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INFINITE-DIMENSIONAL INPUT-TO-STATE STABILITY AND1

ORLICZ SPACES∗2

BIRGIT JACOB† , ROBERT NABIULLIN† , JONATHAN R. PARTINGTON‡ , AND FELIX3

L. SCHWENNINGER§4

Abstract. In this work, the relation between input-to-state stability and integral input-to-5
state stability is studied for linear infinite-dimensional systems with an unbounded control operator.6
Although a special focus is laid on the case L∞, general function spaces are considered for the inputs.7
We show that integral input-to-state stability can be characterized in terms of input-to-state stability8
with respect to Orlicz spaces. Since we consider linear systems, the results can also be formulated9
in terms of admissibility. For parabolic diagonal systems with scalar inputs, both stability notions10
with respect to L∞ are equivalent.11

Key words. Input-to-state stability, integral input-to-state stability, C0-semigroup, admissibil-12
ity, Orlicz spaces13

AMS subject classifications. 93D20, 93C05, 93C20, 37C7514

1. Introduction. In systems and control theory, the question of stability is a15

fundamental issue. Let us consider the situation where the relation between the input16

(function) u and the state x is governed by the autonomous equation17

(1.1) ẋ = f(x, u), x(0) = x0.18

One can then distinguish between external stability, that is, stability with respect to19

the input u, and internal stability, i.e. when u = 0. For the moment, f is assumed to20

map from R
n×R

m to R
n, and to be such that solutions x exist on [0,∞) for all inputs21

u in a function space Z. Already from this very general view-point, it seems clear that22

stability notions may strongly depend on the specific choice of Z (and its norm). The23

concept of input-to-state stability (ISS) combines both external and internal stability24

in one notion. If Z is chosen to be L∞(0,∞;U), U = R
m, a system is called ISS (with25

respect to L∞) if there exist functions β ∈ KL, γ ∈ K such that26

‖x(t)‖ ≤ β(‖x0‖, t) + γ(ess sup
s∈[0,t]

‖u(s)‖U ),27

for all t > 0 and u ∈ Z. Here the sets KL and K refer to the classic comparison28

functions from nonlinear systems theory, see Section 2. Introduced by E. Sontag in29

1989 [27], ISS has been intensively studied in the past decades; see [29] for a survey.30

A related stability notion is integral input-to-state stability (iISS) [28, 2], which means31
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2 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

that for some β ∈ KL, θ ∈ K∞ and µ ∈ K,32

(1.2) ‖x(t)‖ ≤ β(‖x0‖, t) + θ

(
∫ t

0

µ(‖u(s)‖)U ) ds
)

,33

for all t > 0 and u ∈ Z = L∞(0,∞;U). This property differs from ISS in the sense that34

it allows for unbounded inputs u that have “finite energy”, see [28]. Many practically35

relevant systems are iISS whereas they are not ISS, see e.g. [19] for a detailed list.36

However, for linear systems, i.e., f(x, u) = Ax + Bu with matrices A and B, iISS is37

equivalent to ISS. To some extent, this observation marks the starting point of this38

work.39

In contrast to the well-established theory for finite-dimensions, a more intensive40

study of (integral) input-to-state stability for infinite-dimensional systems has only41

begun recently. We refer to [4, 5, 11, 12, 13, 16, 17, 18, 19, 20]. By nature, in42

the infinite-dimensional setting, the stability notions from finite-dimensions are more43

subtle. We refer to [21] for a listing of failures of equivalences around ISS known from44

finite-dimensional systems. In most of the mentioned infinite-dimensional references,45

systems of the form (1.1) with f : X × U → X and Banach spaces X and U are46

considered. For linear equations, this setting corresponds to evolution equations of47

the form48

(1.3) ẋ(t) = Ax(t) +Bu(t), x(0) = x0,49

where B is a bounded control operator (note that for fixed t, x(t) = x(t, ·) is a function50

and ẋ denotes the time-derivative). Analogously to finite-dimensions, in this case, ISS51

and iISS are known to be equivalent, see e.g., [19, Cor. 2] and Proposition 2.14 below.52

However, concerning applications the requirement of bounded control operators B is53

rather restrictive. Typical examples for systems which only allow for a formulation54

with an unbounded B are boundary control systems. It is clear that such phenomena55

cannot occur for linear systems in finite-dimensions.56

The main point of this paper is to relate and characterize (integral) input-to-state57

stability for linear, infinite-dimensional systems with unbounded control operators, i.e.58

systems of the form (1.3) with unbounded operators B. This is done by using the59

notion of admissibility, [25, 31], which also reveals the connection of the mentioned60

stability types with the boundedness of the linear mapping61

Z → X, u 7→ x(t)62

(for x0 = 0). It is not surprising that the choice of topology for Z, the space of inputs63

u, is crucial here. However, looking at (1.2) for x0 = 0, it is not clear how the right-64

hand side could define a norm for general functions µ and θ. The question of the right65

norm for Z motivates one to study ISS and iISS with respect to general spaces Z – not66

only Z = L∞ = L∞(0,∞;U). For the precise definition of these notions, we refer to67

Section 2. We show that Z-ISS and Z-iISS are equivalent for Z = Lp = Lp(0,∞;U),68

p ∈ [1,∞). However, it turns out that this paves the way to characterize L∞-iISS69

in terms of ISS. More precisely, we will show that L∞-iISS is equivalent to ISS with70

respect to some Orlicz space. This is one of the main results of this work. Orlicz71

spaces (or Orlicz–Birnbaum spaces) appear naturally as generalizations of Lp-spaces72

and ISS with respect to such spaces can thus be seen as a generalization of classical73

stability notions. Other choices for general input functions have been made in the74

literature – like admissibility with respect to Lorentz spaces [6, 33] or Z-ISS with Z75

This manuscript is for review purposes only.



INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 3

Eq. (1.3),
B bounded

Eq. (1.3),
B unbounded

Eq. (1.1),
f nonlinear

dimX <∞ ISS ⇐⇒ iISS ISS ⇐⇒ iISS ISS =⇒
6⇐= iISS

dimX = ∞ ISS ⇐⇒ iISS ISS
⇐=

(

?
=⇒

) iISS not clear

Table 1.1

The relation between ISS and iISS (with respect to L∞) in various settings.

being a Sobolev space [9, 18].76

As we will see, it is plain that Z-iISS always implies Z-ISS for linear systems. The77

converse direction, for Z = L∞, remains open in general. It is known that ISS is78

equivalent to admissibility (together with exponential stability). We will show that79

L∞-iISS in fact implies zero-class admissibility [8, 34], which is slightly stronger than80

admissibility, see Proposition 2.13. In Table 1.1, the relation of L∞-ISS and L∞-iISS81

in the various above-mentioned settings is depicted schematically.82

In Section 2, we will discuss the setting and formally introduce the stability83

notions mentioned above. This includes a general abstract definition of ISS, iISS and84

admissibility with respect to some function space Z. Furthermore, we will give some85

basic facts about their relation.86

Section 3 deals with the characterization of ISS and iISS in terms of Orlicz-space-87

admissibility. As a main result, we show that L∞-iISS is equivalent to ISS with88

respect to some Orlicz space EΦ, where Φ denotes a Young function, Theorem 3.16.89

Moreover, we show that ISS with respect to an Orlicz space is a natural generalization90

of classic Lp-ISS that “interpolates” the notions of L1- and L∞-ISS, Theorems 3.1791

and 3.19.92

In Section 4, we consider parabolic diagonal systems with scalar input. More93

precisely, we assume that A possesses a Riesz basis of eigenvectors with eigenvalues94

lying in a sector in the open left half-plane. For this class of systems we show that95

L∞-ISS implies ISS with respect to some Orlicz space and thus, by the results of96

Section 3, the equivalence between iISS and ISS, known in finite dimensions, holds for97

this class of systems. Moreover, it turns out that any linear, bounded operator from98

U to the extrapolation space X−1 is L∞-admissible, which yields a characterization of99

ISS. The results of this section partially generalize results that were already indicated100

in [7].101

We illustrate the obtained results by examples in Section 5. In particular, we102

present a parabolic diagonal system which is L∞-ISS, but not Lp-ISS for any p ∈103

[1,∞). Finally, we conclude by drawing a connection between the question whether104

L∞-ISS implies L∞-iISS and a problem due to G. Weiss.105

2. Stability notions for infinite-dimensional systems.106

2.1. The setting and definitions. In this article we study systems Σ(A,B) of107

the following form108

(2.4) ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0,109

where A generates a C0-semigroup (T (t))t≥0 on a Banach space X and B is a linear110

and bounded operator from a Banach space U to the extrapolation space X−1. Note111

that B is possibly unbounded from U to X. Here X−1 is the completion of X with112

This manuscript is for review purposes only.



