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The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in

an incompressible boundary layer over a concave plate is studied theoretically and numerically.

Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-

frequency components are considered because they penetrate the most into the boundary layer. The

formation and development of the disturbances are governed by the nonlinear unsteady boundary-

region equations with the centrifugal force included. These equations are subject to appropriate initial

and outer boundary conditions, which account for the influence of the upstream and free-stream

forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing

effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in

the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different

free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude

of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth

with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu,

in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage

as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response.

Good quantitative agreement with data from direct numerical simulations and experiments is obtained.

Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to

attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-

Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms

in the streamwise momentum balance are mostly affected by the wall transpiration, thus offering

insight into the increased nonlinear growth of the wall-shear stress. Published by AIP Publishing.

https://doi.org/10.1063/1.4999993

I. INTRODUCTION

Görtler rolls are streamwise-oriented counter-rotating

vortices which develop in boundary layers over concave walls

and play a primary role in driving the laminar-to-turbulence

transition in many fluid flows of practical importance. In super-

critical laminar-flow-control airfoils (i.e., wings that are spe-

cially designed to delay the formation of shock waves in the

transonic-speed regime), transition may be triggered by cen-

trifugal instability occurring at the leading and trailing edges

of the lower surface.31 In turbomachinery, Görtler vortices

increase the heat transfer and the skin friction on the pressure

sides of turbine or compressor blades, thus critically affecting

the efficiency of the system.26,55 As Görtler instability devel-

ops in an open domain and is associated with a growing base

flow, nonparallel effects and the receptivity to external distur-

bances are of crucial importance. This was rigorously demon-

strated by Hall21 in 1983. Until then, all analyses neglected

the spatial evolution of the boundary layer and resorted to a

local eigenmode approach (refer to the work of Saric43 for an

a)Email: e.marensi@sheffield.ac.uk

exhaustive review). Instead, Görtler instability must be solved

as an initial-value problem.21

As for other types of boundary-layer instabilities, it is

desirable to devise efficient tools to control the amplification

of Görtler vortices with the aim of delaying or preventing

transition. An even more challenging problem is to include

the receptivity analysis in the design of laminar-flow con-

trol tools.25 In this paper, we provide a rigorous mathematical

formulation to predict the excitation of unsteady Görtler vor-

tices by free-stream vorticity and their downstream nonlinear

amplification. We also investigate the effectiveness of steady

wall transpiration for the attenuation of these boundary-layer

disturbances.

Despite experimental evidence of the influence of free-

stream vortical disturbances on Görtler instability,5,27,50 most

of the theoretical and numerical studies have so far focused

on the excitation of Görtler vortices by other types of external

agents, such as surface roughness (e.g., Bassom and Hall2 and

Denier et al.13) or wall transpiration (e.g., Bertolotti4 and De

Souza et al.12). These studies, as well as almost the entire avail-

able literature on the subject, are devoted to steady vortices

because these are the structures primarily observed in a labora-

tory (a noticeable exception is the experimental and numerical

1070-6631/2017/29(11)/114106/19/$30.00 29, 114106-1 Published by AIP Publishing.
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work by Boiko et al.,7 who considered unsteady vortices).

However, it has been conjectured that in real transition scenar-

ios, and especially in high turbulence environments which are

typical of flows over turbine blades, unsteady Görtler vortices

are likely to be at work.47 Both the influence of free-stream vor-

ticity and the role of unsteadiness are taken into account in the

present analysis. The excitation and nonlinear development of

the unsteady vortices are described using the rigorous asymp-

totic approach of the boundary-region equations conceived by

Goldstein and co-workers.28,59 As opposed to the optimal-

growth11,30 and the Orr-Sommerfeld46 approaches, the Gold-

stein theory consists of the appropriate initial (upstream) and

far-field boundary conditions which account for the interaction

between the free-stream disturbances and the boundary layer.

The reader is referred to the recent work by Ricco et al.42

for a detailed comparative discussion of these theories. Using

the boundary-region approach, Wu et al.58 investigated the

linear development of unsteady Görtler vortices forced by free-

stream perturbations and showed that, for curved plates, the

streamwise streaks (or Klebanoff modes) may grow exponen-

tially and evolve into Görtler modes further downstream. Ricco

et al.40 studied the nonlinear evolution of laminar streaks in

the boundary layer over a flat plate subject to free-stream vor-

ticity. They showed that nonlinearity has a stabilizing effect

on the streaks and generates a significant distortion of the

mean profile. The problem formulated by Ricco et al.40 is

extended herein to account for centrifugal forces provoked by

the concavity of the wall.

A. Nonlinear effects and secondary instability

Görtler vortices themselves do not lead to transition.51

Instead, due to the upwelling of the low-momentum fluid

away from the wall and downwelling of the high-momentum

fluid towards the wall (i.e., the so-called lift-up effect), elon-

gated low-speed and high-speed regions are generated between

the vortices, which results in highly distorted velocity pro-

files. Further downstream, these low-high momentum dis-

tributions yield mushroom-like structures of the streamwise

velocity iso-contours in cross-flow planes. Swearingen and

Blackwelder51 identified two types of secondary-instability

modes responsible for the laminar breakdown: sinuous modes,

driven by unstable inflectional spanwise profiles, and vari-

cose modes, associated with instability in the inflectional

normal profiles. The former was found to be the most pre-

ferred mechanism of transition (refer also to the experiments of

Tandiono et al.53,54).

The nonlinear development of steady Görtler vortices

was studied numerically by Hall,22,23 Benmalek and Saric,3

and Souza.49 After a relatively short linear regime, the dis-

turbance energy was found to saturate and highly distorted

profiles were detected. The existence of sinuous and vari-

cose modes was confirmed by secondary instability calcu-

lations,24,29 which clarified the relative importance of these

two types of instability in the transition process. All these

calculations were performed for steady Görtler vortices. In

their DNS of unsteady Görtler flows induced by broadband

free-stream turbulence, Schrader et al.46 showed that the tran-

sition process over a curved plate is similar to that occurring

over a flat plate, although in the latter case the breakdown

to turbulence occurred further downstream than in a Görtler

flow.

