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Human Colonization of Asia
in the Late Pleistocene
The History of an Invasive Species

by Robin Dennell

Narratives of “Out of Africa 2”—the expansion of Homo sapiens across Asia—emphasize the pattern of human

dispersal but not the underlying processes. In recent years, the main debates have been over the timing and frequency

of dispersal. Here, I treat these issues as subordinate to biogeographic ones that affected the behavior of humans in

Asia as an invasive species that colonized new environments and had negative impacts on indigenous hominins. I

suggest that attention should focus on three issues: (i) geographic factors that molded human dispersal across Asia,

(ii) behavioral changes that enabled humans to overcome previously insurmountable barriers, and (iii) demographic

considerations of human dispersal and colonization of Asia, including interactions with indigenous competitors.

Although a strong case can be made that humans dispersed across southern Asia before 60 ka, this should not detract

from attention on the underlying processes of dispersal and colonization.

In recent years, discussion of the appearance of Homo sapiens

in Asia (usually viewed as “Out of Africa 2” rather than as a

process of indigenous evolution) has been dominated by three

issues: (i) whether H. sapiens first appeared in various regions

of Asia before 60 ka (e.g., Boivin et al. 2013; Dennell and

Petraglia 2012) or after (e.g., Mellars 2006; Mellars et al. 2013);

(ii) whether there were several dispersal events or only one

(usually hypothesized as occurring ca. 50–60 ka); and (iii) when

and how we can first identify “modern” human behavior in

Asia. Most narratives rely upon three lines of evidence: ar-

chaeological, in which dated lithic assemblages (particularly

those with blades) are treated as proxies of H. sapiens; a small,

often ambiguous and poorly dated amount of human skeletal

evidence; and genetic inferences from ancient DNA (aDNA)

and modern populations (e.g., Klein 2009). Emphasis in most

narratives has been on the pattern but not the process of dis-

persal. That is to say, most accounts are exercises in “joining

up the dots,” of indicating whenH. sapiens likely first appeared

in various parts of Asia and by which routes. Here, I attempt

to place the evidence for the dispersal ofH. sapiens across Asia

in a biogeographical perspective that draws upon literature on

the invasion biology of plants and animals and also on ideas

from colleagues researching the colonization of the Americas

and Australia. Although there is much ignorance, doubt, and

controversy over the Asian evidence, I suggest that we should

attempt to write narratives that go beyond basic outlines of

when “modern” tool kits and skeletal remains are first evi-

denced across a continent as large and diverse as Asia. Such

“first appearance data” are provisional and relatively uninter-

esting as explanatory devices. In any case, the first appearance

of humans in a landscape might indicate a short-term and

unsuccessful presence in an area and not the type of sustained,

repeated settlement associated with colonization that is the

main concern of this paper.

Most researchers (myself included) assume that our species

originated in Africa and that its subsequent appearance in

Asia (and Europe) resulted from one or more dispersal events.

Nevertheless, the East Asian Upper Pleistocene skeletal record

is complex, and a simple replacement model is probably in-

appropriate (Martinón-Torres et al. 2016), especially in light of

recent genetic evidence for interbreeding between H. sapiens

and indigenous species of hominins (Fu et al. 2014, 2015; Reich

et al. 2010, 2011).

Geographic Considerations

Regarding human dispersal across Asia, simple maps show-

ing known sites and dates mask the most important topo-

graphic and climatic factors that most likely affected the rate

and direction of dispersal.

Topographic Factors

In idealized circumstances, there are no impediments to a

colonizing species dispersing into a new environment and
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occupying the entire space at a uniform rate. In reality, all en-

vironments offer “friction” that impedes, directs, and modifies

theprocess of colonization.With the colonization ofAsia by our

species, the humans that dispersed across Asia and ultimately to

North America and Australia had to traverse and inhabit an

immense variety of landscapes. Some were occupiedmore or less

continuously after colonization, others less so, and some were

occupied rarely if at all. Following Veth’s (2005) discussion of

the colonization of Australia, we can begin by recognizing three

types of terrain relevant to a dispersing species: refugia, barriers,

and corridors.

Refugia, barriers, and corridors. The key point about these

categories is that they are not immutable but are dependent

upon two factors. The first is the prevailing climate, because

under some climatic circumstances, barriers could become

corridors (or vice versa). The second and more important is

that, through changes in behavior, H. sapiens was able to find

refugia in climatic downturns in areas that earlier hominins

would have found uninhabitable and colonize or use as cor-

ridors parts of the Asian landscape that had previously been

barriers.

Refugia. Refugia are areas that could still be occupied at

times of increased aridity and/or decreased winter tempera-

tures. Without refugia, a species would become regionally ex-

tinct because it had nowhere to live during the severest parts of

a glacial/interglacial cycle. Refugia are also important as ge-

netic bottlenecks; as stated by Bennett and Provan (2008:2453),

“populations go through bottlenecks but come from refugia.”

(Strictly speaking, we should distinguish between glacial and

interglacial refugia, but here the term “refugia” denotes only

glacial ones.) Glacial refugia are areas where the climate was

sufficiently mild and where there were sufficient resources

for humans to survive climatic downturns, such as Heinrich

events and marine isotope stage (MIS) 2. The main glacial re-

fugia in Asia (as in Europe) for hominins (includingH. sapiens)

would have been along the southern edge of the maximum

human range. Although current data do not permit the iden-

tification of Asian glacial refugia, some of the most likely are

the Levant, the Caspian foreshore, the Ganges floodplain, and

Deccan peninsula in India; the Yangtze Valley and parts of

South China; and the Sunda Shelf of island Southeast Asia

(Dennell 2009; Louys and Turner 2012; Rabett 2012 for South-

east Asia). All these areas probably served as refugia for

earlier hominins, and their settlement records should indicate

(when better known) occupation during MIS 2, when con-

ditions were the most severe. Two others that may have been

used as refugia after 40 ka are a conjoined Hokkaido-Sakhalin

Peninsula in northeast Asia (Izuho 2014) and perhaps also

“Greater Beringia” between 30 and 16 ka (Mulligen andKitchen

2014).