4 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

respect to the norm113

‖x‖X−1 = ‖(β −A)−1x‖X ,114

for some β ∈ ρ(A), the resolvent set of A. It can be shown that the semigroup115

(T (t))t≥0 possesses a unique extension to a C0-semigroup (T−1(t))t≥0 on X−1 with116

generator A−1, which is an extension of A. Thus we may consider equation (2.4)117

on the Banach space X−1 and therefore for u ∈ L1
loc(0,∞;U), the (mild) solution of118

(2.4) is given by the variation of parameters formula119

(2.5) x(t) = T (t)x0 +

∫ t

0

T−1(t− s)Bu(s) ds, t ≥ 0.120

In this paper, we will consider the following types of function spaces.121

Assumption 2.1. For a Banach space U , let Z ⊆ L1
loc(0,∞;U) be such that for122

all t > 0123

(a) Z(0, t;U) := {f ∈ Z | f |[t,∞) = 0} becomes a Banach space of functions on124

the interval (0, t) with values in U (in the sense of equivalence classes w.r.t.125

equality almost everywhere),126

(b) Z(0, t;U) is continuously embedded in L1(0, t;U), that is, there exists κ(t) > 0127

such that for all f ∈ Z(0, t;U) it holds that f ∈ L1(0, t;U) and128

‖f‖L1(0,t;U) ≤ κ(t)‖f‖Z(0,t;U).129

(c) For u ∈ Z(0, t;U) and s > t we have ‖u‖Z(0,t;U) = ‖u‖Z(0,s;U).130

(d) Z(0, t;U) is invariant under the left-shift and reflection, i.e., SτZ(0, t;U) ⊂
Z(0, t;U) and RtZ(0, t;U) ⊂ Z(0, t;U), where

Sτu = u(·+ τ), Rtu = u(t− ·),

and τ > 0. Furthermore, ‖Sτ‖L(Z(0,t;U)) ≤ 1 and Rt is isometric.131

(e) For all u ∈ Z and 0 < t < s it holds that u|(0,t) ∈ Z(0, t;U) and132

‖u|(0,t)‖Z(0,t;U) ≤ ‖u|(0,s)‖Z(0,s;U).133

If additionally we have in (b) that134

(B) κ(t) → 0, as tց 0,135

then we say that Z satisfies condition (B).136

For example, Z = Lp refers to the spaces Lp(0, t;U), t > 0, for fixed 1 ≤ p ≤ ∞ and137

U . Other examples can be given by Sobolev spaces and the Orlicz spaces LΦ(0, t;U)138

and EΦ(0, t;U), see the appendix. If p > 1 (including p = ∞) and Φ is a Young139

function, then Lp, EΦ and LΦ satisfy Condition (B), thanks to Hölder’s inequality.140

Clearly, L1 does not satisfy condition (B).141

In general, the state x(t) given by (2.5) lies in X−1 for u ∈ L1
loc and t > 0. The142

notion of admissibility ensures that indeed x(t) ∈ X.143

Definition 2.2. We call the system Σ(A,B) admissible with respect to Z (or144

Z-admissible), if145

(2.6)

∫ t

0

T−1(s)Bu(s) ds ∈ X146

This manuscript is for review purposes only.



INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 5

for all t > 0 and u ∈ Z(0, t;U). If Σ(A,B) is admissible with respect to Z, then all147

mild solutions (2.5) are in X and by the closed graph theorem there exists a constant148

c(t) (take the infimum over all possible constants) such that149

(2.7)

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c(t)‖u‖Z(0,t;U).150

Moreover, it is easy to see that Σ(A,B) is admissible if (2.6) holds for one t > 0.151

Definition 2.3. We call the system Σ(A,B) infinite-time admissible with respect152

to Z (or Z-infinite-time admissible), if the system is admissible with respect to Z and153

c∞ := supt>0 c(t) is finite. We call the system Σ(A,B) zero-class admissible with154

respect to Z (or Z-zero-class admissible), if it is admissible with respect to Z and155

limt→0 c(t) = 0.156

Remark 2.4. Clearly, zero-class admissibility and infinite-time admissibility imply157

admissibility respectively.158

Since Z ⊆ L1
loc(0,∞;U), for any u ∈ Z and any initial value x0, the mild solution x159

of (2.4) is continuous as function from [0,∞) to X−1. Next we show that zero-class160

admissibility guarantees that x even lies in C(0,∞;X).161

Proposition 2.5. If Σ(A,B) is Z-zero-class admissible, then for every x0 ∈ X162

and every u ∈ Z the mild solution of (2.4), given by (2.5), satisfies x ∈ C([0,∞);X).163

Proof. Since x is given by (2.5), it suffices to consider the case x0 = 0. Let u ∈ Z.164

We have to show that t 7→ Φtu :=
∫ t

0
T−1(s)Bu(s) ds is continuous. The proof is165

divided into two steps.166

First, note that t 7→ Φtu is right-continuous on [0,∞). In fact, by167

Φt+hu− Φtu = T (t)

∫ h

0

T−1(s)Bu(s+ t) ds,168
169

h > 0, and Z-zero-class admissibility, it follows that170

‖Φt+hu− Φtu‖ ≤ c(h)‖T (t)‖‖u(·+ t)‖Z(0,h;U) → 0171

for hց 0 (where we used properties (d), (e) of Z).172

Second, we show that t 7→ Φt is left-continuous on (0,∞). Since (Φt − Φt−h)u =173

(Φt − Φt−h)u|(0,t), we can assume that u ∈ Z(0, t;U). Clearly,174

(Φt − Φt−h)u = T (t− h)

∫ h

0

T−1(s)Bu(s+ t− h) ds.175

It follows that176

∥

∥

∥

∥

∥

∫ h

0

T−1(s)Bu(s+ t− h) ds

∥

∥

∥

∥

∥

≤ c(h)‖u(·+ t− h)‖Z(0,h;U)177

≤ c(h)‖u(·+ t− h)‖Z(0,t;U)178

≤ c(h)‖u‖Z(0,t;U)
hց0−→ 0,179180

where the last two inequalities hold by properties (e) and (d) of Z. Since (T (t))t≥0181

is uniformly bounded on compact intervals, we conclude that ‖Φt+hu− Φtu‖ → 0 as182

h→ 0.183

This manuscript is for review purposes only.



6 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

Remark 2.6. If Σ(A,B) is admissible with respect to Lp, 1 ≤ p < ∞, then,184

by Hölder’s inequality, Σ(A,B) is Lq-zero-class admissible for any q > p. Thus,185

Proposition 2.5 implies that the mild solution of (2.4) lies in C(0,∞;X) for all u ∈ Lq.186

Moreover, this continuity even holds for u ∈ Lp, which was already shown by G. Weiss187

in his seminal paper [31, Prop. 2.3] on admissible control operators. However, there,188

a direct, but similar proof is used without using the notion of zero-class admissibility.189

As stated in [31, Problem 2.4], it is an interesting open problem whether the continuity190

of x is implied by L∞-admissibility. By Proposition 2.5, the answer is ‘yes’ in the case191

of L∞-zero-class admissibility. See also Section 6.192

To introduce input-to-state stability, we will need the following well-known func-193

tion classes from Lyapunov theory. Here, R
+
0 denotes the set of nonnegative real194

numbers.195

K = {µ : R+
0 → R

+
0 | µ(0) = 0, µ continuous, strictly increasing},196

K∞ = {θ ∈ K | lim
x→∞

θ(x) = ∞},197

L = {γ : R+
0 → R

+
0 | γ continuous, strictly decreasing, lim

t→∞
γ(t) = 0},198

KL = {β : (R+
0 )

2 → R
+
0 | β(·, t) ∈ K ∀t ≥ 0 and β(s, ·) ∈ L ∀s > 0}.199200

Definition 2.7. The system Σ(A,B) is called input-to-state stable with respect201

to Z (or Z-ISS), if there exist functions β ∈ KL and µ ∈ K∞ such that for every202

t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U)203

(i) x(t) lies in X and204

(ii) ‖x(t)‖ ≤ β(‖x0‖, t) + µ(‖u‖Z(0,t;U)).205

The system Σ(A,B) is called integral input-to-state stable with respect to Z (or206

