕ

(κ)
l dqκ. (10)

Evaluation of the matrix elements in this form is much less arduous than in the full-

dimensional form, hence to fully exploit the efficiency of the MCTDH method it is best

to represent the potential in the form given by Eq. (9). Incidentally, the same arguments

about the form of the operator apply to the kinetic energy operator but, by choice of ap-

propriate DOFs this will naturally be the case and hence the evaluation of kinetic energy

matrix elements is usually straightforward.

The efficiency of evaluation of the PES integrals is increased still further, both for

MCTDH and the standard method, by the use of DVR basis functions. In terms of the

DVR grid-points the potential energy is diagonal such that, for two grid-points centred at

qα and qβ we have

〈χα|V̂ |χβ〉 ≈ V (qα) δαβ. (11)
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As such we only need to know the value of the PES at the coordinates of the grid-points to

evaluate the PES matrix elements in the DVR basis.

2.2 Gaussian Process Regression

The key development reported here is the implementation of direct grid-based quantum

dynamics using GPR.64–71 This approach, in which ab initio electronic structure calculations

at selected configurations are used to construct a global PES, provides a route to combining

the power of grid-based quantum propagation with local electronic structure calculations;

no prior fitting of the PES is required.

In our strategy, the PES is represented by a linear combination of Gaussian functions,65

centred at a set of M reference points in configuration space, {qk},

V (q) ≈
M∑
k=1

wk exp
(
−α|q− qk|2

)
. (12)

Here, the parameter α, which determines the width of the Gaussians, defines the length scale

of the fit. If we use standard Cartesian or normal-mode coordinates, we can easily see that

the expansion of the PES matches the sum-of-products form required for efficient MCTDH

wavepacket propagation

V (q) ≈
M∑
k=1

wk

f∏
κ=1

exp
(
−α
(
qκ − qkκ

)2)
. (13)

The weights of the expansion in Eq. (12), {wk}, are determined by solving the set of linear

equations arising from requiring that the M PES values are reproduced at the M reference

configurations, leading to

Kw = b, (14)

where the elements of the vector, b, are the values of the PES at M configurations, qk, for

example calculated using an ab initio electronic structure program or from some fitted PES
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function. Specifically, we have

bi = V
(
qi
)
. (15)

The elements of the matrix, K, multiplying the vector of GPR weights, w, are a measure of

the covariance between two members of the set of trial points,65 given here as

Kij = exp
(
−α|qi − qj|2

)
+ γ2δij. (16)

The parameter γ is typically chosen to be a small number and acts to regularise the matrix

so that solution Eq. (14) is numerically well-behaved; more generally, γ can be viewed as

representing the variance (or uncertainty) associated with the PES values in the vector b

(thus, by choosing γ to be some small number in this work, we are implicitly assuming that

the PES values are calculated to a high degree of accuracy, which is most often the case

when using converged electronic structure calculations or an analytical PES).

In practice, GPR is straightforward to implement and, as noted above, is already in a

form which is convenient for MCTDH simulations; however, the key outstanding issue is the

choice of the M reference points used to construct the GPR PES. As noted previously, the

wavefunction propagated in quantum dynamics simulations is non-local in nature, whereas

ab initio electronic structure calculations provide the PES at specific local configurations.

As a result, one approach to selecting the M reference points would be to simply choose

the set of grid-points at which the time-dependent wavefunction would be expected to have

non-zero value during the propagation; however, this approach is no better than the standard

grid-based method and would be expected to suffer from a similar “curse of dimensionality”.

Instead, a better strategy is to select the M GPR reference points in an adaptive manner

during the wavefunction propagation, such that the PES is accurately represented where it is

required for accurate propagation, namely in the vicinity of the time-dependent wavefunction;

this then leads to the question of how one adaptively adds new configurations to the database

of M GPR points during propagation. An obvious approach is simply to compare the
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GPR PES and the calculated PES at grid-points encountered by the wavefunction during

propagation, and then add the newly-calculated reference point to the database if the GPR

PES is inaccurate beyond some threshold; however, as soon as one is required to calculate

the (possibly computationally-expensive) underlying potential, then this point might as well

be included in the database in any case.

In this work, we address this challenge by using the in-built error measure associated

with GPR. In particular, exploiting the origins of GPR from the field of Bayesian statistics,

it is straightforward to show that the GPR approach outlined above provides a direct way of

assessing the accuracy of the approximate PES without having to calculate the actual PES.

This is achieved using the following variance function which can be evaluated at any point

in configuration space65

σ2 (q) = 1 + γ2 − kTK−1k. (17)

The parameter, γ, is as defined in Eq. (16) as indeed is the matrix, K. The elements of

the vector, k, are simply the covariances of the point of interest with the current set of M

reference points; in other words, ki = exp (−α|q− qi|2). Thus, Eq. (17) provides a direct

check of whether a new configuration, q, should be added to the GPR reference points;

if σ2(q) is greater than a threshold accuracy value, then the potential, V (q), should be

calculated and added to the GPR reference points. In this way, GPR provides an automated

way of constructing a PES during wavefunction propagation; the implementation of this GPR

PES construction approach in the context of standard and MCTDH quantum dynamics will

now be discussed.

2.3 Implementation

Algorithms for carrying out DD, both for the standard method and MCTDH, with the PES

calculated using GPR have been implemented in a development version of the Quantics

package.81 The quantum dynamics procedure, namely setting up the DVR basis, choice of

13



SPFs, initial wavefunction conditions and integration scheme (to integrate Eq. (4) or (7)), are

as previously implemented in the package. We should note, however, that only the variable

mean field integration (VMF) scheme has so far been implemented for solving the MCTDH

EOMs with a GPR PES, with the constant mean field method7 currently being modified.