B. Control via wall transpiration

The use of wall transpiration as a flow-control technique

in flat-plate boundary layers has been widely studied and

is known to be effective in attenuating the growth of pre-

transitional disturbances such as Klebanoff modes (refer, for

example, to the experiments of Yoshioka et al.60 and to the

theoretical studies based on the boundary-region approach by

Ricco and Dilib39 and Ricco et al.41) and Tollmien-Schlichting

(T-S) waves.6 The effect of suction on the Görtler instability

is instead still a relatively unexplored subject. Floryan and

Saric18 formulated a stability analysis using self-similar suc-

tion profiles as a base flow and found that Görtler vortices

are stabilized in both cases although a larger level of suction

is required as compared to the T-S wave case. Myose and

Blackwelder33 performed a series of experiments introduc-

ing localized suction slots underneath the low-speed regions

between counter-rotating vortex pairs and showed that a much

lower level of suction was required to delay the laminar break-

down with this method as compared to an asymptotic suction

profile approach. However, the high levels of suction rate

created an additional spanwise instability which led to pre-

mature transition. Optimal control techniques were employed

by Balakumar and Hall,1 Cathalifaud and Luchini,10 and

Papadakis et al.34 to determine the optimal distribution of

the wall transpiration to minimize the growth rate of bound-

ary layer disturbances under certain constraints on the suction

and blowing amplitude. They were able to achieve a signif-

icant attenuation of the disturbance energy using either suc-

tion or blowing of small amplitude. A proportional control

algorithm was developed by Sescu et al.48 to control Görtler

instabilities by means of wall deformations or wall transpi-

ration. The former method was found to be more efficient in

minimizing the energy associated with the unsteady Görtler

vortices. Steady spanwise-uniform and spanwise-modulated

zero-mass-flow-rate wall transpiration is used in the present

analysis to attenuate the growth of Görtler vortices.

C. Objectives

The first goal of the present work is to predict, through a

rigorous mathematical formulation, the generation of unsteady

Görtler vortices by free-stream vortical disturbances, their

downstream amplification, and nonlinear evolution. Although

the nonlinear evolution of Görtler vortices has been investi-

gated by a number of researchers,3,22 these studies are con-

cerned with steady vortices. A further objective is to attenuate

the growth of the nonlinear vortices by steady wall transpi-

ration. We also analyze the change of wall friction through a

modified version of the Fukagata-Iwamoto-Kasagi (FIK) iden-

tity,19 which is typically used to study fully developed turbulent

flows. This novel integral relation is employed on a transitional

flow for the first time.

It should be noted that during the final stages of writ-

ing, results on the excitation of Görtler vortices by free-stream

vorticity have been published.14,15 Although the mathemat-

ical formulation of Dongdong et al.14 is very similar to

ours, an important difference resides in our paper presenting
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wall-based control results, while the work of Dongdong et al.14

focused on the secondary instability of the vortices. Dongdong

et al.14 mainly studied steady Görtler vortices, whereas our

main objective has been to characterize the unsteady nonlin-

ear Görtler instability thoroughly by carrying out a complete

parametric study. Furthermore, our chosen set of experimental

data used for comparison is different from that of Dongdong

et al.,14 and for the first time, our study employs a variant of

the FIK identity to investigate a transitional boundary layer. A

distinct feature of our integral identity with respect to the anal-

ogous equation for open turbulent boundary layers, derived

in the original FIK publication,19 is the use of the asymptot-

ically large upper limit of the integral along the wall-normal

direction, which simplifies the relation and renders it more gen-

eral. In the original FIK identity for free-stream wall-bounded

flows, this upper limit is instead fixed to the boundary-layer

thickness.

II. MATHEMATICAL FORMULATION AND NUMERICAL
PROCEDURES

An incompressible boundary-layer flow over a longitu-

dinally concave wall with constant radius of curvature r∗
0

is

considered (hereinafter the superscript ∗ indicates dimensional

quantities). The boundary layer is generated by a uniform flow

of velocity U∗∞ perturbed by unsteady convected-gust vorti-

cal fluctuations encountering the infinitely thin curved plate.

Spanwise-uniform and spanwise-distributed wall transpiration

is applied to inhibit the boundary-layer disturbances. Figure 1

shows a schematic of the flow domain.

The flow is described in an orthogonal curvilinear coor-

dinate system {x∗, y∗, z∗}, where x∗, y∗, and z∗ represent the

streamwise, wall-normal, and spanwise coordinates, respec-

tively. The problem is formulated by introducing a suitable

reference length scale λ∗, which we shall define below, and

by scaling the velocity components by U∗∞. The time t∗ and

the pressure p∗ are scaled by λ∗/U∗∞ and ρ∗U∗2∞ , respectively,

where ρ∗ is the density of the fluid.

Although free-stream turbulence should, in general, be

modeled as a continuous spectrum of modes,61 we consider

the simplified case where the boundary layer is forced only by

a pair of vortical modes. Following Ricco et al.,40 the forcing

modes are characterized by the same frequency f ∗ (and hence

streamwise wavenumber k∗x ) but opposite spanwise wavenum-

ber ±k∗z . The free-stream disturbance u
∗∞ is passively advected

by U∗∞ and is written as

u∞(x − t, y, z) = ǫ
(
û
∞
+ eikzz + û

∞
− e−ikzz

)
eikx(x−t)+ikyy + c.c.,

where û
∞± = {û∞x,±, û∞y,±, û∞z,±} = O(1), ǫ ≪ 1, indicates the

amplitude of the oncoming disturbance, and c.c. denotes the

complex conjugate. The continuity equation must be satisfied

in the free stream, i.e.,

kxû∞x,± + kyû∞y,± ± kzû
∞
z,± = 0. (1)

A convenient choice for the reference length scale is

λ∗ = λ∗z/(2π) = 1/k∗z ,32 where λ∗z is the spanwise wave-

length of the free-stream perturbation. It follows that kz = 1,

but, for clarity, the dependence on kz will be expressed

explicitly henceforth. The Reynolds number is defined as

Rλ ≡ U∗∞λ∗/ν∗ ≫ 1, where ν∗ is the kinematic viscosity of

the fluid.

Attention is focused on the components of the free-stream

perturbation with long streamwise wavelengths λ∗x ≫ λ∗z ,

that is, kx ≪ 1. In the flat plate case, experiments have con-

firmed that these low-frequency components can penetrate

into the boundary layer to generate Klebanoff modes. Wu

et al.58 showed that Klebanoff modes over concave plates may

develop into Görtler vortices at x∗ = O(λ∗x) after reaching their

maximum amplitude. Therefore, the slow streamwise distance

x̄ = kxx = O(1) and the slow time t̄ = kxt =O(1) are introduced.

