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Abstract:

Ecological restoration can result in extensive land use transitions which
may directly impact on water runoff and sediment loss and thus influence
tradeoffs between multiple hydrological and soil ecosystem services.
However, quantifying the effect of these transitions on runoff and sediment
yields has been a challenge over large spatial scales. This study integrated
and synthesized 43 articles and 331 runoff experimental plots in the Loess
Plateau of China under natural rainfall to quantify the impacts of land use
transitions on (i) runoff and sediment production, (ii) runoff and soil loss
reduction effectiveness, and (iii) the tradeoffs between runoff and soil
erosion. The effects of ecological restoration on runoff and sediment yields
were quantified using a general mixed linear meta-regression model with a
restricted maximum likelihood estimator on overall and individual
ecological restoration types. The results showed that artificial grassland,
forest, natural grassland, and shrubland had higher runoff and sediment
reduction effectiveness. The annual runoff reduction effectiveness of the
ecological restoration overall was 72.18% with the effects of artificial
grassland, natural grassland, shrubland, and forest at 71.89%, 50.60%,
73.18%, and 73.08%, respectively. The annual sediment reduction
effectiveness of the overall ecological restoration was 99.9% without a
significant difference among the four land uses associated with ecological
recovery. In addition, shrubland and forest significantly reduced sediment
yields with relatively high runoff costs. Natural grassland was optimal for
balancing water provisioning and soil conservation, and artificial grassland
was second to natural grassland in this respect. Meanwhile, newly
unmanaged abandoned land and cropland had relative weak functionality
with regard to soil and water conservation. The implications of this study’s
findings are discussed along with their potential to contribute to an
improved understanding of the effects of ecological restoration on water
supply and soil retention for the water-limited terrestrial ecosystem at a
regional scale.
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Running title:
Quantifying the effect of ecological restoration on runoff and sediment yields: A

meta-analysis for the Loess Plateau of China

Abstract

Ecological restoration can result in extensive land use transitions which may directly impact on water
runoff and sediment loss and thus influence tradeoffs between multiple hydrological and soil ecosystem
services. However, quantifying the effect of these transitions on runoff and sediment yields has been a
challenge over large spatial scales. This study integrated and synthesized 43 articles and 331 runoff
experimental plots in the Loess Plateau of China under natural rainfall to quantify the impacts of land use
transitions on (i) runoff and sediment production, (ii) runoff and soil loss reduction effectiveness, and (iii)
the tradeoffs between runoff and soil erosion. The effects of ecological restoration on runoff and sediment
yields were quantified using a general mixed linear meta-regression model with a restricted maximum
likelihood estimator on overall and individual ecological restoration types. The results showed that
artificial grassland, forest, natural grassland, and shrubland had higher runoff and sediment reduction
effectiveness. The annual runoff reduction effectiveness of the ecological restoration overall was 72.18%
with the effects of artificial grassland, natural grassland, shrubland, and forest at 71.89%, 50.60%,
73.18%, and 73.08%, respectively. The annual sediment reduction effectiveness of the overall ecological
restoration was 99.9% without a significant difference among the four land uses associated with
ecological recovery. In addition, shrubland and forest significantly reduced sediment yields with
relatively high runoff costs. Natural grassland was optimal for balancing water provisioning and soil
conservation, and artificial grassland was second to natural grassland in this respect. Meanwhile, newly

unmanaged abandoned land and cropland had relative weak functionality with regard to soil and water
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conservation. The implications of this study’s findings are discussed along with their potential to
contribute to an improved understanding of the effects of ecological restoration on water supply and soil
retention for the water-limited terrestrial ecosystem at a regional scale.

Keywords

Hydrological monitoring, land degradation, land use transition, plot scale, vegetation recovery

I Introduction

Soil erosion by water has been a serious environmental problem and a threat to the
sustainability and productive capacity of agro-ecosystems (Lal, 1987; Pimentel et al.,
1995; Pimentel and Kounang, 1998). Ecological restoration is an important approach for
controlling land degradation caused by soil erosion and for improving soil ecological
function. In semi-arid and arid regions, ecosystem services that promote water provision
and soil retention by ecological restoration initiatives are critical to ensure the
sustainability of socio-ecological systems. Water provisioning and soil retention
services are closely related to water and soil processes, especially runoff and sediment
processes which are extremely sensitive to land use and vegetation cover changes
arising from ecological restoration initiatives (Brauman et al., 2007; Robinson et al.,
2013).

Historically, field observation has been the most commonly used and reliable
method for determining the effect of ecological restoration on runoff and sediment

yields. Specifically, runoff experimental plots are used to conduct field observations
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where vegetation, soil, and topography were considered to be relatively homogeneous
(Kinnell, 2016). Studies have revealed that land use types, the magnitude and timing of
rainfall, soil erodibility, and micro-topology can each have important impacts on runoff
and sediment processes at the plot scale (Boix-Fayos et al., 2006). The formation of
vegetation patch patterns, a complex canopy structure, high soil hydraulic conductivity,
and increases in plant functional diversity have been found to promote soil and water
retention when ecological restoration has altered the bio-physical environment through
natural succession (Imeson and Prinsen, 2004; Hou and Fu, 2014a; Hou et al., 2014a;
Zhou et al., 2016). The implementation of ecological restoration interventions can also
incur synergies and tradeoffs among multiple soil- and water-related ecosystem services
(Power, 2010; Jia et al., 2014; Fu et al., 2015). Coarse indicator-based methods have
been used to estimate potential tradeoffs between water yield and soil retention, but can
suffer from insufficient support from field observations (Dymond et al., 2012; Trabucchi
et al., 2013; Zheng et al., 2014; Hao et al., 2017). Observations from field runoff plots
on hill-slopes can provide the basis of a more accurate and direct method for choosing
optimal land use types for ecological restoration, with the objective of promoting soil
and water conversation. Plot scale studies have used runoff cost for sediment control as
a simple indicator to quantify the effect of different tillage and biological measures on
the tradeoff between runoff yields and soil loss (Yan et al., 2012; Yan et al., 2015).

However, it is often difficult to scale up plot or field observations to regional processes,
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even from multiple field sites, because the sites may not adequately sample (or represent)
the region. For example, they may employ different measurement methods, perform
experiments over different time periods or have insufficient treatment repetitions
(Boix-Fayos et al., 2006; Garcia-Ruiz et al., 2015; Labriere et al., 2015).

One way to develop regional-scale understandings of soil and erosion processes
through field scale studies is through a meta-analysis. This approach synthesizes and
analyzes available data from multiple sites and other sources, and attempts to overcome
variations in study contexts and inconsistencies in their conclusions. Meta-analysis is an
effective tool for exploring the regional impacts of local land use change together with
soil and water conservation interventions on runoff and soil erosion processes. A
meta-analysis approach has been used to investigate the effects of land use types on
annual soil loss, annual runoff, and annual runoff coefficients from field-scale data in
Europe and the Mediterranean region (Maetens et al., 2012). It has also been used to
study the effectiveness of soil and vegetation management on soil erosion control in the
humid tropics where soil erosion was found to be concentrated both spatially (over the
landscape elements of bare soil) and temporally (e.g., during crop rotation) (Labriere et
al., 2015).

Although many descriptive reviews and perspectives on soil erosion and
conservation exist (Chen et al., 2007; Haregeweyn et al., 2015), no quantitative

meta-analysis has been done to integrate plot scale data and findings, in support of a
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broader understanding of land use change and its hydrological and soil erosion impacts
for the Loess Plateau in China. The Loess Plateau has a well-known and long history of
heavy soil erosion due to an increasing amount of susceptible land use types, such as
bare land, sloped cropland, and abandoned land. It has been a research hotspot for soil
erosion studies and has been subjected to many soil and water conservation measures
since the early years of New China (Chen et al., 2007; Chen et al., 2015; Zhuang et al.,
2015). During the past decades, many soil and water retention and ecological restoration
projects have been implemented to reduce soil erosion and to promote vegetation
recovery, especially through the “Grain-for-Green” project launched in 1999 (Chen et
al., 2007). These projects promote the transition from degradation susceptible land to
degradation-resistant land types such as artificial or natural grassland, shrubland, and
forest, which has made the Loess Plateau the most significant vegetation greening zone
in China (Lu et al., 2015; Vina et al., 2016). These land use transitions effectively
control soil erosion and reduce runoff in this water-limited area (Chen et al., 2015; Feng
et al., 2016; Wang et al., 2016). In addition, observations at extensively distributed field
plots have been widely used to directly monitor runoff and sediment yields on the Loess
Plateau (Chen et al., 2007). Studies have focused primarily on the effect of land use
types on runoff and sediment production at the local scale (Kang et al., 2001; Fu et al.,
2004; Wang et al., 2011; Zhang et al., 2015; Zhou et al., 2016). However, current studies

have paid little attention to the regional effects of ecological restoration on soil and
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water retention, regardless of sufficient support by observation data.

Thus, in this study, we integrated field plot scale monitoring to quantify the effect
of ecological restoration on hydrological and soil erosion via a meta-analysis. Our main
objectives were to: (a) determine the impact of land use type on runoff and sediment
yields across the entire Loess Plateau; (b) identify the tradeoffs and synergies between
runoff production and soil erosion under different land use types; and (c) evaluate the
overall and land use specific effectiveness of ecological restoration on soil and water
retention. Such an approach can inform and support an improved understanding of the
effects of regional-scale land use transitions and can facilitate future large-scale
ecological restoration planning and sustainable management. At the same time, this
study can complement global-scale studies, especially in other loess regions around the

world.
I1 Material and methods

[ Literature search and data extraction

To collect the meta-analysis data, we searched peer-reviewed journal articles published
both in English and in Chinese using the ISI Web of Science and China National
Knowledge Infrastructure (CNKI) (from Jan. 1990 to May 2016). We used the
following search-term combinations: “runoff” or “streamflow” or “discharge” or “water
yield” or “water provision,” and “soil erosion” or “sediment load” or “sediment delivery”

or “sediment discharge” or “sediment yield*” or “sediment*”. We then refined our
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search with keywords “Loess Plateau” or “* middle * Yellow River”. EndNote X7
software was used to manage documents, remove duplicates, and screen titles, abstracts
and full texts in order to include or exclude studies. Engauge Digitizer software was
used to help with extracting numerical data from scatter-plot, box-plot, and bar-plot
figures. In addition, we considered further studies cited in the references and studies
published as dissertations. A final set of 43 articles and 331 plots were included in our
meta-analysis (see Appendices 1 and 2) that met the following criteria for inclusion:
1. The experiments were conducted in the region of the Loess Plateau and in the
middle reach of the Yellow River;
2. The experiments were conducted in the field under natural rainfall events;
3. The spatial scale of observation was the runoff experimental plot, with relatively
homogeneous site conditions and responses to different land cover transitions;
4. The study at least partly recorded variables describing runoff or sediment and the
following associated factors: land use type, area, slope length, slope steepness, soil
properties, and restoration duration;
5. Means, standard deviations or standard errors, or sample sizes of treatments and
controls were directly reported or could be determined from the main text of the
articles.
The 43 selected studies were mainly conducted in the hilly-gully region of the Loess

Plateau (Figure 1) and were diverse in their specific characteristics: the duration of
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monitoring, the number of land use types, and site conditions (see Appendix 2).
Because runoff and erosion events happen mainly during the growing season (from Jun.
to Sept.) on the Loess Plateau, we focused on the growing season and associated runoff
events and soil erosion events. Annual runoff and sediment yields were obtained by
summing rainfall event runoff and sediment yields for the entire growing season. The
growing season and event rainfall were used to calculate a runoff coefficient to describe

the likelihood of runoff.

[insert Figure 1.]