Our current implementation of grid-based dynamics with “on-the-fly” GPR PESs, can

use either atomic Cartesian coordinate or mass-frequency scaled normal modes as DOFs; this

is currently for computationally simplicity, particularly because the kinetic energy operator

for these coordinate choices are straightforward, but we emphasise that our approach can

in principle be generalized to any appropriate coordinate system. In the case of normal

mode coordinates, it is necessary to provide a transformation matrix between the scaled

normal modes and the Cartesian coordinates, so that the Cartesian coordinates of the atoms

can be passed to a relevant electronic structure program for the evaluation of the potential

energy. The normal-mode transformation matrix can be generated by a standard normal-

mode calculation at a chosen geometry-optimized reference configuration. On running a

calculation, the chosen coordinate set defines the configuration subspace in which the GPR

PES will be constructed; once this subspace has been defined by the user, along with the

other parameters determining the nature of the (standard method or MCTDH) quantum

propagation, the simulation can begin.

To initialise the GPR PES, assuming that we have no prior information about the PES,

we adopt the following procedure. First, the effective width of the wavefunction along the

ith DOF is defined as

〈δqi〉 =
(
〈Ψ|q̂2i |Ψ〉 − 〈Ψ|q̂i|Ψ〉2

)1/2
. (18)

Borrowing from the definition of normal distributions, we equate 〈δqi〉 with the standard

deviation, σi, of the wavefunction. For a normal distribution, 99.7% of the population is

within 3σi of the mean, therefore we define the limits our sampling space for GPR PES

generation along each DOF as 〈qi〉 ± 3σi, i.e. the subspace within three standard deviations

of the centre of the wavepacket. An initial PES evaluation is performed at the molecular
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geometry corresponding to the “centre” of the wavepacket, 〈q〉. Subsequently, N additional

configurations are generated by random uniform sampling for each DOF within the limits

of the sampling subspace defined by the wavepacket centre and standard deviations; in all

calculations reported here, we use N = 100, such that the initial set of reference points in

the GPR PES is M = 101. The potential is then calculated at each reference geometry, for

example using an analytical PES or ab initio electronic structure calculations, hence giving

the vector, b, of potential values at the reference points ( Eq. (15)). The M reference points

in configuration space are then used to evaluate the matrix K defined in Eq. (16) (using, in

this work, a length parameter α = 0.5) and the linear equations of Eq. (14) are solved to

give the initial vector of GPR weights, w. The solution of the GPR equation is carried out

using Cholesky decomposition routines implemented in LAPACK.82 Once the initial weights

have been determined, we then have an initial expression for the GPR PES using Eq. (12).

Following the formation of the initial GPR PES, the wavefunction time-propagation is

allowed to proceed. For each of the M potential terms, there are f individual components

in the Gaussian functions Eq. (13)), one for each DOF in the system. If a mode in the

MCTDH wavefunction, Eq. (5), comprises a single DOF (i.e. the SPFs in that mode are

one-dimensional functions) or a standard method calculation in one-dimension is being per-

formed, then the value of the individual potential term is simply evaluated at each of the

grid-points defined by the DVR basis in which the SPFs or wavefunction are expanded (Eq.

(6)) following Eq. (11). If a multi-dimensional standard method wavefunction or an MCTDH

mode comprising more than one DOF (i.e. the SPFs are multi-dimensional functions) is be-

ing considered then the grid-points in Eq. (2) or Eq. (6) are defined by the corresponding

number of coordinates. The GPR PES at these grid-points is then evaluated using Eq. (13).

Having completed the procedure of evaluating the potential matrix elements in the DVR

basis, the dynamics proceeds in the usual way; in the MCTDH case, these matrix elements

are transformed to the SPF basis before being used to generate the EOMs (Eq. (7)), which

are then integrated. In the standard method, the matrix elements are used directly in Eq.
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(4).

The propagation could be allowed to proceed using just the initial set of points to de-

fine the GPR PES but, as the wavepacket evolves, the representation of the PES given by

sampling configuration space with reference to the initial wavepacket is likely to become

increasingly inaccurate; obviously, it is necessary to generate a new representation of the

PES which better reflects the regions of configuration space being sampled during the dy-

namics. It is, of course, possible to generate a new set of random configurations at some

sensible time-interval in the propagation time and to calculate N new PES values, discarding

the previously obtained information about the PES. However, we take a different approach

which is based on the “grow” methodology of Collins and coworkers,83,84 and is similar to

that used in the DD-vMCG method implemented in the Quantics package.

In the approach adopted here, the initial potential values are stored in a database along

with the molecular geometries at which they were calculated (the information is held in

memory during the propagation but also output to file for re-use in subsequent calculations

if needed). The database of configurations and potential energy values is augmented at

regular intervals during the wavepacket propagation by the sampling of configuration space

around the centre of the wavepacket in the same way as the initial sampling. At each of

the sampled configurations, the GPR variance as defined in Eq. (17) is calculated (using the

database points from previous evaluations only, so as to avoid repeated matrix inversions).