The local boundary-layer thickness δ∗ becomes comparable

with λ∗ when x = O(Rλ). At these locations, viscous diffusion

effects in the spanwise and wall-normal directions are compa-

rable. As x̄ =O(1), it follows that kxRλ = O(1) or, equivalently,

κz ≡ kz/
√

kxRλ = O(1).

A. Governing equations

We derive the governing equations from the full

incompressible Navier-Stokes equations written in curvilin-

ear coordinates with Lamé coefficients17 h1 = (r0 � y)/r0

and h2 = h3 = 1. The velocity field is rescaled as

{u, v , w} = {ũ,
√

kx/Rλ ṽ , kx w̃} and the pressure as p = kxp̃/Rλ.

By performing the change of variable (x, t) → (x̄, t̄) and tak-

ing the limits k−1
x , Rλ → ∞ with kxRλ = O(1), we obtain the

following leading-order equations:

FIG. 1. Sketch of the flow domain for the case of steady

spanwise-modulated wall transpiration.
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∂ũ

∂x̄
+
κz

kz

∂ṽ

∂y
+
∂w̃

∂z
= 0, (2a)

∂ũ

∂ t̄
+ ũ
∂ũ

∂x̄
+
κz

kz

ṽ
∂ũ

∂y
+ w̃
∂ũ

∂z
=

κ2z

k2
z

(
∂2ũ

∂y2
+
∂2ũ

∂z2

)
, (2b)

∂ṽ

∂ t̄
+ ũ
∂ṽ

∂x̄
+
κz

kz

ṽ
∂ṽ

∂y
+ w̃
∂ṽ

∂z
+Gũ2

=

κ2z

k2
z

(
− ∂p̃

∂y
+
∂2 ṽ

∂y2
+
∂2 ṽ

∂z2

)
,

(2c)

∂w̃

∂ t̄
+ ũ
∂w̃

∂x̄
+
κz

kz

ṽ
∂w̃

∂y
+ w̃
∂w̃

∂z
=

κ2z

k2
z

(
− ∂p̃

∂z
+
∂2w̃

∂y2
+
∂2w̃

∂z2

)
,

(2d)

where

G ≡ R
1/2
λ

k
3/2
x r0

= O(1) (3)

is the Görtler number, which accounts for the centrifugal

effects. The Görtler number is well defined as we only con-

sider unsteady disturbances (kx , 0). The radius of curvature

r∗
0

is assumed to be much larger than the spanwise wavelength

λ∗z , i.e., r0 = O
(
R

1/2
λ
/k

3/2
x

)
≫ 1. We express the boundary-

layer solution as a superimposition of the disturbance gen-

erated by the free-stream perturbation onto the Blasius flow,

namely,

{ũ, ṽ , w̃, p̃} =
{

F ′,
ηF ′ − F√

2x̄
, 0,−1

2

}
+ rt

{
ū (x̄, η, z, t̄) ,

√
2x̄v̄(x̄, η, z, t̄), k−1

z w̄(x̄, η, z, t̄), p̄ (x̄, η, z, t̄)
}
,

(4)

where F(η) is the Blasius solution,40 η ≡ y
√

kxRλ/2x̄ is

the similarity variable, and rt ≡ ǫRλ = O(1) is the turbu-

lent Reynolds number. Unless otherwise specified, henceforth

the prime indicates the derivative with respect to η. The

disturbance is expressed as a Fourier series in time and z,

{ū, v̄ , w̄, p̄} =
∞∑

m,n=−∞

{
ûm,n, v̂m,n, ŵm,n, p̂m,n

}
eimt̄+inkzz, (5)

where
{
ûm,n, v̂m,n, ŵm,n, p̂m,n

}
are functions of x̄ and η. As

{ū, v̄ , w̄, p̄} are real, the Hermitian property applies to the

Fourier coefficients, i.e., ûm,n = û⋆−m,−n, where the superscript
⋆ indicates the complex conjugate. By substituting (4) and (5)

into (2) and using the change of variable (x̄, y) → (x̄, η(x̄, y)),

the nonlinear boundary-region equations are derived:

continuity:

∂ûm,n

∂x̄
− η

2x̄

∂ûm,n

∂η
+
∂v̂m,n

∂η
+ inŵm,n = 0, (6)

x-momentum:
(
im − ηF

′′

2x̄
+ κ2z n2

)
ûm,n + F ′

∂ûm,n

∂x̄
− F

2x̄

∂ûm,n

∂η

− 1

2x̄

∂2ûm,n

∂η2
+ F ′′v̂m,n = rtX̂m,n, (7)

y-momentum:
(
F − ηF ′ − η2F ′′

4x̄2
+

2GF ′√
2x̄

)
ûm,n +

(
im +

ηF ′′

2x̄
+

F ′

2x̄
+ κ2z n2

)
v̂m,n

+ F ′
∂v̂m,n

∂x̄
− F

2x̄

∂v̂m,n

∂η
− 1

2x̄

∂2 v̂m,n

∂η2
+

1

2x̄

∂p̂m,n

∂η
= rtŶm,n,

(8)

z-momentum:

(
im + n2κ2z

)
ŵm,n + F ′

∂ŵm,n

∂x̄
− F

2x̄

∂ŵm,n

∂η

− 1

2x̄

∂2ŵm,n

∂η2
+ inκ2z p̂m,n = rtẐm,n, (9)

where X̂m,n, Ŷm,n, and Ẑm,n represent the nonlinear terms

X̂m,n =

[
−∂̂̄uū

∂x̄
+
η

2x̄

∂̂̄uū

∂η
− ∂ ̂̄uv̄
∂η
− ni ̂̄uw̄]

m,n

,

Ŷm,n =

[
− ̂̄uv̄

2x̄
− ∂ ̂̄uv̄
∂x̄

+
η

2x̄

∂ ̂̄uv̄
∂η
− ∂ ̂̄uv̄
∂η
−ni ̂̄v w̄− G√

2x̄
̂̄uū

]
m,n

,

Ẑm,n =

[
−∂ ̂̄uw̄
∂x̄

+
η

2x̄

∂ ̂̄uw̄
∂η
− ∂ ̂̄v w̄
∂η
− ni ̂̄ww̄]

m,n

.