2 Data characteristics and preprocessing

The first stage of the analysis was to determine the characteristics of the data sources
and the data. The year of publication indicated that research articles were concentrated
in 2004, 2006 and the last five years (Figure 2(a)). Although, the duration of the 43
studies ranged from one to 14 years, most took fewer than five years (Figure 2(b)). The
number of land use types was generally less than four and all studies examined two
temporal scales: years and rainfall events (Figure 2(c) and (d)). The research sites were
distributed across four provinces (Shanxi, Shaanxi, Ningxia, and Gansu) and across 21
counties (Ansai, Baota, Changwu, Dingxi, Fu, Fugu, Guyuan, Huining, Ji, Lishi,

Pingshuo, Shenmu, Shouyang, Tianshui, Wuqi, Xifeng, Yanggao, Yichuan, Yongshou,
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Yulin, and Zizhou) (Figure 2(e)). Using the classification of annual soil erosion rates
from Jing (1986), most of the annual soil erosion rates were found to be less than 20
t/ha among 7 land use types, but for bare land, abandoned land and cropland, large rates
were found at 20-50 t/ha, 50-100 t/ha and more than 100 t/ha. Abandoned land had the
highest annual soil loss rate of more than 100 t/ha (Figure 2(f)). The compiled datasets
were considered sufficiently rich and representative to be used for a meta-analysis.

Land use transition types and land use types adopted in our study can be found in
Table 1. Each land use type was occupied by a different dominant plant species. Forage
grass species (e.g., Astragalus adsurgens, Medicago sativa, and Astragalus
complanatus R. Ex Bge.) was commonly found on artificial grassland plots, whereas
natural grassland plots were occupied through natural succession mainly by wild species,
including Agropyron cristatum (Linn.) Gaertn., Cleistogenes squarrosa (Trin.) Keng,
Heteropappus altaicus (Willd) Novopokr, Setaria viridis (L.) Beauv., Stipa capillata
Linn., Artemisia scoparia waldst.et Kit and Stipa bungeana Trin. and so on. Forest plots
mainly included tall trees, such as Pinus tabulaeformis Carr., Armeniaca sibirica (L.)
Lam., Populus simonii Carr., and Robinia pseudoacacia Linn.. Shrubland plots mostly
contained shorter shrub species such as Caragana korshinskii Kom., Hippophae
rhamnoides Linn., Spiraea pubescens Turcz., Lespedeza davurica (Laxm.) Schindl., and
Amorpha fruticosa Linn.. Crops such as millet, potato, sorghum, and soybean were

cultivated on sloped cropland, and newly abandoned land that was farmland or fallow
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over a relatively short time period and had relatively low vegetation coverage. Most of

the bare land plots had no plant cover and vegetation coverage was approximately zero.

[insert Table 1.]

[insert Figure 2.]

3 Data analysis
Before conducting a detailed analysis, all data were transformed to uniform units to
make runoff and soil erosion data comparable across all studies. Here, the runoff unit
and soil erosion rate were transformed to mm and g/mz, respectively. Next, descriptive
statistics were generated to visualize the interactions between land use, runoff and soil
loss, using box-plots grouped by land use type (Figures 3). Then, runoff and soil erosion
rates were logyo transformed to normalize their distribution. One-way analysis of
variance (ANOVA) and Tukey’s HSD (honest significant difference) were used to test
for differences (significance level at p < 0.05) in runoff and soil loss with land use type
(Figure 3).

A range of indicators were used to quantify runoff and soil loss reduction
effectiveness and runoff cost of sediment control with land use, with each land use type

considered as a separate vegetation management factor, and compared with the case of
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bare land where plant cover was approximately zero (Figure 4 and Table 2). In order to
explore overall and individual soil and water retention effectiveness via a meta-analysis,
the land use types were divided into two transition types according to their soil and
water retention measures (Table 1). Firstly, ecological restoration types (ERT) are
essential soil and water conservation measures leading to land use transitions from
cultivated sloping croplands to artificial grassland, natural grassland, shrubland, and
forest in the Loess Plateau. Secondly, land degradation types (LDT) are the main
sources of soil loss and have poor water conservation potential, which included bare
land, newly abandoned land, and cropland. Finally, we determined the soil and water
retention effectiveness of the four ERTs by contrasting them with the three LDTs via a
meta-analysis.

Specific criteria were used to expand the datasets and to calculate the effect of
runoff and soil erosion rate for the meta-analysis. LDTs were treated as controls or
reference scenarios, whereas ERTs containing artificial grassland, natural grassland,
shrubland, and forest were regarded as treatments. We chose the natural log of the
response ratio to calculate the effect size, as an alternative to the standardized mean
difference (e.g., Hedges’d), which is a more restrictive method (Koricheva J., 2013).

Thus, the effect size can be calculated by the natural log of the response ratio (InRR):

AN
lnRR = ln = | = ]nY1 - lnYZ
Y,
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with variance

st S3

Ulnrr = ﬁ n,7,

where ny, Y;,s; were the sample size, mean and standard deviation of the variable
related to the ERTs, respectively; n,, Y,, s, were the sample size, mean and standard
deviation of the variable relevant to the LDTs, respectively. Details on the meta-analysis
data are provided in the supplementary material (see Appendix 2).

We determined the coarse spatial variability of effect size (InRR) with longitude,
latitude, mean annual precipitation (MAP) and mean annual temperature (MAT) via a
regression analysis (see Appendix 3). In the meta-analysis process, model fit statistics
(e.g., log-likelihood, deviance, Bayesian information criterion, and Akaike information
criterion) were used to evaluate the optimal model. Model availability can be
determined by the funnel and Q-Q plot between the standard error and overall effect
model residuals, which can be useful for diagnosing the presence of heterogeneity and
certain forms of publication bias (Viechtbauer, 2010) (see Appendix 4). The ratio of the
runoff plot area, slope length, and slope steepness between ERT and LDT were regarded
as continuous (numerical) moderator variables, whereas ERTs were treated as
categorical moderator variables. Consequently, a generalized linear mixed
meta-regression model was chosen with a restricted maximum likelihood estimator, to
evaluate the mean effect size and its 95% confidence intervals (CIs), considering the

impact of ERT and topologic characteristics on the effectiveness of soil and water
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retention (Tables 3 and 4). To characterize soil and water conservation effectiveness
under different ERTSs, the value of the overall mean effect size and the 95% CIs were
transformed to estimate the percentage change and other variables relative to the control
percentage, using (e'™R — 1) x 100% (Figure 5). All of the reference lines in Figure
5 were at zero referring to a zero effect, and any CI (95%) crossing the reference line
indicates a statistically insignificant result. According to vegetation management factors
for the revised universal soil loss equation (RUSLE), we also calculated the ratio of the
annual soil erosion rate per cover-management factor to soil loss on bare land for
temperate, humid tropics, and Loess Plateau regions (Figure 6) (Renard, 1997; Labriere
et al., 2015). Due to the absence of abandoned land in RULSE’s vegetation management
factors, the annual soil erosion ratio of cropland and abandoned land to bare land had
the same relative ratio from the temperate region and the humid tropic region (Figure 6).
Data transformations and statistical analyses were conducted using the R statistical
software and the “metafor” R package was used to conduct the meta-analysis

(Viechtbauer, 2010; R Core Team, 2013).

[insert Table 2.]

111 Results

[ Impacts of land use type on runoff and soil erosion
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Average runoff depths and runoff coefficients among the seven land use types were
calculated at the annual and the event scale (Figures 3). Abandoned land, bare land, and
cropland had significantly higher annual runoff depths than natural grassland, shrubland,
and forest (p<0.05). Abandoned land had the highest annual runoft depth compared to
other land cover types, and bare land ranked second for runoff yield. The annual runoff
depth of artificial grassland was significantly higher than that of forest and lower than
that of abandoned land (p<0.05), whereas those of artificial grassland, natural grassland,
and shrubland had no significant difference (Figure 3(a)). On the rainfall event scale,
bare land had the highest runoff depth than those of other land use types (p<0.05),
whereas the runoff depths of shrubland and forest were significantly lower than those of
artificial grassland, bare land, cropland, and natural grassland (p<0.05), with the
exception of abandoned land, which had a higher runoff depth than shrubland and forest
(Figure 3(b)). In addition, the annual runoff coefficients of artificial grassland,
shrubland, and forest were significantly lower than those of abandoned land, bare land,
and cropland (p<0.05), whereas the annual runoff coefficients of abandoned land, bare
land, and cropland had no significant difference. Abandoned land also had the highest
annual runoff coefficient, whereas the annual runoff coefficients of artificial grassland,
natural grassland, shrubland, and forest had no significant difference (Figure 3(c)). Bare
land had a significantly higher event runoff coefficient than artificial grassland,

cropland, natural grassland, shrubland, and forest (p<0.05), whereas the event runoff

http://mc.manuscriptcentral.com/PiPG



O©CoO~NOUTA,WNPE

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

Progress in Physical Geography

coefficients of shrubland and forest were significant lower than those of abandoned land,
bare land, and cropland. The event runoff coefficient of shrubland was also significantly
lower than that of artificial grassland and forest (p<0.05) (Figure 3(d)). These results
revealed that abandoned land, bare land, and cropland had relatively higher runoff
yields than artificial grassland and natural grassland, whereas shrubland and forest had
the lowest runoff yields but high water retention functions.

Also presented in Figure 3 are the average soil erosion rates among the seven land
use types at the annual and the event scale. Artificial grassland, abandoned land, bare
land, and cropland had higher annual soil erosion rates compared to natural grassland,
shrubland, and forest, while those of artificial grassland and cropland were significantly
lower than those of abandoned land (p<0.05). Furthermore, the mean annual soil
erosion rate of abandoned land was very close to that of bare land while artificial
grassland, bare land, and cropland had no significant difference in their annual soil
erosion rates (Figure 3(e)). In addition, bare land and cropland, had significantly higher
event soil erosion rates than those of abandoned land, artificial grassland, natural
grassland, shrubland, and forest. Also, the event soil erosion rate for cropland was the
highest, with bare land second (Figure 3(f)). Although abandoned land had a relatively
low event soil erosion rate, this land use had a higher ability of yielding annual runoff
than cropland. At the same time, abandoned land can accumulate more soil loss at the

annual scale due to abandoned land that was fallowed from cropland (Figure 3(e) and
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3(f)). Results showed that natural grassland, shrubland, and forest are preferable land
use types for retaining soil and water, and artificial grassland also showed a degree of
improved soil and water retention effectiveness, compared to abandoned land, bare land,

and cropland.

[insert Figure 3.]

2 Soil and water reduction effectiveness and its tradeoff under different land use

types

Using bare land as a reference, we calculated the runoff and sediment reduction
effectiveness on the annual and event scales across six land use types (Table 2; Figure 4).
We found that artificial grassland, natural grassland, shrubland, and forest had relatively
high annual effectiveness in retaining water. The annual runoff retention effectiveness of
shrubland and forest was more than 70%, whereas that of cropland and abandoned land
were about 37% and -15%, respectively (Figure 4(a)). All six land use types had
relatively high event effectiveness in retaining water compared to bare land. The event
runoff retention effectiveness of shrubland and forest was more than 70%, and that of
cropland and natural grassland was more than 49% (Figure 4(b)). All six land use types
had positive annual soil retention effectiveness compared to bare land. Except for

abandoned land, with its low annual soil retention effectiveness (less than 18%), the
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annual soil erosion reduction effectiveness of artificial grassland, cropland, natural
grassland, shrubland, and forest was more than 65%. Shrubland had the highest annual
soil retention effectiveness (96.51%) (Figure 4(c)). In addition, abandoned land, natural
grassland, and shrubland had relatively high event soil loss retention effectiveness
(>95%), whereas that of cropland was about -150% (Figure 4(d)). These results
indicated that artificial grassland, natural grassland, shrubland and forest can be
considered as effective measures for retaining runoff and sediment, whereas abandoned
land had low effectiveness in retaining runoff, and cropland was found to weakly
decrease event sediment yields.

The runoff cost of sediment control was used to determine the tradeoffs of different
land use types at a hillslope scale for soil and water conservation, with reference to bare
land (Figure 4). On an annual scale, natural grassland, shrubland, and forest had
relatively high runoff costs, and that of artificial grassland was the highest (4.88 m’/t).
Abandoned land was associated with greater annual runoff compared to bare land
(Figure 4(e)). On the event scale, artificial grassland, forest, and shrubland had
relatively higher water costs, and cropland had lower water costs than abandoned land
(Figure 4(f)). These results showed that shrubland and forest significantly reduced
sediment yields with relatively high runoff costs, whereas natural grassland was optimal
for balancing runoff production and soil conservation and artificial grassland was also

found to be effective.
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[insert Figure 4.]

