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Abstract

This study targets the kinetics and product detection of the gas-phase oxidation

reaction of protonated 5-dehydrouracil (uracil-5-yl) distonic radical cation using ion-

trap mass spectrometry. Protonated 5-dehydrouracil radical ion (5-dehydrouracilH+

radical ion, m/z 112) is produced within an ion trap by laser photolysis of protonated

5-iodouracil. Storage of the 5-dehydrouracilH+ radical ion in the presence of controlled

concentration of O2 reveals two main products. The major reaction product pathway

is assigned as the formation of protonated 2-hydroxypyrimidine-4,5-dione (m/z 127)

+ OH. A second product ion (m/z 99), putatively assigned as a 5-member-ring ke-

tone structure, is tentatively explained as arising from the decarbonylation (– CO) of

protonated 2-hydroxypyrimidine-4,5-dione. Because protonation of the 5-dehydrouracil

radical likely forms a di-enol structure, the O2 reaction at the 5 position is ortho to an

–OH group. Following this addition of O2, the peroxyl radical intermediate isomerises

by H atom transfer from the –OH group. The ensuing hydroperoxide then decomposes

to eliminate OH radical. It is shown that this elimination of OH radical (–17 Da) is

evidence for the presence of an –OH group ortho to the initial phenyl-radical site, in

good accord with calculations. The subsequent CO loss mechanism, to form the afore-

mentioned 5-member-ring structure, is unclear but some pathways are discussed. By

following the kinetics of the reaction, the room temperature second order rate coefficient

of the 5-dehydrouracilH+ distonic radical cation with molecular oxygen is measured at

7.2× 10−11 cm3 molecule−1 s−1, Φ = 12% (with ±50% total accuracy). For aryl radi-

cal reactions with O2, the presence of OH elimination product pathway, following the

peroxyl radical formation, is a indicator of an –OH group ortho to the radical site.
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Introduction

In DNA, bromouracil and iodouracil can be substituted for thymine units without major

disruption to DNA structure. Subsequent homolytic dehalogenation – either by electron

bombardment or photolysis – leads to the formation of uracil-5-yl radicals and can initi-

ate DNA-strand breaking1 and DNA-protein cross-linking.2 As such, iodo and bromouracil

photolytic strategies have been extensively investigated for targeted cancer therapies. This

photochemistry can also be used to probe DNA structure.3,4 To elucidate the underlying

mechanisms, studies have examined the reactivity of these uracil-5-yl σ-radicals within nu-

cleosides and DNA strands.4–6 Recently, further insights have been reported on the photo-

physics of 5-iodouracil7 as well as the negative-ion states (made from electron attachment) of

5-bromo and 5-iodouracil thought to be involved in the dissociative electron capture mech-

anism.8

A key process, that ultimately results in DNA strand-cleavage, involves uracil-5-yl rad-

icals abstracting H atoms from nearby functional groups.9,10 Alternatively, several studies

have investigated the possibility that, under aerobic conditions, reaction of the uracil-5-yl

radicals with molecular oxygen will form peroxyl radical intermediates (Scheme 1 (i)), and

that these peroxyl radicals might be key intermediates in rationalising the activity of these

halouracils.11,12 Following this line of enquiry, Schyman et al. reported in a computational

study that the peroxyl radical would actually be a less efficient at H atom abstraction from

deoxyribose than the uracil-5-yl parent.13 However, following our recent work on ortho-

hydroxylphenyl radicals, which showed characteristic reaction pathways,14 we posit that the

enol form of the uracil-5-yl radical, with an OH group adjacent to the radical at the 5 posi-

tion, will significantly change the outcome the radical reaction with O2. Thus we set out to

investigate the gas-phase reaction of protonated uracil-5-yl radical cation, which should be

in the enolic form. In has also been shown that studies on protonated uracils and uridines

provide important insight into the stability and prevalence of various tautomeric forms.15–17

Combining ion trap mass spectrometry and the investigation of charge-separation distonic
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radical ions is a insightful technique for the study of radical reactivity without the pertur-

bative presence of solvent.18–20

In this paper, we explore the O2 reaction with protonated uracil-5-yl (5-dehydrouracilH+

radical). We show that the radical of the protonated di-enol form shown in Scheme 1

(ii) has access to a unique and efficient reaction pathways afforded by the presence of the

it ortho –OH group. This leads to the production of a di-one species with elimination

of OH radical. It also appears that in the gas-phase, the quinone might spontaneously

decarbonylate in considerable yield. Both the elimination of OH and the detection of a

subsequent decarbonylation product are characteristic signatures of beta-hydroxy peroxy

radicals in aromatic systems.