In the limit G → 0, the nonlinear unsteady boundary-region

equations of Ricco et al.40 are recovered. By rescaling the

velocity and pressure fields as

{ū, v̄ , w̄, p̄} =
{
u†(x̂, η), k̂−1

x v
†(x̂, η), k̂−1

x w
†(x̂, η), k̂−1

x p†(x̂, η)
}
,

(10)

where k̂x = kxRλ and x̂ = x̄/k̂x = x/Rλ, the linear parts of

(6)–(9) can be recast into Eqs. (2.15)–(2.18) in the work of

Wu et al.58 and the definition of the Görtler number adopted

by Wu et al.,58 i.e., Gλ = R2
λ
/r0 = O(1), is found.

B. The upstream, free-stream, and wall
boundary conditions

Appropriate upstream, free-stream (outer), and wall

boundary conditions are needed to solve Eqs. (6)–(9). The

outer boundary conditions are derived by matching the

boundary-layer solution with the free-stream solution as

η →∞. At x̄ = O(1), the outer flow is influenced at the lead-

ing order by the displacement effect due to the presence of

the viscous layer. In addition to the three-dimensional vorti-

cal gust advected from upstream, the disturbance in the outer

region includes a two-dimensional irrotational perturbation.

The latter is induced by the additional displacement effect due

to the nonlinear boundary-layer interactions. As in the work

of Ricco et al.,40 far from the plate, the streamwise velocity

component does not force the boundary-layer perturbations at

leading order and therefore ûm ,n → 0 as η → ∞. It follows

that the centrifugal effects are negligible in the free stream

because the terms containing G in Eq. (8) are proportional to

the streamwise velocity. The outer boundary conditions are

thus the same as those in the work of Ricco et al.,40 namely,

{
ûm,n, v̂m,n, ŵm,n, p̂m,n

}→
0,

κz

kz

√
2x̄
v†m,n,

κ2z

kz

w†m,n, rt

(
κz

kz

)2

p†m,n


(11)
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as η →∞ for x̄ = O(1), with

v
†
m,±1
= − κz
κy

e−(κ2
y +κ2

z )x̄
[
φ̂me−i(x̄+κy

√
2x̄η) + φ̂⋆−mei(x̄+κy

√
2x̄η)

]
,

w
†
m,±1
= ±e−(κ2

y +κ2
z )x̄

[
φ̂me−i(x̄+κy

√
2x̄η) − φ̂⋆−mei(x̄+κy

√
2x̄η)

]
,

p
†
0,±2
= 2e−2(κ2

y +κ2
z )x̄,

p
†
m,0
= −2κ2z

κ2y
e−2(κ2

y +κ2
z )x̄

[
π̂me−2i(x̄+κy

√
2x̄η) + π̂⋆−me2i(x̄+κy

√
2x̄η)

]
,

where κy ≡ ky/
√

kxRλ = O(1), v
†
m,n = w

†
m,n = 0 if n , ±1, and

p
†
m,n = 0 if n, 0,±2. The coefficients φ̂m and π̂m are found in the

work of Ricco et al.40 [refer to their Eq. (2.26)] and depend on

the boundary-layer displacement thickness. The condition on

v̂m,n in (11) is valid only when n , 0. In the spanwise-averaged

case (n = 0), the pressure only appears in the y-momentum

equation and the velocity components are thus calculated by

only solving the continuity, x-momentum, and z-momentum

equations (refer also to the work of Marensi,32 p. 56).

Equations (6)–(9) are parabolic in the streamwise direc-

tion and are subject to initial conditions for x̄ → 0. Since

ū → 0 as x̄ → 0, the centrifugal terms are negligible in this

limit. The velocity fluctuations are thus of small amplitude and

evolve linearly near the leading edge. Therefore, we recover

the initial conditions of Leib et al.,28 namely,

{û, v̂ , ŵ, p̂}−1,±1→
iκ2z

kz

*..,
±û∞z,± +

ikz√
k2

x + k2
z

û∞y,±
+//-
{Uin, Vin,∓iWin}

(12)

as x̄ → 0, where {Uin, Vin, Win} are given by the right-hand

sides of Eqs. (5.25)–(5.27) in the work of Leib et al.28 The

velocity fluctuations of all the other harmonics generated by

the nonlinear interactions are imposed to vanish upstream.

The same upstream conditions have been employed in the

linear case of Wu et al.58

Steady wall transpiration is applied on the spanwise-

averaged mode and on the first four spanwise harmonics,

namely, v̂0,n(η=0) = Aw , where n ∈ Z: 0 ≤ n ≤ 4, and Aw is

the amplitude of the wall transpiration. Note that the physical

amplitude of the wall-transpiration grows with
√

2x̄ because

of the definition of wall-normal velocity adopted in (4).

The no-slip condition is imposed on the wall-normal veloc-

ity component of the other modes and on the streamwise and

spanwise velocity components. Our wall-based forcing strat-

egy bears analogy with the method devised experimentally

by Saric et al.44,45 and studied numerically by Wassermann

and Kloker56 to delay the downstream occurrence of the

secondary instability of cross-flow vortices. Small artificial

roughness elements are placed near the leading edge to trigger

steady spanwise-modulated vortices with a spanwise wave-

length which is shorter than the one of the fundamental

mode, similar to our case for modes with n = 2, 3, 4. The

main difference is that our control approach is active as

energy is fed into the system, while the method of Saric

and co-workers44,45 is passive as it involves a geometrical

modification.

C. Integral relation for the wall-shear stress

In this section, we present an explicit relation between the

increase of the wall-shear stress due to nonlinear effects and

wall-normal integrals of terms appearing in the streamwise

momentum equation (7). This equation is obtained by follow-

ing the procedure first proposed by Fukagata et al.,19 whose

identity has been used widely to investigate how the turbulent

skin-friction coefficient can be modified by manipulation of

the Reynolds stresses. In our Görtler-flow case, the increase of

wall-shear stress with respect to the Blasius nominal value is

expressed as follows:

τ0,0
w (x) ≡ ∂û0,0

∂η

�����η=0

≡
5∑

i=1

M̃i ≡
5∑

i=1

∫ ∞
0

Midη

=

∞∫
0

[ (
ηF ′′ − F ′

)
û0,0︸              ︷︷              ︸

M1

−2xF ′
∂û0,0

∂x︸         ︷︷         ︸
M2

−2xF ′′v̂0,0︸      ︷︷      ︸
M3

−2xrt

∂ûu

∂x

������0,0︸           ︷︷           ︸
M4

−rt ûu
���0,0︸     ︷︷     ︸

M5

]
dη. (13)

Two important differences between (13) and Eq. (15) in the

work of Fukagata et al.19 can be noted. The upper limit of

the integral in (13) is arbitrarily large and therefore the iden-

tity is not linked to any specific definition of the boundary-

layer thickness, while the integration of Fukagata et al.19

extends to y∗ = δ∗
99

, i.e., to the wall-normal location where

the mean streamwise velocity equals 0.99U∗∞. Furthermore,

the Reynolds stresses ̂̄uv̄ |0,0 vanish in our case, whereas they

appear in the equations of Fukagata et al.19 for both confined

turbulent channel flows and open turbulent boundary layers.