3 Evaluation of soil and water retention effectiveness between ERT and LDT
Considerable spatial variability in the effect size (i.e. various InRRs) was found along
longitudinal and latitudinal gradients (see Appendix 3). Overall annual runoff depth rate
(InRR) significantly decreased with an increase in latitude (p<0.05), whereas overall
event soil erosion rate (InRR) increased significantly with both latitude (»p<0.01) and
longitude (p<0.001). This spatial trend was also evident for the event soil erosion rate
(InRR). However, both the event runoff depth (InRR) and the event soil erosion rate
(InRR) of artificial grassland significantly decreased with increased longitude (p<0.01).
These results indicated that the effect size of event runoff and soil erosion were more
sensitive to changes of longitude and latitude, whereas the effect size of annual runoff
was more limited to variation in latitude, only. In addition, the effect of MAP and MAT
on the variability of the effect size can be found in Appendix 4. Clearly, it is critical to
consider spatial heterogeneity when quantifying the overall effect of ecological
restoration on runoff and soil erosion over large regions.

Ecological restoration activities had a positive effect on soil and water retention. In
contrast with LDTs, ERTs significantly reduced annual runoff by 72.18% (p<0.01) and

decreased annual soil erosion by 99.9% (p<0.0001), whereas the event runoff was
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reduced by 39.26%, and event soil loss was not significantly decreased (Figure 5 (a) and
(c)). Moderator variables effectively improved our meta-analysis model, which included
the ratios of runoff plot area, slope length, and slope steepness between ERT and LDT
(see Appendix 4). The overall event runoff reduction effectiveness was significantly
influenced by the ratio of slope steepness and the ratio of area. The ratios of slope
length were more important factors impacting the overall results for event soil erosion
(Table 3). The individual effect of the annual runoff reduction effectiveness of artificial

grassland, natural grassland, shrubland, and forest were 71.89%-. 50.60%. 73.18%, and

73.08%, respectively. The combined effect of all the ecological restoration measures
significantly reduced annual soil erosion by about 100% (p<0.0001). However, event
runoff reduction effectiveness of artificial grassland, natural grassland, shrubland, and

forest were 56.41%-. 21.97%-. 56.97% (p<0.05) , and 36.68%, respectively. Event

sediments were not significantly reduced (Figure 5 (b) and (d)). In evaluating the
individual effects of the ERTs, it was clear that the ratios of runoff plot area, slope
length, and slope steepness have significant impacts on annual soil erosion (p<0.0001).
Annual runoff was obviously influenced by the ratio of the runoff plot area and slope
steepness (p<0.0001), whereas slope steepness was an important factor for event runoff
(»<0.05). Event soil erosion was significantly impacted by the ratio of the runoff plot

area (p<0.01) and slope length (»<0.05) (Table 4).
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382 [insert Figure 5.]
11 383
13 384 [insert Table 3.]
15 385
386 [insert Table 4.]

20 387

22 388 IV Discussion

o5 389 I The high variability in water and sediment effects of ecological transition types

27 390  Land use that includes woody plants (forests and shrubs) and grasses has been shown to
29 391  be more effective at decreasing runoff and retaining water than other land use types
392 (Maetens et al., 2012; Garcia-Ruiz et al., 2015; Mutema et al., 2015). At the global scale,
34 393  the annual mean runoff coefficient of forests has been found to be highest on the
36 394  micro-plot (Slope length was less than 1 m) and on the plot (Slope length was less than
38 395 30 m), whereas the land use type with the lowest annual mean runoff coefficient has
40 396  been found to be grasslands at the micro-plot scale and fallows at the plot scale,
397 regardless of biogeographic context (e.g., climate zone) (Mutema et al., 2015). At the
45 398  regional scale, plots with (semi-) natural vegetation cover have been found to have the
47 399  lowest mean annual runoff coefficients, and the order of low-to-high mean annual
49 400  runoff coefficients for other land use types has been found to be fallow, cropland and

401  bare soil in Western and Central Europe (Maetens et al., 2012). Our study has also
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found the annual runoff coefficients of artificial grassland, forest, natural grassland, and
shrubland to be significantly lower than those of other land use types in the Loess
Plateau. The main reasons for differences in the annual runoff coefficients at the
regional and global scales are related to (i) climate (e.g., mean annual precipitation and
mean annual temperature), (ii) the spatial scale of the experiment (e.g., micro-plot, plot
and watershed), and (iii) local characteristics (e.g., soil properties, slope gradient, and
land use), which vary globally. There are no established protocols for standardizing
measurements, and for reporting the results across studies and sites (Garcia-Ruiz et al.,
2015; Mutema et al., 2015). Although Western and Central Europe have important loess
regions, the Loess Plateau in China is unique in its maximum thick loess distribution
area and its soil and water loss regions are wide and intensive. Runoff yields on
abandoned land, bare land, and cropland in the Loess Plateau were significantly higher
than that in Western and Central Europe. In addition, we found that the annual runoff
coefficient on abandoned land in the Loess Plateau was significantly higher than fallow
land in Western and Central Europe, and even globally. This result confirmed that
unmanaged abandoned land is not beneficial for preserving water, and this land use had
higher runoff yields due to the shortage of vegetation cover, loose soil and the absence
of mulching practices (Lasanta et al., 2000; Prosdocimi et al., 2016). In addition, we
found forest, shrubland, natural grassland, and artificial grassland had higher annual

runoff reduction effectiveness than cropland and abandoned land, which had higher

http://mc.manuscriptcentral.com/PiPG

Page 22 of 79



Page 23 of 79

O©CoO~NOUTA,WNPE

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Progress in Physical Geography

annual runoff yields than bare land. Therefore, ecological restoration can effectively
conserve water, but with a high variability of effectiveness in different regions due to
differences in climate.

Vegetation recovery can effectively control soil erosion. In our study, we found that
land degradation types had significantly higher soil loss than ecological restoration
types. The same conclusions have been found in the humid tropics, Western and Central
Europe and in global studies (Maetens et al., 2012; Garcia-Ruiz et al., 2015; Labriere et
al., 2015; Mutema et al., 2015). In a global meta-analysis, forests, shrubland, and
grassland have been found to have lower annual mean sediment yields than croplands
and fallows, where fallows had the highest annual mean sediment yields (Garcia-Ruiz et
al., 2015; Mutema et al., 2015). In the humid topics, forest has been found to have the
lowest mean annual soil loss, where the low-to-high soil loss order for other land use
types were found to be shrubland, grassland, cropland, and bare soil (Labriere et al.,
2015). In Western and Central Europe, plots with (semi-)natural vegetation cover have
been found to have the lowest mean annual soil loss, where the low-to-high soil loss
order of other land use types were found to be fallows, cropland, and bare soil (Maetens
et al., 2012). Although grassland, shrubland, and forest can effectively reduce soil loss
in the Loess Plateau, for humid tropical areas, Western and Central Europe, and globally,
a high variability in the quantity of soil loss at regional and global scales have been

observed. Compared to loess regions in Western and Central Europe, the Loess Plateau
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had the highest soil loss across all land use types, with bare land always having the
highest soil loss rate. Although abandoned land (similar to fallows) was an important
land use type for re-wilding and for conserving biodiversity, retaining soil, and restoring
the ecological function by natural succession (Hou and Fu, 2014b; Queiroz et al., 2014;
Corlett, 2016), unmanaged abandoned land in the early stage of ecological restoration
has been found to have relatively high annual sediment yields, even exceeding the
annual mean soil loss rate of cropland (Lasanta et al., 2000; Maetens et al., 2012;
Mutema et al.,, 2015; Prosdocimi et al., 2016). In our study, the annual reduction
sediment effectiveness of shrubland, natural grassland, forest, and artificial grassland
was found to be higher than that of cropland and abandoned land, and overall, the
effectiveness of ecological restoration land types were approximately two times that of
land degradation types. Consequently, ecological restoration had a clear positive
effective on decreasing sediment yields than land degradation types. Thus, directly
abandoning cropland in the early stage of ecological restoration, meant that bare land
and cropland were not always a good choice for mitigating water and sediment
production.

2 Tradeoffs between water provisioning and soil conservation should be

considered for ecological restoration in drylands
Soil erosion processes are always associated and coupled with runoff processes with

increased runoff transporting more sediments into river courses. The relationships
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between runoff and sediment yields are complex and operate across extensive
spatiotemporal scales, especially in water-limited regions (Bloschl, 2006; Boix-Fayos et
al., 2006; Mutema et al., 2015; Zheng et al., 2015). In general, the reduction of runoff
causes a synergistic decrease of sediment yields in drylands and many factors can
contribute to reductions in runoff and sediment, such as climate change, land cover
change, and ecological restoration (Liang et al., 2015; Gao et al., 2016; Wang et al.,
2016; Zhang et al., 2016; Zuo et al., 2016). In our study, ecological restoration had
significant effects on the reduction of water runoff and sediment yields. However,
changes in land use type, as a result of ecological restoration activities, can exert
differing degrees of control on the runoff and sediment yields. Controlling soil loss
usually decreases water provision, particularly in dryland ecosystems (Zheng et al.,
2014; Hao et al., 2017). Therefore, the land use type should be chosen to balance water
provision and soil conservation from an ecosystem service perspective. Our analysis
also revealed that shrubland and forest not only significantly decreased sediment yields,
but also had relatively high runoff costs. Furthermore, afforestation had caused severe
depletion of soil moisture content and consumed deeper soil moisture than cultivated
crops, inducing soil desiccation and a dry soil layer formation in the Loess Plateau,
which would be a poor choice for places in arid and semi-arid regions (Deng et al., 2016;
Jia et al., 2017). Although abandoned land and cropland had a relatively weak ability to

retain soil, they also can significantly increase runoff. Natural grassland was found to be
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the optimal vegetation type to balance the water requirement and soil conservation
objectives, with artificial grassland also found to be effective. Consequently, complete
conversion of cropland to forest and shrubland may not be a good strategy, especially in
arid and semi-arid regions (Deng et al., 2016; Jia et al., 2017). Although the fallow
period was long enough to allow abandoned land to succeed into (semi-) natural
vegetation, abandoned land would have better soil and water retention effectiveness in
this process (Hou and Fu, 2014a; Hou et al., 2014a; Zhao et al., 2015). Unmanaged
abandoned land in the early fallow stage had high water costs for decreasing sediment
and were less effective at retaining water and soil (see also, Lasanta et al., 2000;
Maetens et al., 2012). Furthermore, artificial grassland had relatively higher water costs
for sediment control than natural grassland and can effectively conserve soil and
increase water runoff by different forage managements (Yan et al., 2015). In addition,
abandoned land and cropland had the potential to conserve soil and provided water
through effective land management and tillage measures (Lasanta et al., 2000;
Montgomery, 2007; Yan et al., 2012; Labriere et al., 2015; Prosdocimi et al., 2016).
Therefore, these results indicate the need to carefully choose ecological recovery types
for soil and water conservation in the context of the tradeoff between water yield and
soil conversation.

3 Regional soil erosion and advice for future research

Although large scale ecological restoration projects have been implemented for at
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least 15 years and have played a critical role in soil and water conservation, the Loess
Plateau has experienced a relatively higher soil loss than the humid tropics and
temperate regions of the world (Figure 6). For bare land, specific vegetation
management factors in the Loess Plateau have higher ratios of soil loss than in the
humid tropics (Labriere et al., 2015). Ratios between temperate regions and the Loess
Plateau for artificial grassland, abandoned land, cropland, forest, natural grassland,
shrubland, and bare land have been found to be ca. 4, 2.4, 1, 14, 1.2, and 1.6,
respectively (Renard, 1997). For the field plot, the average of annual soil loss of fallows,
croplands, grasslands and forests in the Loess Plateau have higher annual soil loss than
that of other semi-arid and arid regions from a global analysis (Mutema et al., 2015).