Our species widened its range of glacial refugia in two ways.

One was by adapting to tropical rainforest, which H. sapiens

was the first hominin species to colonize (Roberts and Petraglia

2015). At present, the earliest examples are from Sri Lanka

(see below), where rainforests were continuously occupied after

36 ka and were thus a glacial refugium. The second was at the

northern limits of the hominin range, where H. sapiens (and

perhapsNeanderthals) were able to survive climatic downturns

by, for example, devising effective insulation in clothing and

shelters or overcomingwinter scarcity through food storage. As

a consequence,H. sapiensmay have been able to create refugia

in northern areas that would have been previously uninhabit-

able. Beeton and colleagues (2013), for example, suggest that

parts of Central Asiamay have been a refugium throughout the

last glaciation despite its harsh winter conditions. This possi-

bility raises serious issues when considering the dispersal of H.

sapiens across the northern part of the human range in Asia

because of uncertainties over whether the presence of a site or

group of sites in a cold period (such as a Heinrich event) in-

dicates a successful adaptation in a refugium or a short-term

failure by a population that foundered. At present, our infor-

mation “is not sufficiently detailed to determine what sites can

serve as evidence for survival through major natural calamities

and what sites are those of people who perished” (Bar-Yosef

2017:66).

One measure of the effectiveness of a refugium is the ease

with which species can disperse from it when conditions im-

prove. Dispersal from the Levant either northward or eastward

is easy, for example, relative to the Indian subcontinent, where

dispersal outward is largely blocked by the Himalayas and

Karakorum Mountains and the mountains of northern Myan-

mar, in much the same way as dispersal from an Italian refu-

gium was blocked by the Alps (Hewitt 1999).

Barriers and corridors. The most obvious permanent bar-

riers to human settlement in Asia before the terminal Pleisto-

cene were areas above 3,000 m asl and deserts. The principal

areas of high ground in Asia are shown in figure 1. The Ana-

tolian Plateau, with its harsh winters, would also have been a

barrier for much of MIS4 through to MIS 2 (Kuhn 2010). The

height and extent of the Tibetan Plateau and adjoining Hindu

Kush-Karakorum-Himalayan ranges made it inevitable that

human expansion across continental Asia would split around

them into a northern and southern route. This split might have

occurred farther west because of the deserts of the Iranian

Plateau and Central Asia. To the north, it may have been easier

for humans to disperse north of the Pamirs into southern Si-

beria, as suggested byGoebel (2014), than southward across the

corridor of the Taklamakan desert between the Tien Shan

Mountains and the northern edge of the Tibetan Plateau. The

principal Asian deserts (fig. 2) cover over 6 million square ki-

lometers. Landforms vary from extensive dune fields (e.g., the

Thar and Badan Jarain) to salt flats and playas (e.g., the Dasht-

i-Lut) or stony pavements (e.g., the Gobi in China). Asian des-

erts are also either hot or cold, the latter being those in Central

Asia, North China, and Mongolia, where winter temperatures

are subfreezing for more than 2 months each year (Dennell

2013). As seen below, the deserts of Central Asia and North

China and semiarid to arid Mongolia presented additional

hazards to colonizers. The combination of mountain, desert,
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and harsh climate across southwest and central Asia would

inevitably have made a northern dispersal a much harder prop-

osition than one along its southern flanks.

In continental Asia, barriers and corridors were sometimes

interchangeable as part of the landscape dynamics of MIS 3.

For example, mountain ranges, such as the northern Zagros

and the Elburz in Iran, would have been barriers when snow-

lines were sufficiently depressed to prevent passage but cor-

ridors when the climate ameliorated. Similarly, deserts such as

the Arabian and the Thar were likely barriers during arid pe-

riods but potentially corridors in moister episodes, such as

MIS 5 and parts of MIS 4 and MIS 3, when there were active

lakes and rivers (see Groucutt et al. [2015] and Rosenberg et al.

[2011] for Arabia and Blinkhorn et al. [2013] for the Thar);

the same is likely true of other Asian deserts, such as those of

Central Asia and north and northwest China. Dispersal across

continental Asia would have been harder when the climate

became colder and drier because of the depression of snow lines

and the expansion of deserts. As seen below, these conditions

created additional hazards for colonizers that were not en-

countered across southern Asia.

Permanent corridors were probably low mountain passes

and the lower parts of major river systems and their tributaries.

The most useful for a species dispersing longitudinally were

those trending west-east, such as the extinct ones in Arabia (see

Breeze et al. 2015) and also the Ganges and Narmada in India

and the Yellow and Yangtze rivers in China.

An important point about corridors is that they are not

simply parts of the landscape through which people pass but

may also be major areas of settlement. For example, the west-

ern Zagros Mountains are corridors between present-day Iraq

and the Iranian Plateau and north-south between northwest

Iran and the Arabian/Persian Gulf, but they have also been

(and are) important areas of settlement in their own right. The

same is likely true of Beringia (Goebel, Waters, and O’Rourke

2008) and the major river valleys of Siberia (Goebel 1999) and

East and Southeast Asia.

Navigability (wayfinding) and ease of movement. The hu-

mans that dispersed across Asia had to traverse an immense

variety of landscapes. From a colonizer’s viewpoint, two im-

portant factors are navigability and ease of movement (Meltzer

2009:221–224). Areas offering easy movement and abundant

landmarks (such as along major rivers or broad intermon-

tane valleys) are easier to colonize than those with few land-

marks and those that are difficult to traverse, such as moun-

tain ranges, dense rain forest, or sand deserts. In addition, there

was the need for potable water; Por (2004), for example, high-

Figure 1. The principal mountain areas of Asia redrawn from Philips New Reference Atlas (1980).
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lighted the importance of springs along the southern edge

of the Taurus Mountains to groups dispersing eastward from

the Levant. Similarly, in deserts such as the Arabian (Breeze

et al. 2015) and the Tengger (North China; Pachur, Wünne-

mann, and Zhang 1995; Zhang et al. 2002), the non- or mod-

erately saline paleolakes that developed in the Upper Pleisto-

cene would have been essential for human dispersal and

survival.