Scheme 1: Molecular oxygen addition to (i) 5-dehydrouracil radical and (ii) protonated 5-
dehydrouracil radical ion

Experimental Methods

Experiments were performed on a Thermo Fisher Scientific LTQ-XL linear quadrupole ion-

trap mass spectrometry, which was modified to allow the passage of laser photons through

the ion trap. Modifications to the buffer-gas delivery manifold allowed for the controlled

introduction of gas-phase reactants, in this case O2. Protonated ions were introduced into the

mass spectrometer by injecting methanol solutions containing 5-15 µM 5-iodouracil (Sigma-

Aldrich) via an electrospray ion (ESI) source operated in positive ion mode. The pressure
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within the ion trap is approximately 2.5mTorr and the effective ion temperature within these

linear quadrupole ion traps has been recently estimated at 318 ± 23 K,21 consistent with an

earlier estimate of 307 K.22

For the photolytic preparation of protonated radical ions from suitable precursors, the ion-

trap mass spectrometer has been modified by installation of a vacuum compatible quartz

window to the backing plate of the vacuum chamber.23 This allows for laser access down the

principle axis of the linear ion trap. Fixed wavelength photodissociation experiments were

conducted using an unfocused Minilite Nd:YAG laser operating at 266 nm (∼1mJ/pulse).

This laser produces ∼5 ns pulses that were synchronised by the activation-synced trigger

output from the mass spectrometer such that only a single laser pulse irradiates the target

ion population per MS cycle.

To probe the reaction of radical ions with O2, the helium buffer gas supplied to the ion trap

was doped with 770±45 ppm O2. The oxygen concentration within the trap was measured

each day using a known calibration reaction (4-(N,N,N -trimethylammonium)phenyl radical

cation + O2 as reported by Kirk et al.19). All mass spectra shown here are an average

of 50 scans. Kinetic traces are constructed from mass spectra acquired after varying ion

storage times with each point in a kinetic trace representing an average ion abundance over

25 individual scans. Full pseudo-first order rate coefficient measurements were repeated on

five different days.

The radical precursor 5-iodouracil (98%) was purchased from Sigma Aldrich, HPLC grade

methanol and formic acid were purchased from Ajax Fine Chemicals (Sydney, Australia) and

770±45 ppm oxygen doped helium gas cylinder was purchased from BOC gases (Sydney,

Australia). All commercial compounds were used without additional purification.
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Quantum chemical calculations were performed using Gaussian 09.24 Ground state energies

of the 5-dehydrouracil radical protonation isomers were calculated using G4MP2-6x theory25

with 6-311+G(2df,p) basis set. The remaining calculations were performed using the G3X-K

composite method as described in Reference 26. XYZ coordinate tables for stationary points

presented in the potential energy diagrams are included in the Supporting Information.
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Results and Discussion

Ion-trap mass spectrometry

Figure 1 (a) shows a mass spectrum acquired following isolation and subsequent photodis-

sociation of 5-iodouracilH+ (5IURA, m/z 239) at λ = 266 nm (PD266 nm). The peak at

m/z 112 is assigned as 5-dehydrouracilH+ radical (5DHU, m/z 112) resulting from C–I bond

homolysis as outlined in Scheme 2, where the protonation isomer (protomer) is assumed to

be the most stable protomer, as described in more detail below. For comparison with con-

ventional collision-induced dissociation (CID), subjecting m/z 239 to CID yields multiple

dissociation products (Supplementary Figure S1) including minor amounts of m/z 112 and

major product ions at m/z 222, 221 and 196. These major product ions are analogous to

product channels observed in CID studies of protonated uracil.27–30 Isolation of m/z 112

generated from CID and subsequent storage in the presence of O2 shows similar products

to the PD generated m/z 112 however a significant portion of m/z 112 remained unreacted