Z-iISS), if there exist functions β ∈ KL, θ ∈ K∞ and µ ∈ K such that for every t ≥ 0,207

x0 ∈ X and u ∈ Z(0, t;U)208

(i) x(t) lies in X and209

(ii) ‖x(t)‖ ≤ β(‖x0‖, t) + θ

(
∫ t

0

µ(‖u(s)‖U ) ds
)

.210

The system Σ(A,B) is called uniformly bounded energy bounded state with re-211

spect to Z (or Z-UBEBS), if there exist functions γ, θ ∈ K∞, µ ∈ K and a constant212

c > 0 such that for every t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U)213

(i) x(t) lies in X and214

(ii) ‖x(t)‖ ≤ γ(‖x0‖) + θ

(
∫ t

0

µ(‖u(s)‖U ) ds
)

+ c.215

Remark 2.8. 1. By the inclusion of Lp spaces on bounded intervals we ob-216

tain that Lp-ISS (Lp-iISS, Lp-UBEBS) implies Lq-ISS (Lq-iISS, Lq-UBEBS)217

for all 1 ≤ p < q ≤ ∞. Further the inclusions L∞ ⊆ EΦ ⊆ LΦ ⊆ L1 and218

Z ⊆ L1
loc yield a corresponding chain of implications of ISS, iISS and UBEBS.219

2. Note that in general the integral
∫ t

0
µ(‖u(s)‖U ) ds in the inequalities defining220

Z-iISS and Z-UBEBS may be infinite. In that case, the inequalities hold221

trivially. This indicates that the major interest in iISS and UBEBS lies in222

the case Z = L∞, in which the integral is always finite.223

2.2. Relations between the stability notions. Recall that the semigroup224

(T (t))t≥0 is called exponentially stable, if there exist constants M,ω > 0 such that225

(2.8) ‖T (t)‖ ≤Me−ωt, t ≥ 0.226

227

This manuscript is for review purposes only.



INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 7

Lemma 2.9. Let (T (t))t≥0 be exponentially stable and Σ(A,B) be Z-admissible.228

Then the following holds.229

(i) Σ(A,B) is infinite-time Z-admissible.230

(ii) Σ(A,B) is Z-iISS if and only if there exist θ ∈ K∞ and µ ∈ K such that for231

every u ∈ Z(0, 1;U),232

(2.9)

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ

(
∫ 1

0

µ(‖u(s)‖U ) ds
)

.233

Moreover, if (2.9) holds, then Σ(A,B) is Z-iISS with the same choice of µ.234

Proof. By the representation of the solution (2.5) for x0 = 0, it follows that the235

condition in (ii) is necessary for Z-iISS. For the sufficiency it is enough to consider236

x0 = 0 by exponential stability. Therefore, both (i) and (ii) hold if we can show237

that there exists C > 0 such that for any t > 0 and u ∈ Z(0, t;U), there exists238

ũ ∈ Z(0, 1;U) such that the following three inequalities hold:239

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

∫ 1

0

T−1(s)Bũ(s) ds

∥

∥

∥

∥

,240

‖ũ‖Z(0,1;U) ≤ ‖u‖Z(0,t;U),241
∫ 1

0

µ(‖ũ(s)‖U ) ds ≤
∫ t

0

µ(‖u(s)‖U ) ds ∀µ ∈ K.242
243

Without loss of generality, we assume that t ∈ N, otherwise extend u suitably by244

the zero-function. By splitting the integral, substitution and the fact that Σ(A,B) is245

Z-admissible, we get for u ∈ Z(0, t;U),246

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

t−1
∑

k=0

∫ k+1

k

T−1(s)Bu(s) ds

∥

∥

∥

∥

∥

247

=

∥

∥

∥

∥

∥

t−1
∑

k=0

T (k)

∫ 1

0

T−1(s)Bu(s+ k) ds

∥

∥

∥

∥

∥

248

≤
t−1
∑

k=0

‖T (k)‖ max
k=0,..,t−1

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s+ k) ds

∥

∥

∥

∥

249

≤ C · max
k=0,..,t−1

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s+ k) ds

∥

∥

∥

∥

,250
251

where C <∞ only depends on the exponentially stable semigroup (T (t))t≥0. Choose252

ũ = u(· + k0)|(0,1), where k0 is the argument such that the above maximum is at-253

tained. Clearly,
∫ 1

0
µ(‖ũ(s)‖U ) ds ≤

∫ t

0
µ(‖u(s)‖U ) ds. We now use the properties of254

Z described in Assumption 2.1. By (d), u(·+k0) ∈ Z(0, t;U) and ‖u(·+k0)‖Z(0,t;U) ≤255

‖u‖Z(0,t;U). Therefore, Property (e) implies that ũ ∈ Z(0, 1;U) with ‖ũ‖Z(0,1;U) ≤256

‖u(·+ k0)‖Z(0,t;U) ≤ ‖u‖Z(0,t;U).257

Note that (i) in Lemma 2.9 for the case Z = Lp is well-known and can e.g. be found258

in [30] for p = 2.259

Proposition 2.10. Let Z ⊆ L1
loc(0,∞;U) be a function space. Then we have:260

(i) The following statements are equivalent261

(a) Σ(A,B) is Z-ISS,262
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(b) Σ(A,B) is Z-admissible and (T (t))t≥0 is exponentially stable,263

(c) Σ(A,B) is Z-infinite-time admissible and (T (t))t≥0 is exponentially sta-264

ble.265

(ii) If Σ(A,B) is Z-iISS, then the system is Z-admissible and (T (t))t≥0 is expo-266

nentially stable,267

(iii) If Σ(A,B) is Z-UBEBS, then the system is Z-admissible and (T (t))t≥0 is268

bounded, that is, (2.8) holds for ω = 0.269

Proof. Clearly, Z-ISS, Z-iISS and Z-UBEBS imply Z-admissibility (consider x0 =270

0 in (2.5) and observe that x(t) ∈ X for all t > 0). Further, Z-admissibility and271

exponential stability of (T (t))t≥0 show Z-ISS, see Remark 2.4. If, Σ(A,B) is Z-272

ISS or Z-iISS, by setting u = 0, it follows that ‖T (t)‖ < 1 for sufficiently large t,273

which shows that (T (t))t≥0 is exponentially stable. It is easy to see that Z-UBEBS274

implies boundedness of (T (t))t≥0. Finally, by Remark 2.4 items (b) and (c) in (i) are275

equivalent.276

Proposition 2.11. If 1 ≤ p <∞, then the following are equivalent277

(i) Σ(A,B) is Lp-ISS,278

(ii) Σ(A,B) is Lp-iISS,279

(iii) Σ(A,B) is Lp-UBEBS and (T (t))t≥0 is exponentially stable.280

Proof. Clearly, by the definition of iISS and UBEBS, (ii) ⇒ (iii). By Proposition281

2.10, (iii)⇒(i). Thus in view of Proposition 2.10 it remains to show that Lp-infinite-282

time admissibility and exponential stability imply Lp-iISS. Indeed, Lp-infinite-time283

admissibility and exponential stability show for x0 ∈ X and u ∈ Lp(0, t;U) that284

‖x(t)‖ ≤Me−ωt‖x0‖+ c∞ ‖u‖Lp(0,t;U)285

=Me−ωt‖x0‖+ c∞

(
∫ t

0

‖u(s)‖pU ds
)1/p

,286
287

which shows Lp-iISS.288

Remark 2.12. Let 1 ≤ p < ∞. If the system Σ(A,B) is Lp-admissible and289

(T (t))t≥0 is exponentially stable, then the system Σ(A,B) is Lp-ISS with the fol-290

lowing choices for the functions β and µ:291

β(s, t) :=Me−ωts and µ(s) := c∞s.292

Here the constants M and ω are given by (2.8) and c∞ = supt≥0 c(t).293

Proposition 2.13. If Σ(A,B) is L∞-iISS, then Σ(A,B) is L∞-zero-class admis-294

sible.295

Proof. If Σ(A,B) is L∞-iISS, then there exist θ ∈ K∞ and µ ∈ K such that for296

all t > 0, u ∈ L∞(0, t;U), u 6= 0297

(2.10)
1

‖u‖∞

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ

(
∫ t

0

µ
(

‖u(s)‖U

‖u‖∞

)

ds

)

.298

Since the function µ is monotonically increasing and ‖u(s)‖U ≤ ‖u‖∞ a.e., the right-299

hand side of (2.10) is bounded above by θ(tµ(1)) which converges to zero as tց 0.300

We illustrate the relations of the different stability notions with respect to L∞301

discussed above in the diagram depicted in Figure 2.1.302
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Lp-iISS Lp-admissible Lp-ISS

L∞-iISS
L∞-zero-class
admissible

L∞-admissible L∞-ISS

Fig. 2.1. Relations between the different stability notions with respect to Lp, p < ∞, and L∞

for a system Σ(A,B), where it is assumed that the semigroup is exponentially stable.

