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INFINITE-DIMENSIONAL INPUT-TO-STATE STABILITY AND
ORLICZ SPACES*

BIRGIT JACOB', ROBERT NABIULLINT, JONATHAN R. PARTINGTON?, AND FELIX
L. SCHWENNINGER?

Abstract. In this work, the relation between input-to-state stability and integral input-to-
state stability is studied for linear infinite-dimensional systems with an unbounded control operator.
Although a special focus is laid on the case L°°, general function spaces are considered for the inputs.
We show that integral input-to-state stability can be characterized in terms of input-to-state stability
with respect to Orlicz spaces. Since we consider linear systems, the results can also be formulated
in terms of admissibility. For parabolic diagonal systems with scalar inputs, both stability notions
with respect to L°° are equivalent.

Key words. Input-to-state stability, integral input-to-state stability, Cp-semigroup, admissibil-
ity, Orlicz spaces

AMS subject classifications. 93D20, 93C05, 93C20, 37C75

1. Introduction. In systems and control theory, the question of stability is a
fundamental issue. Let us consider the situation where the relation between the input
(function) uw and the state z is governed by the autonomous equation

(1.1) &= f(z,u), x(0)=x.

One can then distinguish between external stability, that is, stability with respect to
the input u, and internal stability, i.e. when u = 0. For the moment, f is assumed to
map from R"™ x R™ to R™, and to be such that solutions x exist on [0, co) for all inputs
w in a function space Z. Already from this very general view-point, it seems clear that
stability notions may strongly depend on the specific choice of Z (and its norm). The
concept of input-to-state stability (ISS) combines both external and internal stability
in one notion. If Z is chosen to be L (0,00;U), U = R™, a system is called ISS (with
respect to L) if there exist functions g € KL, v € K such that

(@)1 < B(llzoll, ) + v(esssup [lu(s)[v),

s€[0,t

for all t > 0 and w € Z. Here the sets KL and K refer to the classic comparison
functions from nonlinear systems theory, see Section 2. Introduced by E. Sontag in
1989 [27], ISS has been intensively studied in the past decades; see [29] for a survey.
A related stability notion is integral input-to-state stability (iISS) [28, 2], which means
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2 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

that for some 5 € KL, 0 € Ko, and p € K,

(1.2) la(t)] < Bllzoll. 1) +0 ( / u(IIU(S)I)U)d8> 7

forallt > 0and u € Z = L°(0,00; U). This property differs from ISS in the sense that
it allows for unbounded inputs u that have “finite energy”, see [28]. Many practically
relevant systems are iISS whereas they are not ISS, see e.g. [19] for a detailed list.
However, for linear systems, i.e., f(z,u) = Az + Bu with matrices A and B, iISS is
equivalent to ISS. To some extent, this observation marks the starting point of this
work.

In contrast to the well-established theory for finite-dimensions, a more intensive
study of (integral) input-to-state stability for infinite-dimensional systems has only
begun recently. We refer to [4, 5, 11, 12, 13, 16, 17, 18, 19, 20]. By nature, in
the infinite-dimensional setting, the stability notions from finite-dimensions are more
subtle. We refer to [21] for a listing of failures of equivalences around ISS known from
finite-dimensional systems. In most of the mentioned infinite-dimensional references,
systems of the form (1.1) with f: X x U — X and Banach spaces X and U are
considered. For linear equations, this setting corresponds to evolution equations of
the form

(1.3) #(t) = Az(t) + Bu(t), x(0) = =,

where B is a bounded control operator (note that for fixed ¢, x(t) = x(¢, ) is a function
and & denotes the time-derivative). Analogously to finite-dimensions, in this case, ISS
and iISS are known to be equivalent, see e.g., [19, Cor. 2] and Proposition 2.14 below.
However, concerning applications the requirement of bounded control operators B is
rather restrictive. Typical examples for systems which only allow for a formulation
with an unbounded B are boundary control systems. It is clear that such phenomena
cannot occur for linear systems in finite-dimensions.

The main point of this paper is to relate and characterize (integral) input-to-state
stability for linear, infinite-dimensional systems with unbounded control operators, i.e.
systems of the form (1.3) with unbounded operators B. This is done by using the
notion of admissibility, [25, 31], which also reveals the connection of the mentioned
stability types with the boundedness of the linear mapping

Z = X, u > x(t)

(for zp = 0). Tt is not surprising that the choice of topology for Z, the space of inputs
u, is crucial here. However, looking at (1.2) for xg = 0, it is not clear how the right-
hand side could define a norm for general functions p and 6. The question of the right
norm for Z motivates one to study ISS and iISS with respect to general spaces Z — not
only Z = L* = L*°(0,00;U). For the precise definition of these notions, we refer to
Section 2. We show that Z-ISS and Z-iISS are equivalent for Z = LP = LP(0,00;U),
p € [1,00). However, it turns out that this paves the way to characterize L*°-iISS
in terms of ISS. More precisely, we will show that L°°-iISS is equivalent to ISS with
respect to some Orlicz space. This is one of the main results of this work. Orlicz
spaces (or Orlicz—Birnbaum spaces) appear naturally as generalizations of LP-spaces
and ISS with respect to such spaces can thus be seen as a generalization of classical
stability notions. Other choices for general input functions have been made in the
literature — like admissibility with respect to Lorentz spaces [6, 33] or Z-ISS with Z

This manuscript is for review purposes only.



76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

94

INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 3
Eq. (1.3), Eq. (1.3), Eq. (1.1),

B bounded B unbounded | f nonlinear

dim X < oo || ISS < ilSS | ISS <« iISS | ISS z iISS

dim X = oo || ISS <= iISS | ISS (z) iISS | not clear

TaBLE 1.1
The relation between ISS and iISS (with respect to L°°) in various settings.

being a Sobolev space [9, 18].

As we will see, it is plain that Z-iISS always implies Z-ISS for linear systems. The
converse direction, for Z = L°°, remains open in general. It is known that ISS is
equivalent to admissibility (together with exponential stability). We will show that
L*°-iISS in fact implies zero-class admissibility [8, 34], which is slightly stronger than
admissibility, see Proposition 2.13. In Table 1.1, the relation of L*>-ISS and L*°-iISS
in the various above-mentioned settings is depicted schematically.

In Section 2, we will discuss the setting and formally introduce the stability
notions mentioned above. This includes a general abstract definition of ISS, iISS and
admissibility with respect to some function space Z. Furthermore, we will give some
basic facts about their relation.

Section 3 deals with the characterization of ISS and iISS in terms of Orlicz-space-
admissibility. As a main result, we show that L°°-iISS is equivalent to ISS with
respect to some Orlicz space Eg, where ® denotes a Young function, Theorem 3.16.
Moreover, we show that ISS with respect to an Orlicz space is a natural generalization
of classic LP-ISS that “interpolates” the notions of L'- and L>-ISS, Theorems 3.17
and 3.19.

In Section 4, we consider parabolic diagonal systems with scalar input. More
precisely, we assume that A possesses a Riesz basis of eigenvectors with eigenvalues
lying in a sector in the open left half-plane. For this class of systems we show that
L*°-ISS implies ISS with respect to some Orlicz space and thus, by the results of
Section 3, the equivalence between iISS and ISS, known in finite dimensions, holds for
this class of systems. Moreover, it turns out that any linear, bounded operator from
U to the extrapolation space X_; is L°°-admissible, which yields a characterization of
ISS. The results of this section partially generalize results that were already indicated
in [7].