Furthermore, there exists a severe conflict between water shortage and soil retention
in the Loess Plateau which may be intensified by ecological restoration driven land use
change in the context of climate change (Chen et al., 2015; Deng et al., 2016; Maestre et
al., 2016). How to better conserve soil and improve water provisioning services are
critical science and management problems. We can provide the following advice for
future research on soil and water retention in the context of ecological restoration in
water-limited environments, as informed by this research:

1. Optimal plant species combinations should be identified based on plant

functional traits, and their ability to effectively retain soil and balance

multi-ecosystem services, from simple species-based vegetation recovery to
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trait-based community and ecosystem function restoration. For example, improving
grass community functional diversity can reduce soil erosion in semi-arid land and
grasslands which would balance the conflict between water provisioning and soil
conservation in semi-arid and arid regions (Zhu et al., 2015; Maestre et al., 2016).

2. From the perspective of landscape pattern, process and function, more attention
should be paid to the patterns of vegetation change arising from ecological
restoration and their effects on soil and water preservation. Physical-based
vegetation pattern indicators should be developed to determine the optimal mode of
vegetation recovery for the control of soil and water loss. For instance, vegetation
patch and landscape connectivity indices can strengthen the understanding of
hydrologic and soil erosion process responses to ecological restoration (Imeson and
Prinsen, 2004; Liu et al., 2013; Hou and Fu, 2014a; Hou et al., 2014a; Hou et al.,
2014b; Maestre et al., 2016).

3. To implement future sustainability of vegetation recovery, ecological restoration
is not simply concerned with continually increasing the area of afforestation
reforestation, returning the cropland to forest and shrubland, and accelerating the
rate of plant regeneration. Rather, a series of management strategies are needed to
take advantage of emerging technologies to quantify the effects of different land use
types and to determine the effect of these management measures on soil loss and

water provisioning. This will support transparent decision making and allow the

http://mc.manuscriptcentral.com/PiPG



Page 29 of 79 Progress in Physical Geography

O©CoO~NOUTA,WNPE

542 tradeoffs between water yield and soil conversation to be understood. For example,
11 543 no-till agriculture, soil management practices (e.g., mulching) and vegetation

13 544 management (e.g., using local species at suitable coverage level) may be more

15 545 effective for soil loss control and the protection of (semi-) natural vegetation types
546 should be advocated (Montgomery, 2007; Chen et al., 2015; Labriere et al., 2015;
20 547 Deng et al., 2016; Prosdocimi et al., 2016).

22 548

24 549 [insert Figure 6.]

550
29 551  V Conclusions

31 552 Ecological restoration projects in the Loess Plateau have increased vegetation cover and
553  have led to land use transitions which have effectively controlled soil and water loss.
36 554  Our study quantified the effects of ecological restoration on runoff and sediment yields
38 555 by synthesizing 43 articles at different sites in the Loess Plateau using a meta-analysis.
40 556  First, the effect of land use type on runoff, sediment yields and soil and water reduction
42 557  effectiveness were quantified. Artificial grassland, natural grassland, shrubland, and
45 558  forest were found to be more effective land use types in retaining soil and water than
47 559  abandoned land, bare land, and cropland. Bare land and cropland were not found to
49 560  benefit soil and water retention at any time, as was unmanaged abandoned land in the

o1 561  early fallowing stage. Our study found shrubland and forest to have a high runoff cost in
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controlling sediment. In contrast, natural grassland was found to be the optimal
vegetation type to balance the water provisioning and soil retention. Artificial grassland
was also found to be a good land use choice, whereas unmanaged abandoned land and
cropland were found to have the weakest ability to retain soil, although they can
significantly increase runoff. Second, ecological restoration effectively controlled soil
erosion and retained runoff and its effect was comprehensively quantified by this
meta-analysis. Finally, the Loess Plateau has a relatively high overall soil erosion.
Future research is needed to examine soil and water retention from an ecological
recovery perspective, including choosing optimal plant species based on plant
functional traits, applying physical-based vegetation pattern indicators, and developing

a range of practical managements and technologies for different land use types.

Appendices

Appendix 1. Papers included in the meta-analysis.
Appendix 2. Data source and datasets for meta-analysis.
Appendix 3. Spatial variability of effect size.

Appendix 4. Fit statistic of the optimal model and model reliability in meta-analysis.
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Figure captions

Figure 1. Location of study sites (N = 43). Some sampling points represent several references, and
some references contribute more than one sampling point.

Figure 2. Frequency distribution of (a) year of publication of the contributing references (N =43), (b)
length of the study, (c) number of land use types investigated per reference, and (d) land use types
investigated, (e) the number of case studies located at different counties and provinces, (f) levels of
year soil erosion rate under different land use types. Abbreviation of land use types can be found in
Table 1.

Event: soil erosion or runoff at an event scale; Year: soil erosion or runoff at a year scale; Event and
year: soil erosion or runoff at an event and year scale; AS: Ansai; BT: Baota; CW: Changwu; DX:
Dingxi; F: Fu; FG: Fugu; GY: Guyuan; HN: Huining; J: Ji; LS: Lishi; PS: Pingshuo; SM: Shenmu; SY:
Shouyang; TS: Tianshui; WQ: Wugqi; XF: Xifeng; YG: Yanggao; YC: Yichuan; YS: Yongshou; YL:
Yulin; ZZ: Zizhou.

Figure 3. Boxplots of (a) annual runoff, (b) event runoff, (c) annual runoff coefficient, (d) event runoff
coefficient, (¢) annual soil loss rate and (f) event soil loss rate among seven land use types. In order to
clarify the plot (e) and (f), y-axis breaks were set. The results of ANOVA and Tukey’s HSD analysis
were added in the figure and the absolutely different lowercase in land use types stand for having a
significant difference while just having one same lowercase denotes no significant difference.
Abbreviation of land use types can be found in Table 1.

Figure 4. Runoff and soil loss reduction effectiveness contrasting to the control of bare land and the
runoff cost of sediment control at event and annual temporal scale under six land use types.
Abbreviation of land use types can be found in Table 1.

RRE: Runoff reduction effectiveness; SLRE: Soil loss reduction effectiveness; R,g: The runoff cost of
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sediment controlling of vegetation management factors.

Figure 5. The impact of overall and individual ecological restoration types on (a) annual runoff, (b)

O©CoO~NOUTA,WNPE

annual soil erosion, (c) event runoff and (d) event soil erosion. Significant levels as follows,

11 0.0001-%*%_0.001-**", 0.01-*", 0.05-.", 0.1-* .

14 Figure 6. Comparison of ratio of annual soil erosion rate per land use type to soil loss on bare land in
three regions. Data on temperate and humid tropic regions were cited from Renard (1997) and Labriere

19 (2015). Abbreviation of land use types can be found in Table 1.
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Tables

Table 1. The description and relationship between land use transition types and land use types.

Table 2. Indicators of soil and water reduction effectiveness and its tradeoff.

Table 3. Meta-regression results of ratio of runoff plot area, slope length and slope steepness on effect

size (InRR) between ERT and LDT.

Table 4. Meta-regression results of ratio of runoff plot area, slope length and slope steepness and

ecological restoration types on effect size (InRR).
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Table 1.
Land use Land use types Abbreviation Definition
transition
types
Ecological  Artificial AG Land is used for grazing and managed through
restoration  grassland agricultural practices such as seeding, irrigation
types and use of fertilizer. Main plant species are
(ERT) Medicago sativa and Astragalus adsurgens.
Natural grassland NG Land is unmanaged and has no trees or shrubs.
For example, slope wasteland, rangelands.
Forest F Ground is covered with natural vegetation
dominated by trees and could also include
grasses, herbs and geophytes.
Shrubland S Vegetation is dominated by shrubs but can also
include grasses, herbs and geophytes.
Land Cropland CL Crops are sown and harvested within a single
degradation agricultural year, sometimes more than once.
types Abandoned land AL Farmland was abandoned or fallow at relative
(LDT) short time and have not enough time to
succession into grass community because of
runoff plot control experiment.
Bareland B Land has been opened and kept bare for various

reasons by artificial controlling, which have the

lowest coverage approximate at 0.
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Table 2.
Indicators Abbreviation Equation expression Parameter meaning Definition Sources
Runoff reduction RRE (%) Rcx — Ry R cx (mm); R v(mm) The effectiveness of water (Sutherland 1998a, b; Zhao et
effectiveness RRE = R—CK x 100 and SL ¢ (g/m?); SL  retention in vegetation al, 2015; Zhu et al, 2016)
v (g/m?) are runoff management factors contrast
and soil loss in to reference background such
control (bareland) as bare land.
Soil loss reduction  SLRE (%) _ SLex —SLy and treatment The effectiveness of soil
effectiveness SEREF SLck x 100 (vegetation retention in vegetation
management management factors contrast
factors), to reference background such
respectively. as bare land.
Ration of detained R, (m*/t) _ Ry 3 R; (mm) and S, Retention of unit slope (Yan et al, 2012; Yan et al,
runoff and Rys = 5 x 10 (g/m?) refer to the sediment need to relatively 2015)
sediment reduction of runoff ~ reduce how the amount of

and sediment under
vegetation
management
factors as opposed
to reference
scenario (bareland).

runoff at one vegetation
management factors due to
land use transition.
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1

2

3

4

5

6

7 Table 3.

8

9 Categories N Type of evaluation InRR Standard error ~ Lower limit of CI Upper limit of Z value p value Sig.
10 cl

11 Annual runoff 169 Overall effect -1.28 0.39 -2.05 -0.51 -3.26 0.0011 ok
12 RA -0.16 0.03 -0.21 -0.11 -5.88 <.0001 HAK
13 RSL 0.69 0.32 0.05 1.32 2.12 0.0343 *
14 RSS 0.03 0.01 0.02 0.04 4.20 <.0001 ok
15 Annual soil erosion 132 Overall effect -6.93 0.79 -8.49 -5.38 -8.73 <.0001 o
16 RA -4.34 0.85 -6.01 -2.67 -5.09 <0001
17 RSL 7.21 122 481 9.61 5.89 <0001 e
ig RSS -1.14 0.22 -1.58 -0.70 -5.13 <.0001 HoEk
20 Event runoff 117 Overall effect -0.50 0.29 -1.06 0.06 -1.75 0.0802

21 RA -0.11 0.62 -1.33 1.11 -0.18 0.8608

22 RSL -0.15 0.44 -1.01 0.71 -0.35 0.727

23 RSS 0.01 0.01 0.01 0.02 2.29 0.022 *
24 Event soil erosion 68 Overall effect 1.61 1.27 -0.88 4.10 1.26 0.206

25 RA -19.26 6.77 -32.54 -5.99 -2.85 0.0044 *ok
26 RSL 15.21 6.19 3.08 27.35 2.46 0.014 *
27 RSS -0.01 0.38 -0.75 0.73 -0.03 0.9784

gg Note: a represents significance levels as follows, 0.0001-****_0.001-****_0.01-***, 0.05-°.", 0.1-° °.

30 ERT: ecological restoration types; LDT: land degradation types; N: sample size; RA: ratio of area; RSL: ratio of slope length; RSS: ratio of slope steepness.