Proposition 2.14. Suppose that B is a bounded operator from U to X and Z ⊆303

L1
loc(0,∞;U) is a function space as in Section 2.1. Then the following statements are304

equivalent.305

(i) (T (t))t≥0 is exponentially stable,306

(ii) Σ(A,B) is Z-admissible and (T (t))t≥0 is exponentially stable,307

(iii) Σ(A,B) is Z-infinite-time admissible and (T (t))t≥0 is exponentially stable,308

(iv) Σ(A,B) is Z-ISS,309

(v) Σ(A,B) is Z-iISS,310

(vi) Σ(A,B) is Z-UBEBS and (T (t))t≥0 is exponentially stable,311

(vii) Σ(A,B) is L1
loc-admissible and (T (t))t≥0 is exponentially stable.312

If Z satisfies Assumption (B), then the above assertions are equivalent to313

(viii) Σ(A,B) is Z-zero-class admissible and (T (t))t≥0 is exponentially stable.314

Proof. By Proposition 2.10 we have (v) ⇒ (vi) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i), and315

Proposition 2.11 and Remark 2.8 prove (vii) ⇒ (v). The implication (i) ⇒ (vii)316

follows from the fact that by the boundedness of B we have x(t) ∈ X for all t ≥ 0 and317

all u ∈ L1(0, t;U). Clearly, (viii) ⇒ (ii). Thus it remains to show that if Z satisfies318

Assumption (B), then (i) ⇒ (viii). Let (T (t))t≥0 be exponentially stable, that is, there319

exist constants M,ω > 0 such that (2.8) holds. Therefore, for any u ∈ L1(0, t;U),320

‖x(t)‖ ≤Me−ωt‖x0‖+M‖B‖
∫ t

0

e−ω(t−s)‖u(s)‖U ds321

≤Me−ωt‖x0‖+M‖B‖
∫ t

0

‖u(s)‖U ds.(2.11)322
323

Using that Z(0, t;U) is continuously embedded in L1(0, t;U), we conclude that324

(2.12) ‖x(t)‖ ≤Me−ωt‖x0‖+M‖B‖κ(t)‖u‖Z(0,t;U)325

for all t ≥ 0. If Assumption (B) holds, then the embedding constants κ(t) tend to 0326

as tց 0. Hence, (2.12) shows that (i) implies (viii).327

For the special case Z = Lp(0,∞;U), parts of the equivalences in Proposition 2.14328

can already be found in [19].329

Remark 2.15. Note that in Proposition 2.14, the assertions are independent of330

Z as the assertions only rest on exponential stability. In particular, if one of the331

equivalent conditions hold, then the system Σ(A,B) is Lp-ISS with the following332

choices for the functions β and µ333

β(s, t) :=Me−ωts and µ(s) :=
M

ωq
‖B‖s,334
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where q is the Hölder conjugate of p, and Lp-iISS with335

β(s, t) :=Me−ωts, µ(s) := s, and θ(s) := sM‖B‖.336

Here the constants M and ω are given by (2.8). Although, in this case a system is337

Lp-ISS or Lp-iISS for all p if this holds for some p, the choices for the functions µ,338

however, do depend on p. Note that if B is unbounded, then the question whether a339

system is Lp-ISS or Lp-iISS crucially depends on p.340

Furthermore, note that in the trivial case X = U = C and A = −1, B = 1, we have341

that the system Σ(A,B) is not L1-zero-class admissible.342

3. IISS from the viewpoint of Orlicz spaces. In this section we relate L∞-343

ISS and L1-ISS to ISS with respect to Orlicz spaces EΦ corresponding to a Young344

function Φ. The use of Orlicz spaces is motivated by the idea of understanding the345

integral appearing in the definition of iISS, (1.2), as some type of norm. For the346

definition and fundamental properties of Orlicz spaces and Young functions, we refer347

to the Appendix. The main results of this section are summarized in the following348

three theorems.349

Theorem 3.16. The following statements are equivalent.350

(i) There is a Young function Φ such that the system Σ(A,B) is EΦ-ISS,351

(ii) Σ(A,B) is L∞-iISS,352

(iii) (T (t))t≥0 is exponentially stable and there is a Young function Φ such that353

the system Σ(A,B) is EΦ-UBEBS.354

If Φ satisfies the ∆2-condition (see Definition A.42) more can be said.355

Theorem 3.17. If Φ is a Young function that satisfies the ∆2-condition, then the356

following are equivalent.357

(i) Σ(A,B) is EΦ-ISS,358

(ii) Σ(A,B) is EΦ-iISS,359

(iii) Σ(A,B) is EΦ-UBEBS and (T (t))t≥0 is exponentially stable.360

Remark 3.18. Since Lp-spaces are examples of Orlicz spaces where the ∆2-condition361

is satisfied, Theorem 3.17 can be seen as a generalization of Proposition 2.11.362

Theorem 3.19. The following statements are equivalent.363

(i) Σ(A,B) is L1-ISS,364

(ii) Σ(A,B) is L1-iISS,365

(iii) Σ(A,B) is EΦ-ISS for every Young function Φ.366

The proofs of Theorems 3.16, 3.17 and 3.19 are given at the end of this section.367

EΦ-iISS EΦ-admissible EΦ-ISS

L∞-iISS
EΨ-admissible
for some Ψ

EΨ-ISS
for some Ψ

Fig. 3.2. Relations between the different stability notions with respect to Orlicz spaces for a
system Σ(A,B), where it is assumed that the semigroup is exponentially stable and that Φ satisfies
the ∆2-condition.
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Lemma 3.20. Let Σ(A,B) be L∞-iISS. Then there exist θ̃,Φ ∈ K∞ such that Φ368

is a Young function which is continuously differentiable on (0,∞) and369

(3.13)

∥

∥

∥

∥

∫ t

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ̃

(
∫ t

0

Φ(‖u(s)‖U ) ds
)

370

for all t > 0 and u ∈ L∞(0, t;U).371

Proof. By assumption, (T (t))t≥0 is exponentially stable and there exist θ ∈ K∞372

and µ ∈ K such that (2.9) holds for Z = L∞. Without loss of generality we can assume373

that µ belongs to K∞. By Lemma 14 in [23] there exist a convex function µv ∈ K∞ and374

a concave function µc ∈ K∞ such that both are continuously differentiable on (0,∞)375

and µ ≤ µc ◦ µv holds on [0,∞). Now for any Young function Ψ: [0,∞) → [0,∞) it376

is straightforward to check that µc ◦Ψ−1 is a concave function and hence we have by377

Jensen’s inequality378

θ

(
∫ 1

0

µ(‖u(s)‖U ) ds
)

≤ θ

(
∫ 1

0

µc ◦ µv(‖u(s)‖U ) ds
)

≤ (θ ◦ µc ◦Ψ−1)

(
∫ 1

0

(Ψ ◦ µv)(‖u(s)‖U ) ds
)

.