If the variance is below some threshold (in this work taken to be 10−6), then it is considered

that the current GPR PES representation at that configurations is sufficiently accurate, such

that no new potential energy values need to be calculated. However, if the variance is greater

than the threshold, then a new energy is calculated and stored in the database. Once any

new points have been added to the database, Eq. (14) is solved once again (including all

energies in the database) to give a new set of GPR weights and hence a new form for the

PES. The wavepacket propagation then proceeds, adding new database points and updating

the PES as necessary until completion. In this way, we combine grid-based wavefunction
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propagation with “on the fly” evaluation of the PES; furthermore, as noted above, the

GPR PES constructed using the potential energy evaluations is already in a form which is

convenient for MCTDH propagation.

Naturally, the PES available during the early stages of the propagation is likely to be

less accurate than that constructed later in time, when more database points are used to

generate the GPR PES; as a result, once an initial calculation is complete, it is possible

to re-run the dynamics using the full database from the start. This second propagation

can be run without adding any new points to the database or with the option of adding

new database points according to the threshold conditions outlined above. In principle the

propagation could be repeated in the latter manner until no more points are added and

the GPR PES can be considered converged (at least for the regions of configuration space

sampled during the total propagation time with the same initial wavepacket conditions).

In the simulations reported below, single calculations have been performed to generate the

PES before subsequent wavepacket propagations using the database created during the prior

calculation.

Finally, to calculate potential energy values at sampled configurations during wavefunc-

tion propagation, our implementation uses much of the machinery in Quantics put in place

to perform DD-vMCG calculations by interfacing with assorted ab initio electronic structure

programs. In practice the program creates an input file at the geometry of interest, calls the

external quantum chemistry package, then reads the appropriate information (in the case

considered here, just the total electronic energy) from the resulting output file. Furthermore,

we note that we can also perform GPR PES-based simulations of any PES, not just those

generated by electronic structure calculations; this fact is used later to benchmark our new

simulation strategy for PESs which were previously fit to analytical functions.
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3 Results

To demonstrate the abilities of our direct grid-based dynamics methods, the ground-state

dynamics of the intramolecular proton transfer for two different molecules has been stud-

ied. Such processes are characterised by the double-well nature of the PESs on which they

occur, arising from two local minima corresponding to the hydrogen bonded to different

atoms, separated by a potential barrier. Double well potentials are ideally suited to testing

new quantum dynamics methods because they often feature strongly quantum-mechanical

tunnelling processes which are difficult, if not impossible, to accurately reproduce via other

non-quantum methods.

(a) (b)

Figure 1: Two molecules of interest in this work: (a) Malonaldehyde and (b) Salicylaldimine.
In both case the dynamics of the transfer of the proton bonded to an oxygen atom in these
pictures is considered; in the former case to the other oxygen and in the latter to the nitrogen.

3.1 Malonaldehyde

As the first test of our grid-based DD method, we consider the ground electronic state

dynamics of the intramolecular proton transfer in malonaldehyde (Fig. 1(a)). The aim of

this study is to test the ability of dynamics performed on a GPR approximation to the PES

to replicate those observed on a known PES. In this way, we can directly assess whether

surfaces generated using our GPR method are accurate representations of the underlying

PES.
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Recently, an accurate PES for the ground state of malonaldehyde was reported by

Mizukami et al, fitted to energies calculated at the HF/QZVPP level with fc-CCSD(T)(F12*)/def2-

TZVPP correlation energies.72 We have integrated the subroutine published by them into

the Quantics package so as to be able to generate potential energies at molecular geometry

sampled by the dynamics, and hence be able to run dynamics using either the fitted PES or

the direct dynamics approach using a GPR PES.

Two calculations were performed on a 3-dimensional subsystem of malonaldehyde, both

using the standard method (Eq. (2)), the first just using the full Mizukami PES (evaluated

on all grid-points) and the second using a GPR representation of the PES generated “on-

the-fly” using the implementation described in Section 2.3. The dynamics was performed

in dimensionless, mass-frequency scaled normal mode coordinates, where the normal mode

transformation matrix was calculated by diagonalising the mass-weighted Hessian matrix

determined at the proton transfer transition state geometry given previously.72

The three normal modes chosen to carry out the dynamics were the proton transfer mode

(v1 of frequency 1321.32i cm−1), the out-of-plane motion of the proton (v12 of frequency

1290.31 cm−1) and the in-plane OHO bending mode (v18 of frequency 1899.62 cm−1). For

both calculations a sine DVR basis with 101 grid-points was used for v1 and a harmonic

oscillator DVR basis was used for the other modes, with 21 functions each. The initial

wavepacket was constructed as a Gaussian function of width 0.7 along all modes, centred at

v1=0.5 and v11=v18=0.0. The dynamics was run using the short iterative Lanczos propagator

of order 15, and was followed for 100 fs. In the case of the direct dynamics calculation, the

PES was sampled, as described in Section 2.3, every 1 fs.