We illustrate the obtained results by examples in Section 5. In particular, we
present a parabolic diagonal system which is L°°-ISS, but not LP-ISS for any p €
[1,00). Finally, we conclude by drawing a connection between the question whether
L°-ISS implies L>°-iISS and a problem due to G. Weiss.

2. Stability notions for infinite-dimensional systems.

2.1. The setting and definitions. In this article we study systems X(A, B) of
the following form

(2.4) z(t) = Az(t) + Bu(t), z(0) =mzg, t>0,
where A generates a Cy-semigroup (7'(t));>0 on a Banach space X and B is a linear

and bounded operator from a Banach space U to the extrapolation space X_;. Note
that B is possibly unbounded from U to X. Here X_; is the completion of X with
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4 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

respect to the norm
lzllx_, = [I(8 — A) " z[|x,

for some 8 € p(A), the resolvent set of A. It can be shown that the semigroup
(T'(t))+>0 possesses a unique extension to a Co-semigroup (7_1(¢))¢>0 on X_; with
generator A_1, which is an extension of A. Thus we may consider equation (2.4)
on the Banach space X_; and therefore for u € L}, (0,00;U), the (mild) solution of
(2.4) is given by the variation of parameters formula

(2.5) 2(t) = T(t)zo + /0 T (t—$)Bu(s)ds,  £>0.

In this paper, we will consider the following types of function spaces.

Assumption 2.1. For a Banach space U, let Z C L} (0,00;U) be such that for
allt >0
(a) Z(0,t;U) :={f € Z | flit,00) = 0} becomes a Banach space of functions on
the interval (0,¢) with values in U (in the sense of equivalence classes w.r.t.
equality almost everywhere),
(b) Z(0,t;U) is continuously embedded in L'(0,¢; U), that is, there exists x(¢) > 0
such that for all f € Z(0,t;U) it holds that f € L'(0,¢;U) and

Ifllro,60) < &@NfIlzo,60)-

(c) Foru e Z(0,t;U) and s >t we have ||ul|z(0,4v) = [|ul z(0,5:0)-
(d) Z(0,t;U) is invariant under the left-shift and reflection, i.e., S;Z(0,t;U) C
Z(0,t;U) and R:Z(0,t;U) C Z(0,t;U), where

Sru=u(-+71), Ru=u(t—"),

and 7 > 0. Furthermore, ||S7||z(z(0,:,v)) < 1 and Ry is isometric.
(e) Forallu € Z and 0 < ¢ < s it holds that w4 € Z(0,t;U) and

||u|(0,t) ”Z(O,t;U) < ||u|(0,s) ||Z(0,S;U)-
If additionally we have in (b) that
(B) k() =0, ast\,0,

then we say that Z satisfies condition (B).

For example, Z = LP refers to the spaces LP(0,¢;U), t > 0, for fixed 1 < p < oo and
U. Other examples can be given by Sobolev spaces and the Orlicz spaces Lg(0,¢;U)
and Eg(0,t;U), see the appendix. If p > 1 (including p = o0) and @ is a Young
function, then LP, Eg and Le satisfy Condition (B), thanks to Holder’s inequality.
Clearly, L' does not satisfy condition (B).

In general, the state z(t) given by (2.5) lies in X_; for uw € L}, and ¢t > 0. The
notion of admissibility ensures that indeed z(t) € X.

DEFINITION 2.2. We call the system (A, B) admissible with respect to Z (or
Z-admissible), if

(2.6) /0 T_1(s)Bu(s)ds € X

This manuscript is for review purposes only.
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INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 5

for all t > 0 and uw € Z(0,t;U). If (A, B) is admissible with respect to Z, then all
mild solutions (2.5) are in X and by the closed graph theorem there exists a constant
¢(t) (take the infimum over all possible constants) such that

2.7) ’ /0 T 1 (s)Bu(s) ds|| < e(t) [ul z0.001-

Moreover, it is easy to see that 3(A, B) is admissible if (2.6) holds for one ¢ > 0.

DEFINITION 2.3. We call the system ¥(A, B) infinite-time admissible with respect
to Z (or Z-infinite-time admissible), if the system is admissible with respect to Z and
Coo = SUPysoC(t) is finite. We call the system (A, B) zero-class admissible with
respect to Z (or Z-zero-class admissible), if it is admissible with respect to Z and
lim; ¢ c(t) = 0.

Remark 2.4. Clearly, zero-class admissibility and infinite-time admissibility imply
admissibility respectively.

Since Z C L}, .(0,00;U), for any u € Z and any initial value z¢, the mild solution x
of (2.4) is continuous as function from [0,00) to X_;. Next we show that zero-class
admissibility guarantees that = even lies in C'(0, co; X).

PROPOSITION 2.5. If (A, B) is Z-zero-class admissible, then for every xo € X
and every u € Z the mild solution of (2.4), given by (2.5), satisfies x € C([0,00); X).

Proof. Since z is given by (2.5), it suffices to consider the case zg = 0. Let u € Z.
We have to show that t — ®,u = fot T_1(s)Bu(s)ds is continuous. The proof is
divided into two steps.
First, note that ¢t — ®;u is right-continuous on [0, 00). In fact, by

h
Byt — By = T(#) / T (s)Bu(s + ) ds,
0

h > 0, and Z-zero-class admissibility, it follows that
[Pernu — Ppull < c(R)|T@)|[lu(- + D)l z0,n0) = 0

for b\, 0 (where we used properties (d), (e) of Z).
Second, we show that ¢t — ®; is left-continuous on (0,00). Since (P — Py_p)u =
(@t — @4 _p)ul(o,4), we can assume that u € Z(0,t;U). Clearly,

(P — Dy_p)u=T(t—h) /Oh T_1(s)Bu(s+t— h)ds.

It follows that

where the last two inequalities hold by properties (e) and (d) of Z. Since (T'(t)):i>0
is uniformly bounded on compact intervals, we conclude that ||®;ypu — @iul| — 0 as
h — 0. d

h
| TaBuls - hyds)| < ch)lut + = Wl zon0
0

<c(h)[lu(-+t =)l z.t0)

R\0
< c(h)|lullz(,60) —> 0,

This manuscript is for review purposes only.
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6 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

Remark 2.6. If (A, B) is admissible with respect to LP, 1 < p < oo, then,
by Hoélder’s inequality, (A, B) is L%-zero-class admissible for any ¢ > p. Thus,
Proposition 2.5 implies that the mild solution of (2.4) lies in C'(0, c0; X) for all uw € L9.
Moreover, this continuity even holds for v € LP, which was already shown by G. Weiss
in his seminal paper [31, Prop. 2.3] on admissible control operators. However, there,
a direct, but similar proof is used without using the notion of zero-class admissibility.
As stated in [31, Problem 2.4], it is an interesting open problem whether the continuity
of x is implied by L°°-admissibility. By Proposition 2.5, the answer is ‘yes’ in the case
of L*°-zero-class admissibility. See also Section 6.