379

Using Remark 3.2.7 in [15] it is easy to see that Φ := Ψ ◦ µv is a Young function.380

Taking θ̃ := θ ◦µc ◦Ψ−1 we obtain the desired estimate for t = 1. By Lemma 2.9, the381

assertion follows.382

Proof of Theorem 3.16. (i) ⇒ (ii): Since Λ(s) = s2 defines a Young function with383

Λ(1) = 1, it can be easily seen that384

Φ1(s) =

{

Φ(s), s < 1,

Φ(Λ(s)), s ≥ 1,
385

defines another Young function such that Φ ≤ Φ1. Furthermore, Φ1 increases essen-386

tially more rapidly than Φ (see Def. A.43), since the composition Φ ◦Λ of two Young387

functions Φ,Λ is known to be increasing essentially more rapidly than Φ (see page388

114 of [14]). We define θ : [0,∞) → [0,∞) by389

θ(α) = sup

{∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

∣

∣

∣
u ∈ L∞(0, 1;U),

∫ 1

0

Φ1(‖u(s)‖U ) ds ≤ α

}

,390

for α > 0 and θ(0) = 0. Clearly, θ is non-decreasing. Admissibility with respect to391

EΦ and Remark A.40.4 yield that for u ∈ L∞(0, 1;U),392

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c(1)‖u‖EΦ(0,1;U) ≤ c(1)

(

1 +

∫ 1

0

Φ1(‖u(s)‖U ) ds
)

.393

Hence, θ(α) <∞ for all α ≥ 0.394

If we can show that limtց0 θ(t) = 0, then, by Lemma 2.5 in [3], there exists θ̃ ∈ K∞395

such that θ ≤ θ̃ pointwise. Therefore, let (αn)n∈N be a sequence of positive real396

numbers converging to 0. By the definition of θ, for any n ∈ N there exists un ∈397

L∞(0, 1;U) such that398

∫ 1

0

Φ1(‖un(s)‖U ) ds ≤ αn399
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and400

(3.14)

∣

∣

∣

∣

θ(αn)−
∥

∥

∥

∥

∫ 1

0

T−1(s)Bun(s) ds

∥

∥

∥

∥

∣

∣

∣

∣

<
1

n
.401

Hence the sequence (‖un(·)‖U )n∈N is Φ1-mean convergent to zero (see Def. A.41). By402

Theorem A.44, the sequence even converges to zero with respect to the norm of the403

space LΦ(0, 1), and thus also in EΦ(0, 1). Hence404

lim
n→∞

‖un‖EΦ(0,1;U) = lim
n→∞

‖‖un(·)‖U‖EΦ(0,1) = 0,405

where we used Remark A.40.2. Hence, by admissibility,406

∥

∥

∥

∥

∫ 1

0

T−1(s)Bun(s) ds

∥

∥

∥

∥

≤ c(1)‖un‖EΦ(0,1;U) → 0,407

as n→ ∞. Altogether we obtain that408

θ(αn) ≤
∣

∣

∣

∣

θ(αn)−
∥

∥

∥

∥

∫ 1

0

T−1(s)Bun(s) ds

∥

∥

∥

∥

∣

∣

∣

∣

+

∥

∥

∥

∥

∫ 1

0

T−1(s)Bun(s) ds

∥

∥

∥

∥

≤ 1

n
+ c(1)‖un‖EΦ(0,1;U),

409

and thus, limn→∞ θ(αn) = 0.410

Therefore, there exists θ̃ ∈ K∞ such that θ ≤ θ̃ pointwise. Furthermore, Φ1 is a411

Young function, in particular we have Φ1 ∈ K∞. The definition of θ yields that412

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ

(
∫ 1

0

Φ1(‖u(s)‖U ) ds
)

≤ θ̃

(
∫ 1

0

Φ1(‖u(s)‖U ) ds
)

413

for all u ∈ L∞(0, 1;U). By Lemma 2.9, we conclude that Σ(A,B) is L∞-iISS.414

415

(ii) ⇒ (i): Now assume that Σ(A,B) is L∞-iISS. We need to show that for some416

Young function Φ the system Σ(A,B) is EΦ-ISS. By Proposition 2.10(i) it suffices417

to show that there is a Young function Φ such that
∫ t

0
T−1(s)Bu(s) ds ∈ X for all418

u ∈ EΦ(0, t). Note that since EΦ(0, t;U) ⊂ L1(0, t;U) for any Young function Φ,419

the integral always exists in X−1. By assumption,
∫ t

0
T−1(s)Bu(s) ds ∈ X for all420

u ∈ L∞(0, t). By Lemma 3.20, there exist θ̃ ∈ K∞ and a Young function Φ such that421

(3.13) holds. Let u ∈ EΦ. By definition, there is a sequence (un)n∈N ⊂ L∞(0, t;U)422

such that limn→∞ ‖un − u‖EΦ(0,t;U) = 0. Since (un)n∈N is a Cauchy sequence in423

EΦ(0, t;U), we can assume without loss of generality that ‖un − um‖EΦ(0,t;U) ≤ 1 for424

all m,n ∈ N. By [15, Lemma 3.8.4 (i)] this implies that for all n,m ∈ N,425

∫ t

0

Φ(‖un(s)− um(s)‖U ) ds ≤ ‖un − um‖EΦ(0,t;U).426

Together with (3.13) and the monotonicity of θ̃, this yields427

∥

∥

∥

∥

∫ t

0

T−1(s)B(un(s)− um(s)) ds

∥

∥

∥

∥

≤ θ̃

(
∫ t

0

Φ(‖un(s)− um(s)‖U ) ds
)

≤ θ̃
(

‖un − um‖EΦ(0,t;U)

)

.

428
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Hence (
∫ t

0
T−1(s)Bun(s) ds)n∈N is a Cauchy sequence in X and thus converges. Let y429

denote its limit. Since EΦ(0, t;U) is continuously embedded in L1(0, t;U), see Remark430

A.40.3, it follows that431

lim
n→∞

∫ t

0

T−1(s)Bun(s) ds =

∫ t

0

T−1(s)Bu(s) ds432

in X−1. Since X is continuously embedded in X−1, we conclude that433

y =

∫ t

0

T−1(s)Bu(s) ds.434

Thus, we have shown that
∫ t

0
T−1(s)Bu(s) ds ∈ X for all u ∈ EΦ and hence Σ(A,B)435

is admissible with respect to EΦ.436

437

(i) ⇒ (iii): This follows since for all u ∈ EΦ(0, t;U) it holds that u ∈ L̃Φ(0, t;U)438

and439

‖u‖EΦ ≤ 1 +

∫ t

0

Φ(‖u(s)‖U ) ds,440

see Remark A.40.4.441

(iii) ⇒ (i): This follows by (iii) and (i) of Proposition 2.10.442

Proof of Theorem 3.17. The implications (ii) ⇒ (iii) ⇒ (i) follow, analogously as443

for the Lp-case, by Proposition 2.10.444

(i) ⇒ (ii): Similarly to the proof of Theorem 3.16, we can define a non-decreasing445

function θ by446

θ(α) = sup

{∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

∣

∣

∣
u ∈ EΦ(0, 1;U),

∫ 1

0

Φ(‖u(s)‖U ) ds ≤ α

}

,447

for α > 0 and θ(0) := 0. By EΦ-admissibility and Remark A.40.4, we have that448

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c(1)‖u‖EΦ(0,1;U) ≤ c(1)

(

1 +

∫ 1

0

Φ(‖u(s)‖U ) ds
)

,449

for u ∈ EΦ(0, 1;U) ⊂ L̃Φ(0, t;U). Hence, θ is well-defined. In analogy to the proof450

of Theorem 3.16, it remains to show that θ is right-continuous at 0. This follows451

because Φ satisfies the ∆2-condition. In fact, if the latter is true, it is known that a452

sequence (un)n∈N in EΦ converges to 0 if and only if the sequence is Φ-mean convergent453

to zero (see Def. A.41). Therefore, αn ց 0 implies that there exists a sequence454

un ∈ EΦ(0, 1;U) that converges to 0 in EΦ and such that455

∣

∣

∣

∣

θ(αn)−
∥

∥

∥

∥

∫ 1

0

T−1Bun(s) ds

∥

∥

∥

∥

∣

∣

∣

∣

≤ 1

n
, n ∈ N.456

By EΦ-admissibility, we conclude that θ(αn) → 0 as n→ ∞.457

Hence, by Lemma 2.4 in [3], we find θ̃ ∈ K∞ such that θ ≤ θ̃ pointwise. By definition458

of θ, this implies459

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ θ̃

(
∫ 1

0

Φ(‖u(s)‖U ) ds
)

460

for all u ∈ EΦ(0, 1;U). Finally, Lemma 2.9 yields that Σ(A,B) is EΦ-iISS.461
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Proof of Theorem 3.19. By Propositions 2.10 and 2.11, we only need to show the462

equivalence of (i) and (iii). That (i) implies (iii) follows immediately since EΦ is463

continuously embedded in L1.464

Conversely, let Σ(A,B) be EΦ-admissible for every Young function Φ. According to465