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
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Table 4.
Categories N Type of evaluation InRR Standard error  Lower limit of CI  Upper limit of CI  Z value p value Sig.
Annual runoff 169 Artificial grassland -1.27 0.50 -2.26 -0.28 -2.54 0.0121 *
Forest -1.31 0.49 -2.28 -0.35 -2.68 0.0081 *k
Natural grassland -0.71 0.54 -1.78 0.37 -1.30 0.1954
Shrubland -1.32 0.41 -2.13 -0.50 -3.20 0.0017 *k
RA -0.15 0.03 -0.21 -0.10 -5.54 <.0001 HAK
RSL 0.62 0.33 -0.04 1.27 1.87 0.0635 .
RSS 0.03 0.01 0.01 0.04 3.83 0.0002 ok
Annual soil erosion 132 Artificial grassland -5.81 1.03 -7.83 -3.77 -5.66 <.0001 Hkok
Forest -8.22 0.94 -10.08 -6.37 -8.76 <.0001 ok
Natural grassland -6.51 1.35 -9.18 -3.84 -4.83 <.0001 ok
Shrubland -6.66 0.87 -8.39 -4.94 -7.63 <.0001 #kk
RA -3.71 0.93 -5.55 -1.86 -3.98 0.0001 ok
RSL 6.56 1.37 3.86 9.26 4.80 <.0001 ok
RSS -1.04 0.24 -1.51 -0.57 -4.40 <.0001 Aok
Event runoff 117 Artificial grassland -0.83 0.43 -1.68 0.02 -1.94 0.0547
Forest -0.46 0.38 -1.21 0.29 -1.21 0.2298
Natural grassland -0.25 0.31 -0.87 0.37 -0.80 0.4277
Shrubland -0.84 0.34 -1.52 -0.17 -2.47 0.0151 *
RA 0.53 0.82 -1.10 2.15 0.64 0.5244
RSL -0.61 0.56 -1.73 0.51 -1.08 0.2839
RSS 0.01 0.01 0 0.02 2.12 0.0365 *
Event soil erosion 68 Artificial grassland 1.99 1.51 -1.02 5.01 1.32 0.1907
Forest 2.05 1.37 -0.69 4.78 1.50 0.1400
Natural grassland 1.60 1.26 -0.92 4.12 1.27 0.2085
Shrubland 0.64 1.40 -2.15 343 0.46 0.6502
RA -18.46 6.80 -32.06 -4.86 -2.71 0.0086 **
RSL 14.64 6.16 2.32 26.96 2.38 0.0207 *
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RSS -0.06 0.37 -0.80 0.68 -0.16 0.8737

Note: a represents significance levels as follows, 0.0001-****_0.001-****_0.01-***, 0.05-°.", 0.1-° °.
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N: sample size; RA: ratio of area; RSL: ratio of slope length; RSS: ratio of slope steepness.
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Appendix 1. Papers included in the meta-analysis

1. Web of science core database

Feng, Q., X. D. Guo, W. W. Zhao, Y. Qiu, and X. Zhang. 2015. A comparative analysis of runoff and
soil loss characteristics between "extreme precipitation year" and "normal precipitation year"
at the plot scale: A case study in the Loess Plateau in China. Water 7:3343-3366.
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Wang, L., S. P. Wei, R. Horton, and M. A. Shao. 2011. Effects of vegetation and slope aspect on water
budget in the hill and gully region of the Loess Plateau of China. Catena 87:90-100.
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and tillage effects on runoff and soil loss on the Loess Plateau of northern China. Australian
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Table 6. Event runoff (InRR) and ratio of plot characteristics between ERT and LDT for

meta-analysis.

Ratio Ratio of slope  Ratio of slope
ERT LDT InRR VInRR

of area  length steepness
Artificial grassland Cropland -0.738636 0.1197305 1 1 1
Natural grassland Cropland -1.204353 0.1210358 1 1 1
Shrubland Cropland -0.70876 0.200023 1 1 1
Shrubland Cropland -0.811576 0.2218719 1 1 1
Forest Cropland -0.263294 0.1948783 1 1 1
Shrubland Cropland -1.976622 0.2788845 1 1 1
Shrubland Bareland -0.104221 0.0742817 1 1 1
Shrubland Bareland -0.207037 0.0961305 1 1 1
Forest Bareland 0.3412446 0.069137 1 1 1
Shrubland Bareland -1.372083 0.1531431 1 1 1
Shrubland Cropland -0.507343 0.2981979 1 1 24
Shrubland Cropland -0.610159 0.3200467 1 1 24
Forest Cropland -0.061877 0.2930532 1 1 24
Shrubland Cropland -1.775205 0.3770593 1 1 24
Shrubland Cropland -0.745975 0.2523903 1 1 1.6
Shrubland Cropland -0.848792 0.2742392 1 1 1.6
Forest Cropland -0.30051 0.2472456 1 1 1.6
Shrubland Cropland -2.013837 0.3312517 1 1 1.6
Shrubland Cropland -0.724858 0.2706714 1 1 12
Shrubland Cropland -0.827675 0.2925202 1 1 12
Forest Cropland -0.279393 0.2655267 1 1 1.2
Shrubland Cropland -1.992721 0.3495328 1 1 12
Shrubland Cropland -0.664107 0.3637007 1 1 0.96
Shrubland Cropland -0.766923 0.3855495 1 1 0.96
Forest Cropland -0.218641 0.358556 1 1 0.96
Shrubland Cropland -1.931969 0.4425621 1 1 0.96
Shrubland Cropland -0.220473 0.3901691 1 1 0.8
Shrubland Cropland -0.323289 0.412018 1 1 0.8
Forest Cropland 0.224993 0.3850244 1 1 0.8
Shrubland Cropland -1.488335 0.4690306 1 1 0.8
Shrubland Abandoned land 1.907595 0.469395 1 1 1.17
Shrubland Abandoned land 1.5099182 0.5013298 1 1 1
Shrubland Abandoned land -1.968115 0.1793395 1 1 1
Natural grassland Abandoned land -0.678528 0.2995557 1 1 1
Artificial grassland Abandoned land -0.818321 0.1968642 1 1 1
Forest Abandoned land -0.052836 0.1504617 1 1 1
Shrubland Abandoned land -0.358751 0.1374865 1 1 1
Forest Abandoned land 0.0778106 0.1846949 1 1 1
Shrubland Abandoned land -0.738224 0.1852974 1 1 1
Forest Abandoned land 0.5865544 0.1972324 1 1 1
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1.0681651
1.6565007
1.9547895
0.1164515
0.1740925
0.7944386
0.9392279
0.8407046

0.94
0.94

0.18
0.18

0.18
0.18

0.18
0.18

0.18
0.18

1.62

0.63
0.63

0.45
0.45

0.45
0.45

0.45
0.45

0.45
0.45

60
64
72
72
30
32
36
36

10
10.67
12

12
60
64
72
72
1.09
0.86

0.6

0.83
0.75
0.83

1.07
1.08

9.75
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1
2
3 Artificial grassland Bareland -1.062254 0.8477191 2.07 2.7 9.75
g Forest Bareland -0.949913 0.9317708 2.07 2.7 9.75
6 Forest Bareland -0.714355 0.6952504 1 1 1
7 Artificial grassland Bareland -2.484462 0.8400396 1 1 1
8 Forest Bareland -1.955457 0.7415163 1.62 2 9.75
20 Artificial grassland Bareland -1.281484 0.7485308 2.07 2.7 9.75
11 Forest Bareland -1.169143 0.8325825 2.07 2.7 9.75
12 Forest Bareland 0.2861498 0.9035884 0.48 0.37 0.1
13 Artificial grassland Bareland -1.483958 1.0483777  0.48 0.37 0.1
1451 Forest Bareland -0.954952 0.9498544 0.78 0.74 1
16 Artificial grassland Bareland -0.280979 0.9568688 1 1 1
17 Forest Bareland -0.168638 1.0409205 1 1 1
18 Forest Bareland 02861498 09035884  0.48 037 0.1
;‘g Shrubland Cropland -0.843974 0.2337925 1 1 0.71
21 Artificial grassland Cropland -0.625658 0.2790812 1 1 0.71
22 Shrubland Cropland -0.772791 0.246391 1 1 0.8
23 Attificial grassland Cropland 0.554475 02916797 1 1 0.8
24

Shrubland Abandoned land -0.385211 0.2923681 1 1 1.09
25
26 Artificial grassland Abandoned land -0.166895 0.3376568 1 1 1.09
27 Shrubland Abandoned land -0.570545 6.91E-06 1 1
28 Natural grassland Abandoned land 00529224 344E-06 1 1
gg Shrubland Cropland -0.624939 6.56E-06 1 1
31 Natural grassland Cropland -0.001472 1.43E-07 1 1
32 Shrubland Cropland -0.559616 1.32E-07 1 1
33 Natural

grassland Cropland 0.0638515 2.54E-06 1 1

gg Forest Abandoned land -8.699515 0.1522264 1 1
36 Forest Abandoned land -2.090166 4.03E-07 1 1
37 Note: ERT: ecological restoration types; LDT: land degradation types
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://mc.manuscriptcentral.com/PiPG



P OO~NOULAWNPE

U OO OB DIMDIAMBAEDIMDIMNDANWOWWWWWWWWWWNNNNNNNMNNNNRPRPRPEPRPERPERRER
QUOWONOUPRRWNRPOOO~NOUOPRRWNPRPOOONOOUOPRARWNRPFPOOONOODURAWNRPOOO~NOOUUMWNEO

Progress in Physical Geography

Table 7. Annual runoff (InRR) ratio of plot characteristics between ERT and LDT for meta-analysis.

ERT

Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Natural grassland
Forest

Natural grassland
Shrubland

Forest

Natural grassland
Shrubland

Forest

Natural grassland
Shrubland

Forest

Natural grassland
Shrubland
Artificial grassland
Forest

Natural grassland
Shrubland

Forest

Forest

Shrubland
Shrubland
Artificial grassland
Shrubland
Artificial grassland
Shrubland
Artificial grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

LDT

Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Abandoned land

Bareland

InRR

-0.680299
-0.975099
-0.802346
-0.924949
-0.497977
-0.946928
-0.384142
-0.735111
-1.207022
2.5588236
3.2245381
3.3435626
1.9878447
2.6535592
2.7725837
1.8409836
2.5066982
2.6257226
1.185108
1.8508226
1.969847
-0.136475
-0.587786
-1.086343
-0.246037
-0.012589
-0.299882
-0.443462
-0.184002
0.0682083
-0.77909
0.6292957
-0.218002
0.4590746
-0.388223
1.0162546
1.6176566
0.7810253
0.1692597
0.6601898

VInRR

5.74E-09
7.70E-09
3.85E-09
4.25E-09
4.71E-09
5.78E-08
9.96E-09
9.65E-09
5.34E-08
4.68E-05
1.29E-05
1.32E-05
1.33E-07
1.35E-07
3.02E-06
1.23E-06
5.44E-06
4.35E-07
1.24E-07
1.90E-06
3.13E-06
1.91E-08
4.48E-09
1.53E-07
3.02E-08
1.56E-08
2.10E-08
4.01E-08
1.67E-08
3.78E-07
2.32E-07
3.26E-07
6.45E-07
3.46E-07
8.35E-07
2.22E-06
8.65E-06
1.55E-05
9.54E-07
2.31E-06

Ratio of
area

1

1

1

0.27
0.27

Ratio of
slope length
1

1

1

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

0.45
0.45
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Ratio of slope
steepness

1

1

1

0.76
0.76
0.76
0.79
0.79
0.79
0.83
0.83
0.83
0.76
0.76
0.76
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Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland

Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Bareland
Bareland
Bareland
Cropland
Cropland
Cropland
Cropland

Progress in Physical Geography

1.2615919
0.4249605
-0.186805
3.149883
3.751285
2.9146537
2.3028881
-0.54737
0.0540316
-0.7826
-1.394365
-0.853475
-0.252073
-1.088705
-1.70047
-0.57208
0.0293225
-0.807309
-1.419074
1.8269157
2.4283178
1.5916864
0.9799209
1.3667464
1.9681485
1.1315171
0.5197515
1.8196781
2.4210801
1.5844488
0.9726832
1.1682547
1.7696568
0.9330254
0.3212598
-2.736076
-1.869043
-0.104221
-0.207037
-1.372083
-0.70876
-0.811576
-1.976622
-0.507343

3.83E-06
5.08E-06
9.63E-06
0.0002917
0.0003882
0.0008823
2.81E-05
1.21E-07
2.68E-09
2.67E-06
8.71E-07
4.23E-07
1.17E-07
2.51E-07
2.64E-06
7.54E-07
2.01E-07
1.89E-06
9.59E-07
1.35E-05
6.40E-06
4.85E-06
1.32E-05
2.86E-06
4.36E-07
1.52E-05
4.51E-06
5.55E-05
3.71E-06
3.29E-05
3.57E-05
1.72E-06
1.57E-05
5.66E-06
6.97E-06
0.0460995
0.0815114
0.0471129
0.1002999
0.4811442
0.4811151
0.5343022
0.9151464
0.3167629

1
0.27
0.27
0.4
0.4
0.11
0.11
1

1
0.27
0.27

0.27
0.27

0.27
0.27

0.27
0.27

0.27
0.27

0.27
0.27

0.27
0.27

0.45
0.45
0.4
0.4
0.18
0.18

0.45
0.45

0.45
0.45

0.45
0.45

0.45
0.45

0.45
0.45

0.45
0.45

0.45
0.45
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64
72
72
60
64
72
72
30
32
36
36
10
10.67
12
12
60
64
72
72
30
32
36
36
10
10.67
12
12