To introduce input-to-state stability, we will need the following well-known func-

tion classes from Lyapunov theory. Here, Rar denotes the set of nonnegative real
numbers.

K ={u: Rf — R{ | 1(0) =0, p continuous, strictly increasing},
Koo ={0€ K| lim 0(z) = oo},
Tr—r0o0

L ={y: Rf — R} | vy continuous, strictly decreasing, tlim ~(t) = 0},
—00
KL={B: (RT)? = RS |B(-,t) € KVt >0and B(s,-) € L Vs > 0}.

DEFINITION 2.7. The system (A, B) is called input-to-state stable with respect
to Z (or Z-1SS), if there exist functions € KL and p € Koo such that for every
t>0,z0€ X and u € Z(0,t;U)

(i) x(t) lies in X and

(ii) lz@)|I < B(llzoll, ) + plllullz0.60))-

The system X(A, B) is called integral input-to-state stable with respect to Z (or
Z-IS8S ), if there exist functions B € KL, 0 € Ko and p € K such that for everyt > 0,
xo € X and u € Z(0,t;U)

(i) x(t) lies in X and

t

(ii) o)l < B(lwoll, 1) + 0 ( | ntlats)o) ds)

The system (A, B) is called gniformly bounded energy bounded state with re-
spect to Z (or Z-UBEBS), if there exist functions 7,0 € Koo, 1 € K and a constant
¢ > 0 such that for everyt >0, g € X and u € Z(0,t;U)

(i) z(t) lies in X and

(i) Nz <~(llzoll) + 6 (/0 M(IIU(S)U)dS) +e

Remark 2.8. 1. By the inclusion of LP spaces on bounded intervals we ob-
tain that LP-ISS (LP-iISS, LP-UBEBS) implies L4-ISS (L%-iISS, L2-UBEBS)
for all 1 < p < ¢ < oo. Further the inclusions L™ C Es C Ly C L' and
Z C L}, yield a corresponding chain of implications of ISS, iISS and UBEBS.

2. Note that in general the integral fg u(|lu(s)|lv) ds in the inequalities defining
Z-iISS and Z-UBEBS may be infinite. In that case, the inequalities hold
trivially. This indicates that the major interest in iISS and UBEBS lies in
the case Z = L°°, in which the integral is always finite.

2.2. Relations between the stability notions. Recall that the semigroup
(T'(t))e>0 is called exponentially stable, if there exist constants M,w > 0 such that

(2.8) IT@#)|| < Me™“", t>0.

This manuscript is for review purposes only.



INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 7

228 LEMMA 2.9. Let (T'(t))i>0 be exponentially stable and X(A, B) be Z-admissible.
229 Then the following holds.
230 (i) (A, B) is infinite-time Z-admissible.
231 (ii) B(A, B) is Z-iISS if and only if there exist € Koo and p € K such that for
232 every u € Z(0,1;U),
1 1

- (2.9) ‘ / T_1(s)Bu(s) ds|| < 6 ( / (sl ds) .

0 0
234 Moreover, if (2.9) holds, then (A, B) is Z-iISS with the same choice of p.
235 Proof. By the representation of the solution (2.5) for zg = 0, it follows that the

236 condition in (ii) is necessary for Z-iISS. For the sufficiency it is enough to consider
237 x9 = 0 by exponential stability. Therefore, both (i) and (ii) hold if we can show
238 that there exists C' > 0 such that for any ¢ > 0 and v € Z(0,¢;U), there exists
239 @ € Z(0,1;U) such that the following three inequalities hold:

t 1
240 /T71(s)Bu(s)ds gc‘/ T_1(s)Ba(s)ds||,
0 0
o Hﬂ”Z(O,l;U) < ”uHZ(O,t;U)u
1 t
213 | na@lyds < [ ulu@)l)ds e k.
e ; i

244 Without loss of generality, we assume that ¢ € N, otherwise extend w suitably by
245 the zero-function. By splitting the integral, substitution and the fact that X(A, B) is
246 Z-admissible, we get for u € Z(0,t;U),

¢ k41
247 / T_1(s)Bu(s) ds|| = Z/ T_1(s)Bu(s)ds

0 im0k
248 = / (s)Bu(s+k)ds

1
246 < T T B k)d
249 < ZH pnax /0 1(s)Bu(s + k) ds
1

250 <C- max / T_1(s)Bu(s + k) ds
251 k=0,..t—1 || Jo
252 where C' < oo only depends on the exponentially stable semigroup (T'(t)):>0. Choose
253 @ = u(- + ko)lo, 1), where ko is the argument such that the above maximum is at-

254 tained. Clearly, fo (JJla(s)||v) ds < fo (JJlu(s)||v) ds. We now use the properties of

255 Z described in Assumption 2.1. By (d), u(-+ko) € Z(0,t;U) and |[u(-+ko)| z(0,10) <
256 [Jul| z(0,6;)- Therefore, Property (e) implies that @ € Z(0,1;U) with ||d]| z(0,1;0) <
257 lu(- + ko)l zo.60) < Nullzo.10)- O

258  Note that (i) in Lemma 2.9 for the case Z = LP is well-known and can e.g. be found
259 in [30] for p = 2.

260 PROPOSITION 2.10. Let Z C L}, (0,00;U) be a function space. Then we have:
261 (i) The following statements are equivalent
262 (a) X(A, B) is Z-ISS,

This manuscript is for review purposes only.
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8 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

(b) X(A, B) is Z-admissible and (T'(t))i>0 is exponentially stable,
(c) X(A, B) is Z-infinite-time admissible and (T'(t))i>0 is exponentially sta-
ble.
(i1) If (A, B) is Z-iISS, then the system is Z-admissible and (T (t))i>0 is expo-
nentially stable,

(i1i) If (A, B) is Z-UBEBS, then the system is Z-admissible and (T'(t))i>0 s

bounded, that is, (2.8) holds for w = 0.
Proof. Clearly, Z-1SS, Z-iISS and Z-UBEBS imply Z-admissibility (consider z¢ =
0 in (2.5) and observe that x(¢t) € X for all ¢ > 0). Further, Z-admissibility and
exponential stability of (T'(t));>o show Z-ISS, see Remark 2.4. If, ¥(A,B) is Z-
ISS or Z-iISS, by setting u = 0, it follows that || T(¢)|] < 1 for sufficiently large ¢,
which shows that (T'(t)):>0 is exponentially stable. It is easy to see that Z-UBEBS
implies boundedness of (T'(t)):>0. Finally, by Remark 2.4 items (b) and (c) in (i) are
equivalent. O

ProposiTiON 2.11. If1 < p < o0, then the following are equivalent
(i) (A, B) is LP-ISS,

(i) (A, B) is LP-iISS,

(i1i) (A, B) is LP-UBEBS and (T(t))i>0 is exponentially stable.