Proposition 2.10 (a), we have to show that Σ(A,B) is L1-admissible. Let t > 0 and466

u ∈ L1(0, t;U). It remains to prove that
∫ t

0
T−1(s)Bu(s) ds ∈ X. By [14, p. 61], there467

exists a Young function Φ satisfying the ∆2-condition such that ‖u(·)‖U ∈ LΦ
1. The468

∆2-condition implies that EΦ = LΦ and EΦ(0, t;U) = LΦ(0, t;U), see [24, p. 303] or469

[26, Thm. 5.2]. Thus
∫ t

0
T−1(s)Bu(s) ds ∈ X by assumption.470

Proposition 3.21. Let Σ(A,B) be L∞-ISS. If there exist a nonnegative function471

f ∈ L1(0, 1), θ ∈ K, a constant c > 0 and a Young function µ such that for every472

u ∈ L1(0, 1;U) with
∫ 1

0
f(s)µ(‖u(s)‖U ) ds <∞ one has473

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c+ θ

(
∫ 1

0

f(s)µ(‖u(s)‖U ) ds
)

,474

then Σ(A,B) is L∞-iISS.475

Proof. By Theorem 3.16 and Proposition 2.10 it is sufficient to show that there476

is a Young function Φ such that the system Σ(A,B) is EΦ-admissible. Theorem A.33477

implies that there exists a Young function Ψ such that f ∈ L̃Ψ(0, 1). Let Φ̃ be the478

complementary Young function to Ψ. We define the Young function Φ by Φ := Φ̃ ◦µ.479

Using Remark A.36 for u ∈ EΦ(0, 1;U) we obtain480

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

≤ c+ θ

(
∫ 1

0

f(s)µ(‖u(s)‖U ) ds
)

481

≤ c+ θ

(
∫ 1

0

Ψ(f(s)) ds+

∫ 1

0

Φ̃(µ(‖u(s)‖U ) ds
)

.482
483

This shows that for all u ∈ EΦ(0, 1;U) we have484

∫ 1

0

T−1(s)Bu(s) ds ∈ X,485

that is, Σ(A,B) is EΦ-admissible.486

4. Stability of parabolic diagonal systems. In the previous section we have487

proved that for infinite-dimensional systems L∞-iISS implies L∞-ISS. It is an open488

question whether the converse implication holds. Here, we give a positive answer for489

parabolic diagonal systems, which are a well-studied class of systems in the literature,490

see e.g. [30].491

Throughout this section we assume that U = C, 1 ≤ q <∞ and that the operator A492

1In [14, p. 61] it is actually shown that for given f ∈ L1(0, t), there exists a Young function Q

such that f ∈ LQ◦Q(0, t) and such that Q satisfies the ∆′-condition, i.e.,

∃c, u0 > 0 ∀u, v ≥ u0 : Q(uv) ≤ cQ(u)Q(v).

In fact, it is easy to see that this property implies that Q ◦Q satisfies

∀u ≥ u0 : (Q ◦Q)(ℓu) ≤ k(ℓ)(Q ◦Q)(u),

for some ℓ > 1 and k(ℓ) > 0, which is known to be equivalent to Q ◦Q satisfying the ∆2-condition,
see [14, p. 23].
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possesses a q-Riesz basis of eigenvectors (en)n∈N with eigenvalues (λn)n∈N lying in a493

sector in the open left half-plane C−. More precisely, (en)n∈N is a q-Riesz basis of X,494

if (en)n∈N is a Schauder basis and for some constants c1, c2 > 0 we have495

c1
∑

k

|ak|q ≤
∥

∥

∥

∥

∥

∑

k

akek

∥

∥

∥

∥

∥

q

≤ c2
∑

k

|ak|q496

for all sequences (ak)k∈N in ℓq = ℓq(N). Thus without loss of generality we can497

assume that X = ℓq and that (en)n∈N is the canonical basis of ℓq. We further assume498

that the sequence (λn)n∈N lies in C with supn Re(λn) < 0 and that there exists a499

constant k > 0 such that |Imλn| ≤ k|Reλn|, n ∈ N, i.e., (λn)n ⊂ C \ Sπ/2+θ for some500

θ ∈ (0, π/2), where501

Sπ/2+θ = {z ∈ C | |z| > 0, | arg z| < π/2 + θ}.502

Then the linear operator A : D(A) ⊂ ℓq → ℓq, given by503

Aen = λnen, n ∈ N,504

and D(A) = {(xn) ∈ ℓq |
∑

n |xnλn|q < ∞}, generates an analytic exponentially505

stable C0-semigroup (T (t))t≥0 on ℓq, which is given by T (t)en = etλnen. An easy506

calculation shows that the extrapolation space (ℓq)−1 is given by507

(ℓq)−1 =

{

x = (xn)n∈N |
∑

n

|xn|q
|λn|q

<∞
}

,508

‖x‖X−1
= ‖A−1x‖ℓq .509510

Thus the linear bounded operator B from C to (ℓq)−1 can be identified with a sequence511

(bn)n∈N in C satisfying512

∑

n∈N

|bn|q
|λn|q

<∞.513

Thanks to the sectoriality condition for (λn)n∈N this equivalent to514

∑

n∈N

|bn|q
|Reλn|q

<∞.515

The following result shows that, under the above assumptions, the system Σ(A,B)516

is L∞-iISS. Thus for this class of systems L∞-iISS is equivalent to L∞-ISS, and both517

notions are implied by B ∈ (ℓq)−1, that is,
∑

n
|bn|

q

|λn|q
< ∞. The following theorem518

generalizes the main result in [7], where the case q = 2 is studied.519

Theorem 4.22. Let U = C, and suppose that the operator A possesses a q-Riesz520

basis of X that consists of eigenvectors (en)n∈N with eigenvalues (λn)n∈N lying in a521

sector in the open left half-plane C− with supn Re(λn) < 0 and B ∈ L(C, X−1). Then522

the system Σ(A,B) is L∞-iISS, and hence also L∞-ISS and L∞-zero-class admissible.523

Remark 4.23. In the situation of Theorem 4.22, Σ(A,B) is L∞-iISS if and only524

if Σ(A,B) is L∞-ISS.525
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Proof of Theorem 4.22. Without loss of generality we may assume X = ℓq and526

that (en)n∈N is the canonical basis of ℓq. Let f : (0,∞) → [0,∞) be defined by527

f(s) =
∑

n∈N

|bn|q
|Reλn|q−1

eReλns.528

Then it is easy to see that f belongs to L1(0,∞). Now for u ∈ L1(0, 1) with529
∫ 1

0
f(s)|u(s)|q ds <∞ we obtain (denoting by q′ the Hölder conjugate of q)530

∥

∥

∥

∥

∫ 1

0

T−1(s)Bu(s) ds

∥

∥

∥

∥

q

ℓq
=
∑

n∈N

|bn|q
∣

∣

∣

∣

∫ 1

0

eλnsu(s) ds

∣

∣

∣

∣

q

531

≤
∑

n∈N

|bn|q
(
∫ 1

0

eReλns|u(s)| ds
)q

532

=
∑

n∈N

|bn|q
(Reλn)q

(
∫ 1

0

|Reλn|eReλns|u(s)| ds
)q

533

≤
∑

n∈N

|bn|q
(Reλn)q

(
∫ 1

0

|Reλn|eReλns|u(s)|q ds
)(

∫ 1

0

|Reλn|eReλns ds

)q/q′

534

≤
∑

n∈N

|bn|q
|Reλn|q

(
∫ 1

0

|Reλn|eReλns|u(s)|q ds
)

535

=

∫ 1

0

∑

n∈N

|bn|q
|Reλn|q−1

eReλns|u(s)|q ds536

=

∫ 1

0

f(s)|u(s)|q ds537

<∞.538539

This shows that the system Σ(A,B) is L∞-ISS and the claim now follows from540

Proposition 3.21.541

Remark 4.24. Theorem 4.22 states that L∞-admissibility implies EΦ-admissibility542

for some Young function Φ in the case of parabolic diagonal systems. A natural ques-543

tion is whether Φ can always be chosen such that the ∆2-condition is satisfied. Looking544

at the proof and having in mind that L1 equals the union of all spaces EΨ where Ψ545

satisfies the ∆2-condition, this could be expected. However, the answer is negative,546

which can be seen as follows. For a Young function Φ satisfying the ∆2-condition547

there exist constants x0 > 0 and p ∈ N \ {1} such that548

Φ(x) ≤ xp, x > x0,549

see [14, p. 25]. This implies that EΦ ⊃ Lp, see e.g. [15, Sec. 3.17]. However, there exists550