60
64
72
72
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Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland
Shrubland

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Artificial grassland
Artificial grassland
Forest

Forest

Forest

Artificial grassland
Artificial grassland
Forest

Forest

Forest

Artificial grassland
Artificial grassland
Forest

Forest
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Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland

Bareland

-0.610159
-1.775205
-0.745975
-0.848792
-2.013837
-0.724858
-0.827675
-1.992721
-0.664107
-0.766923
-1.931969
-0.220473
-0.323289
-1.488335
1.6899575
-0.334424
-5.884873
-4.710753
-5.709024
-7.112894
-5.569414
-5.57397
-5.593789
-5.720831
-6.675125
-5.335351
-6.133372
-6.189829
-6.552655
-5.992262
-2.256688
-1.068731
-0.498186
-1.776225
-0.960809
-2.471578
-1.283621
-0.713076
-1.991116
-1.1757
-1.471357
-0.283399
0.2871454
-0.990894

0.3699499
0.7507941
0.5760022
0.6291892
1.0100334
0.5570448
0.6102319
0.9910761
0.5938705
0.6470576
1.0279018
0.3180229
0.37121
0.7520542
0.0967994
0.0968857
4.5418206
0.1401103
0.919013
0.0749613
0.7346276
0.9670767
0.0247343
0.0258228
6.5782964
0.1199661
0.2876035
0.8032135
0.181648
0.0716021
6.90E-07
4.82E-08
1.61E-08
9.01E-08
1.21E-08
7.46E-08
5.69E-09
1.20E-08
2.29E-07
6.35E-08
1.66E-07
1.29E-08
1.08E-08
1.76E-08

40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

2.07

1.62
2.07

2.07

1.62

2.07

0.48

0.48
0.78

B - T = T - T T S S R I S

0.37

0.37
0.74
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24
2.4
1.6
1.6
1.6
12
12
12
0.96
0.96
0.96

0.11

0.11
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Forest

Forest

Forest

Forest

Natural grassland
Shrubland
Shrubland
Artificial grassland
Artificial grassland
Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Natural grassland
Shrubland
Shrubland
Shrubland
Shrubland

Forest

Forest

Shrubland

Natural grassland
Shrubland

Natural grassland
Shrubland
Artificial grassland
Forest

Natural grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland

Shrubland
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Bareland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
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-0.175478
0.0621962
-0.227162
-0.282349
0.3636028
0.329573
-1.072226
-1.087885
-0.111859
-1.963763
-0.673685
0.4223516
-1.993575
-1.674233
-1.102442
-0.820065
-6.648661
-6.977791
-7.142907
-6.678793
-6.703354
-6.63141
-6.749822
-6.88469
-8.072726
-7.056175
-6.80213
-8.690977
-9.053804
-8.49341
-0.561087
-0.77909
-0.629296
-0.847298
-1.310297
-3.953117
-2.565288
-0.314493
-0.847298
-0.965081
-0.405465
-0.904456
-1.225364
-0.676552

5.99E-08
1.34E-05
2.92E-06
4.03E-05
9.17E-06
1.84E-05
0.0002122
1.59E-07
7.12E-08
0.0864447
0.0864442
0.0864441
0.0864456
0.1223999
0.1223999
0.1224002
0.0285224
1.506993
0.4966
0.4222273
0.0353852
0.006179
1.1140664
0.1292524
1.2654959
2.1360947
0.0882905
0.0171513
0.097834
0.0346451
4.35E-08
7.43E-07
6.53E-08
1.45E-06
1.84E-07
1.25E-06
6.58E-06
4.42E-07
2.27E-06
1.31E-06
5.24E-07
5.22E-07
6.27E-06
0.1784125

1

0.8
0.8
0.71
0.71
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Shrubland
Artificial grassland
Forest

Natural grassland
Shrubland
Shrubland
Shrubland

Forest

Shrubland

Forest

Shrubland
Artificial grassland
Artificial grassland
Natural grassland
Forest

Forest

Natural grassland
Shrubland
Shrubland

Forest

Forest

Forest

Natural grassland
Shrubland
Shrubland
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Bareland -1.215596
Bareland -0.129799
Bareland -1.893636
Bareland 0.4089494
Bareland -2.105968
Bareland -2.244119
Cropland -2.044272
Abandoned land -2.018183
Abandoned land -0.505447
Cropland -2.498343
Cropland -0.985607
Cropland 1.4387648
Cropland 1.3029435
Cropland 1.1857613
Bareland -0.50481

Bareland -0.83798

Bareland -0.219722
Bareland -0.873368
Bareland -0.725751
Bareland -1.283066
Bareland -1.526522
Bareland -2.026685
Bareland -0.642287
Bareland -1.779588
Bareland -1.737111

0.0411253
0.2752135
0.2752136
0.2752134
0.2752149
0.2752145
0.0801396
0.0510361
0.0876701
0.1079629
0.0838981
0.2229281
0.1806042
0.1828801
0.0066904
0.007383

0.0059779
0.0221685
0.0359013
0.0054832
0.0054842
0.0054829
0.0054844
0.0054832
0.0054877

0.81

0.89
1.04

Note: ERT: ecological restoration types; LDT: land degradation types
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Table 8. Event soil erosion rate (InRR) ratio of plot characteristics between ERT and LDT for

meta-analysis.

Ratio Ratio of Ratio of slope
ERT LDT InRR VInRR

of area  slope length steepness
Artificial grassland Cropland -3.2153409 0.3101495 1 1 1
Natural grassland Cropland -3.5962433 0.52100589 1 1 1
Shrubland Cropland -4.8446014 0.63953667 1 1 1
Shrubland Cropland -5.3911451 0.7723778 1 1 1
Forest Cropland -1.6215239 0.77313976 1 1 1
Shrubland Cropland -11.010419 042477748 1 1 1
Shrubland Bareland -7.7160574 13949.9502 1 1 1
Shrubland Bareland -7.9451239 11770.0663 1 1 1
Forest Bareland -8.4770732 64266665.4 1 1 1
Shrubland Bareland -8.4548501 0.6715282 1 1 1
Shrubland Cropland -10.799052 591695.823 1 1 2.4
Shrubland Cropland -8.8410059 6289.85888 1 1 2.4
Forest Cropland -9.1234744 20850944.7 1 1 24
Shrubland Cropland -9.1234744 0.5948997 1 1 2.4
Shrubland Cropland -9.6382396 24670.0704 1 1 1.6
Shrubland Cropland -10.111389 33914.0539 1 1 1.6
Forest Cropland -9.2509728 11434071.1 1 1 1.6
Shrubland Cropland -9.3336849 0.62659388 1 1 1.6
Shrubland Cropland -9.667623 10226.2921 1 1 1.2
Shrubland Cropland -10.224434 16618.2815 1 1 1.2
Forest Cropland -1.0809876 1.02705812 1 1 1.2
Shrubland Cropland -11.54619 4.54387312 1 1 1.2
Shrubland Cropland -10.145654 22202.9646 1 1 0.96
Shrubland Cropland -11.697198 263809.424 1 1 0.96
Forest Cropland -9.8217968 11681882.6 1 1 0.96
Shrubland Cropland -10.542875 1.06147178 1 1 0.96
Shrubland Cropland -9.8068414 14438.7764 1 1 0.8
Shrubland Cropland -10.21498 174289157 1 1 0.8
Forest Cropland -11.083246 186463224 1 1 0.8
Shrubland Cropland -9.6945623 0.84760294 1 1 0.8
Shrubland Abandoned land -7.0854341 0.71235982 1 1 1
Natural grassland Abandoned land -5.811469 10203.7581 1 1 1
Artificial grassland Abandoned land -6.0829657 66192.3136 1 1 1
Forest Abandoned land -2.1517399 1.5911257 1 1 1
Shrubland Abandoned land -3.0680006 1.59103107 1 1 1
Forest Abandoned land -0.9279786 0.84372593 1 1 1
Shrubland Abandoned land -0.4653609 1.59113747 1 1 1
Forest Abandoned land 0.6332514 0.8604502 1 1 1
Forest Abandoned land -5.2187734 0.72062712 1 1 1
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Shrubland
Natural grassland
Artificial grassland
Forest

Shrubland

Forest

Shrubland

Forest

Forest

Forest

Shrubland
Natural grassland
Natural grassland
Natural grassland
Natural grassland
Forest

Shrubland
Natural grassland
Natural grassland
Natural grassland
Natural grassland
Forest

Shrubland
Natural grassland
Natural grassland
Natural grassland
Natural grassland
Forest

Shrubland
Natural grassland
Natural grassland
Natural grassland
Natural grassland
Forest

Shrubland
Natural grassland
Forest

Shrubland
Natural grassland
Forest

Shrubland
Natural grassland
Forest

Shrubland

Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Bareland

Bareland

-9.2991232
-8.6626795
-8.9918092
-9.1569254
-8.6928116
-8.7173724
-8.6454289
-8.7638409
-8.8257404
-8.3449513
-9.3241235
-8.5198378
-9.6922163
-4.052251
-3.9270902
-6.9728074
-6.8186584
-6.3666737
-7.0063745
-6.9585797
-6.8334189
-7.8878351
-7.733686
-7.2817013
-7.9214021
-7.8736074
-7.7484465
-2.4952181
-2.3410691
-1.8890844
-2.5287852
-2.4809904
-2.3558296
0.5110746
0.8193191
0.9177266
-3.3102818
-3.0020372
-2.9036297
2.0823351
2.3905797
2.4889872
-2.3952542
-2.0870096

0.94392225
1967.77405
14322.021
782.543167
49.9738836
948.501589
8198.6468
25181.4542
0.53371799
57.69538
291.370589
286.979844
439.361224
0.35957775
0.34660916
0.12028122
0.11505675
0.12081173
0.11535632
0.12261143
0.10964285
0.64063716
0.63541269
0.64116767
0.63571225
0.64296737
0.62999878
0.18798327
0.1827588
0.18851378
0.18305837
0.19031348
0.1773449
0.36411605
0.35725412
0.35783284
0.64750567
0.64064374
0.64122246
0.19485179
0.18798985
0.18856857
0.12714974
0.1202878

0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56

0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56
0.56

0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
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Natural grassland
Shrubland
Shrubland
Shrubland

Forest

Shrubland

Forest

Forest

Artificial grassland
Natural grassland
Artificial grassland
Artificial grassland
Forest

Artificial grassland
Forest

Artificial grassland
Forest

Forest

Artificial grassland
Forest

Artificial grassland
Forest

Forest

Artificial grassland
Forest

Artificial grassland
Forest

Forest

Shrubland

Natural grassland
Shrubland

Natural grassland
Shrubland

Natural grassland

Bareland -1.9886021
Abandoned land -0.8607975
Bareland -3.7671263
Cropland -4.9507842
Cropland -5.6439314
Abandoned land 0.4418328
Abandoned land -0.2513144
Cropland -4.0699828
Cropland -1.245086
Cropland -2.0301231
Bareland -2.5356292
Bareland -2.0645269
Bareland -0.3173913
Bareland -1.3005193
Bareland 1.3425324
Bareland 2.643052
Bareland 2.489665
Bareland -0.6434919
Bareland -1.6266199
Bareland 1.0164319
Bareland 2.3169515
Bareland 2.1635645
Bareland -3.0368525
Bareland -4.0199805
Bareland -1.3769288
Bareland -0.0764092
Bareland -0.2297962
Bareland -3.0368525
Abandoned land -1.1437327
Abandoned land 0.0683799
Cropland -7.3891634
Cropland -6.1770507
Cropland -2.8024859
Cropland -1.5903732

0.12086652
0.50366105
0.26669474
1.01736962
0.75886485
0.56471573
0.30621097
5.06E-09
1.12E-10
1.05E-09
0.3281973
0.34530288
1.04670441
0.81141653
0.78410338
1.22034425
1.04233881
0.92395175
0.68866387
0.66135071
1.09759158
0.91958614
1.29061774
1.05532986
1.0280167
1.46425757
1.28625213
1.29061774
4.11E-08
6.18E-09
1.36E-08
5.10E-09
9.99E-09
7.23E-09

0.56

0.2
0.1
0.39

0.56

2.7
2.7

9.75
9.75
9.75

9.75
9.75
9.75
0.1
0.1

0.1

Note: ERT: ecological restoration types; LDT: land degradation types
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Table 9. Annual soil erosion rate (InRR) ratio of plot characteristics between ERT and LDT for

meta-analysis.