Proof. Clearly, by the definition of iISS and UBEBS, (ii) = (iii). By Proposition
2.10, (iii)=-(i). Thus in view of Proposition 2.10 it remains to show that LP-infinite-
time admissibility and exponential stability imply LP-iISS. Indeed, LP-infinite-time
admissibility and exponential stability show for g € X and u € LP(0,¢; U) that

lz(@®)ll < Me™"||zol| + coo llull 1o 0,1:17)

t 1/p
= Me “!||zg]| + coo (/ u(s)I17 ds) J
0

which shows LP-iISS. O

Remark 2.12. Let 1 < p < oo. If the system X(A, B) is LP-admissible and
(T'(t))i>0 is exponentially stable, then the system X(A, B) is LP-ISS with the fol-
lowing choices for the functions 5 and pu:

B(s,t) ;== Me™“'s and p(s) := coos.

Here the constants M and w are given by (2.8) and coo = sup;q c(t).

PROPOSITION 2.13. If3(A, B) is L*°-iISS, then 3(A, B) is L>°-zero-class admis-
sible.

Proof. If 3(A, B) is L*°-iISS, then there exist § € K, and p € K such that for

allt >0, ue L*0,6U), u#0
' (sl
u(s U
§0</Oﬂ<m|oc)d8>-

Since the function u is monotonically increasing and ||u(s)||v < ||ul|s a.e., the right-
hand side of (2.10) is bounded above by (tu(1)) which converges to zero as t N\, 0.0

(2.10)

|

[l

/Ot T_1(s)Bu(s)ds

We illustrate the relations of the different stability notions with respect to L>
discussed above in the diagram depicted in Figure 2.1.
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Lr-i1SS € » Lr-admissible &= LP-ISS

l

[oo-iIss =% L7 zeroclass g oo dmissible €% L-ISS

admissible

Fi1c. 2.1. Relations between the different stability notions with respect to LP, p < oo, and L™
for a system X(A, B), where it is assumed that the semigroup is exponentially stable.

PROPOSITION 2.14. Suppose that B is a bounded operator from U to X and Z C
L},.(0,00;U) is a function space as in Section 2.1. Then the following statements are
equivalent.

(i) (T(t))i>0 is exponentially stable,
(i1) (A, B) is Z-admissible and (T'(t));>0 is exponentially stable,
(i11) (A, B) is Z-infinite-time admissible and (T'(t));>0 is exponentially stable,
(iv) ¥(A, B) is Z-ISS,
(v) £(A,B) is Z-iISS,
(vi) £(A, B) is Z-UBEBS and (T'(t))t>0 s exponentially stable,
(vii) X(A, B) is L},,-admissible and (T'(t));>o is exponentially stable.
If Z satisfies Assumption (B), then the above assertions are equivalent to
(viii) (A, B) is Z-zero-class admissible and (T'(t))i>0 is exponentially stable.

b

Proof. By Proposition 2.10 we have (v) = (vi) = (ii) = (iii) = (iv) = (i), and
Proposition 2.11 and Remark 2.8 prove (vii) = (v). The implication (i) = (vii)
follows from the fact that by the boundedness of B we have z(t) € X for all t > 0 and
all w € L1(0,t;U). Clearly, (viii) = (ii). Thus it remains to show that if Z satisfies
Assumption (B), then (i) = (viii). Let (T'())+>0 be exponentially stable, that is, there
exist constants M,w > 0 such that (2.8) holds. Therefore, for any u € L'(0,t;U),

t
le(®)]| < Mool + M| B| / 9 u(s)r ds
t
(2.11) < Me™*|lz]| + M|B| / lu(s)lo ds.
0

Using that Z(0,¢;U) is continuously embedded in L(0,¢;U), we conclude that
(2.12) ()|l < Me™*"||zo|| + M| Bl|s(t) |ull 20,10y

for all ¢ > 0. If Assumption (B) holds, then the embedding constants x(t) tend to 0
as t \, 0. Hence, (2.12) shows that (i) implies (viii). 0

For the special case Z = LP(0,00;U), parts of the equivalences in Proposition 2.14
can already be found in [19].

Remark 2.15. Note that in Proposition 2.14, the assertions are independent of
Z as the assertions only rest on exponential stability. In particular, if one of the
equivalent conditions hold, then the system X (A, B) is LP-ISS with the following
choices for the functions 8 and p

M
B(s,t) == Me “'s and u(s):= w—qHBHs,
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w
w
ot

where ¢ is the Holder conjugate of p, and LP-iISS with
336 B(s,t) == Me “'s, u(s) :=s, and 6(s) :=sM|B].

337 Here the constants M and w are given by (2.8). Although, in this case a system is
338  LP-ISS or LP-iISS for all p if this holds for some p, the choices for the functions g,
339 however, do depend on p. Note that if B is unbounded, then the question whether a
340 system is LP-ISS or LP-iISS crucially depends on p.

341  Furthermore, note that in the trivial case X = U = C and A = —1, B = 1, we have
342 that the system (A, B) is not L!-zero-class admissible.

343 3. IISS from the viewpoint of Orlicz spaces. In this section we relate L>°-
344 ISS and L!-ISS to ISS with respect to Orlicz spaces Eg corresponding to a Young
345 function ®. The use of Orlicz spaces is motivated by the idea of understanding the
346 integral appearing in the definition of iISS, (1.2), as some type of norm. For the
347  definition and fundamental properties of Orlicz spaces and Young functions, we refer
348 to the Appendix. The main results of this section are summarized in the following
349  three theorems.

35

)
35
>

0 THEOREM 3.16. The following statements are equivalent.
1 (i) There is a Young function ® such that the system %(A, B) is Eg-1SS,

=

w

2 (ii) (A, B) is L>®-il88,
3 (i11) (T(t))i>0 is exponentially stable and there is a Young function ® such that
| the system X(A, B) is Eq-UBEDBS.

355 If @ satisfies the As-condition (see Definition A.42) more can be said.

25

w W

D

356 THEOREM 3.17. If ® is a Young function that satisfies the As-condition, then the
357 following are equivalent.

358 (i) ¥(A,B) is Eg-1SS,

359 (ii) (A, B) is Eg-ilSS,

360 (i1i) (A, B) is E¢-UBEBS and (T'(t))i>0 is exponentially stable.

361 Remark 3.18. Since LP-spaces are examples of Orlicz spaces where the Ag-conditionfi

362 is satisfied, Theorem 3.17 can be seen as a generalization of Proposition 2.11.

363 THEOREM 3.19. The following statements are equivalent.

364 (i) (A, B) is L*-ISS,

365 (ii) X(A, B) is L'-iISS,

366 (ii3) 3(A, B) is Eg-ISS for every Young function ®.

367 The proofs of Theorems 3.16, 3.17 and 3.19 are given at the end of this section.

FEg-iISS (:) FEg-admissible (:) FEg-1SS

l

.01 ( ) Fg-admissible Eg-1SS

for some ¥ for some ¥

Fic. 3.2. Relations between the different stability notions with respect to Orlicz spaces for a
system 3(A, B), where it is assumed that the semigroup is exponentially stable and that ® satisfies
the Ag-condition.
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LEMMA 3.20. Let $(A, B) be L®-iISS. Then there exist 0,® € Koo such that ®
is a Young function which is continuously differentiable on (0,00) and
t
/ T_1(s)Bu(s)ds
0

t
<i ([ et as)
0
for allt >0 and u € L*>®(0,t;U).