Climatic Factors

The dispersal of H. sapiens across most of Asia occurred

during MIS 3 and MIS 4, both of which were periods of

climatic instability. At times, climatic change was short but

severe, most notably in Heinrich events 4, 5, and 6 (ca. 38 ka,

45 ka, and ∼60 ka; Blunier and Brook 2001) and are de-

tectable in the East Mediterranean (Bartov et al. 2003), the

Arabian Sea (Schulz, Rad, and Erlenkeuser 1998), and south-

ern (Wang et al. 2001) and central (Porter and An 1995)

China as well as in Greenland (Hemming 2004). Their effects

would have been most strongly felt at the northern limits of

the human range, north of 407N (roughly from Beijing to

Dmanisi, Georgia), and in desert/semiarid environments. In

North China, for example, the decrease in rainfall of up to

50%–75% (Liu et al. 1995) resulted in the southward advance

of desert at the expense of semiarid grassland; in Arabia and

the Thar Desert, decreased rainfall led to fewer lakes and

permanent streams and increased dune mobility. In Central

Asia, strengthened northern wind systems and weakened,

rain-bearing westerlies reduced biological productivity and

increased dust storms (see below) and loess deposition. Rain-

fall decreases would also have affected ecosystems in the south-

ern parts of the human range in Asia (such as Central and

South India and Southeast Asia) by causing some loss and

fragmentation of habitats, and these too would have neces-

sitated responses by humans. In Asia, climatic change had

major consequences on coast lines, accessibility to upland

areas, and the extent of deserts and steppe.

Coastal changes. Climatic changes affected coastal topog-

raphies by exposing or inundating areas of land and chang-

ing the length of rivers. In western Asia, the two main affected

areas were the Arabian/Persian Gulf and the Red Sea. Re-

garding the Arabian/Persian Gulf, a sea level fall of 100 m

would have exposed almost all of it as a sandy plain covering

approximately 96,000 square miles (250,000 km2, or approx-

imately the same size as mainland Britain; Lambeck 1996) and

allowing dispersal across its southern end from Oman into

southern Iran. With the Red Sea, the Bab el Mandab crossing

would have narrowed to !4 km during the last glacial maxi-

mum (LGM; Lambeck et al. 2011) and would thus have been

less of an obstacle in cool periods.

Figure 2. The principal desert areas of Asia. A color version of this figure is available online.
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Sea level changes were most pronounced in East and South-

east Asia. In East Asia, a fall in sea level of 120m added 2million

square kilometers of coastal plain (Liu and Ding 1998:140) and

briefly conjoined Hokkaido with Sakhalin Island but left Paleo-

Honshu (Honshu, Kyushu, Shikoku) isolated across the Tsu-

guru Strait (Kudo and Kumon 2012; Yokoyama et al. 2007). In

Southeast Asia, a comparable fall created Sunda, which con-

joinedmainland Southeast Asiawith Sumatra, Java, and Borneo

(Voris 2000). Conversely, rises in sea level fragmented this

landmass into an archipelago and drowned the Molengraaf

River, which flowed between Sumatra and Borneo. The re-

peated fissioning and fusing of islands in Southeast Asia may

help explain the precocious development of seafaring (see, e.g.,

O’Connor,Ono, Clarkson et al. 2011), because therewere ample

opportunities and incentives for experimenting with different

types of water craft as well as navigational skills and sailing

techniques.

Altitudinal changes. In climatic downturns, lowered snow

lines would have made some mountain passes unusable as

corridors or usable for a shorter period each year. This was

probably important in Southwest Asia, where summer snow

lines were depressed by 1,200–1,800 m in the northern Zagros

(Wright 1962), by 1,600 m in the Southeast Zagros (Kuhle

2007), and by 1,000–1,500 m in the Taurus and eastern Turkey

(Sarıkaya, Çiner, and Zreda 2011), with the consequence of

some habitat loss and fragmentation and greater restrictions

on movement.

Deserts and semiarid landscapes in Central Asia and North

China. Three major hazards would have impeded dispersal

across the semiarid and arid regions of Central Asia and North

China. These were drought, dust storms, and dzuds.

Drought. A dominant feature of arid and semiarid land-

scapes is their short-term variability in rainfall. “Average” totals

mean little when the equivalent of 10 years’ “average” rainfall

might fall in a day, followed by 10 years of almost no rainfall.

Long-term climatic trends toward greater aridity simply mean

that extreme events, such as droughts, become more frequent

and severe. Reductions in rainfall across Asia between MIS 4

and MIS 2 would have led to an expansion of deserts and,

during periods of maximum aridity (as in the LGM), would

have created a largely continuous desert belt (“aridistan”) from

Arabia through Iran and Central Asia into North China

(Dennell 2009:256, 2013). Xiao et al. (1995) observed that, in

North China, the winter monsoon (denoting increased aridity)

peaked at 50 ka, 42 ka, and 30 ka. In southern Arabia, the

movement offshore of the Indian summer monsoon would

have made Arabia even drier than it is today (see Fleitmann

and Matter 2009; Fleitmann et al. 2011; Glennie and Singhvi

2002). In the desert belt from Central Asia to North China,

reduced rainfall would also have had two other undesirable

consequences.

Dust storms. Mahowald et al. (1999:15895) note that, in the

LGM, dust deposition in higher latitudes was up to 20 times

higher than at present due to stronger winds, an enlarged dust

area attributable to reduced vegetation and soil moisture, and

drier conditions that allowed dust to stay longer in the atmo-

sphere. For example, the Tajik loess records show an increase

in depositional rates from 12.1 cm/millennium at 250 ka but

20 cm/millennium thereafter (Yang and Ding 2006:336). Much

of that loess would have been transported and deposited

through dust storms. Typically, these mostly occur in spring,

but they can happen year round. Central Asia is especially

prone to dust storms. Orlovsky, Orlovsky, and Durdyev (2005)

observe that these occur approximately 67 days/year in the

Central Karakum desert of Turkmenistan and up to 146 days/

year in western Turkmenistan. For comparison, the maximum

frequency is 110 days/year in Mongolia, 102 days/year in

southwest Kazakhstan, but only 20–30 days/year in Inner

Mongolia (Wang 2004). The frequency, duration, and severity

of dust storms would have increased under the drier-than-

today conditions of MIS 4 and 3. Xiao et al. (1995:22) note

that the Chinese Loess Plateau record of the last 130 ka shows

“high-frequency, high amplitude variations . . . that imply rapid

and significant changes in atmospheric conditions that affect

dust transport and deposition.”