(Supplementary Figure S2). This suggests that CID induces significant amounts of isomeri-

sation in the radical population ). This is consistent with previous studies by Kenttamaa

and coworkers where laser synthesis of distonic radical ions were shown to produced greater

yields of un-isomerised radicals compared with collision-activation methods.31 As the focus

of the current study is the reactivity of the 5DHU radical cation (m/z 112) no further study

of the CID activated m/z 239 ion was pursued, and all m/z 112 ions herein are formed from

PD266 nm.

Scheme 2: General scheme for making the protonated 5-dehydrouracil radical ion in an
ion-trap mass spectrometer.
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Figure 1: (a) Photodissociation mass spectrum (λ=266 nm) of isolated 5IURA cation, m/z
239, forming m/z 112. (b) Mass spectrum acquired after 1 s trap storage of 5DHU in the
presence of O2. (c) CID mass spectrum of isolated m/z 127 product species. (d) Mass
spectrum of isolated 5DHU and reaction with 18O2 (the small amount of m/z 127 is due to
background 16O2 present within the ion trap).
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It has been reported that the most stable gas-phase protonation isomer (protomer) of

uracilH+ is protonation at the N1 position corresponding to a di-enol form.32–35 Our G4MP2-

6x calculations show that the thermodynamically preferred gas-phase protonation site of the

5-dehydrouracilH+ radical is probably the analogous species (as shown in Scheme 2), however

other protonation sites are within 7 kcal/mol (Table S1) so considering the closeness of

these energies, and the fact that the ordering of relative protomer energies can be method

dependent,36 the presence of other protonation isomers cannot be ruled out.

The m/z 112 product ion (M) from PD266 nm of 5IURA was isolated and stored within

the ion trap in the presence of a controlled O2 concentration with varying storage times.

Figure 1 (b) is the product mass spectrum resulting from isolation of m/z 112 and storage

for 1000ms and it reveals that the m/z 112 ion has almost completely reacted, with the main

product ions recorded at m/z 99, 117, 127 and 145. It is notable that these product ions do

not correspond to either O2 [M+ 32] or O atom addition [M+ 16], which are characteristic

to distonic phenyl radical cation reactions with molecular oxygen.19 The product ion at m/z

127 [M+15] is consistent with O2 addition (+32 Da) and subsequent OH loss (-17 Da), via a

peroxyl-radical intermediate (M + 32), and is assigned as protonated 2-hydroxypyrimidine-

4,5-dione, referred to as UBQ (uracil benzoquinone) henceforth, as depicted in Scheme 3

Ia. The peroxyl adduct (m/z 144) cation is not detected in these experiments, presumably

due to its short lifetime. The m/z 99 product, corresponding to [M − 13], is assigned as

arising from consecutive losses of OH (17 Da) and CO (28 Da) from the peroxyl radical

intermediate, as investigated further below. Figure 1(c) shows that the CID activation of

isolated m/z 127 leads to the exclusive formation of m/z 99 that we attribute to the loss of

CO (decarbonylation) from m/z 127. This link between m/z 127 and 99 will be revisited in

more detail below.

To confirm the assignment of m/z 127 and 99 as O2 reaction products, the reaction of

5DHU was repeated with isotopically labelled 18O2 gas and a product spectrum, after 300ms

9
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trapping time, is shown in Figure 1 (d). Comparing to Figure 1 (b), the detection of a new

product at m/z 129 is consistent with 18O2 and subsequent 18OH loss, with a small amount

of m/z 127 due to background 16O2 present within the ion trap. The m/z 99 signal is

consistent with C18O loss (30 Da) from m/z 129 as shown in Scheme 4 as pathway (i), which

dominates over the C16O loss product ion at m/z 101 (28 Da) (pathway (ii)). This strong

preference toward (i) over (ii) may assist in rationalising the decarbonylation mechanism

which is discussed further below. Other ions observed at m/z 117 and 145 in Figure 1(b)

are assigned as the addition of background water (+18 Da) to the reaction product ions at

m/z 99 and 127, respectively. The small ion signal at m/z 113 in Figure 1(b) is possibly a

H-atom addition product to m/z 112, perhaps from abstraction from background methanol

(the ESI solvent) but it not considered in further detail here.