The derivation of relation (13) is found in the Appendix.

D. Numerical procedures

A detailed description of the numerical procedure is

found in the work of Marensi.32 Equations (6)–(9) with far-

field boundary conditions (11) and initial conditions (12) are

solved by a marching procedure in x̄, which is based on a

second-order finite-difference scheme. The typical grid sizes

in the wall-normal and streamwise directions are ∆η = 0.03

and ∆x̄ = 0.01, and the wall-normal domain extends to

ηmax = 60. A predictor-corrector algorithm is employed to inte-

grate the nonlinear equations, where the nonlinear terms are
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TABLE I. Parameters from the experiments of Boiko et al.7 The selected cases correspond to Fb ≡ 2πf ∗ν∗/U∗2∞ ×
106 = 5.67 (case 1) and 12.48 (case 2) in the work of Boiko et al.7

Case U∗∞ (m s�1) λ∗z (m) × 103 r∗
0

(m) f ∗ (Hz) λ∗x (m) Rλ Gλ k̂x kx × 103 κz G

1 9.18 8 8.37 5 1.84 767 89.5 3.336 4.35 0.547 14.7

2 9.18 8 8.37 11 0.83 767 89.5 7.342 9.57 0.369 4.5

calculated at each iteration using the pseudo-spectral method.9

A number of modes, N t = N z = 37, are needed to capture the

nonlinear effects. Careful resolution checks have been carried

out to verify that the spectral truncation does not affect the

flow dynamics. Due to the rapid growth of the Görtler vor-

tices, under-relaxation is employed to aid the convergence of

the algorithm.37 Depending on rt , an under-relaxation factor

between 0.6 and 0.8 is chosen. In the linearized case, the code

has been validated against the results of Wu et al.58 (refer to

Appendix E in the work of Marensi32).

The initial conditions (12) for the wall-normal and span-

wise velocity components contain a term proportional to

exp
[
−|κz |(2x̄)1/2η

]
, which represents a disturbance reflected

by the wall. The mixed boundary conditions (5.28)–(5.31) in

the work of Leib et al.28 accommodate the wall-normal decay

of this reflected disturbance. The Dirichlet conditions (11) are

consistent with the initial conditions (12) if |κz |(2x̄)1/2η ≫ 1,

i.e., when the reflected disturbance is negligible. A switch

between mixed and Dirichlet boundary conditions in the

numerical solution assures that the overlapping condition

η ≫ 1/
[
|κz |(2x̄)1/2

]
is satisfied at small x̄ without the

need of an excessively large ηmax.40 In Appendix D of the

work of Marensi,32 the far-field conditions derived by Leib

et al.28 and Ricco et al.40 are shown to be consistent as they

both match asymptotically onto the oncoming free-stream

disturbance.

III. RESULTS

We select the flow parameters for our numerical simula-

tions to correspond to those in the experiments of Boiko et al.7

(refer to Table I). Unless otherwise stated, û∞x,± = û∞y,± = 1 and

û∞z,± = ∓1. The continuity relation (1) thus becomes kx + ky = 1

and the turbulence level, defined as the root mean square

(r.m.s. hereinafter) of the free-stream streamwise velocity, is

Tu(%) = 100×2ǫ
√

(û∞x,+)2 + (û∞x,−)2 = 100×2
√

2ǫ . Boiko et al.7

carried out their experiments at very low disturbance levels to

guarantee a linear dynamics. We start from this weak free-

stream disturbance case and gradually increase Tu(%) to

investigate the nonlinear dynamics of the unsteady Görtler

vortices.

A. Effect of turbulence level

The intensity of the boundary-layer perturbation is mea-

sured by the r.m.s. of the streamwise velocity disturbance,

defined as36

urms ≡ rt

√√√√√ N̄t∑

m=−N̄t

N̄z∑

n=−N̄z

|ûm,n |2, m , 0,

where N̄t,z = (Nt,z−1)/2. Figure 2 (left) shows the downstream

evolution of urms,max(x̄) ≡ maxη urms(x̄, η) for the parame-

ters of case 1 at low free-stream turbulence intensities, i.e.,

rt = 0.001, 0.01, 0.1. The nonlinear solutions and the corre-

sponding linearized solutions overlap for a significant down-

stream distance from the leading edge. Görtler vortices

undergo exponential growth during their linear development.

Due to the intense amplification of the perturbation, nonlinear-

ity comes into play abruptly to inhibit the velocity fluctuations

and to cause a sharp deviation of the nonlinear solutions from

the linear ones. These effects are enhanced for higher turbu-

lence Reynolds numbers. The stabilizing effect of nonlinearity

was already noticed by Ricco et al.40 for Klebanoff modes

developing over a flat plate and by Hall22 for steady Görtler

vortices over a concave wall. Sufficiently downstream, the

nonlinear solutions generated at different rt saturate at the

same amplitude, decreasing very slowly. Hall22 conjectured

that since the effective spanwise wavenumber is large at a large

distance from the leading edge, the small-wavelength asymp-

totic theory of Hall20 holds, i.e., there exists a unique solution,

independent of the initial amplitude of the perturbation. This

behavior was not observed in the flat-plate case of Ricco et al.40

FIG. 2. Effect of low free-stream turbulence intensity on

the downstream development of urms�max (left) and its

associated wall-normal peak ηrms ,max (right): rt = 0.001

(solid line), 0.01 (dashed-dotted line), 0.1 (dashed line)

for G = 14.7 and kx = 0.004 35 (refer to case 1 in Table I).