Young functions that do not satisfy the latter estimate, e.g., Φ(x) = ex−1 − x− e−1.551

In Example 5.29, Σ(A,B) is not Lp-admissible for any p <∞, which, with the above552

reasoning, implies that the system cannot be EΦ-admissible for any Φ satisfying the553

∆2-condition.554

Lemma 4.25. Let µ be a positive regular Borel measure supported on a sector Sφ555

with φ ∈ (0, π2 ), and let 1 ≤ q <∞. Then the following are equivalent:556
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(i) The Laplace transform L : L∞(0,∞) → Lq(C+, µ) is bounded,557

(ii) The function s 7→ 1/s lies in Lq(C+, µ).558

Proof. (i) ⇒ (ii): Taking f(t) = 1 for t ≥ 0 we have that Lf(s) = 1/s and the559

result follows.560

(ii) ⇒ (i): For f ∈ L∞(0,∞) and s ∈ C+ we have561

∣

∣

∣

∣

∫ ∞

0

f(t)e−st dt

∣

∣

∣

∣

≤ ‖f‖∞
∫ ∞

0

|e−st| dt ≤ ‖f‖∞/(Re s) ≤M‖f‖∞/|s|,562

where M is a constant depending only on φ. Now Condition (ii) implies that L is563

bounded.564

Theorem 4.26. Suppose that A possesses a q-Riesz basis of X consisting of eigen-565

vectors (en)n∈N with eigenvalues (λn)n∈N lying in a sector in the open left half-plane566

C− and B ∈ X−1. Then the following assertions are equivalent.567

(i) Σ(A,B) is infinite-time L∞-admissible,568

(ii) supλ∈C+
‖(λ−A)−1B‖ <∞,569

(iii) The function s 7→ 1/s lies in Lq(C+, µ), where µ is the measure
∑ |bk|2δ−λk

.570

Proof. By [9, Thm 2.1], admissibility is equivalent to the boundedness of the571

Laplace transform L : L∞(0,∞) → Lq(C+, µ), and hence (i) and (iii) are equivalent572

by Lemma 4.25. Note that573

‖(λ−A)−1B‖q =
∑

k

|bk|q
|λ− λk|q

.574

Now if (ii) holds, then (iii) also holds, letting λ → 0. Conversely, if (iii) holds, then575

by sectoriality we have that576
∑

k

|bk|q
|Reλk|q

<∞,577

and hence
∑

k |bk|q/|λ− λk|q is bounded independently of λ ∈ C+, that is, (ii) holds.578

Remark 4.27. Let bp(X) denote the set of Lp-admissible control operators from579

C to X for a given A. By Theorem 4.22, we have that b∞(X) = X−1 for exponentially580

stable, parabolic diagonal systems. Using [32, Theorem 6.9], and the inclusion of the581

Lp-spaces, we obtain the following chain of inclusions for X = ℓq with q > 12582

(4.15) X = b1(X) ⊂ bp(X) ⊂ b∞(X) = X−1.583

It is not so hard to show that the equality b∞(X) = X−1 does not hold in general if584

the exponential stability is dropped. In fact, a counterexample on X = ℓ2 with the585

standard basis is given by λn = 2n, n ∈ Z, bn = 2n/n for n > 0 and bn = 2n for586

n < 0.587

The relations of the different stability notions with respect to L∞ for parabolic588

diagonal systems are summarized in the diagram shown in Figure 4.3.589

5. Some Examples.590

Example 5.28. Let us consider the following boundary control system given by the591

one-dimensional heat equation on the spatial domain [0, 1] with Dirichlet boundary592

2here, q = 1 is also allowed if (T ∗(t))t≥0 is strongly continuous.
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L∞-iISS
L∞-zero-class
admissible

L∞-admissible L∞-ISS

B ∈ X−1

Fig. 4.3. Relations between the different stability notions for parabolic diagonal system (as-
suming that the semigroup is exponentially stable).

control at the point 1,593

xt(ξ, t) = axξξ(ξ, t), ξ ∈ (0, 1), t > 0,594

x(0, t) = 0, x(1, t) = u(t), t > 0,595

x(ξ, 0) = x0(ξ),596597

where a > 0. It can be shown that this system can be written in the form Σ(A,B) in598

(2.4). Here X = L2(0, 1) and599

Af = f ′′, f ∈ D(A),600

D(A) =
{

f ∈ H2(0, 1) | f(0) = f(1) = 0
}

.601602

Moreover, with λn = −aπ2n2,603

Aen = λnen, n ∈ N,604

where the functions en =
√
2 sin(nπ·), n ≥ 1, form an orthonormal basis of X.605

With respect to this basis, the operator B = aδ′1 can be identified with (bn)n∈N606

for bn = (−1)n
√
2anπ, n ∈ N. Therefore,607

∑

n∈N

|bn|2
|λn|2

=
1

3
<∞,608

which shows that B ∈ X−1. By Theorem 4.22, we conclude that the system is L∞-609

iISS. Moreover, we obtain the following L∞-ISS and L∞-iISS estimates:610

‖x(t)‖L2(0,1) ≤ e−aπ2t‖x0‖L2(0,1) +
1√
3
‖u‖L∞(0,t),611

‖x(t)‖L2(0,1) ≤ e−aπ2t‖x0‖L2(0,1) + c

(
∫ t

0

|u(s)|pds
)1/p

,612
613

for p > 2 and some constant c = c(p) > 0. For the second inequality, we used the614

fact that Σ(A,B) is even Lp-admissible for p > 2, as it can be shown by applying615

Theorem 3.5 in [9]. We note that a slightly weaker L∞-ISS estimate for this system616

can also be found in [12].617

Example 5.29. As remarked, Example 5.28 provides a system Σ(A,B) which is618

even Lp-admissible for p > 2. In the following we present a system which is L∞-619

admissible, but not Lp-admissible for any p < ∞. In order to find such an example,620

we use the characterization of Lp-admissibility from [9, Thm. 3.5].621

Let X = ℓ2 and let (λn)n∈N, (bn)n∈N define a parabolic diagonal system Σ(A,B) as in622
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Section 4. Furthermore, let p ∈ (2,∞). Then Σ(A,B) is infinite-time Lp-admissible623

if and only if624
(

2−
2n(p−1)

p µ(Qn)
)

n∈Z

∈ ℓ
p

p−2 (Z),625

where µ =
∑

n∈Z
|bn|qδλn

and Qn = {z ∈ C | Re z ∈ (2n−1, 2n]}, n ∈ Z.626

We choose λn = −2n and bn = 2n

n for n ∈ N. Clearly, B = (bn) ∈ X−1. Then we627

have that628

2−
2n(p−1)

p µ(Qn) = 2−
2n(p−1)

p
22n

n2
=

2
2n
p

n2
,629

and thus for p > 2,630

(

(

2−
2n(p−1)

p µ(Qn)
)

p

p−2

)

n∈Z

=

(

2
2n
p−2

n
2p

p−2

)

n∈Z

/∈ ℓ1.631

Hence, Σ(A,B) is not Lp-admissible for any p > 2, and therefore also not for any632

p ≥ 1. However, since
∑

n∈N
|bn|2/|Reλn|2 =

∑

n∈N
1/n2 < ∞, Theorem 4.22 shows633

that Σ(A,B) is L∞-iISS and, in particular infinite-time L∞-admissible.634

We observe that by Theorem 3.16, there exists a Young function Φ such that Σ(A,B)635

is EΦ-admissible. However, as the system is not Lp-admissible, such Φ cannot satisfy636

the ∆2-condition, see Remark 4.24.637

6. Conclusions and Outlook. In this paper, we have studied the relation be-638

tween input-to-state stability and integral input-to-state stability for linear infinite-639

dimensional systems with a (possibly) unbounded control operator and inputs in gen-640

eral function spaces. In this situation, ISS is equivalent to admissibility together with641

exponential stability of the semigroup. We have related the notions of iISS with re-642

spect to L1 and L∞ to ISS with respect to Orlicz spaces. The known result that ISS643

and iISS are equivalent for Lp-inputs with p < ∞, was generalized to Orlicz spaces644

that satisfy the ∆2-condition. Moreover, we have shown that for parabolic diagonal645

systems and scalar input, the notions of L∞-iISS and L∞-ISS coincide.646

Among possible directions for future research are the investigation of the non-647

analytic diagonal case, general analytic systems and the relation of zero-class admissi-648

bility and input-to-state stability. Recently, the results on parabolic diagonal systems649

have been adapted to more general situations of analytic semigroups – the crucial tool650

being the holomorphic functional calculus for such semigroups [10]. Furthermore, ver-651

sions ISS and iISS for strongly stable semigroups rather than exponentially stable can652

be studied, see [22].653

Finally, we mention that the existence of a counterexample for one of the unknown654