Proof. By assumption, (T'(t));>0 is exponentially stable and there exist § € K
and p € K such that (2.9) holds for Z = L>°. Without loss of generality we can assume
that u belongs to L. By Lemma 14 in [23] there exist a convex function p, € Ky and
a concave function p. € Ko such that both are continuously differentiable on (0, co)
and g < pie 0 py, holds on [0, 00). Now for any Young function ¥: [0,00) — [0, 00) it
is straightforward to check that p. o ¥~ is a concave function and hence we have by
Jensen’s inequality

0 (/Olmuu(s)nwds) <4 (/Olucownu(s)nmds)

< (Oopeou ) (/Ol(qfouu><||u<s>||mds) .

(3.13) ‘

Using Remark 3.2.7 in [15] it is easy to see that ® := W oy, is a Young function.
Taking 0 := 6 o 1. o ¥~ we obtain the desired estimate for ¢ = 1. By Lemma 2.9, the
assertion follows. a0

Proof of Theorem 3.16. (i) = (ii): Since A(s) = s? defines a Young function with
A(1) = 1, it can be easily seen that

) (s), s <1,
‘1’1(5)‘{¢><A<s», >

defines another Young function such that ® < ®;. Furthermore, ®; increases essen-
tially more rapidly than ® (see Def. A.43), since the composition ® o A of two Young
functions ®, A is known to be increasing essentially more rapidly than ® (see page
114 of [14]). We define 6: [0,00) — [0, 00) by

e(a)zsup{ / (s)Buls) ds| | w € L2(0,1:0), / 1<I>1<||u<s>|u>ds<a},

for @« > 0 and 0(0) = 0. Clearly, 0 is non-decreasing. Admissibility with respect to
Eg and Remark A.40.4 yield that for uw € L*°(0,1;U),

Hence, () < oo for all o > 0. 5
If we can show that limy o 0(t) = 0, then, by Lemma 2.5 in [3], there exists § € K
such that 8 < 6 pointwise. Therefore, let (o, )nen be a sequence of positive real

numbers converging to 0. By the definition of 8, for any n € N there exists u, €
L*>(0,1;U) such that

[ B o] < el <) (1+ [ @utlute)l)as).

1
/ By (un(s) ) ds <
0
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and

1
< —.

(3.14) ‘H(an) - ‘ -

1
/ T_1(s)Buy(s) ds
0

Hence the sequence (||t (+)||v)nen is ®1-mean convergent to zero (see Def. A.41). By
Theorem A.44, the sequence even converges to zero with respect to the norm of the
space Lg(0,1), and thus also in Eg(0,1). Hence

T a2y 0,00 = 1m0 [lfan O]l 0.1y = 0.

where we used Remark A.40.2. Hence, by admissibility,

as n — 0o. Altogether we obtain that

/01 T 1(s)Bun(s) ds

< c(Dllunllgp 0,107 = 0,

0(an)

IN

‘9(%) _ ‘ /OlT_l(s)Bun(s) ds /O1 T () Bun(s) ds

"

IN

1
—+eWlunllze o109,
and thus, lim,_, 6(a,) = 0.

Therefore, there exists § € Ko such that § < 6 pointwise. Furthermore, ®; is a
Young function, in particular we have ®; € K. The definition of 8 yields that

<0 (/ <I>1(||u<s>||U>ds) < (/ <b1<||u<s>||U>ds)

for all u € L*>°(0,1;U). By Lemma 2.9, we conclude that 3(A, B) is L>-iISS.

1
/ T_1(s)Bu(s)ds
0

(ii) = (i): Now assume that 3(A, B) is L*°-iISS. We need to show that for some
Young function ® the system ¥(A, B) is E3-ISS. By Proposition 2.10(i) it suffices
to show that there is a Young function ® such that fg T_1(s)Bu(s)ds € X for all
u € E3(0,t). Note that since Eg(0,t;U) C L'(0,t;U) for any Young function ®,
the integral always exists in X_;. By assumption, fg T_1(s)Bu(s) ds € X for all

u € L*(0,t). By Lemma 3.20, there exist 0 € Koo and a Young function ® such that
(3.13) holds. Let u € Fg. By definition, there is a sequence (un)nen C L*(0,¢;U)
such that lim, e [|un — ©[|gy00) = 0. Since (up)nen is a Cauchy sequence in
Eg(0,t;U), we can assume without loss of generality that ||u, — wm|| gy 0,0y < 1 for
all m,n € N. By [15, Lemma 3.8.4 (i)] this implies that for all n,m € N,

t
/0 B(un(5) — i (3)l|er) d < [Jttn — tim | 2 0.0

Together with (3.13) and the monotonicity of 0, this yields

| é(/@twun(s)um<s>||U>ds)

<0 (|[un — | Bo 0.0 -

IN

/0 T_1(8)B(un(s) — um(s)) ds

This manuscript is for review purposes only.
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INFINITE-DIMENSIONAL ISS AND ORLICZ SPACES 13

Hence (fot T_1(8)Buy,(s) ds)nen is a Cauchy sequence in X and thus converges. Let y
denote its limit. Since Eg(0,t; U) is continuously embedded in L(0,¢; U), see Remark
A.40.3, it follows that

lim T_1(s)Buy(s) ds:/o T_1(s)Bu(s)ds

n— oo 0

in X_;. Since X is continuously embedded in X_;, we conclude that

y:/o T_1(s)Bu(s)ds.

Thus, we have shown that fot T_1(s)Bu(s)ds € X for all u € Eg and hence 3(A, B)
is admissible with respect to Eg.

(i) = (iii): This follows since for all u € Fg(0,t;U) it holds that u € Lg(0,¢;U)
and

t
lullzs <1+ / &(|u(s)]v) ds,

see Remark A.40.4.
(iii) = (i): This follows by (iii) and (i) of Proposition 2.10. |

Proof of Theorem 3.17. The implications (ii) = (iii) = (i) follow, analogously as
for the LP-case, by Proposition 2.10.

(i) = (ii): Similarly to the proof of Theorem 3.16, we can define a non-decreasing
function 6 by

0(a) = sup {‘ /01 T_(s)Bu(s) ds|| | u € Ea 0,1 U),/O1 ®(|lu(s)|v) ds < a} ,

for a > 0 and 6(0) := 0. By Eg-admissibility and Remark A.40.4, we have that

for u € E3(0,1;U) C I~/¢,(O,t; U). Hence, 0 is well-defined. In analogy to the proof
of Theorem 3.16, it remains to show that 6 is right-continuous at 0. This follows
because ® satisfies the As-condition. In fact, if the latter is true, it is known that a
sequence (U, )nen in Eg converges to 0 if and only if the sequence is ®-mean convergent
to zero (see Def. A.41). Therefore, a,, N\, 0 implies that there exists a sequence
un € E¢(0,1;U) that converges to 0 in Fg and such that

1 1
| @B 5] < cwllllpuan <) (1+ / <I><||u<s>||a>ds),

1
<—, néeN.
n

’0(an) - /01 T Buy(s) ds

By Eg-admissibility, we conclude that 6(ay,) — 0 as n — oo.
Hence, by Lemma 2.4 in [3], we find 6 € K, such that § < 6 pointwise. By definition

of 6, this implies
B 1
‘ < ( / <1><||u<s>||U>ds)
0

for all u € E4(0,1;U). Finally, Lemma 2.9 yields that X(A, B) is E¢-iISS. d

/O 1L () Bu(s) ds

This manuscript is for review purposes only.