The thin/thick curves indicate the linearized/nonlinear

solutions. In the right graph, the discontinuity of the

curve for the case rt = 0.01 (dashed-dotted line) is due to

the presence of two peaks in the wall-normal profile of

urms�max .
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FIG. 3. Effect of high free-stream turbulence intensity

on the downstream development of urms�max (left) and its

associated wall-normal peak ηrms ,max (right): rt = 1.34

(solid line) and rt = 5.36 (dashed line) for G = 4.5 and

kx = 0.009 57 (refer to case 2 in Table I). The thin/thick

curves indicate the linearized/nonlinear solutions.

The downstream evolution of the wall-normal position

ηrms ,max, i.e., the location where the maximum of the stream-

wise velocity r.m.s. occurs, is displayed in Fig. 2 (right). In

the linear case, ηrms ,max decreases monotonically from 1.64 as

the streamwise distance increases. At downstream locations

where nonlinearity first exerts its influence, a rapid shift of

ηrms ,max towards the free stream is observed. At downstream

locations where the intensity of the Görtler vortices is indepen-

dent of the free-stream forcing amplitude, ηrms ,max decreases

to approximately 0.5. Therefore, the saturated boundary-layer

perturbations concentrate in a region close to the wall. This

rapid wallward shift of the vortices is not observed in other non-

linear analyses of either unsteady laminar streaks40 or steady

Görtler vortices.22

We now turn our attention to free-stream perturbations

with rt > 1, i.e., at least one order of magnitude more intense

than the largest rt case in Fig. 2. The range of Tu(%) is typical

of turbomachinery systems. The other parameters correspond

to case 2 in Table I. Figure 3 (left) shows the downstream

amplification of urms�max for Tu = 0.5% and 2% (rt = 1.34 and

5.36). Even for a relatively low Görtler number, the nonlin-

ear interactions are very strong and their influence becomes

evident at short distances from the leading edge. For simi-

lar turbulence levels, the nonlinear effects on the Klebanoff

modes over a flat plate are very weak [refer to Fig. 2(a) in

the work of Ricco et al.40]. Furthermore, at these elevated

turbulence intensities, the Görtler vortices do not exhibit a

quasi-exponential growth because nonlinearity saturates them

rapidly.

The downstream evolution of ηrms ,max is shown in Fig. 3

(right). Different from the low-rt cases in Fig. 2 (right), the

wall-normal peak of urms ,max deviates from the linear one

just downstream of the leading edge and continuously moves

towards the wall as x̄ increases. No overlapping with the

linear curve is detected, even at downstream locations where

the nonlinear development of urms ,max is indistinguishable

from the linearized approximation, i.e., x̄ = 0.3 for rt = 5.36.

Hence, in enhanced disturbance environments, the nonlinear

effects are revealed first as a wallward shift of the maxi-

mum disturbance and, further downstream, as saturation of

the boundary-layer fluctuations.

Figure 4 shows the downstream amplification of the

maximum energy associated with each mode, i.e.,

Em,n(x̄) = rt max
η
|ûm,n(x̄, η)|2, (14)

for the case with rt = 0.01. Only the streamwise component of

the disturbance velocity is included in (14) as it is much larger

than the wall-normal and spanwise components. The forced

mode (1, 1) is dominant for x̄ < 5, but all the other harmonics

amplify more rapidly than the forced mode. Further down-

stream, the mean-flow distortion, i.e., the mode (0, 0), becomes

one order of magnitude more intense than the mode (1, 1)

and the second unsteady harmonic (2, 0) becomes comparable

with the forced mode. The other harmonics instead remain of

smaller amplitude. The energy of the steady mode (0, 2), shown

in Fig. 4 (right), is about one order of magnitude lower than that

of the forced mode (1, 1) and the nonlinearly generated mode

(2, 0). The mode (0, 2) is the most intense steady spanwise-

modulated disturbance produced by nonlinearity, and it can

reach amplitudes comparable with or even larger than the

forced mode for higher rt , therefore rendering the vortices

almost steady as shown by Dongdong et al.15 At x̄ ≈ 6, the

disturbance energy saturates. For steady vortices, Hall22 argues

that the interaction between the mean-flow distortion and the

forced modes determines the overall disturbance energetics.

FIG. 4. Downstream development of maximum energy

associated with the forced mode and nonlinearly gener-

ated harmonics at rt = 0.01 for G = 14.7 and kx = 0.004 35

(refer to case 1 in Table I).
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TABLE II. Parameters for the study of the Görtler number effect. The physical parameters that are changed with

respect to case 1 (case 2) are highlighted in bold (italics).

Case U∗∞ (m s�1) λ∗z (m) × 103 r∗
0

(m) f ∗ (Hz) Rλ Gλ k̂x kx × 103 κz G rt

1 9.18 8 8.37 5 767 89.5 3.336 4.35 0.547 14.7 0.01

1r 9.18 8 16.8 5 767 44.5 3.336 4.35 0.547 7.3 0.01

1f 9.18 8 8.37 8 767 89.5 5.317 6.93 0.434 7.3 0.01

2 9.18 8 8.37 11 767 89.5 7.342 9.57 0.369 4.5 2.68

2r 9.18 8 4.19 11 767 179 7.342 9.57 0.369 9 2.68

In the unsteady case, besides the energy exchange between

the modes (0, 0) and (1, ±1), the spanwise-averaged unsteady

second harmonic (2, 0) also gives a significant contribution to

the disturbance energetics.

B. Effect of Görtler number

To investigate the influence of the Görtler number G, two

cases with different radii of curvature (case 1 and case 1r in

Table II) at a low turbulence Reynolds number rt = 0.01 are

compared. In case 1r, r∗
0

is double of that in case 1, i.e., the

plate is less curved. This results inG being halved, while all the

other parameters are constant. As shown in Fig. 5 (left), where

urms�max is displayed as a function of x/Rλ because kx varies for

the cases in the figure, increasing r∗
0

attenuates the amplitude

and the growth rate and weakens the nonlinear effects. By

varying the frequency of case 1, specifically by multiplying kx

by a factor 22/3, we obtain the same Görtler numberG employed

in case 1r (case 1f in Table II). The attenuating effect on the

perturbation r.m.s. that is observed when G is halved is more

pronounced if the reduction ofG is due to a decreased curvature

(i.e., increased r∗
0
) rather than an enhanced frequency because

in the latter case other effects are at play, i.e., κz decreases as

kx increases.