(converse) implications in Figure 2.1 can be related to the following open question655

posed by G. Weiss in [31, Problem 2.4].656

Question A: Does the mild solution x belong to C([0,∞), X) for any x0 ∈ X and657

u ∈ Z = L∞(0,∞;U) provided that Σ(A,B) is L∞-admissible?658

Although we do not provide an answer to this question, we relate it to659

Proposition 6.30. At least one of the following assertions is true.660

1. The answer to Question A is positive for every system Σ(A,B).661

2. There exists a system Σ(A0, B0), with A0 generating an exponentially stable662

semigroup and Σ(A0, B0) is L
∞-admissible, but not L∞-zero-class admissible.663

Proof. This follows directly from Proposition 2.5.664
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Appendix A. Orlicz Spaces. In this section we recall some basic definitions665

and facts about Orlicz spaces. More details can be found in [14, 15, 1, 35]. For the666

generalization to vector-valued functions see [24, VII, Sec. 7.5]. In the following I ⊂ R667

is an open bounded interval, U is a Banach space and Φ: R+
0 → R

+
0 is a function.668

Definition A.31. The Orlicz class L̃Φ(I;U) is the set of all equivalence classes669

(w.r.t. equality almost everywhere) of Bochner-measurable functions u : I → U such670

that671

ρ(u; Φ) :=

∫

I

Φ(‖u(x)‖U ) dx <∞.672

In general, L̃Φ(I;U) is not a vector space. Of particular interest are Orlicz classes673

generated by Young functions.674

Definition A.32. A function Φ : [0,∞) → R is called a Young function (or675

Young function generated by ϕ) if676

Φ(t) =

∫ t

0

ϕ(s) ds, t ≥ 0,677

where the function ϕ : [0,∞) → R has the following properties: ϕ is right-continuous678

and nondecreasing, ϕ(0) = 0, ϕ(s) > 0 for s > 0 and lims→∞ ϕ(s) = ∞.679

Theorem A.33 ([15, Thm. 3.2.3 and Thm. 3.2.5]). Let Φ be a Young function.680

Then L̃Φ(I;U) is a convex set and L̃Φ(I;U) ⊂ L1(I;U). Conversely, for u ∈ L1(I;U)681

there is a Young function Φ such that u ∈ L̃Φ(I;U).682

Definition A.34. Let Φ be the Young function generated by ϕ. Then Ψ defined683

by684

Ψ(t) =

∫ t

0

ψ(s) ds with ψ(t) = sup
ϕ(s)≤t

s, t ≥ 0,685

is called the complementary function to Φ.686

The complementary function of a Young function is again a Young function. If687

ϕ is continuous and strictly increasing in [0,∞), i.e. belongs to K∞, then ψ is the688

inverse function ϕ−1 and vice versa. We call Φ and Ψ a pair of complementary Young689

functions.690

Theorem A.35 (Young’s inequality, [35, Thm. I, p. 77]). Let Φ, Ψ be a pair of691

complementary Young functions and ϕ, ψ their generating functions. Then692

uv ≤ Φ(u) + Ψ(v), ∀u, v ∈ [0,∞).693

Equality holds if and only if v = ϕ(u) or u = ψ(v).694

Remark A.36. Let Φ, Ψ be a pair of complementary Young functions, u ∈ L̃Φ(I)695

and v ∈ L̃Ψ(I). By integrating Young’s inequality we get696

∫

I

|u(x)v(x)| dx ≤ ρ(u; Φ) + ρ(v; Ψ)697

We are now in the position to define the Orlicz spaces for which several equivalent698

definitions exist. Here we use the so-called Luxemburg norm.699

This manuscript is for review purposes only.



INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 21

Definition A.37. For a Young function Φ, the set LΦ(I;U) of all equivalence700

classes (w.r.t. equality almost everywhere) of Bochner-measurable functions u : I → U701

for which there is a k > 0 such that702

∫

I

Φ(k−1‖u(x)‖U ) dx <∞703

is called the Orlicz space. The Luxemburg norm of u ∈ LΦ(I;U) is defined as704

‖u‖Φ := ‖u‖LΦ(I;U) := inf

{

k > 0
∣

∣

∣

∫

I

Φ(k−1‖u(x)‖) dx ≤ 1

}

.705

For the choice Φ(t) := tp, 1 < p < ∞, the Orlicz space LΦ(I;U) equals the vector-706

valued Lp-spaces with equivalent norms.707

Theorem A.38 ([15, Thm. 3.9.1]). (LΦ(I;U), ‖ · ‖Φ) is a Banach space.708

Clearly, L∞(I, U) is a linear subspace of LΦ(I, U).709

Definition A.39. The space EΦ(I, U) is defined as710

EΦ(I, U) = L∞(I, U)
‖·‖LΦ(I;U)

.711

The norm ‖ · ‖EΦ(I;U) refers to ‖ · ‖LΦ(I;U).712

If U = K with K ∈ {R,C}, then we write LΦ(I) := LΦ(I;K) and EΦ(I) := EΦ(I;K)713

for short.714

Remark A.40. The Banach spaces EΦ(I;U) and LΦ(I;U) have the following715

properties:716

1. EΦ(I;U) is separable, see e.g. [26, Thm. 6.3].717

2. For a measurable u : I → U , u ∈ LΦ(I;U) if and only if f = ‖u(·)‖U ∈ LΦ(I).718

This follows from the fact that ‖u‖Φ = ‖f‖Φ. Thus, (un)n∈N ⊂ LΦ(I;U)719

converges to 0 if and only if (‖un(·)‖U )n∈N converges to 0 in LΦ(I).720

3. Let Φ, Ψ be a pair of complementary Young functions. The extension of
Hölder’s inequality to Orlicz spaces reads: for any u ∈ LΦ(I) and v ∈ LΨ(I),
it holds that uv ∈ L1(I) and

∫

I

|u(s)v(s)| ds ≤ 2‖u‖LΦ(I)‖v‖LΨ(I),

see [15, Thm. 3.7.5 and Rem. 3.8.6]. This implies that for u ∈ LΦ(I;U),721

‖u‖L1(0,t;U) =

∫ t

0

‖u(s)‖U ds ≤ 2‖χ(0,t)‖Ψ‖u‖Φ,722

i.e., LΦ(I;U) is continuously embedded in L1(I;U). Moreover, ‖χ(0,t)‖Ψ → 0723

as tց 0, where χ(0,t) denotes the characteristic function of the interval (0, t).724

4. EΦ(I;U) ⊂ L̃Φ(I;U) ⊂ LΦ(I;U), see e.g. [26, Thm. 5.1]. For u ∈ L̃Φ(I;U),725

‖u‖Φ ≤ ρ(‖u(·)‖U ; Φ) + 1 <∞.726

Definition A.41 (Φ-mean convergence). A sequence (un)n∈N in LΦ(I) is said727

to converge in Φ-mean to u ∈ LΦ(I) if728

lim
n→∞

ρ(un − u; Φ) = lim
n→∞

∫

I

Φ(|un(x)− u(x)|) dx = 0.729
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Definition A.42. We say that a Young function Φ satisfies the ∆2-condition if730

∃k > 0, u0 ≥ 0 ∀u ≥ u0 : Φ(2u) ≤ kΦ(u).731

It holds that EΦ(I;U) = L̃Φ(I;U) = LΦ(I;U) if Φ satisfies the ∆2-condition.732

Definition A.43. Let Φ and Φ1 be two Young functions. We say that the func-733

tion Φ1 increases essentially more rapidly than the function Φ if, for arbitrary s > 0,734

lim
t→∞

Φ(st)

Φ1(t)
= 0.735

Theorem A.44 ([14, Thm. 13.4]). Let Φ,Φ1 be Young functions such that Φ1736

increases essentially more rapidly than Φ. If (un)n∈N ⊂ L̃Φ1
(I) converges to 0 in737

Φ1-mean, then it also converges in the norm ‖ · ‖Φ.738
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