474

476
477
A78
479
480

481

482

483

484

485

486

487
488
489
190
491
492

14 JACOB, NABIULLIN, PARTINGTON AND SCHWENNINGER

Proof of Theorem 3.19. By Propositions 2.10 and 2.11, we only need to show the
equivalence of (i) and (iii). That (i) implies (iii) follows immediately since Eg is
continuously embedded in L'.

Conversely, let 3(A, B) be Eg-admissible for every Young function ®. According to
Proposition 2.10 (a), we have to show that ¥(A, B) is L'-admissible. Let ¢ > 0 and
w € LY(0,t;U). Tt remains to prove that fg T_1(s)Bu(s)ds € X. By [14, p. 61], there
exists a Young function & satisfying the As-condition such that ||u()||y € Le'. The
As-condition implies that Fe = Lg and Eg(0,¢;U) = Le(0,t;U), see [24, p. 303] or
[26, Thm. 5.2]. Thus fot T_1(s)Bu(s)ds € X by assumption. O

PROPOSITION 3.21. Let (A, B) be L>°-1SS. If there exist a nonnegative function
ferL01),0ck,a constcmt c > 0 and a Young function p such that for every
u € LY0,1;U) with fo p(lju(s)||v) ds < oo one has

‘ <c+e(/ Fs)unllu(s >||U>ds),

then (A, B) is L*°-iISS.

Proof. By Theorem 3.16 and Proposition 2.10 it is sufficient to show that there
is a Young function ® such that the system X (A, B) is Eg-admissible. Theorem A.33
implies that there exists a Young function ¥ such that f € Ly (0,1). Let P be the
complementary Young function to ¥. We define the Young function ® by ® := ®o .
Using Remark A.36 for u € Eg(0,1;U) we obtain

/OIT_1(5>Bu(s>ds §c+0</ F(s)u(lu(s ||U>ds)

c+0 (/ W(f(s >>ds+/01é<u<|u<s>|y>ds>.

This shows that for all u € Eg(0,1;U) we have

/OlT 1(s)Bu(s) ds

IN

/1 T_1(s)Bu(s)ds € X,
0

that is, (A, B) is Fe-admissible. |

4. Stability of parabolic diagonal systems. In the previous section we have
proved that for infinite-dimensional systems L°°-iISS implies L°°-ISS. It is an open
question whether the converse implication holds. Here, we give a positive answer for
parabolic diagonal systems, which are a well-studied class of systems in the literature,
see e.g. [30].

Throughout this section we assume that U = C, 1 < ¢ < oo and that the operator A

n [14, p. 61] it is actually shown that for given f € L1(0,t), there exists a Young function Q
such that f € Lgog(0,t) and such that Q satisfies the A’-condition, i.e.,
de,up > 0 Vu,v > up:  Q(uw) < cQ(u)Q(v).
In fact, it is easy to see that this property implies that @ o Q satisfies
Vu>uo:  (QoQ)(fu) < k(£)(QoQ)(u),

for some ¢ > 1 and k(¢) > 0, which is known to be equivalent to Q o Q satisfying the As-condition,
see [14, p. 23].
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possesses a g-Riesz basis of eigenvectors (e, )nen with eigenvalues (A,)nen lying in a

sector in the open left half-plane C_. More precisely, (e,)nen is a ¢-Riesz basis of X
if (en)nen is a Schauder basis and for some constants ¢1,co > 0 we have

q
C1Z|ak\q < Zakek < CQZ|ak|q
% % %

for all sequences (ag)gen in €79 = ¢4(N). Thus without loss of generality we can
assume that X = ¢ and that (e, )nen is the canonical basis of £2. We further assume
that the sequence (A,)nen lies in C with sup,, Re(A,) < 0 and that there exists a
constant k > 0 such that [Im A,| < k[Re X[, n € N, i.e., (Ay)n C C\ Sy /244 for some
6 € (0,7/2), where

Srjoro =12 €C| 2| >0, |arg z| < m/2 4 6}.
Then the linear operator A: D(A) C 9 — (9, given by
Ae, = Apen, n €N,

and D(A) = {(zn) € 7 | >, |tnAn|? < oo}, generates an analytic exponentially

stable Co-semigroup (T'(t))s>0 on ¢4, which is given by T'(t)e, = e**ve,. An easy

calculation shows that the extrapolation space (¢7)_; is given by

Tyl
{x—xnn€N|Z|)\ |q }a

AT 2]l

(7)1

)l x

Thus the linear bounded operator B from C to (£)_; can be identified with a sequence
(bn)nen in C satisfying
|bn |q
2 At =

neN

Thanks to the sectoriality condition for (A, )nen this equivalent to
> e
| Re Ap|¢

The following result shows that, under the above assumptions, the system X(A, B)

is L°°-iISS. Thus for this class of systems L>°-iISS is equivalent to L°°-ISS, and both

notions are implied by B € (¢9)_;, that is, >~ Kz‘li < o0o. The following theorem

generalizes the main result in [7], where the case ¢ = 2 is studied.

THEOREM 4.22. Let U = C, and suppose that the operator A possesses a q-Riesz
basis of X that consists of eigenvectors (en)nen with eigenvalues (A )nen lying in a
sector in the open left half-plane C_ with sup,, Re(\,) < 0 and B € L(C,X_1). Then
the system (A, B) is L*>°-iISS, and hence also L™ -1SS and L -zero-class admissible.

Remark 4.23. In the situation of Theorem 4.22, (A, B) is L*-iISS if and only
if 3(A, B) is L*>°-ISS.
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526 Proof of Theorem 4.22. Without loss of generality we may assume X = /¢ and
527 that (en)nen is the canonical basis of £9. Let f: (0,00) — [0,00) be defined by

o _ |bn|q Re Aps

528 f(S) = ’r% We .

529 Then it is easy to see that f belongs to Ll(O o00). Now for u € L'(0,1) with
530 fo $)|?ds < oo we obtain (denoting by ¢’ the Holder conjugate of ¢)

1
/T_<>Bu =3 b |<I/ wu(s) ds
0 neN
q
522 < S ol ([ e uts as)
neN
|b | / |Re)\ |eRe>\ 8|u( )|d$ !
Re)\
|b | - 1 - q/q
5 < eAnS q € AnS
. S Ren (/ [Red e fu)ftas ) ([ 1R o as)
o |b | Re )\ Re Ap s
535 ~ Z |Re>\ ‘q | € ’ﬂ|e
- / S R B O
< |[Re A, |71

537 :/0 f(s)|u(s)|?ds
< 00

q
531 ’

04

’

ol ds)

338

540 This shows that the system (A, B) is L°°-ISS and the claim now follows from
541  Proposition 3.21. ]
542 Remark 4.24. Theorem 4.22 states that L°°-admissibility implies Eg-admissibilityll

543  for some Young function ® in the case of parabolic diagonal systems. A natural ques-
544 tion is whether ® can always be chosen such that the As-condition is satisfied. Looking
545 at the proof and having in mind that L' equals the union of all spaces Ey where ¥
546  satisfies the Ag-condition, this could be expected. However, the answer is negative,
547  which can be seen as follows. For a Young function ® satisfying the As-condition
548  there exist constants zg > 0 and p € N\ {1} such that

549 O(z) < 2P, x> xo,

550  see [14, p. 25]. This implies that Eg D LP, see e.g. [15, Sec. 3.17]. However, there exists
551 Young functions that do not satisfy the latter estimate, e.g., ®(z) =e*~! — 2z — e~ L.
552 In Example 5.29, (A, B) is not LP-admissible for any p < oo, which, with the above
553 reasoning, implies that the system cannot be Fg-admissible for any ® satisfying the
554 Ag-condition.