Ratio Ratio of Ratio of slope
ERT LDT InRR VInRR

of area  slope length steepness
Artificial grassland Bareland -0.56132 7.83E-14 1 1 1
Artificial grassland Bareland -3.483967 1.25E-11 1 1 1
Artificial grassland Bareland -0.351479 1.41E-13 1 1 1
Artificial grassland Bareland -0.314616 1.95E-14 1 1 1
Artificial grassland Bareland -0.324167 9.10E-14 1 1 1
Artificial grassland Bareland -2.344414 1.20E-11 1 1 1
Artificial grassland Bareland -1.574848 1.00E-13 1 1 1
Artificial grassland Cropland -3.215909 5.43E-10 1 1 1
Natural grassland Cropland -2.596825 3.69E-10 1 1 1
Forest Abandoned land 0.7595254 1.12E-09 1.8 1.8 0.76
Natural grassland Abandoned land 1.2087262 1.06E-09 1.8 1.8 0.76
Shrubland Abandoned land 1.1903665 2.69E-12 1.8 1.8 0.76
Forest Abandoned land 1.5489517 1.69E-09 1.8 1.8 0.79
Natural grassland Abandoned land 1.9981525 3.96E-10 1.8 1.8 0.79
Shrubland Abandoned land 1.9797928 8.82E-10 1.8 1.8 0.79
Forest Abandoned land 1.8950444 3.89E-11 1.8 1.8 0.83
Natural grassland Abandoned land 2.3442451 1.14E-08 1.8 1.8 0.83
Shrubland Abandoned land 2.3258854 2.85E-10 1.8 1.8 0.83
Forest Abandoned land 2.4033663 1.12E-08 1.8 1.8 0.76
Natural grassland Abandoned land 2.8525671 0.037812 1.8 1.8 0.76
Shrubland Abandoned land 2.8342074 0.037812 1.8 1.8 0.76
Artificial grassland Cropland -0.865199 0.0665285 1 1 1
Forest Cropland -2.591463 0.0665285 1 1 1
Natural grassland Cropland -2.974455 0.0665285 1 1 1
Shrubland Cropland -1.453752 0.0665285 1 1 1
Forest Cropland -1.930974 0.1726457 1 1 1
Forest Cropland -1.94045 0.1726457 1 1 1
Shrubland Bareland -2.149311 0.9277359 1 1 1
Shrubland Bareland -2.695855 0.9277369 1 1 1
Shrubland Bareland -4.577782 0.9277935 1 1 1
Shrubland Cropland -7.476017 0.980223 1 1 1
Shrubland Cropland -7.258368 0.9802231 1 1 1
Shrubland Cropland -8.28208 0.9806724 1 1 1
Shrubland Cropland -6.665714 0.6925706 1 1 2.4
Shrubland Cropland -5.874509 0.6925336 1 1 2.4
Shrubland Cropland -6.110201 0.692627 1 1 2.4
Shrubland Cropland -8.242234 0.8686787 1 1 1.6
Shrubland Cropland -8.151131 0.8686548 1 1 1.6
Shrubland Cropland -7.196772 0.8686442 1 1 1.6
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1
2
rubland Cropland -6.642609 0.9357582 1 1 1.2
g Shrubland Cropland -6.7139 0.93576 1 1 1.2
6 Shrubland Cropland -7.649717 0.935835 1 1 1.2
7 Shrubland Cropland -7.409081 0.9538069 1 1 0.96
8 Shrubland Cropland -6.897239 0.9537997 1 1 0.96
20 Shrubland Cropland -7.84943 0.9537989 1 1 0.96
Shrubland Cropland -7.200605 0.8686879 1 1 0.8
11
12 Shrubland Cropland -6.547185 0.8686654 1 1 0.8
13 Shrubland Cropland -7.081528  0.8687784 1 1 0.8
1451 Artificial grassland Bareland -8.590929 0.0001489 1 1 1
Artificial grassland Bareland -7.570384 1.56E-05 2.07 2.7 9.5
16
17 Forest Bareland -7.969248 2.00E-07 1 1 1
18 Forest Bareland -8.687949  2.20E-06 1.62 2 95
;‘g Forest Bareland -7.927541 7.39E-05 2.07 2.7 9.5
Artificial grassland Bareland -8.005592 3.42E-05 1 1 1
21
22 Artificial grassland Bareland -8.596713 6.20E-06 2.07 2.7 9.5
23 Forest Bareland -10.00681  0.0022607 1 1 1
gg Forest Bareland -7.946349 2.21E-05 1.62 2 9.5
26 Forest Bareland -8.015412 0.0001209 2.07 2.7 9.5
27 Artificial grassland Bareland -10.77242 0.0002582 0.48 0.37 0.11
28 Artificial grassland ~ Bareland -11.64608  0.0005278 1 1 1
29
30 Forest Bareland -10.44653 5.73E-05 0.48 0.37 0.11
Forest Bareland -10.51059 5.79E-05 0.78 0.74 1
31
32 Forest Bareland -10.82023 0.000103 1 1 1
33 Forest Abandoned land -10.62486 0.0001471 0.87 0.87 1
34
35 Forest Abandoned land -10.0478 0.00035 0.36 0.41 2.17
36 Forest Abandoned land -10.22059 5.38E-06 1.23 1.37 1.28
37 Forest Abandoned land -9.464552 8.83E-06 1.03 1.08 1
38 Forest Abandoned land -9.898716 0.0001375 0.42 0.51 2.17
39
40 Forest Abandoned land -9.387918 3.61E-06 1.46 1.7 1.28
Forest Abandoned land -10.42442 0.0001439 4.08 2.1 0.46
41
42 Forest Abandoned land -10.51304  4.07E-05 1.67 1 1
ji Forest Abandoned land -10.2465 5.14E-05 5.78 3.32 0.59
45 Forest Abandoned land -11.32265 5.08E-05 3.93 2.26 0.46
Forest Abandoned land -10.21757 1.12E-06 1.6 1.07 1
46
47 Forest Abandoned land -10.06867 0.0001186 5.56 3.57 0.59
jg Forest Abandoned land -11.97829 0.007085 0.6 0.61 0.78
Forest Abandoned land -11.25112 0.0015054 0.24 0.29 1.7
50
Forest Abandoned land -11.01226 0.0013002 0.85 0.96 1
51
52 Forest Cropland -7.686742  2.55E-05 1 1 1
2431 Forest Cropland -7.112123 1.40E-05 1 1 1.17
55 Forest Cropland -7.80199 0.0001536 1 1 1.17
56 Natural grassland Cropland -8.244545 0.0004044 1 1 1
57 Shrubland Cropland 7415381  2.44E-06 1 1 1
58
59
60
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Shrubland
Artificial grassland
Artificial grassland
Forest

Forest

Natural grassland
Shrubland

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Natural grassland
Shrubland
Shrubland
Shrubland
Shrubland

Natural grassland
Shrubland

Natural grassland
Shrubland
Artificial grassland
Forest

Natural grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Artificial grassland
Shrubland
Shrubland
Artificial grassland
Forest

Natural grassland
Shrubland
Shrubland
Shrubland

Forest

Shrubland
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Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Cropland
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Abandoned land
Bareland
Bareland
Bareland
Bareland
Bareland
Bareland
Cropland
Abandoned land
Abandoned land
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-7.37112
-8.660424
-8.787113
-9.090594
-8.137208
-8.355333
-9.643734
-8.684158
-8.133491
-7.868563
-6.909631
-9.871874
-8.38711
-7.816815
-7.49374
-7.261567
-7.197746
-9.233337
-8.69069
-7.54392
-7.080023
-12.31022
-15.54097
-2.28352
-3.090168
-0.592178
-3.645729
-2.9888
-1.118613
-1.670682
-1.90707
-1.247825
-1.842532
-2.217225
2.9063314
3.7671325
0.362015
-3.008943
0.9032223
-2.624984
-3.01606
-4.611318
-1.504077
-0.649662

6.39E-05
3.90E-11
7.87E-05
7.73E-06
6.79E-08
5.33E-06
8.43E-05
0.1660635
0.1660218
0.1660216
3.33E-06
0.0335344
1.51E-05
1.57E-07
5.75E-05
1.11E-05
1.26E-05
5.56E-05
9.84E-06
8.00E-05
8.87E-05
8.11E-06
0.0083735
7.56E-10
6.62E-10
3.01E-10
6.16E-07
1.02E-07
4.82E-08
3.64E-09
3.57E-07
3.80E-08
1.27E-08
6.67E-08
2.29E-10
2.19E-09
2.56E-10
1.16E-07
3.21E-10
1.57E-07
6.20E-07
1.93E-11
5.28E-08
2.64E-09

1

0.8
0.8
0.71
0.71
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1

2

3 Forest Cropland -4.808723 1.28E-12 1 1

4 Shrubland Cropland -3.954308 3.24E-09 1 1

5

6 Artificial grassland Cropland 1.1332138 9.68E-10

7 Artificial grassland Cropland 0.7885825 1.68E-10

8 Natural grassland Cropland 0.5125991 4.44E-10

20 Artificial grassland Abandoned land 0.6455191 3.29E-06 1 1

11 Forest Abandoned land -2.151762 0.0003396 1 1
Forest Abandoned land -0.927987 7.84E-06 1 1

12

13 Forest Abandoned land 0.633249 2.42E-06 1 1

14 Forest Abandoned land -7.762054 28.561139 1 1

15

16 Natural grassland Abandoned land -2.10526 5.82E-06 1 1

17 Shrubland Abandoned land -3.33639 0.0038386 1 1

18 Shrubland Abandoned land 2724215 0.0002187 1 1

;‘g Shrubland Abandoned land -2.972425 9.80E-05 1 1
Artificial grassland Cropland -5.277844 5.35E-06 1 1

21

22 Forest Cropland -5.942939 0.0004418 1 1

23 Forest Cropland 5786049  4.18E-07 1 1

P

gg Forest Cropland -5.889622 0.0003639 1 1

26 Forest Cropland -7.399588 0.0084892 1 1

27 Natural grassland Cropland -7.877049 0.000132 1 1

28 Shrubland Cropland -6.588154  1.29E-05 1 1

gg Shrubland Cropland -5.431299 0.0001145 1 1

31 Shrubland Cropland -6.996022 0.0002554 1 1

32 Note: ERT: ecological restoration types; LDT: land degradation types

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
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Appendix 3. Spatial variability of effect size
Table 10. Regression analysis of annual and event runoff (InRR) and soil erosion rate (InRR) along longitude, latitude, MAT and MAP according to ecological restoration
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Page 70 of 79

types.
Ecological resoration types ~ Response variables Dependent variables Estimate Standard error t value p value Sig.
Annual runoff depth Longitude  Intercept 12.91297 9.78424 1.32 0.188
(InRR) Slope -0.1286 0.08948 -1.437 0.152
Latitude Intercept 9.9388 5.0451 1.97 0.0503 .
Slope -0.302 0.1374 -2.199 0.0291 *
MAT Intercept -0.38564 1.79393 -0.215 0.83
Slope -0.08239 0.19912 -0.414 0.679
MAP Intercept 0.48419 1.83786 0.263 0.792
Slope -0.0032 0.00359 -0.892 0.374
Annual soil erosion rate Longitude Intercept 30.906 18.3815 1.681 0.0948
(InRR) Slope -0.3298 0.1676 -1.968 0.051
Latitude Intercept 8.2671 9.7753 0.846 0.399
Overall
Slope -0.3657 0.2642 -1.384 0.168
MAT Intercept -8.6028 3.2798 -2.623 0.00965 **
Slope 0.3764 0.3735 1.008 0.31522
MAP Intercept -2.70667 3.17816 -0.852 0.396
Slope -0.00504 0.00625 -0.807 0.421
Event runoff depth Longitude  Intercept -4.79133 10.07266 -0.476 0.635
(InRR) Slope 0.03339 0.09146 0.365 0.716
Latitude Intercept -0.01025 3.79365 -0.003 0.998
Slope -0.02985 0.10254 -0.291 0.771
MAT Intercept 4.8552 1.9756 2.458 0.0151 *
Slope -0.6412 0.2118 -3.027 0.0029 **
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Artificial grassland