First, we compare the vibrational spectrum of the 3-dimensional malonaldehyde model

calculated using the full grid-based standard method and our GPR-based DD method. This

spectrum was calculated by Fourier transforming the autocorrelation function, defined as

G (t) = 〈Ψ(0)|Ψ(t)〉. (19)
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The value of G(t) was output every 1 fs during the course of both calculations. The procedure

for performing this transform is described in detail elsewhere, particularly concerning the use

of a damping function to ensure that the function reaches zero at the end of the propagation

in order to avoid artefacts in the spectrum.7

In Fig. 2, we present the vibrational spectra of 3-mode malonaldehyde resulting from these

two calculations. Clearly, the two spectra are in excellent agreement, with each showing four

main peaks. The most intense peak in both cases is centred at 2949 cm−1, the intensity

of the peak differing by less than 3% between the two calculations. The next two peaks in

increasing energy order do not quite coincide between the calculations, the GPR peaks being

centred 6 cm−1 lower in energy than those from the full calculation in both cases, but again

have very similar intensities. The highest energy peak around 5040 cm−1 differ in position

by 13 cm−1 between the calculations and by 12% in intensity.
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Figure 2: Vibrational spectra of a three-mode model of malonaldehyde. All potential energies
were calculated from the surface of Mizukami et al .72 The solid, red line is the result of
the calculation performed using the full dynamics. The dashed, blue line is the result of
the calculation with the potential constructed using the GPR process, sampling points in
configuration space as explained in the text. The energy origin is the transition state energy.
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Overall, the differences between the spectra are very small, indicating that the GPR

representation of the PES is very accurate. The discrepancies, in the energies and intensities

of the peaks, between the two calculations are simply due to the small variation in the shape

of the PES, leading to small shifts in the vibrational energy levels. This is particularly so

early on in the wavepacket propagation, where fewer energy points have been calculated and

hence the number of terms in Eq. (12) is less.

We have implied that the representation of the GPR PES at later stages in the propaga-

tion should be more accurate than that at earlier times due to the addition of extra reference

configurations to the GPR expansion; this point is clearly demonstrated in the next compar-

ison. During the initial DD calculation, 2425 points in configuration space were sampled; as

noted in Section 2.3, the calculated potential energies are saved on file and can be re-used

in subsequent calculations. To this end, a second propagation was run, using a GPR PES

calculated at the start of the propagation using all 2425 reference energies; no further points

were added during this second propagation. The resulting spectrum is visually identical in

shape to that resulting from the full calculation, all peaks aligning with one another exactly.

The intensities of the lowest energy peak differ between the two calculations by only 0.015%

whilst those of the highest energy peak differ by less than 3%. This result indicates that,

given an adequate sampling of configuration space, GPR can reproduce the shape of the

underlying PES almost exactly.

A more sensitive test of the dynamics than the vibrational spectrum is the measurement

of the wavepacket flux through a dividing surface. The flux can be measured as the rate

of change of wavefunction population in the region beyond the dividing surface.7 Using a

step function defined along some DOF, θ (q − qγ), where qγ is the coordinate of the dividing

surface, the population to the positive side of the surface is 〈Ψ|θ (q − qγ) |Ψ〉. Applying

Ehrenfest’s theorem,78 the rate of change of the population is7

d

dt
〈Ψ|θ (q − qγ) |Ψ〉 =

i

~
〈Ψ|[Ĥ,θ (q − qγ)]|Ψ〉 (20)
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The flux operator is thus defined as F̂= i
~ [Ĥ,θ (q − qγ)].

The flux expectation value was evaluated every 1 fs during the three wavepacket propa-

gations described above, with the dividing surface placed perpendicular to the v1 mode at

the location of the transition state between the two equivalent isomers (i.e. v1=0). Figure

3 shows the calculated flux expectation values for the three calculations: standard method

dynamics on the full PES, single-run GPR-based DD propagation, and GPR-based DD

propagation using previously-sampled energies. Comparing these results, it is clear that DD

accurately reproduces the quantum dynamics of the system as the wavefunction propagates.

In all three cases, there is an initial movement of the wavepacket from the right-hand side

of the barrier (positive v1 coordinate) towards the left-hand potential well, followed by a

periodic crossing and re-crossing with period of just over 40 fs. This process involves tunnel-

ing through the barrier, demonstrating that our DD method can cope with this feature of

dynamics; in other words, the GPR PES describes the two potential wells and the potential

barrier with sufficient accuracy to reproduce the correct wavefunction tunnelling.

As with the vibrational spectrum, there is very good agreement between the results of

the full dynamics and those of the initial DD run. Not only is the overall form of the time-

dependent flux reproduced, but small features such as the spikes in flux during the first 10 fs

are also reproduced. The flux calculated using DD on the final database gives even better

agreement with the results from the full dynamics. The agreement is not perfect, with some

small discrepancies creeping in particularly at later times (for example the small plateaus in

the flux at about 45 fs and 50 fs are not seen in either DD calculation, and some of the fine

structure towards the end of the propagation is missing). However, the ability of the DD

method to reproduce the wavepacket flux accurately is a further indication that the GPR

PES is a faithful representation of the PES being sampled.
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Figure 3: Plot of the flux operator expectation value, G(t), for a three mode model of
malonaldehyde. The dividing surface is placed at the barrier of the transition mode, v1. All
potential energies were calculated from the surface of Mizukami et al .72 The solid, red line
is the result of the calculation performed using the full dynamics. The hashed, blue line is
the result of the calculation with the potential constructed using the GPR process, sampling
points in configuration space as explained in the text. The dashed, green line is the result
of the calculation with the potential constructed using GPR process on a pre-calculated
database of potential energies.

3.2 Salicylaldimine

As a second test system, we look at the proton transfer process in salicylaldimine (Fig. 1(b)).

Here, the proton moves between the oxygen atom (the imine or enol form) and the nitrogen

atom (the amine or keto form), the former being the more stable structure of the two. In

contrast to malonaldehyde, there are thus two distinct tautomers to consider, and the PES

is not symmetric about the barrier separating the energy minima which correspond to each

tautomer.