Dust storms can be extremely hazardous, especially if they

are long lasting. In 1910, one lasted 3 days in Turkmenistan

and destroyed or buried much of the vegetation: an estimated

29,000 out of 30,000 cattle died during the storm, and many

of those that initially survived the dust storm starved after-

ward (Orlovsky, Orlovsky, and Durdyev 2005:95). It can be

assumed that the frequency and severity of dust storms would

have increased during MIS 3 and especially MIS 2 and would

have made human dispersal and survival in Central Asia and

Mongolia especially hazardous, particularly if and when there

was no suitable shelter.

Dzuds. Dzuds occur when a summer drought is followed

by a harsh winter, usually with deep snow and abnormally

low temperatures, causing animals to die from starvation and

cold. They are a hazard particular to Mongolia but also occur

in parts of Central Asia and North China. Five types are

recognized (Begzsuren et al. 2004; Tachiiri et al. 2008). The

severest occur when a summer drought is followed by deep

snow (a white dzud); even worse is an iron dzud, when snow

melts but then refreezes, thus forming an iron-hard ice crust

over the surface that prevents animals from grazing. Live-

stock losses from dzuds in recent times have often been ca-

tastrophic for pastoral communities; for communities reliant

on hunting, a severe dzud would provide a short-term bonus

of frozen carcasses, but the hunting grounds would be de-

pleted of prey the following summer and thus would have to

be temporarily abandoned.

Colonizing Areas That Were Previously Barriers

As noted above, definitions of a barrier are dependent upon the

colonizing abilities of an invasive species. Regarding H. sapiens

in Asia, the Upper Pleistocene provides three examples of how
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improved human abilities as a colonizer enabled them to con-

vert a barrier into a corridor and resource zone.

Rainforests. The first were the rainforests of Sri Lanka and

mainland and island Southeast Asia, which do not appear to

have been occupied prior to the arrival of H. sapiens (see, e.g.,

Dennell 2014a, 2014b). Life in rainforests requires thorough

knowledge of an extensive array of plant resources; the ability

to hunt mammals, birds, and reptiles that live in dense veg-

etation or high in the tree canopy; and great skill at way-

finding. Sri Lanka currently has the earliest indisputable

evidence of human settlement in rainforests at ca. 36 ka

(Perara et al. 2011; Roberts et al. 2015). If Storm and col-

leagues (2005) are correct, humans were part of the Punung

Fauna in Java ca. 100–125 ka during MIS 5 along with sun

bear, orangutan, tapir, and other rainforest animals. Even if

the identification of the Punung molar as H. sapiens is am-

biguous (Polanski, Marsh, and Maddux 2016), the point still

remains that “the presence of H. sapiens in a rain forest en-

vironment is more likely than occupation of this habitat by

H. erectus” (Sémah and Sémah 2012:124). Evidence from

Niah Cave (Barker et al. 2007) also indicates the use of rain-

forest resources, although perhaps not as exclusively as in Sri

Lanka. The occupants of Niah inhabited a mosaic landscape

that included rainforest, and thus they hunted monkey as well

as pig and other animals. A Hoabinhian assemblage at Xiao-

dong, Yunnan Province, in Southwest China dated at 43.5 ka

may provide another example of an early adaptation to rain

forest. Pollen data indicate that the site was in rainforest, and

the faunal remains are consistent with that interpretation (Ji

et al. 2016). Isotopic analysis is needed to see whether these

early Hoabinhians were living in rainforest.

The sea. The second barrier that was overcome was the sea.

Previously, the only records of hominins crossing open sea

before MIS5 are from Flores, which was reached at 1.0 Ma

and 0.86 Ma, and Sulawesi, where hominins (type unknown)

were present between 100 ka and 200 ka (van den Bergh et al.

2016). As most researchers rule out navigable boats at this

time, the arrival of hominins on these islands may have been

inadvertent via rafts of vegetation after tsunamis or cyclones

(Dennell et al. 2013; Smith 2001). In the Upper Pleistocene,

East and Southeast Asia show remarkably early evidence for

the use of boats and/or rafts that could be steered. The ear-

liest evidence is from Callao Cave, in the Philippines, where

hominin remains (type unknown but possibly H. sapiens)

date from 67 ka (Mijares et al. 2010); Japan, colonized ca.

38 ka (and a major colonization event that deserves greater

attention by Western researchers; Izuho and Kaifu 2015);

Okinawa, from ca. 36 ka (Kaifu et al. 2015); Timor, from

42 ka (O’Connor, Ono, and Clarkson 2011); and, of course,

Sahel, with evidence from highland New Guinea by ca. 49 ka

(Summerhayes et al. 2010) and mainland Australia by ca. 50–

60 ka (Hiscock 2008; Roberts et al. 1994; Smith 2013). Timor

also shows evidence of pelagic fishing at 42 ka (O’Connor,

Ono, and Clarkson 2011); what had previously been a barrier

became not only a corridor but also a resource zone.

It has been proposed that humans dispersed across south-

ern Asia to Australia via a coastal route (Mellars 2006; Mellars

et al. 2013; Stringer 2000) and thus used a previously vacant (or

rarely used) niche as a major corridor. Because this hypothet-

ical dispersal occurred when sea levels were ∼50 m lower than

today (Mellars et al. 2013:10703), it is impossible to confirm or

refute this hypothesis. As seen below, it is at least as likely that

humans dispersed overland, particularly along river valleys or

between lake systems.