The effect of the radius of curvature is also studied in a case

with relatively high free-stream turbulence intensities, i.e.,

rt = 2.68 (refer to case 2 and case 2r in Table II). As displayed

in Fig. 5 (right), the two nonlinear solutions for case 2 and

2r nearly coincide, while the linearized solution for case 2r is

more intense than that of case 2 because of the enhanced cen-

trifugal effects. At low Tu(%), the effect of the Görtler number

becomes important at streamwise locations where the distur-

bance undergoes a modal growth. At high Tu(%), the nonlinear

response is not affected by G provided that the turbulence level

is sufficiently intense for the nonlinear interactions to saturate

rapidly and for the disturbances not to undergo an exponential

growth.

C. Growth rate

As observed by Saric,43 in the case of a nonparallel

base flow, the growth or decay of the boundary-layer dis-

turbances can be calculated by tracking various quantities

downstream. To measure the overall growth or decay of the vor-

tices due to all the modes in the boundary layer, the growth rate

ᾱ = u′rms,max(x̄)/urms,max is defined. We also introduce the def-

inition of the growth rate and the wavenumber associated

with each harmonic as the real and the imaginary parts of

αm ,n = û′m,n,max(x̄)/ûm,n,max, where ûm ,n,max is the maximum

of ûm ,n along η and the prime here indicates the derivative

with respect to x̄. We calculate αm ,n for (m, n) = (±1, 1), (0, 0),

(±2, 0) because sufficiently downstream, the disturbance ener-

getics is dominated by the forced modes, the mean-flow dis-

tortion, and the spanwise-averaged second harmonic (refer to

Fig. 4). Unless otherwise stated, the results reported in the

following correspond to case 1 of Table I.

Figure 6 (left) displays the local growth rate ᾱ for

rt = 0 (linear), 0.1 (low free-stream turbulence intensity), and

2.7 (high free-stream turbulence intensity). In the linear case,

the growth rate becomes nearly independent of x̄ for x̄ > 1, thus

confirming the conclusion of Wu et al.58 that the amplifica-

tion of the induced disturbance is quasi-exponential. For a low

turbulence level, i.e., rt = 0.1, the perturbation first exhibits

an exponential growth at the same rate as the linear solu-

tion. When the nonlinear interactions intensify, the growth rate

decreases rapidly and tends to zero as saturation is reached. For

a high turbulence level, i.e., rt = 2.7, the perturbation does not

undergo modal growth. The growth rate is slightly negative

for 1.5 < x̄ < 5 and almost null for x̄ > 5 as the disturbance

saturates.

FIG. 5. Linear (thin lines) and nonlinear (thick lines)

development of urms�max for different Görtler numbers.

Left (rt = 0.01): case 1, i.e., G = 14.7 and kx = 0.004 35

(solid line), case 1r, i.e., G = 7.3 and kx = 0.004 35

(dashed line), case 1f, i.e., G = 7.3 and kx = 0.006 93

(dashed-dotted line). Right (rt = 2.68): case 2, i.e.,

G = 4.5 and kx = 0.009 57 (solid line), case 2r, i.e.,

G = 9 and kx = 0.009 57 (dashed line).
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FIG. 6. Left: Local growth rate ᾱ versus x̄ for differ-

ent rt , G = 14.7, and kx = 0.004 35 (refer to case 1 in

Table I). Right: local growth rate ℜ[α
�1,1] (thick lines)

and streamwise wavenumber ℑ[α
�1,1] (thin lines) of the

forced mode versus x̄ for different κy = 0.0054 (dashed

line) and 5.4 (solid lines) at rt = 0.1.

In the linear study of Wu et al.,58 the wall-normal

wavenumber ky was shown to have a small effect proving the

modal nature of the solution for sufficiently large Görtler num-

bers. We herein investigate the influence of κy on the growth

rate and wavenumber of the nonlinearly excited perturbation

for rt = 0.1. We vary κy from the value corresponding to case

1 in Table I (κy = 0.54) by only varying ky, while kx and kz

are unchanged so that κz remains constant. As at the begin-

ning of Sec. III, we set û∞x,± = 1 because our definition of

turbulence intensity is based on the free-stream streamwise

velocity component. The normalized amplitudes of û∞y,± and

û∞z,± are obtained from continuity equation (1) and the con-

straint of constant amplitude of the free-stream velocity field,

i.e.,
√

(û∞x,±)2 + (û∞y,±)2 + (û∞z,±)2
=

√
3. As shown in Fig. 6

(right), κy has to increase by three orders of magnitude to

show an effect on the local growth rateℜ[α
�1,1] and wavenum-

ber ℑ[α
�1,1] of the forced mode. The influence of κy is most

evident on ℑ[α
�1,1] near the leading edge. In the regions of

quasi-exponential growth (1.5 < x̄ < 3) and of nonlinear sat-

uration (x̄ > 5), ℜ[α
�1,1] is not influenced by κy. Similar

conclusions are drawn for α0,0 andℜ[α2,0] and the interested

reader is referred to Fig. 3.8 in the work of Marensi.32

The effect of κy is most intense near the leading edge and

very mild when the Görtler vortices are exponentially growing

or saturated because κy does not appear in the boundary-region

equations but only in the outer boundary conditions (11) and in

the initial conditions given by Eqs. (2.43)–(2.45) in the work

of Ricco et al.40 The boundary and initial conditions exert their

influence primarily during the initial stages of the disturbance

evolution where the inviscid unbalance between the centrifugal

effects and the wall-normal pressure gradient has not ensued

yet, while they are much less influential during the stages of

modal growth and saturation of the Görtler vortices.

D. Wall-normal profiles

The wall-normal velocity profiles for case 1 of Table I are

studied because this case is characterized by significant cen-

trifugal effects. The turbulent Reynolds number is assumed to

be rt = 0.1 to allow sufficient linear growth in the initial stage.

The streamwise-velocity profiles of the forced mode and of

the higher harmonics are shown in Fig. 7 at x̄ = 3 and x̄ = 5

[the y-axis scale in the right graph (x̄ = 5) is ten times larger

than in the left graph (x̄ = 3)]. The mode (0, 0), which repre-

sents the distortion of the mean flow, displays more than an

order of magnitude growth from x̄ = 3 to x̄ = 5 and becomes

larger than the forced mode (1, 1). The second harmonics grow

significantly, in particular the spanwise-averaged harmonic

(2, 0), which becomes comparable with the forced mode at

x̄ = 5. At x̄ = 3, the nonlinear profile of rt |û1,1| and its linear

counterpart are similar, with a peak at η = 1.3. At x̄ = 5, the

linear profile has retained its shape and increased in magnitude

by nearly ten times. The nonlinear profile of rt |û1,1| has instead

amplified less than its linearized approximation. Its shape has

changed considerably as two maxima appear: the first peak

is found at η = 0.7 and is slightly larger, whereas the second

peak is located closer to the free stream at η = 3. For η > 2.5,

the nonlinear profile of rt |û1,1| is larger than the linear one.