An analytical PES, fitted using the VCHAM approach for 13 of the normal modes of

salicylaldimine (calculated at the transition state geometry between the optimised keto and

enol forms), was recently published by Polyak et al 60 and it is this PES that we use to
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compare the standard, grid-based dynamics and DD results. Contrary to the original report,

the 3-21G basis set was used along with the restricted Hartree-Fock method to generate

energies to which the PES was fitted. In this work we will use the previously-fitted PES

to generate benchmark results against which to compare our DD scheme. We consider two

cases here: (i) a two-dimensional version, which is sufficiently small that the standard (grid)

method of propagation can be used (thereby minimizing errors arising due to wavefunction

propagation itself, allowing us to focus on the accuracy with which GPR can reproduce the

underlying PES), and (ii) a six-dimensional version, where we use MCTDH, combined with

GPR, to perform quantum dynamics “on the fly”. Furthermore, we will also compare these

results to GPR PESs calculated by direct interface with an external ab initio electronic

structure code, in this case ORCA,85 marking the first time that MCTDH simulations have

been performed “on the fly”.

3.2.1 2D Dynamics

The first comparison we make uses a two-dimensional model of salicylaldimine, the normal

modes chosen being those termed v1 and v36 by Polyak et al ; these are the proton transfer

mode and in-plane OHN bending mode, respectively. As only two DOFs were involved in

the calculation, it was possible to run standard method dynamics for (i) the full fitted PES,

(ii) a GPR PES representation generated in DD simulations of the fitted Polyak surface, and

(iii) a GPR PES representation generated using DD simulations and electronic structure

energies calculated “on-the-fly”. All calculations used a sine DVR basis with 121 functions

along the v1 mode and a harmonic oscillator DVR basis comprising 21 grid-points along v36.

The initial wavepacket was constructed as a 2D Gaussian function centred at v1=0.96 and

v36=0.14 with widths 〈dv1〉=0.5706 and 〈dv36〉=0.7704. This starting configuration places

the system to the enol side of the barrier between the two tautomers (the transition structure

is at the origin of the coordinate system). Propagations were performed for 100 fs with data

output every 1 fs, using the default integrator options in Quantics (see Section 3.1).
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Figure 4: Plot of the flux operator expectation value for a two degree-of-freedom model of
salicylaldimine. The dividing surface is placed at the barrier of the transition mode, v1. The
solid, red line is the result of using the full dynamics. The hashed, blue line is the result
of the calculation with the potential constructed using the GPR process, sampling points
in configuration space as explained in the text. In both cases the potential energies were
calculated from the surface of Polyak et al .60 The dashed, green line is the result of the
calculation with the potential constructed using the GPR process, with energies calculated
by calls to ORCA, “on-the-fly”.

Figure 4 shows the wavefunction flux through a surface perpendicular to the proton

transfer mode, placed at the peak of the transition barrier between the tautomers (v1=0),

allowing us to follow the tautomerization process over the course of the propagation time;

results are shown for all three calculations. We first compare the flux of the wavefunction

moving on the fitted surface to the wavefunction flux on the PES approximated using GPR

sampling on the fitted PES. Clearly the two curves are very similar to one another; the

initial, negative flux indicating proton transfer across the potential barrier towards the keto

tautomer, followed by a re-crossing of the barrier to the enol side. Later in the dynamics

there are short periods of crossing one way or the other, each lasting only a few femtoseconds.

However, the most important point to note is that the two calculated fluxes follow each other
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very closely for the entire duration of the dynamics. The correspondence is particularly

good early in the dynamics, degrading slightly at later times, with the flux on the GPR

PES lagging behind that on the full, fitted PES. In the DD GPR simulation, 353 potential

energies were calculated during the course of the propagation; as expected, restarting the

simulation using this full GPR reference set (not shown) gives even better agreement with

that calculated using the full fitted surface. The results from the initial comparison reinforce

the conclusion drawn from the calculations on malonaldehyde, namely that a GPR PES can

give a very good representation of the underlying PES. As an aside, we note that our GPR

PES scheme required far fewer PES evaluations than the total number of grid-points in this

two-dimensional case (21× 121 = 2541).

The second comparison we can make when examining Fig. 4 is between the fluxes cal-

culated using the fitted PES and the flux determined from dynamics performed on a GPR

PES calculated using ab initio energies evaluated “on-the-fly”. In constructing the ab initio

GPR PES, the sampling of configuration space around the wavepacket centre is performed

in the same way as described in Section 2.3; however, the potentials are calculated using

RHF/3-21G so as to match the level of theory used by Polyak et al in performing their DD-

vMCG calculations. From Fig. 4, during the first 10 fs or so, the flux follows that calculated

using the fitted potential (i.e. the initial crossing to the keto side of the barrier); however,

after this point the flux diverges from that calculated using the fitted surfaces. This plot

can be best compared to Fig. 4(d) in the Polyak paper,60 where a DD-vMCG calculation

was performed for this system; specifically, the difference between the ab initio and fitted

PES observed in our DD simulations are similar to the differences observed between the

DD-vMCG result using “on-the-fly” PES evaluation and vMCG using the fitted PES. In

this previous work, the discrepancy between the two results is attributed to the form of the

potential on the enol side of the barrier which made the fitting of the potential along the v36

difficult for the VCHAM method. The flux calculated using a potential constructed by an

interpolation type method, as is done using GPR or the Shepard interpolation used when

26



performing DD-vMCG calculations, should thus be a more accurate reflection of the true

dynamics. This result, and the comparison to previous DD-vMCG results, clearly shows

that it is possible to perform direct grid-based dynamics calculations using a PES generated

“on-the-fly” using ab initio data.