Subarctic and Arctic northern Eurasia. The recent discov-

ery that humans (possibly H. sapiens) were likely hunting

mammoth by the Arctic Ocean at 727N as early as 45 ka

(Pitulko et al. 2016) shows that they had learned how to

survive the extreme conditions of the Arctic, although it is

too early to say whether this discovery denotes a failed dis-

persal or a short but successful foray. At the Yana site (717N),

repeated visits involving hunting, butchering, and occupa-

tion over a 3,000-year period starting at ca. 32 ka indicate

unequivocally that humans (presumably H. sapiens) were

able to operate in extremely cold environments (see fig. 3;

Hoffecker et al. 2016; Nikolskiy and Pitulko 2013; Pitulko

et al. 2004, 2014) and this leads us to consider the survival

technologies that must have underpinned the colonization of

arctic northern Asia.

Survival technologies. These primarily involved ways of

being mobile over snow and ice and keeping warm, especially

in winter. The invention of skis, snowshoes, and/or sledges

would have enabled groups to move in winter across ice or

compacted snow as easily (and perhapsmore so) as across land

in summer. Sewn, insulated clothing and footwear made from

degreased and softened skins and furs would also have pro-

vided greater protection against the cold. The small toes of

the 40-kyr-old individual from Tianyuandong, North China,

provide a hint of what is currently the earliest indirect evidence

of the habitual use of footwear (Trinkaus and Shang 2008).

Additional requirements for survival in northern Eurasia

would have been goggles against the glare from snow and ice;

effective fire-lighting and food-storage techniques; effective

cordage for sewing, lashing, tying, and so on; reliable lamps for

coping with long winter nights; and well-constructed winter

residences. Shipman (2015) has also highlighted the impor-

tance of dog domestication, perhaps as early as 32 ka in Siberia

(Ovodov et al. 2011), in providing a hunting aid and potential

pack animal. If humans were able to be mobile in winter by

using improved methods of transport, they must also have

developed their cognitive skills in navigation by starlight, given

the short length of winter daylight at high latitudes. These and

other innovations may have made it possible for humans to

establish refugia in northern areas previously considered un-

inhabitable. (Nevertheless, Siberia was probably depopulated

during the LGM; Graf 2014.)
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Hunting technologies. Shea and Sisk (2010) have drawn

attention to the invention of stone-tipped projectiles in north-

east Africa during the African Middle Stone Age and their

subsequent use in the Levant. These, they argue, were a game-

changer, as a heavier projectile point would have greater pen-

etrating power and a more even flight, thus improving the

hunter’s aim and success rate. These, however, are little

evidenced outside the Levant, so they may have had only a re-

gional impact. Other innovationsmayhave occurred in hunting

technologies. For example, if the inhabitants at Niah Cave were

able to remove toxins from plants before eating them (Barker

et al. 2007), they may also have realized the value of adding tox-

ins to projectiles to impair their prey. For hunting animals like

monkeys in the tree canopy of Sri Lanka ca. 36 ka (Roberts et al.

2015), hunters may have relied upon bows and arrows or blow

pipes and darts. Pit traps were another innovation that cur-

rently appears unique to Japan anddates from38–35cal ka (Sato

2015). In northern latitudes, traps, snares, and nets for trapping

small, fur-bearing animals would have been another innova-

tion that provided furs for clothing and othermeans of keeping

warm in subfreezing temperatures (see Hoffecker 2005).

Biological Considerations: Dispersal and Invasion

Biological dispersal is a neutral term that refers to the expan-

sion of the range of a species into a new habitat. A biological

invasion denotes “any process of colonization and establish-

ment beyond a former range” (Davis 2009:3) but is often used

to refer to a dispersal that has negative consequences on either

indigenous species or humans. Because invasive species of

pathogens, insects, and plants often have major ecological or

economic costs, many invasion biologists concentrate on those

species deemed harmful to humans either directly (e.g., path-

ogens) or indirectly (e.g., crop pests). Here, humans are seen as

an invasive species, in that this species rapidly (relative to the

rest of the Pleistocene) spread across Eurasia and had negative

impacts on contemporary hominin species, all of which were

extinct by the end of the Pleistocene.

The history of “Out of Africa 2” can therefore be discussed

as a narrative about ourselves as an invasive species (see, e.g.,

Shipman 2015) or as a weed species that was able to flourish

in unstable environments (see, e.g., Cachel and Harris 1998).

Literature on the ecology of invasive species (e.g., Clobert

Figure 3. January average temperatures in northern Siberia and location of Yana and the Sopochnaya Karga mammoth site (SKMS).
Redrawn from the Encyclopedia of World Geography (1974).
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et al. 2013; MacDonald 2003; Shigesada and Kawasaki 1997)

often focuses on plants, insects, and small mammals, some-

times under laboratory or experimental conditions, and in-

evitably has a very short time-depth. This literature is thus

not directly applicable to the type of coarse data relating to a

large mammal such as H. sapiens, with a complex set of

behaviors and operating over timescales rarely shorter than

millennia. These studies are useful, however, as a source of

ideas on (i) the importance of the metapopulation as a de-

mographic unit; (ii) differential responses to differences in

resource availability; (iii) the effects of habitat loss and

fragmentation, especially at the edge of the inhabited range;

and (iv) competition with indigenous residents.

Populations and Metapopulations

A biological population is “all individuals of a given species in a

prescribed area” (MacDonald 2003:15). Depending upon the

choice of scale, this can be an individual settlement, a region, a

country, or a continent. In a colonizing situation, a newly ar-

rived population can expand radially outward by forming new

colonies: a classic example is the radial dispersal of the muskrat

from its point of introduction in Austria in 1905 (Elton 1958).

Species capable of long-distance dispersal tend to behave dif-

ferently in the way they colonize and subsequently use land-

scapes by forming a metapopulation, or “a group of spatially

separatedpopulations occupying anexus of favourable patches”

(Smith 2013:75). Those that interact infrequently are “loose

metapopulations”: an example is subpopulations of arctic foxes

inhabiting different islands. Others interact frequently and

form “tight metapopulations,” such as birds nesting and living

in different but nearby woodlands (MacDonald 2003:15). Un-

der circumstances where the human skeletal record is suffi-

ciently detailed, it may be possible to model tight metapop-

ulations as paleodemes (Howell 1999), thereby providing a way

of integrating human skeletal and archaeological data.