LEMMA 4.25. Let ;1 be a positive reqular Borel measure supported on a sector Sy
with ¢ € (0, %), and let 1 < g < co. Then the following are equivalent:

Y Ot

v Ot
or Ot
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(i) The Laplace transform L: L>(0,00) — L1(Cy, u) is bounded,

(i) The function s — 1/s lies in L(Cy, p).

Proof. (i) = (ii): Taking f(t) = 1 for ¢ > 0 we have that Lf(s) = 1/s and the
result follows.
(ii) = (i): For f € L*°(0,00) and s € C; we have

‘/ f(t)e™ dt' < ||f||oo/ le™*!|dt < || flloo/(Re ) < M| flloc/l5],
0 0

where M is a constant depending only on ¢. Now Condition (ii) implies that £ is
bounded. |

THEOREM 4.26. Suppose that A possesses a q-Riesz basis of X consisting of eigen-
vectors (en)nen with eigenvalues (\p)nen lying in a sector in the open left half-plane
C_ and B € X_y1. Then the following assertions are equivalent.

(i) (A, B) is infinite-time L>°-admissible,

(ii) supyec, (A —A)7 B]| < oo,

(iii) The function s — 1/s lies in LI(Cy, ), where p is the measure > [bg|?0_», -

Proof. By [9, Thm 2.1], admissibility is equivalent to the boundedness of the
Laplace transform £: L*°(0,00) — L9(C4, i), and hence (i) and (iii) are equivalent
by Lemma 4.25. Note that

b |9
A)7IB|1 = |
0= A7 Bl = 30 25

Now if (ii) holds, then (iii) also holds, letting A — 0. Conversely, if (iii) holds, then
by sectoriality we have that
Z |br|?
| Re )\k|q

and hence ), |bg|?/|X — Ax|? is bounded independently of A € C, that is, (ii) holds.O

Remark 4.27. Let b,(X) denote the set of LP-admissible control operators from
C to X for a given A. By Theorem 4.22, we have that b, (X) = X_; for exponentially
stable, parabolic diagonal systems. Using [32, Theorem 6.9], and the inclusion of the
LP-spaces, we obtain the following chain of inclusions for X = ¢¢ with ¢ > 1°

(4.15) X = by (X) C b, (X) C boo(X) = X_;.

It is not so hard to show that the equality b (X) = X_; does not hold in general if
the exponential stability is dropped. In fact, a counterexample on X = ¢2 with the
standard basis is given by A, = 2", n € Z, b, = 2"/n for n > 0 and b, = 2™ for
n < 0.

The relations of the different stability notions with respect to L> for parabolic
diagonal systems are summarized in the diagram shown in Figure 4.3.

5. Some Examples.

Example 5.28. Let us consider the following boundary control system given by the
one-dimensional heat equation on the spatial domain [0, 1] with Dirichlet boundary

2here, ¢ = 1 is also allowed if (T*(t));>0 is strongly continuous.
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[oo-iIsS &9 L7 zeroclass @ g oo dmissible €= L<-ISS

admissible

BeX

Fi1G. 4.3. Relations between the different stability notions for parabolic diagonal system (as-
suming that the semigroup is exponentially stable).

control at the point 1,
xt(gvt) = a‘xEE(gat)v 5 S (07 ]-)7 t> 07
2(0,t) =0, z(1,t)=wu(t), t>0,
z(&,0) = z0(§),

where @ > 0. It can be shown that this system can be written in the form (A, B) in
(2.4). Here X = L?(0,1) and

Af=f", feD(4),

D(A) = {f € H*(0,1) | £(0) = f(1) =0}
Moreover, with X\, = —an?n?,
Ae, = Apen, n €N,
where the functions e, = v/2sin(n7-), n > 1, form an orthonormal basis of X.

With respect to this basis, the operator B = ad] can be identified with (b,)nen
for b, = (—=1)"v/2ann, n € N. Therefore,

which shows that B € X_;. By Theorem 4.22, we conclude that the system is L°°-
iISS. Moreover, we obtain the following L°°-ISS and L°°-iISS estimates:

—am? 1
()l 220,y < e “llwollL2(0,1) + %HUHL"O(O,t)a

) t 1/p
()l 22(0,1) < e HllzollL2(0,1) + € (/ u(S)pdS) ;
0

for p > 2 and some constant ¢ = ¢(p) > 0. For the second inequality, we used the
fact that (A, B) is even LP-admissible for p > 2, as it can be shown by applying
Theorem 3.5 in [9]. We note that a slightly weaker L>°-ISS estimate for this system
can also be found in [12].

Ezample 5.29. As remarked, Example 5.28 provides a system ¥ (A, B) which is
even LP-admissible for p > 2. In the following we present a system which is L>°-
admissible, but not LP-admissible for any p < co. In order to find such an example,
we use the characterization of LP-admissibility from [9, Thm. 3.5].

Let X = ¢2 and let (A,)nen, (by)nen define a parabolic diagonal system (A, B) as in
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Section 4. Furthermore, let p € (2,00). Then X(A, B) is infinite-time LP-admissible
if and only if

(25 @), et @),

where =", |bn|?0y, and Q,, = {z € C|Rez € (2" 1,2"]}, n € Z.
We choose \,, = —2™ and b,, = % for n € N. Clearly, B = (b,) € X_1. Then we
have that )
_2n(p—1) _2n(p—1) 221’L 27”
2 o u(@n) =2 P F:Fa
and thus for p > 2,

_2n(p—1) P B %
((2 P N(Qn)> )nEZ = (n;z)nez ¢ /"

Hence, (A, B) is not LP-admissible for any p > 2, and therefore also not for any
p > 1. However, since Y, o [bn]?/|ReAn|?> = 37, oy 1/n? < 00, Theorem 4.22 shows
that (A, B) is L*°-iISS and, in particular infinite-time L*-admissible.

We observe that by Theorem 3.16, there exists a Young function ® such that X(A, B)
is Fg-admissible. However, as the system is not LP-admissible, such ® cannot satisfy
the As-condition, see Remark 4.24.

6. Conclusions and Outlook. In this paper, we have studied the relation be-
tween input-to-state stability and integral input-to-state stability for linear infinite-
dimensional systems with a (possibly) unbounded control operator and inputs in gen-
eral function spaces. In this situation, ISS is equivalent to admissibility together with
exponential stability of the semigroup. We have related the notions of iISS with re-
spect to L' and L™ to ISS with respect to Orlicz spaces. The known result that ISS
and iISS are equivalent for LP-inputs with p < oo, was generalized to Orlicz spaces
that satisfy the As-condition. Moreover, we have shown that for parabolic diagonal
systems and scalar input, the notions of L°°-iISS and L°°-ISS coincide.