3.2.2 6D Dynamics

The second set of calculations performed on salicylaldimine uses six normal modes; two of

these are the same as in the 2D case above (ν1 and ν36), with the four additional modes la-

belled ν10, ν11, ν13 and ν32 in the work by Polyak et al (see Fig. 2 in reference 60 for diagrams

of the motions, all of which are in-plane modes). We note that these six modes are the same

as those considered in previous DD-vMCG simulations. We perform the same comparison

as performed in the previous section; specifically, we compare (i) dynamics on the fitted

PES, (ii) dynamics on a GPR approximation to the fitted surface, and (iii) direct-dynamics

with a GPR approximation to the PES generated by “on-the-fly” electronic structure calcu-

lations. In the 6D case, however, there are too many DOFs to use the standard grid-based

wavefunction propagation method, so we use MCTDH for all three calculations.

Following previous simulations of salicylaldimine, our calculations all used a wavefunction

ansatz constructed in terms of three sets of 2D SPFs, with the DOFs being grouped as

{ν1, ν36}, {ν10, ν11} and {ν13, ν32}. The propagations were run for 100 fs using the Adams-

Bashforth-Moulton predictor-corrector integrator of sixth order to solve the EOMs using an

accuracy parameter of 10−5 (these settings are the default for the VMF integration scheme

in Quantics). The MCTDH calculation on the fitted PES used 18 SPFs in each mode, and

the calculations using the GPR approximation to the PES (both to the fitted PES and to

the ab initio points) required 30 SPFs per mode. This increase in the number of SPFs was

necessary due to the highly correlated nature of the form of the potential when using GPR

(i.e. all DOFs are coupled, being involved as they are in all potential terms, whereas the

fitted PES couples at most two DOFs per term). The basis of grid-points used to expand
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the SPFs was a set of 101 sine DVR functions along ν1 and 21 harmonic oscillator DVR

functions along the other five modes. The initial wavepacket was centred at 〈ν1〉=0.96,

〈ν36〉=0.14, and 〈ν10〉=〈ν11〉=〈ν13〉=〈ν32〉=0.0, with widths of 〈δν1〉=0.5706, 〈δν10〉=0.7745,

〈δν11〉=0.7590, 〈δν13〉=0.6902, 〈δν32〉=0.6707 and 〈δν36〉=0.7704.

In Fig. 5 we present two plots showing results from these calculations; both show plots

of the wavepacket flux through a dividing surface perpendicular to the stretching mode, ν1,

and at the peak of the transition barrier (as in the 2D case). Looking first at Fig. 5(a) we

show the results of: (i) the MCTDH calculation on the fitted PES (the full result), (ii) the

initial MCTDH calculation using a GPR approximation to the fitted PES (with electronic

energies being added every 1 fs), and (iii) an MCTDH calculation performed using the GPR

approximation to the fitted PES, using the database created by the previous calculation.

In Fig. 5(b) we repeat the plot of the full result for clarity along with a plot of the flux

generated by an MCTDH calculation using a GPR PES generated by calculating RHF/3-

21G electronic energies with ORCA “on-the-fly” (the database is updated every 1 fs). Again,

Fig. 5(b) also shows the flux for a subsequent calculation employing MCTDH using a GPR

PES constructed using the database of energies created in the previous calculation.

Making an initial comparison of the plots in Fig. 5 with those in Fig. 4, we see that,

after an initial move towards the keto isomer (indicated by the negative flux), there is far

less overall movement of the wavepacket across the potential barrier in the 6D case than

in the 2D case across the 100 fs period of simulated dynamics. The reason for this is that

the presence of more DOFs, each of which is coupled to the others, allows the wavepacket

to spread and move in directions which do not take it over the barrier; in the 2D case the

wavepacket is constrained to move in only two directions, one of which is across the barrier

where the flux is being measured, so more structure is seen in Fig. 4 than in Fig. 5.

Looking now at each figure in turn, we begin with Fig. 5(a) where the dynamics in all

three calculations was based on the fitted PES of Polyak et al .60 The solid, red line is the

full MCTDH result, the benchmark against which the other two plots in the figure should
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Figure 5: Plots of the flux operator expectation value for a six degree-of-freedom model of
salicylaldimine. The dividing surface is placed at the barrier of the transition mode, v1. The
solid, red line in both plots is the result of using the full dynamics. In plot (a) the hashed,
blue line is the result of the calculation with the potential constructed using the GPR process
with energies being calculated from the fitted PES of Polyak et al .60 The dashed, green line
is the result of a subsequent calculation using a GPR representation of the PES generated by
the database of points calculated during the initial calculation. In plot (b) the hashed, blue
line is the result of the calculation with the potential constructed using the GPR process,
with energies calculated by calls to ORCA, “on-the-fly”; the dashed, green line shows results
given by a calculation run on the PES generated by the previous calculation with no further
database points added.
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be compared. The full MCTDH result indicates an initial, rapid flow of the wavepacket

over the barrier towards the keto tautomer, followed by an oscillation back towards the enol

form; all of this occurs within the first 10 fs of the dynamics. There is a subsequent, small

move in the same direction followed by motion in the positive flux direction towards the

enol tautomer around 20 fs. This motion slows to close to zero until there is more motion

in the enol direction between 40 and 50 fs, followed by a 20 fs period of movement in the

keto direction (the trough centred on 60 fs). The most significant move towards the enol

side of the potential barrier of the whole dynamics occurs around 80 fs. The final 10 fs of the

dynamics is characterised by a lack of motion across the barrier.