Kinetic measurements

Figure 2 contains representative kinetic traces, from one experiment, for the major species

detected for the isolation and storage of m/z 112 ions in the presence of O2 for storage

times between (a) 0–350 ms and (b) 0–3000 ms. These data were acquired under the same

experimental conditions as in Figure 1 (b) and are well described by a single exponential

function in the case of m/z 112, 117 and 145. Fitting a sum of both an exponential growth

and decay function was required for product ions m/z 99 and 127.

Table 1: Pseudo first-order rates for the species involved in the reaction of 5DHU with O2

in the gas phase, with uncertainties reported as two standard deviations (2σ) obtained from
the fits.

m/z Decay k’ (s−1) Growth k’ (s−1)

112 18.7± 0.1 -

127 0.5± 1.0 17± 6

99 0.2± 1.2 18± 4

117 - 0.1± 0.4
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145 - 0.5± 0.4

Table 1 lists the fitted pseudo-first order rates extracted from fits in Figure 2(b). The m/z

112 (5DHU) ion decays away within 300ms with k’ = 18.7±0.1 s−1 and a small non-zero

baseline of less than a 1% of the starting intensity indicates the presence of a very small

fraction of isomerised, non-reactive m/z 112 radical ions. The product ions, m/z 127 and

99, grow in with matched k’ values at 17±6 s−1 and 18±4 s−1. Figure 2(b) shows that after

formation, m/z 127 and 99 undergo subsequent reaction.

The k’ values for decay of m/z 127 and 99 (k’ = 0.5±1.0 s−1 and 0.2±1.2 s−1) are reasonable

well-matched to the growth of two slow forming species at m/z 145 and 117 (k’ = 0.5±0.4

s−1 and 0.1±0.4 s−1, respectively). The large uncertainty values associated with these low k’

values is a result of the longer lifetimes not being fully captured by the time window of the

experiment. These measurements were repeated over 12 experiments of the form presented in

Figure 2, across 5 different days. Table 2 lists the [O2] values determined for each day, the k’

values for 5DHU (m/z 112) and corresponding second-order rate coefficients (k2nd). Second-

order rate coefficients (k2nd, cm3 molecule−1 s−1) and reaction efficiencies (φ) derived from

fitted pseudo-first order rate coefficients (k’) are reported in Table 3. Collision frequencies

were calculated using a simple Langevin collision model.37 Due mostly to the uncertainty in

determining the absolute pressure within the ion trap, in addition to the accumulation of

other experimental uncertainties, we ascribe an absolute experimental accuracy of ±50% to

these experimental second-order rate coefficients.
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Figure 2: Kinetic profile of each major ion of the reaction of m/z 112 with O2 spanning (a)
0− 350 ms and (b) 0− 3000 ms. Plotted are the product ions at m/z 99, 117, 127 and 145
fitted with an exponential function or a combined growth and decay exponential function
(black line) as described in the text. Error bars are ±2σ.

12

Page 12 of 25

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Table 2: Comparison of the oxygen concentration, the pseudo-first order rate coefficients and
second-order rate coefficients of m/z 112 derived for each experimental run. Uncertainties
reported as 2σ representing experimental precision.

Experimental Day [O2]
(molecule cm−3)

k’ (s−1) k2nd
(cm3 molecule−1

s−1)

1 2.9± 0.5× 1011 19.4± 0.8 6.6± 0.9× 10−11

2 2.7± 0.5× 1011 20.6± 0.6 7.5± 0.9× 10−11

3 2.9± 0.6× 1011 20.7± 0.6 7.2± 0.9× 10−11

4 2.7± 0.7× 1011 21.0± 1.0 8.0± 2.0× 10−11

5 2.9± 0.6× 1011 18.9± 0.9 7.0± 1.0× 10−11

Average 7.2± 0.6× 10−11

Table 3: The average second-order rate coefficients for 5DHU (±2σ) compared with literature
values for other reaction of O2 with distonic phenyl radical cations.