Humans are a prime example of a species that is extremely

good at forming tight metapopulations (or alliances or net-

works; see Spikins 2015) that maintain cohesion through kin-

ship, ideology, or other forms of corporate identity. Hunters

and foragers, for example, typically live in groups within an

area that maintain contact in order to share information, ex-

change and obtain scarce resources (such as furs, obsidian, or

ochre), and find mating partners (Wobst 1976). As is evident

from the distance over which items such as obsidian were ex-

changed in the late Paleolithic of East Asia (Ikeya 2015; Kuzmin

2006), these metapopulations could maintain contacts across

the sea and over distances of up to 1,000 km; other examples are

anthraxolite and amber at the Yana rhinoceros horn site that

came from 600 km away (Pitulko et al. 2014).

The behavior of metapopulations is crucial when consider-

ing colonization. First, “at any given latitude or effective tem-

perature the structure of the subsistence resource base can vary

widely in terms of predictability, patchiness and density in

space and time” (Ambrose and Lorenz 1990:9). Consequently,

dispersal into a diverse environment is more effective if these

differences are dealt with by a metapopulation formed of sev-

eral integrated groups rather than a single, nucleated popula-

tion. Second, dispersal takes place at the edge of the inhabited

range and thus in the least familiarized part of the landscape. A

metapopulation can move into new territory on a trial and

error basis, with “a group of spatially separated populations

occupying a nexus of favourable patches. During the dispersal

phase, demographic and environmental stochasticity eliminate

small populations in some patches, but these are recolonized by

immigrants from other nodes” (Smith 2013:75). One major

advantage of this pattern of dispersal is that a large area can be

occupied in a short space of time provided that groups main-

tain sufficient connectivity with each other to ensure that each

(ormost) survives. Smith (2013:75), for example, estimates that

the arid interior of Australia could have been occupied by only

25,000 people in 150 years, starting with a donor population of

∼500 that doubled every 25 years. Collectively, a species or-

ganized into metapopulations can also acquire far more

knowledge of their environment as an information network

than any group could obtain singly.

Sinks and Sources

The dynamics of metapopulations can also be modeled as

“sources and sinks” along the lines proposed by Eller, Hawks,

and Relethford (2004), Hawks (2009), and Pulliam (1988) and

developed in an early Paleolithic context byDennell, Martinón-

Torres, and Bermudez de Castro (2011) and Martinón-Torres

et al. (2016). To quote Hawks (2009), ‘‘a population sink is a

region where the average rate of reproduction is below re-

placement levels. This region can remain populated only if in-

dividuals migrate in from other places. The places that repro-

duce above replacement are called population sources.’’

At a continental scale, the main source populations are in

refugia. At a regional scale, source populations will tend to be

south of the northern limit of expansion and/or in areas where

resources are more abundant and predictable; new subunits of

a metapopulation would be created from members of a source

population. Population sinks would be at the limits of the

current range and/or in areas where resources are less abun-

dant and predictable. These groups within a metapopulation

would require the import of members from other groups, and

probably the import of mating partners, to remain viable (see

fig. 4). Demographic expansion thus depends greatly upon

(i) extinction rates in sink populations at the edge of the in-

habited range and (ii) the ability of themain source populations

to support sink populations, especially those at the edge of the

range. This becomes difficult when population densities are low

and intergroup distances are high.

Resource Variability

As Ambrose and Lorenz (1990) pointed out, the resources in

a landscape can vary enormously in terms of availability,
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predictability, and patchiness, and they require different re-

sponses from a colonizing metapopulation. With humans,

two broad strategies can be identified. Meltzer (2009:234–238)

has usefully developed Beaton’s (1991) categories of transient

explorers and estate settlers to suggest howNorth America was

colonized. He renames these as the cautious and the bold.

“Cautious” groups are ones that remain anchored to patches

of high year-round productivity. Over time, some may seek

similar locations nearby and develop those in turn, but gen-

erally, dispersal rates are slow; such groups “moved only slowly

across the latitudes and longitudes, each daughter colony be-

ing spawned by the overflow of a saturated estate” (Beaton

1991:220–221). An example in Asia of such a process might be

the Levant, with its rich coastal plain and inland lakes. Rather

than envisaging human settlement there after 100–125 ka as a

“failed dispersal” (Shea 2008), it might instead be an example

of how cautious colonizers made the most of a rich environ-

ment, beyondwhich resources in the deserts and semiarid plains

to the east were more scattered, harder to obtain, and a disin-

centive to dispersal.

“Bold” colonists are ones that move when productivity

declines. These colonists inhabit areas that will not support

long-term residence of the kind favored by cautious colonists,

so they have a high incentive to move, and especially to “jump”

across areas that are low in productivity (such as steppe or

deserts; see fig. 5a). During sudden environmental downturns,

for example, water resources might diminish and game be-

come less plentiful; onward movement to new areas thus be-

comes risky, but it is nevertheless less risky than clinging to a

declining resource base. Bold colonists tend to use mobility to

explore and become familiar with large areas (Veth 2005); as

an example, judging from where different types of stone were

obtained, the occupants of Puritjarra at 35 ka in western Aus-

tralia were probably familiar with ∼10,000 km2 of territory.