Examining the results of the initial calculation using a GPR potential (hashed, blue line

in Fig. 5(a)), where potential energy values from the fitted PES were added every 1 fs during

the dynamics, we see that the initial motion of the wavepacket across the barrier to the keto

tautomer is qualitatively correct, if somewhat overestimated. The plot rejoins that of the

full result around the 10 fs point, and there is a subsequent, small motion towards the keto

tautomer, again, as seen in the full result but likewise overestimated. As with the full result,

the flux then heads in the positive direction, but unlike the full result, it quickly falls back

to zero. From this point on, the two plots do not closely correspond; the flux of the GPR

calculation turns negative between 30 and 60 fs before going positive until 80 fs, then back

to zero and finally into the positive region to the end of the calculation. Clearly the initial

potential generated “on-the-fly” is not accurate enough to closely reproduce the flux of the

full result but, at the same time, not so inaccurate as to get the dynamics completely wrong.

To further assess the accuracy of the GPR PES, the dynamics was repeated using a

GPR PES calculated using the energies generated during the initial propagation; the results

of this are shown by the dashed, green line in Fig. 5(a). It is immediately apparent that

the dynamics much more closely matches the full result than the initial calculation. The

first 10 fs of the plot almost exactly matches the that of the full result, whilst the period of

positive flux between 10 and 20 fs is accurately replicated. From that point onwards the flux
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qualitatively matches that of the full result, in particular the period of negative flux between

50 and 70 fs and that of positive flux for the 20 fs afterwards correspond to the full result

quite well. The match is not perfect, but it is clear that the underlying dynamics is well

represented; in other words, the GPR procedure gives a good approximation to the potential

from which it is derived.

In spite of this success, these MCTDH results highlight one downside of our method,

namely the growth in the number of Gaussians needed to represent the PES. Recall from

Section 3.2.1 that 353 Gaussians were needed to accurately represent a 2D PES, whilst in

section 3.1, 2425 Gaussians were needed for a 3D PES (admittedly for a different molecule).

In this 6D calculation, 10101 database points were generated, the maximum possible in this

particular calculation (an initial point at the wavefunction centre, then 100 points at each

femtosecond, 0 to 100). Clearly the number of Gaussians needed to accurately represent the

PES increases rapidly as the dimensionality of the problem rises. This is less of an issue

when using the standard method for the dynamics as it is only necessary to know the actual

value of the potential at the location of each DVR point, not the contributions from each

Gaussian in the GPR; the PES in that case is completely determined by a single number for

each gridpoint, which can be evaluated and saved whenever the energy database is updated.

On the other hand, the structure of the MCTDH EOMs means that it is the value of each

term in the GPR expansion of the potential along the DOFs making up each set of SPFs that

is required; in other words the potential has to be dealt with term by term. In the case of

6D salicylaldimine, there are thus 10101 terms in the potential which have to be calculated

and then combined in the Hamiltonian and mean-field integrals in Eq. (7). This number

of terms in the potential operator means that calculations become very time-consuming as

more DOFs are added; we come back to this point later.

Moving on to consider Fig. 5(b), we note the same issues with computational effort,

as just outlined, when propagations are performed using a GPR PES generated using ab

initio energies calculated “on-the-fly” using ORCA. Again, 10101 database energies were
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calculated, each of which naturally required a call to the ORCA program. As with Fig.

5(a) the solid, red line is the result of the flux for the MCTDH calculation on a fitted PES,

repeated for clarity in comparison with the new results performed on an ab initio GPR

PES. The first new result to examine is that represented by the hashed, blue line, which is

generated by performing dynamics on a GPR PES built from ab initio energies added to an

initially empty database. As with the calculations using the fitted surface (Fig. 5(a)), we

see an overestimated negative flux during the first 10 fs, which does not quite return to zero

at 10 fs, but slows down there, only reaching zero after about 25 fs. From this point onwards

the flux is fairly featureless, staying close to zero, except for a short period of negative flux

between 40 and 50 fs. The plot is not particularly smooth (as in the corresponding plot in

Fig. 5(a)) because the updates to the potential at every femtosecond cause the global PES

to shift slightly, hence affecting the motion of the wavepacket.

The dashed, green line represents the results of the subsequent calculation using a GPR

PES based on the 10101 ab initio energies calculated during the previous propagation. Here

the initial period of negative flux matches that of the MCTDH calculation on the fitted

surfaces, both in intensity and duration. The flux is then positive until 25 fs and then

returns to zero until about 50 fs. The flux then has a bump upwards into positive territory

until about 60 fs, before a period in the negative direction for the next 20 fs, then a final

up and down to the end of the propagation. Clearly the dynamics does not match that

of the full (MCTDH, fitted surface) result, but it should not be expected to because the

GPR PES in this case is an interpolation of the actual HF/3-21G PES, rather than of a

fitted approximation to it. The close agreement in the first few femtoseconds occurs when

the wavepacket is localised relatively close to the origin of the coordinate system, the point

around which the VCHAM fitted potential is expanded. The fit will be most accurate around

this region, i.e. most closely resembling the interpolation of the GPR, hence the similarity in

the dynamics. The differences in the potential are more pronounced further from this point,

in regions where the wavepacket explores later in the propagation. The plots in Fig. 5(b)
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are best compared to Fig. 6 in Ref. 60, where a DD-vMCG calculation on the same system

was performed. Making this comparison, we see that the plots of the flux match really quite

well with the DD-vMCG results, with the major features reproduced. This indicates that

the approach outlined here, using electronic energies calculated “on-the-fly”, gives dynamics

which closely agree with those from a well established alternative DD method.