Distonic Radical
Cation

k2nd (cm3

molecule−1 s−1)
Φ (%) Reference

5-DehydrouracilH+

radical
7.2± 1.1× 10−11 12 This study

4-(N,N,N -
Trimethyl-

ammonium)-phenyl
radical

2.8× 10−11 5 Kirk et al.19

5-(N,N,N -
Trimethyl-

ammonium)-2-
hydroxyphenyl

2.5× 10−11 4 Prendergast et
al.14

5-(N,N,N -
Trimethyl-

ammonium)-2-
methylphenyl

2.9× 10−11 5 Prendergast et
al.38

The average second-order rate constant (k2nd) for this reaction is 7.2×10−11 cm3 molecule−1

s−1 with a reaction efficiency of 12%, which is significantly greater than the k2nd and reaction

efficiency values reported for other distonic aryl radical cations.19,38 The 12% efficiency is

close to the 15% reported for distonic anion 2-carboxylatophenyl + O2 which is one of the
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largest O2 reaction efficiencies for an aromatic distonic ions + O2 reaction reported in Kirk

et al.19 where 11 distonic phenyl-type radicals are compared and have reaction efficiency

that spans 5-15%. The neutral phenyl + O2 reaction efficiency is around 4-5% (see Kirk et

al.19 and references therein).

Reaction mechanism and products

It is known that tyrosyl radicals,39 ortho-substituted methylphenyl38,40 and hydroxyphenyl

radicals14 react with O2 and subsequently eliminate •OH via a mechanism analogous to the

Waddington mechanism for the β-hydroxyl radical oxidation of alcohols41 and it is apparent

that the same pattern is observed here. A calculated potential energy diagram for an OH

elimination mechanism is shown in Figure 3. The O2 addition adduct reaction is -42 kcal

mol−1 exothermic and the H atom transfer from the –OH group, ortho to the peroxy radical,

to form the hydroperoxide is then about 10 kcal mol−1 uphill. Attempts to locate a transition

state between those two intermediates were unsuccessful. The elimination of OH can then

occur through a transition state at -14.7 kcal mol−1 below the entrance channel. The UBQ

+ •OH reaction enthalpy is calculated at -20.9 kcal mol−1.

The strong signal at m/z 99 in Figure 1 (b) requires more thought. Our conclusion

is that either the m/z 99 ion is formed from the prompt decarbonylation of nascent UBQ

(m/z 127) product or that there is a 3-body elimination channel from the O2 adduct sur-

face. The matched growth rates of m/z 127 and m/z 99 do not unambiguously differentiate

between these two possibilities, as the rate limiting step is the initial bimolecular reaction

with O2 and all subsequent processes are too rapid to affect these measured kinetics. Figure

1 (c) shows that the CID activation of m/z 127 results in a major signal at m/z 99 that

is consistent with CO loss (28Da) thus offering some support for the connection between

these two ions. Isolation of m/z 127 with no additional CID activation, with trapping times

extending for 5000 ms, produced no new signals (data not shown) leading us to conclude
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that the production of m/z 99 is not the result of any ion activation imparted from trap-

ping/isolation procedures nor it is from any gas-phase reaction process. In pyrolysis studies,

neutral ortho-benzoquinone is known to lose CO to form cyclopentadieneone.42,43 Our pre-

vious study of gas-phase hydroxyphenyl + O2 reactions showed that benzoquinone products

are susceptible to prompt decarbonylation.14 These details suggest that it is possible that

prompt decarbonylation of UBQ (m/z 127) is the explanation for formation m/z 99.