Among possible directions for future research are the investigation of the non-
analytic diagonal case, general analytic systems and the relation of zero-class admissi-
bility and input-to-state stability. Recently, the results on parabolic diagonal systems
have been adapted to more general situations of analytic semigroups — the crucial tool
being the holomorphic functional calculus for such semigroups [10]. Furthermore, ver-
sions ISS and iISS for strongly stable semigroups rather than exponentially stable can
be studied, see [22].

Finally, we mention that the existence of a counterexample for one of the unknown
(converse) implications in Figure 2.1 can be related to the following open question
posed by G. Weiss in [31, Problem 2.4].

Question A: Does the mild solution x belong to C(]0,0),X) for any o € X and
u € Z = L>*(0,00;U) provided that ©(A, B) is L*°-admissible?
Although we do not provide an answer to this question, we relate it to

PROPOSITION 6.30. At least one of the following assertions is true.

1. The answer to Question A is positive for every system %(A, B).
2. There exists a system X(Ag, Bo), with Ag generating an exponentially stable
semigroup and X(Ag, By) is L -admissible, but not L>°-zero-class admissible.

Proof. This follows directly from Proposition 2.5. O
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Appendix A. Orlicz Spaces. In this section we recall some basic definitions
and facts about Orlicz spaces. More details can be found in [14, 15, 1, 35]. For the
generalization to vector-valued functions see [24, VII, Sec. 7.5]. In the following I C R
is an open bounded interval, U is a Banach space and ®: R{ — R{ is a function.

DEFINITION A.31. The Orlicz class Lo (I;U) is the set of all equivalence classes
(w.r.t. equality almost everywhere) of Bochner-measurable functions w: I — U such
that

(s B = /I<I>(||u(a:)||U) de < 0.

In general, Lgy(I;U) is not a vector space. Of particular interest are Orlicz classes
generated by Young functions.

DEFINITION A.32. A function ® : [0,00) — R is called a Young function (or
Young function generated by ¢) if

where the function ¢: [0,00) — R has the following properties: ¢ is right-continuous
and nondecreasing, ©(0) =0, ¢(s) >0 for s > 0 and lim,_, o p(s) = 00.

THEOREM A.33 ([15, Thm. 3.2.3 and Thm. 3.2.5]). Let ® be a Young function.
Then Lg(I;U) is a convex set and Lo (I;U) C LY(I;U). Conversely, foru € L*(I;U)
there is a Young function ® such that u € Le(I;U).

DEFINITION A.34. Let ® be the Young function generated by p. Then ¥ defined
by

W(t)z/otd)(s)ds with (t)= sup s, t>0,

e(s)<t

is called the complementary function to ®.

The complementary function of a Young function is again a Young function. If
© is continuous and strictly increasing in [0,00), i.e. belongs to Ko, then ¢ is the
inverse function ¢! and vice versa. We call ® and ¥ a pair of complementary Young
functions.

THEOREM A.35 (Young’s inequality, [35, Thm. I, p. 77]). Let ®, U be a pair of
complementary Young functions and p, ¥ their generating functions. Then

w < O(u) + ¥(v), Yu,v € [0, 00).

Equality holds if and only if v = p(u) or u = (v).

Remark A.36. Let ®, ¥ be a pair of complementary Young functions, u € iq,([)
and v € Ly (I). By integrating Young’s inequality we get

[ @)oo < ptus®) + plos )

We are now in the position to define the Orlicz spaces for which several equivalent
definitions exist. Here we use the so-called Luxemburg norm.
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DEFINITION A.37. For a Young function ®, the set Lo(I;U) of all equivalence
classes (w.r.t. equality almost everywhere) of Bochner-measurable functions w: I — U
for which there is a k > 0 such that

/Itb(k:’lﬂu(a:)”[]) dr < oo

is called the Orlicz space. The Luxemburg norm of u € Lg(I;U) is defined as

Julle = il acran = int {1 > 0| [ @G futo)l) o < 1},

For the choice ®(t) := t?, 1 < p < oo, the Orlicz space Lg(I;U) equals the vector-
valued LP-spaces with equivalent norms.

THEOREM A.38 ([15, Thm. 3.9.1]). (Ls(I;U),| - ||la) 4s a Banach space.
Clearly, L°°(I,U) is a linear subspace of Lg(I,U).
DEFINITION A.39. The space E¢(I,U) is defined as

Ey(1.U) = T(I0) 0,

The norm || - || gy (r,0) refers to || - | Lq (10 -
If U = K with K € {R,C}, then we write Lo(I) := Lo (I;K) and Eg(I) := Eo(I;K)

714 for short.

715
716
717
718
719

720

721

727

728

729

Remark A.40. The Banach spaces Eg(I;U) and Lg(I;U) have the following
properties:
1. Eg(I;U) is separable, see e.g. [26, Thm. 6.3].
2. For ameasurable u: I — U, u € Lg(I;U) if and only if f = ||u(-)||lv € Ls(I).

This follows from the fact that [|ulle = ||f]le. Thus, (un)nen C Lo(I;U)
converges to 0 if and only if (||un(-)||v)nen converges to 0 in Lg(1).

. Let ®, ¥ be a pair of complementary Young functions. The extension of

Holder’s inequality to Orlicz spaces reads: for any u € Lg(I) and v € Ly (1),
it holds that uv € L'(I) and

/I|U(5)v(5)| ds < 2[ull Ly llvllzy 1),
see [15, Thm. 3.7.5 and Rem. 3.8.6]. This implies that for u € Le(I;U),

t
wmwﬁnzénwmwwszw@mﬂwm

Le., Ly (I;U) is continuously embedded in L' (I;U). Moreover, |[x(o,4)|lw — 0
ast \, 0, where x(o,¢) denotes the characteristic function of the interval (0,).

4. Ee(I;U) C Lo(I;U) C Lo(I;U), see e.g. [26, Thm. 5.1]. For u € Lg(I;U),

lulle < p([[u()lu; ®) +1 < oc.

DEFINITION A.41 (®-mean convergence). A sequence (un)nen in Lo (I) is said
to converge in ®-mean to u € Lo (I) if

lim p(u, —u; @) = lim | ®(|uy(x) —u(z)|)dr = 0.

n—oo n—oo I
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DEFINITION A.42. We say that a Young function ® satisfies the As-condition if
Jk>0,u0 >0Vu>ug: P(2u) < kd(u).

It holds that Eg(I;U) = Le(I;U) = Le(I;U) if ® satisfies the Ay-condition.
DEFINITION A.43. Let ® and ®; be two Young functions. We say that the func-
tion @1 increases essentially more rapidly than the function ® if, for arbitrary s > 0,
)
im (st)

=0.

THEOREM A.44 ([14, Thm. 13.4]). Let ®,®; be Young functions such that ®;
increases essentially more rapidly than ®. If (un)neny C Lo, (I) converges to 0 in
Oy -mean, then it also converges in the norm || - ||o.
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