Bold colonists also have a characteristic method of expansion

“in which migrants generate new satellite colonies rather than

simply expanding the occupied area from its periphery” (Smith

2013:75). They thus form a metapopulation of spatially sepa-

rate groups, some of which may fail, but which can be replaced

by colonists. AnAsian examplemight be the colonization of the

North China Plain, where resources were scarce, winters harsh,

and few areas allowed intensive long-term occupation. Bold

colonists are also ones that seek out naive prey that is unfa-

miliar with humans and thus easier to hunt; when the animals

become more wary and vigilant, bold colonists will move to

new areas where the prey is naive (Dennell, forthcoming).1

It is here that the contrast between short-term visitors and

long-term residents (Dennell 2003) becomes important. In

areas where resources are subject to fluctuations in avail-

ability, settlement is likely to have been intermittent and con-

fined to moister and warmer intervals, punctuated by periods

of settlement contraction or even abandonment during cli-

matic downturns. In semiarid and arid areas where rainfall is

highly variable, settlement records are likely discontinuous, as

is also the case in high-latitude regions where winter temper-

Figure 4. The dynamics of source and sink populations. The solid
circles denote source metapopulations during cold periods when
populations contract into refugia; the dashed circles indicate in-
terglacial or interstadial conditions when expansion from them is
possible. Here, the bottom row indicates three metapopulations
in refugia; each is separated in glacial conditions, but in intergla-
cial conditions, metapopulations b and c overlap. The middle row
indicates how each expands in interglacial times and becomes a
source population: here, demes 2a and 2b overlap, but 2c (derived
originally from demes b and c) remains isolated. The top row in-
dicates sink populations at the maximum expansion during an
interglacial; here, metapopulation 3a (derived from 2a and 2b) is
isolated, but 3b and 3c overlap, although each has a different an-
cestry. These sink groups are highly vulnerable to short-term cli-
matic andmortality changes andwould probably need recruitment
from source populations farther south. Adapted from Dennell,
Martinón-Torres, and Castro (2011), figure 6.

1. Spikins (2015) points out that jump dispersals by bold colonists

may be forced rather than voluntary. In metapopulations with strict

norms of behavior, transgressors may be forcibly expelled. Although dif-

ficult to demonstrate from Paleolithic evidence, her suggestion is worth

noting when considering instances of short-term human presence in areas

such as off-shore islands or the Arctic that were far from the main areas of

settlement.
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atures are the key variable. Two related points are that the first

appearance of humans in these types of unstable environments

should not be mistaken for the onset of colonization: these

might indicate, in Shea’s (2008) words, a “failed dispersal” (or a

forced expulsion; Spikins 2015); and second, these areas are

demographic “sinks” that could only be sustained by being

replenished from an external source population in a refugium

(Dennell, Martinón-Torres, and Bermudez de Castro 2011).

Habitat loss and fragmentation. The dispersal of H. sapiens

into and across Asia began inMIS 5 and was completedmostly

in MIS 4 and 3, both of which experienced a considerable

degree of climatic and hence environmental change. The cli-

matic instability of MIS 3 has been identified as a major reason

why Neanderthals became extinct (see, e.g., d’Errico and

Sánchez Goñi 2003); by implication, H. sapiens was able to

better cope with such changes. The key factor here is how

humans responded to habitat disruption or, specifically, loss

and fragmentation.

Ecologists have paid considerable attention to the conse-

quences of climatic and environmental change on plant and

animal populations. Given current concerns over global warm-

ing, most of these studies consider the effects of increased

temperatures: Pleistocene researchers, of course, have to con-

sider also the consequences of climatic downturns involving

lower temperatures. Climatic changes involve habitat frag-

mentation and loss that is most keenly felt at the edges of the

inhabited range. Regarding habitat fragmentation, Baguette

et al. (2013:381) point out that “habitat fragmentation is an in-

herent consequence of habitat loss: the progressive disappear-

ance of a given habitat entails changes in both the area of

remnant fragments and their spatial configuration, with con-

sequences on the structural connectivity among remnants.”

They emphasize that, when suitable habitat has fallen to !40%

of its original extent, the distances between fragments suddenly

increase, with significant consequences: “By increasing the dis-

tance among such patches, landscape fragmentation is expected

to increase dispersal costs, including loss of time and energy and

the risk of getting lost” (Baguette et al. 2013:385). Dytham and

Travis (2013:400) stress that “it is not the loss of habitat per se

that is the most important element of fragmentation . . . it is

loss of ‘connectivity’ that can be crucial for the survival of a

species. This effect will be non-linear as there will be a threshold

of habitat loss thatwill break the connectivity of a region.”There

are clear implications here for the importance, for widely dis-

persed groups in a metapopulation, of maintaining connect-

edness when habitats become fragmented.

Because H. sapiens as a colonizing species invaded areas

containing indigenous resident populations, the crucial factors

are how each was able to respond most effectively to habitat

loss and fragmentation during climatic downturns, the op-

portunities offered by periods of climatic amelioration, and the

extent to which H. sapiens disrupted the connectivity of the

indigenous population. These points bring us to the subject of

competition with resident populations.

Competition with Resident Populations

Unlike H. sapiens in Australia and the Americas, H. sapiens

in Eurasia colonized a continent that was already occupied.

Figure 5. Three scenarios of colonizing metapopulations. a, Bold
colonization by jump dispersal. Here, some groups (black circles)
at the edge of a metapopulation take the risk of jumping across
an area of low productivity (e.g., a desert or open sea) to find a
better area than their present location. Although the risk of failure
is high, success means that a new region can be colonized by de-
scendant groups (white circles). b, Colonization and assimilation.
In this scenario, part of a metapopulation (A; black circles) begins
to invade an area occupied by a different type of hominin, shown
as MF, with M p males and F p females. The invasive meta-
population then proceeds to assimilate the females of reproductive
age (B), thus degrading the previous viability of the indigenous
population. This type of scenario is indicated by evidence of gene
flow from Neanderthals and Denisovans into Homo sapiens out-
side Africa and may also help explain the evidence for hybrid-
ization in the East Asian skeletal evidence for H. sapiens between
marine isotope stage (MIS) 5 and MIS 3. c, Colonization and pop-
ulation replacement. Here, ametapopulation (black circles) begins
to invade an area already occupied by other groups (open circles).
In B, the indigenous occupants are replaced. This process may
have been violent but may also have occurred because the incom-
ing population outcompeted the local population for key resources
and locations and destroyed their connectivity between groups.
This scenario is one explanation for the replacement of Neander-
thals by H. sapiens in western Eurasia.
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At the time of potential contact with H. sapiens (i.e., after

MIS 5), Neanderthals were resident in Southwest and Central

Asia, southern Siberia as far east as Okladinov Cave in the

Siberian Altai (Krause et al. 2007), and perhaps even farther

east. Homo erectus sensu stricto was present in China and per-

haps also Southeast Asia (although it may already have become

locally extinct by the time of contact), andHomo floresiensiswas

present onFlores, Indonesia, until 50 ka (Sutikna et al. 2016) and

perhaps was present on other islands in the region. Two un-

knowns are an unknown resident population in South Asia

that does not appear to have been H. erectus sensu stricto or

Homo heidelbergensis (Athreya 2007) and the “Denisovans,”

known only from the gene sequence extracted from a finger

phalanx and two teeth from Denisova Cave, in Siberia

(Krause et al. 2010; Reich et al. 2010; Sawyer et al. 2015), that

is also present in modern populations in Melanesia (Reich

et al. 2011) and Tibet (Huerta-Sánchez and Casey 2015).