There are some noteworthy differences in this present reaction compared to our previous

hydroxyphenyl + O2 studies. Here, the proportion of m/z 99 (the decarbonylation product)

compared to the parent is significantly larger than in the ammonium-tagged benzoquinone

where only traces of decarbonylation where detected.14 In Scheme 3, reactions IIa and IIb

are compared with corresponding heats of reaction (calculated using G3X-K) of -7.6 kcal

mol−1 for the UBQ case and +2.1 kcal mol−1 for the ammonium-tagged benzoquinone. One

complete decarbonylation pathway was calculated for UBQ and displayed in Figure 4, and

shows a rate limiting barrier at 17 kcal mol−1 relative to the reactants. This barrier is sig-

nificantly lower than the rate limiting barrier calculated for decarbonylation of both neutral

benzoquinone (42 kcal mol−1) and the ammonium-tagged benzoquinone (35 kcal mol−1).14

An issue, however, is that if the decomposition of UBQ is driven by excess internal energy

from the oxidation reaction, then the 17 kcal mol−1 barrier on the UBQ decarbonylation

pathway seems rather high, especially considering the formation of UBQ is a bi-molecular

product pathway, calculated at -20.9 kcal mol−1 heat of reaction, where significant energy

is expected to be imparted to the OH co-product; although granted it is a somewhat late

barrier on that product pathway (with a 6.2 kcal mol−1 reverse barrier). Our conclusion is

that it is likely there are another mechanistic pathway (or pathways) for this decarbonyla-

tion, perhaps ones that are more direct, that explain our result either on the peroxy radical

surface or the UBQ surface. A direct three-body elimination channel from the peroxy radical

surface would be -28.5 kcal/mol relative to the starting reactants as indicated in Figure 3.
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Finally, with these calculations we are cautious about multi-reference issues particularly as

many species contain three oxygen atoms in addition to the nitrogen lone-pair. T1 diagnostic

values44 values are calculated and are included in Figures 3 and 4 – some rate determining

barriers have T1 values > 0.03 which indicate possible inadequacies with the single-reference

treatment of those structures. So further computational treatments are required along with

further insights into the carbonylation pathways of benzoquinone species.

0.0
N N

O

O

H

O

+  OH

+  O2

-42.0

-33.7

-20.9

-14.7

?

0.023
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0.030
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N N

O

O

H

H

H

N N
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H
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O

O

H
+  CO  + OH

-28.5

H

0.020

Figure 3: Potential energy scheme for the 5-dehydrouracilH+ radical +O2 calculated using
the G3X-K method. Enthalpy values are provided relative to the entrance channel (black)
in kcal mol−1 and T1 diagnostic values are presented in blue.

Figure 4: A decarbonylation pathway of the protonated 2-hydroxypyrimidine-4,5-dione ion
calculated using the G3X-K method. Enthalpy values are provided relative to the entrance
channel (black) in kcal mol−1 and T1 diagnostic values are presented in blue.

16

Page 16 of 25

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



N+ N
H

OH

OH
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Scheme 3: Heat-of-reaction calculations comparing similar pathways for 5DHU and proto-
nated aniline analogues

Scheme 4: Reaction pathways of 5DHU with 18O2
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Conclusion

In this study we have successfully utilised-gas phase photodissociation and ion-trap mass

spectrometry to measure the second-order rate coefficient of the 5-dehydrouracilH+ radical

+ O2 reaction and determined the reaction efficiency. We have undertaken the first direct

product studies of this reaction and analysed product structures. The 5-dehydrouracilH+

distonic radical cation undergoes oxygen addition to form a peroxyl radical intermediate

before losing an OH radical to form protonated 2-hydroxypyrimidine-4,5-dione (UBQ). A

lower m/z product ion is also detected, which is consistent with a UBQ decarbonylation

reaction that is assigned as 5-membered cyclic ketone species. But questions still remain

around the formation of this product whether it is the result of a three-body elimination

channel from the peroxy radical surface or if its a sequential process of decarbonylation

following the formation of UBQ.

The formation of the protonated 5DHU radical cation within a biological system under

aerobic conditions could initiate the formation of a quinone species and concomitant OH

radical generation. It also evident that observation of an OH elimination channel in gas-

phase studies is a general characteristic reaction O2 reactions with phenyl radicals with and

an ortho –OH group.

Supporting Information

A table of calculated relative energies for isomers of 5-dehydrouracilH+ radical. CID mass

spectrum of protonated 5-iodouracil. Product mass spectrum following CID of protonated

5-iodouracil and subsequent isolation and storage of m/z 112 in the presence of O2.
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