Event soil erosion rate
(InRR)

Annual runoff depth
(InRR)

Annual soil erosion rate
(InRR)
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MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP
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Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope

0.52744
-0.00324
-88.6679

0.7725
-50.1103
1.2494
-17.7985
1.5396

3.24414
-0.01327

6.26347
-0.06282

4.6185
-0.13959
-0.59191
0.000632
-2.18164

0.00339

4.98283
-0.06824
-18.0669

0.4184
2.211
-0.5651
-0.000303
-0.00522

1.29787
0.00255
31.9726
0.2895
11.2164
0.2995
6.8092
0.7245
4.05361
0.00812
5.48404
0.0501
3.632
0.09687
1.06151
0.12543
1.70548
0.00366
24.84942
0.22578
17.3718
0.4675
4.2224
0.4993
6.96711
0.01435

0.406
-1.27
-2.773
2.669
-4.468
4.171
-2.614
2.125
0.8
-1.634
1.142
-1.254
1.272
-1.441
-0.558
0.005
-1.279
0.925
0.201
-0.302
-1.04
0.895
0.524
-1.132

-0.364

0.685
0.206
0.00682
0.00912
2.42E-05
7.28E-05
0.0106
0.0365
0.426
0.106
0.263
0.22
0.214
0.161
0.582
0.996
0.211
0.363
0.843
0.766
0.312
0.383
0.607
0.273

1

0.72
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Forestland

Event runoff depth
(InRR)

Event soil erosion rate
(InRR)

Annual runoff depth
(InRR)

Annual soil erosion rate
(InRR)
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Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude
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Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope

109.6715
-1.0097
25.3753
-0.7085
2.0317
-0.2837
-3.68811
0.00594
621.513
-5.685
144.548
-4.007
-58.402
5.884
-51.19154
0.09158
26.0205
-0.2551
15.2336
-0.4665
2.5044
-0.467
0.09011
-0.00366
47.073
-0.4783

37.5569
0.3439
12.6314
0.3446
5.0863
0.5493
5.7411
0.011
141.841
1.292
437.381
11.92
16.212
1.704
16.95633
0.03185
21.3445
0.1954
9.8264
0.2684
4.3935
0.4741
4.04416
0.00766
26.7432
0.2441

2.92
-2.936
2.009
-2.056
0.399
-0.517
-0.642
0.54
4.382
-4.399
0.33
-0.336
-3.602
3.453
-3.019
2.876
1.219
-1.305
1.55
-1.738
0.57
-0.985
0.022
-0.478
1.76
-1.959

0.00914
0.00883
0.0598
0.0546
0.694
0.612
0.529
0.596
0.00137
0.00134
0.748
0.744
0.00483
0.0062
0.0129
0.0165
0.227
0.196
0.1252
0.0862
0.57
0.328
0.982
0.634
0.083
0.0543

kok

kok

kok

kok

sk

sk
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Natural grassland

Event runoff depth
(InRR)

Event soil erosion rate
(InRR)

Annual runoff depth
(InRR)
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Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude
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Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope

13.3732
-0.5059
-9.8034
0.4998
-7.57522
0.00452
-31.7922
0.2752
-8.2544
0.1838
5.6444
-0.768
2.25431
-0.00733
151.4454
1.3413
-61.3422
1.5468
-18.482
1.639
12.7951
-0.03252
-6.59983
0.06271
6.2491
-0.1662

13.4953
0.365
4.6835
0.534
4.88879
0.00972
18.9633
0.1721
7.4451
0.2017
3.4679
0.3735
2.33908
0.00458
44.2031
0.3996
16.3608
0.4342
12.587
1.338
6.21155
0.01265
26.34747
0.24235
11.4672
0.3157

0.991
-1.386
-2.093

0.936

-1.55

0.465
-1.677

1.599
-1.109

0.911

1.628
-2.056

0.964

-1.6
-3.426

3.356
-3.749

3.562
-1.468

1.224

2.06
-2.571

-0.25

0.259

0.545
-0.526

0.325
0.17
0.0404
0.3529
0.126
0.643
0.0984
0.1146
0.272
0.366
0.1084
0.0437
0.339
0.114
0.00197
0.00236
8.56E-04
0.00139
0.154
0.231
0.0492
0.016
0.804
0.798
0.591
0.603
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Annual soil erosion rate
(InRR)

Event runoff depth
(InRR)

Event soil erosion rate
(InRR)
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MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT
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Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope

-6.3433
0.7393
-2.1549
0.00452
82.1005
-0.7901
15.4878
-0.5484
-20.424
1.743
-20.82733
0.03241
-5.26249
0.03845
-3.0617
0.0551
10.1252
-1.2197
4.58319
-0.01123
-124.8552
1.1094
-53.4483
1.359
-7.1224
0.5343

4.0336
0.445
4.80311
0.00911
61.9098
0.5625
29.8888
0.8054
11.165
1.243
11.41619
0.02303
32.6057
0.29634
11.3565
0.3082
4.1316
0.4509
3.32076
0.00662
47.0829
0.4256
16.6717
0.4412
12.461
1.3305

-1.573
1.662
-0.449
0.496
1.326
-1.405
0.518
-0.681
-1.829
1.403
-1.824
1.407
-0.161
0.13
-0.27
0.179
2.451
-2.705
1.38
-1.697
-2.652
2.607
-3.206
3.08
-0.572
0.402

0.129
0.11
0.658
0.625
0.203
0.179
0.611
0.506
0.0861
0.1799
0.0868
0.1786
0.874
0.898
0.791
0.86
0.0254
0.015
0.185
0.108
0.019
0.0207
0.00635
0.00815
0.577
0.694
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sk
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Shrubland

Annual runoff depth
(InRR)

Annual soil erosion rate
(InRR)

Event runoff depth
(InRR)
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MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP

Longitude

Latitude

MAT

MAP
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Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope

Intercept

12.6505
-0.03045
6.72346
-0.07132
12.8984
-0.3819
-4.2511
0.3555
0.10452
-0.00238
17.7187
-0.2218
15.7201
-0.604
-21.1393
1.6473
0.29581
-0.01296
1.63947
-0.02257
4.4392
-0.142
4.6024
-0.5769
-1.27206

6.54138
0.01342
17.64236
0.16082
9.5346
0.26
3.0463
0.3421
2.9235
0.00576
41.0303
0.3746
21.2035
0.5741
8.0838
0.9125
5.39913
0.01013
12.75421
0.11544
4.5494
0.1219
3.0394
0.3207
1.63238

1.934
-2.269
0.381
-0.443
1.353
-1.469
-1.395
1.039
0.036
-0.414
0.432
-0.592
0.741
-1.052
-2.615
1.805
0.055
-1.28
0.129
-0.196
0.976
-1.165
1.514
-1.799
-0.779

0.0736
0.0396
0.704
0.659
0.181
0.147
0.168
0.303
0.972
0.68
0.668
0.557
0.463
0.299
0.0123
0.0782
0.957
0.208
0.898
0.846
0.334
0.25
0.1368
0.0787
0.44
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Event soil erosion rate Longitude
(InRR)
Latitude
MAT
MAP

Slope
Intercept
Slope
Intercept
Slope
Intercept
Slope
Intercept

Slope

0.0008316
-54.3258
0.4502
-40.7148
0.968
-7.1976
0.2787
-2.984
-0.00323

0.00323
60.7169
0.5496
21.374
0.5726
11.3521
1.2124
7.23123
0.01449

0.258
-0.895
0.819
-1.905
1.691
-0.634
0.23
-0.413
-0.223

0.798
0.379
0.42
0.0671
0.102
0.531
0.82
0.683
0.825
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Note: Significant level as follows: 0.001-****_0.01-“**’_0.05-*’, 0.1-°.”, 1-* >. MAT: mean annual temperature. MAP: mean annual precipitation.
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Appendix 4. Fit statistic of the optimal model and model reliability in meta-analysis
1. Fit statistics and model choice

The fit statistic variables of the optimal model as follows.
Table 11. Fit statistic variable of optimal mixed-effect model regarding of the topological context and

ecological restoration types.

Statistic Annual runoff Annual soil erosion  Event runoff Event soil erosion
variable rate rate

Overall Individu Overall Individu Overall Individu Overall Individu

al al al al
LogLik: -335.55  -334.316 -352.64 -342.285 -149.29 -143.412 -13498 -126.696
6 3 6 6
Deviance:  2001.90 1999.42  705.285 684.570  298.591 286.823  269.971 253.391
9 9 3 1 7 1
AIC: 681.111 684.631  715.285 700.570  308.591 302.823  279.971 269.391
7 5 3 1 7 1
BIC: 696.761 709.670  729.545 723.196  322.228 324.427 290.765 286.278
2 7 2 8 1 5 4 1
AlCc: 681.479 685.531 715776 701.811  309.151 304.249  281.005 272.160
8 5 8 7 9 4 5 4

Note: LogLik, BIC, AIC and AICc refer to Log-likelihood, Bayesian information criterion, Akaike

information criterion and the sample-size corrected Akaike Information Criterion, respectively.

2. Model reliability

Mixed-Effects Model Mixed-Effects Model

0.768 0.000
1 1
.

Standard Error
1.537
1
Sample Quantiles

.- W--' 0

-2
!

2.305
!

3.074
.

T T T T T T T T
-10.00 -5.00 0.00 5.00 -2 -1 0 1 2

Residual Value Theoretical Quantiles
Figure 7. The funnel and Q-Q plot between standard error and overall effect model residual in the
annual runoff. A pseudo confidence interval region is drawn around this value with bounds equal to =

1.96 SE, where SE is the standard error value from the y-axis (assuming level=95%).
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Mixed-Effects Model Mixed-Effects Model

0.000
!

1.636

Standard Error
3.271
1
.
.
.
Sample Quantiles

4.907

6.542
L
.

T T T T T T T T T

-15.00  -10.00 -5.00 0.00 5.00 10.00 15.00 -2 -1 0 1 2

Residual Value Theoretical Quantiles

Figure 8. The funnel and Q-Q plot between standard error and overall effect model residual in the
annual soil erosion rate. A pseudo confidence interval region is drawn around this value with bounds

equal to + 1.96 SE, where SE is the standard error value from the y-axis (assuming level=95%).

Mixed-Effects Model Mixed-Effects Model

0.381 0.000
! !

Standard Error
0.762

Sample Quantiles

1.143
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Residual Value Theoretical Quantiles

Figure 9. The funnel and Q-Q plot between standard error and overall effect model residual in the
event runoff. A pseudo confidence interval region is drawn around this value with bounds equal to +

1.96 SE, where SE is the standard error value from the y-axis (assuming level=95%).

Mixed-Effects Model Mixed-Effects Model
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Figure 10. The funnel and Q-Q plot between standard error and overall effect model residual in the

event soil erosion rate. A pseudo confidence interval region is drawn around this value with bounds
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21 Figure 11. The funnel and Q-Q plot between standard error and Individual effect optimal model
22 residual in the annual runoff. A pseudo confidence interval region is drawn around this value with
23 bounds equal to + 1.96 SE, where SE is the standard error value from the y-axis (assuming level=95%).
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zg Figure 12. The funnel and Q-Q plot between standard error and Individual effect model residual in the
41 annual soil erosion rate. A pseudo confidence interval region is drawn around this value with bounds
42 equal to £+ 1.96 SE, where SE is the standard error value from the y-axis (assuming level=95%).
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Figure 13. The funnel and Q-Q plot between standard error and Individual effect model residual in the
event runoff. A pseudo confidence interval region is drawn around this value with bounds equal to +

1.96 SE, where SE is the standard error value from the y-axis (assuming level=95%).
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Figure 14. The funnel and Q-Q plot between standard error and Individual effect model residual in the
event soil erosion rate. A pseudo confidence interval region is drawn around this value with bounds

equal to + 1.96 SE, where SE is the standard error value from the y-axis (assuming level=95%).
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