Little is known about how incoming metapopulations

interacted with indigenous metapopulations across Asia at and

after contact. Some geneticists argue that there was inter-

breeding between H. sapiens, Neanderthals, and Denisovans.

As an example, Kuhlwilm and colleagues (2016:429) propose

that there was “admixture among archaic and modern human

populations, including gene flow from Neanderthals into

modern humans outside Africa, Denisovan gene flow into the

ancestors of present-day humans in Oceania and mainland

Asia, gene flow into the Denisovans from Neanderthals, and,

possibly, gene flow into the Denisovans from an unknown

archaic group that diverged from the other lineages more than

onemillion years ago.”Wemay never know the nature of these

encounters between H. sapiens and Neanderthals. However,

when looking at colonial and imperial history, sexual relations

between colonizer and colonized were overwhelmingly be-

tween European males and native females (see, e.g., Hyam

1991;Walter 2010). As a speculation, interbreeding betweenH.

sapiens and Neanderthals and Denisovans may also have been

largely between invasivemaleH. sapiens and indigenous female

Neanderthals and Denisovans (see fig. 5b).

The long-term consequences of these encounters may have

been negative (such as male hybrid infertility; Sankararaman

et al. 2014) or positive if leading to “hybrid vigor,” enhanced im-

munity (see Stewart and Stringer 2012), and the acquisition of

beneficial genes suchas those that facilitated life athighaltitudes

(Huerta-Sánchez and Casey 2015) or in cold environments.

At least four other scenarios of human-indigenous inter-

action can be envisaged: (1) taking over the indigenous species’

habitat by, for example, more effective hunting of prime

animals, preemptive use of key locations, and aggressive be-

havior toward the inhabitants (see fig. 5c); (2) coexisting but

with little interaction; (3) occupying parts of the landscape

(such as coastal regions) that were seldom used by indigenous

groups (see Shigesada and Kawasawki 1997:104); and (4) in-

troducing new diseases into Asia that were lethal to indigenous

residents (Bar-Yosef and Belfer-Cohen 2001), just as, in recent

times, smallpox decimated the indigenous Americans after

Spanish contact.

Discussion

As argued above, the colonization of continental and island

Asia by H. sapiens was likely a lengthy and complex process.

One key aspect that underpins this process—particularly the

colonization of the rainforest and the islands of South and

Southeast Asia and Japan as well as colonization of the Arctic,

Siberia, Central Asia, and North China, with their long sub-

freezing winters—is the importance of tight metapopulations

or networks. In other words, groups within a defined human

metapopulation were able to establish andmaintain social links

with each other and with other groups for sharing informa-

tion, exchanging valued items (e.g., obsidian, ivory, and furs),

obtaining mating partners, and maintaining genetic viability

through recruitment or assimilation. By 40 ka, it is probable

that such groups were defined and sustained by language, kin-

ship, and perhaps ideology. Tight metapopulations were highly

effective ways of colonizing new environments, particularly

those as challenging as Siberia, the Arctic, and rainforests.

“Modern” behavior is evidenced less by the type of artefact or

the evidence of symbolism as by the ability to operate as part

of a network with strong links between groups. “Trait lists”

(or “shopping lists”) of items of material culture deemed to

indicate “modern human behavior” are clearly inoperable in

Arabia, India, Southeast and Central Asia, China, and Aus-

tralia, although they have some utility in the Levant and parts

of Siberia. The underlying problem is that no single item or

group of items is both unique toH. sapiens and universal across

its range. A different perspective is acquired if one thinks of

mental technologies expressed in ways of maintaining con-

nectivity within networks over long distances, especially in

challenging environments. Colonization of new habitats (e.g.,

the rainforest and the Arctic) is probably one of the clearest

indicators of this type of mental technology, exhibited in solv-

ing problems and being adaptable. Homo sapiens may have

been simply better at maintaining tight metapopulations as an

invasive colonizing species than its predecessors.

As stated in the introduction of this paper, the intention here

is to focus on the process of human dispersal from Africa,

rather than on the outcome as a series of (often speculative)

arrows that show little more than some of the routes that may

have been taken and when these had been undertaken. The

constraints of landscape and climate, the behavioral thresholds

that were overcome in dispersal across Asia, or the likely be-

havior and impact of an invasive species have not been given

the attention they deserve. In a similar vein, insufficient at-

tention has been paid by Old World prehistorians to how

colonization has been treated by those researching the Amer-

icas or Australia. For example, the contrasts between cautious

and bold colonists or the importance of naive faunas are im-

portant themes that could be imported fromAmericanists, and

Australian notions of corridors, barriers, and refugia are sim-

ilarly capable of useful employment in discussions of the Asian

evidence. The literature on the biology of dispersal and inva-

sion also has great potential for investigating how H. sapiens

extended its range across the largest continent.
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The quality and quantity of archaeological and fossil skele-

tal data on the Asian story of “Out of Africa 2” is now far

outstripped by the quality and quantity of climatic and envi-

ronmental evidence on Asia during the last glacial cycle. This

presents obvious incentives to archaeologists to improve the

dating and calibration of their evidence, to venture beyond a

cultural approach based almost entirely on lithic evidence, and

to integrate their evidence with other disciplines. It is hoped

that this volume will mark an important step in this process.
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