As a final note, it is worth commenting on the computational effort of these simulations.

The 6D MCTDH simulation coupled to HF/3-21G calculations took approximately 186h

walltime on the first run and then 639h for the run using the pre-calculated database; both

were parallelised across 16 processors. The 6D MCTDH calculation on the original fitted

PES required 69h walltime for the run generating the database of points with the second

calculation taking 143h (again both were parallelised over 16 processors). However, the

important point of our approach is that the PES is generated “on the fly”; there is no need

for laborious pre-fitting of the PES, and the associated challenges surrounding appropriate

choice of coordinates, functional forms, and so on. As a result, and bearing in mind that the

approach highlighted in this Article is far from optimized with regards to both methodology

and code implementation, we expect that our DD MCTDH scheme to quickly evolve into

a useful and highly-accurate computational tool for studying quantum dynamics in both

ground-state and excited-state systems.

4 Conclusions

We have presented initial results for a new direct quantum dynamics scheme which combines

well-established grid-based dynamics methods (standard method and MCTDH) with PESs

created using GPR with electronic energies calculated “on-the-fly” either from a pre-fitted

potential or from an electronic structure package. To the best of our knowledge, this is the

first implementation of a DD version of MCTDH.

In calculations on a 3D model of malonaldehyde and a 2D model of salicylaldimine, we
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have shown that the GPR representation of the PES is capable of almost exactly matching the

underlying potential by comparison to results from pre-fitted PESs. This followed through

to calculations on a 6D model of salicylaldimine using MCTDH, but the computational

effort required means that convergence of the potential in terms of the number of Gaussians

becomes a major difficulty, leading to inaccuracies in the dynamics.

The computational effort required is even greater when calculating electronic energies

“on-the-fly” using an electronic structure package. However, the results from these cal-

culations are very promising, with good agreement to the DD-vMCG results of Polyak et

al. We have thus shown that it is possible to perform MCTDH-based quantum dynamics

calculations without the need to pre-compute the PES.

Future work will focus on reducing the computational resources needed to perform

MCTDH/GPR calculations on systems with more than a few degrees-of-freedom. Potential

ideas to be investigated include the use of an additive kernel for the GPR, where, instead

of using a sum of f -dimensional Gaussians as in Eq. (12), each term is a sum of lower di-

mensional Gaussian functions,70 potentially leading to efficiencies in evaluating PES matrix

elements. It is also possible to include PES gradient information in GPR, and this may offer

another route to minimising computational effort, however, it remains to. be seen whether

the increased effort in calculating energy gradients counteracts any gains made. Another

possible development which we are exploring is to take the GPR representation and use

it as a basis for generating a more compact representation of the PES in the style of the

well-known high-dimensional model representation (HDMR) strategy.86,87

As noted in the Introduction, we have already implemented the method outlined here

for multiple electronic states, so it is clear that, if improved efficiency can be achieved,

the proposed method has the potential to be of great utility to those wishing to carry out

quantum dynamics calculations on a wide selection of molecular systems.
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ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation

Including Arbitrary Couplings . J. Chem. Theory Comput. 2011, 7, 1253–1258.

(28) Tully, J. C. Mixed quantum-classical dynamics. Farad. Discuss. 1998, 110, 407–419.

(29) Coker, D. F. Computer Simulation Methods for Nonadiabatic Dynamics in Condensed

Systems. Computer Simulation in Chemical Physics. Dordrecht, 1993; pp 315–377.

(30) Coker, D. F.; Xiao, L. Methods for molecular dynamics with nonadiabatic transitions.

J. Chem. Phys. 1995, 102, 496–510.

(31) Topaler, M. S.; Hack, M. D.; Allison, T. C.; Liu, Y.-P.; Mielke, S. L.; Schwenke, D. W.;

Truhlar, D. G. Validation of trajectory surface hopping methods against accurate quan-

tum mechanical dynamics and semiclassical analysis of electronic-to-vibrational energy

transfer. J. Chem. Phys. 1997, 106, 8699–8709.

(32) Hack, M. D.; Truhlar, D. G. Nonadiabatic Trajectories at an Exhibition. J. Phys.

Chem. A 2000, 104, 7917–7926.

(33) Worth, G. A.; Robb, M. A. Applying direct molecular dynamics to non-adiabatic sys-

tems. Adv. Chem. Phys. 2002, 124, 355–432.

(34) Worth, G.; Hunt, P.; Robb, M. Non-adiabatic dynamics: A comparison of surface

hopping direct dynamics with quantum wavepacket calculations. J. Phys. Chem. A

2003, 107, 621–631.

(35) Smith, B. R.; Bearpark, M. J.; Robb, M. A.; Bernardi, F.; Olivucci, M. ‘Classical

38



wavepacket’ dynamics through a conical intersection. Application to the S1/S0 photo-

chemistry of benzene. Chem. Phys. Lett. 1995, 242, 27–32.

(36) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Smith, B. R. Can fulvene

S1 decay be controlled? A CASSCF study with MMVB dynamics. J. Am. Chem. Soc.

1996, 118, 5254–5260.

(37) Bearpark, M. J.; Bernardi, F.; Clifford, S.; Olivucci, M.; Robb, M. A.; Smith, B. R.;

Vreven, T. The azulene S1 state decays via a conical intersection: A CASSCF study

with MMVB dynamics. J. Am. Chem. Soc. 1996, 118, 169–175.
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