This nonlinear amplifying effect in the boundary-layer outer

edge was also pointed out by Ricco et al.40 for the flat-plate

case, but it becomes more intense when centrifugal forces are

at work. The appearance of an outer-flow peak in the rt |û1,1|

profile was not observed in the flat-plate case of Ricco et al.40

FIG. 7. Streamwise-velocity profiles of the forced mode,

mean-flow distortion, and second harmonics at x̄ = 3 (left)

and x̄ = 5 (right).
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FIG. 8. Profiles of rt |û1,1 | (left) and rt û0,0 (right) at

different x̄.

Figure 8 (left) shows the profiles of rt |û1,1| at four x̄ loca-

tions. At x̄ = 3, the peak appearing in the core of the boundary

layer moves wallward as the flow evolves downstream, while

the less-pronounced outer peak shifts upward. As a result, the

nonlinear perturbation persists further away from the wall as

compared to the linear case. The profiles displayed in Figs. 7

and 8 qualitatively agree with the results of Hall.22 The near-

wall peak of the mean-flow distortion, rt û0,0, shown in Fig. 8

(right), shifts slightly closer to the wall, while the negative peak

moves towards the free stream where backward jets exist.57

The vertical and spanwise velocity profiles are shown in

Fig. 9. As demonstrated by the scaling of the boundary-region

approach (refer to Sec. II A), the cross-flow velocity com-

ponents are weaker than the streamwise velocity. The higher

harmonics and the distortion of the mean flow grow by almost

one order of magnitude from x̄ = 3 to x̄ = 5, whereas the forced

mode does not amplify as much as the linear counterpart.

At x̄ = 5, nonlinearity attenuates the intensity of the forced

mode and moves the peak towards the boundary-layer outer

edge, therefore slightly strengthening the fluctuations there.

The stabilizing effect of nonlinearity on the wall-normal and

spanwise velocity profiles differs from the nonlinear steady

results of Hall,22 who reported enhanced nonlinear profiles

of the forced mode as compared to the linear ones [refer to

Figs. 3(e) and 3(f) of Hall22]. Analogous to the steady case,21

the trend of the linear velocity components changes only

slightly with increasing x̄, while the nonlinear forced-mode

profile is modified significantly. This distortion is more intense

for the streamwise velocity than for the cross-flow veloci-

ties. The wall-normal and spanwise velocities are no longer

affected by the free-stream forcing at x̄ = 5, implying that the

disturbance has evolved into an eigenmode.58

E. Comparison with experimental and DNS data

Our results are compared with experimental data and with

one set of direct numerical simulations. The experimental

conditions and the DNS parameters are given in Table III.

FIG. 9. Wall-normal (first row) and spanwise (second

row) velocity profiles of the forced mode and higher

harmonics at x̄ = 3 (left) and x̄ = 5 (right).
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TABLE III. Parameters from the experiments of Tandiono et al.53 (TWS), Finnis and Brown16 (FB), Swearingen

and Blackwelder51 (SB), Peerhossaini and Bahri35 (PB) and from DNS of Schrader et al.46 (SBZ).

U∗∞ (m s�1) r∗
0

(m) λ∗z (m) f ∗ (Hz) λ∗x (m) Fb Rλ kx κz G rt

TWS 2.85 1 0.012 1 2.85 11.6 362 0.0042 0.809 133 0.58

FB 7.5 4 0.017 5 1.5 8.4 1344 0.0113 0.256 20.6 0.19

SB 5 3.2 0.023 1 5 3.7 1257 0.0046 0.415 130 0.63

PB 2 0.65 0.03 0.5 4 13.6 549 0.0075 0.49 265 1.36

SBZ 2.85 1 0.015 4 0.7 48 450 0.0216 0.321 15.8 0.16

1. Comparison with experimental data
by Tandiono et al.

The experimental data by Tandiono et al.53 are first

studied. In these experiments, a series of vertical wires are

positioned between the turbulence-generating screens and

the leading edge of the plate in order to preset the wave-

length of the Görtler vortices. The comparison is performed

with their case 1, i.e., U∗∞ = 2.85 m/s and λ∗z = 12 mm.

Tandiono et al.53 did not provide the frequency spectra in the

pre-transitional area because the boundary-layer fluctuations

were found to be quasi-steady. Time-averaging of the velocity

profile is carried out in order to cut wind-tunnel noise (Ref.

52). In their DNS of roughness-excited Görtler rolls, Schrader

et al.46 found the growth rate of the low-frequency (Fb ≤ 16)

and steady Görtler modes to be almost the same. Therefore, in

our comparison with the experiments of Tandiono et al.,53 we

employ a sufficiently low frequency f ∗ = 1 Hz (Fb = 11.6) to

assume the vortices to be quasi-steady. The turbulence level

is Tu = 0.45%.

The predicted profiles of the total streamwise velocity

at the upwash (z = π) and downwash (z = 0) positions at

t = 0 are shown in Fig. 10 at four streamwise locations.

The Blasius solution is also displayed. We obtain good agree-

ment for the upwash and downwash profiles inside the bound-

ary layer up to η̃ = y∗
√

U∗∞/(x∗ν∗) ≈ 7, with our numerical

simulations accurately capturing the distortion of the upwash

profile. The profiles of Tandiono et al.53 are normalized with

the local free-stream streamwise velocity which is different

from the mean streamwise velocity due to a slight stream-

wise pressure gradient. As a consequence, their profiles do

not approach unity in the free stream. This explains the

slight discrepancy between our results and the experimental

data in the free stream. The mushroom-like structures of the

streamwise-velocity contours in the cross-flow plane are also

well reproduced by our simulations, as shown in Fig. 11.

2. Comparison with experimental data
by Finnis and Brown

Wu et al.58 performed a comparison between their numer-

ical results and the experimental data of Finnis and Brown.16

They obtained good agreement where the vortices evolve

linearly, but this match deteriorates downstream due to the

nonlinear saturation. The comparison with the data of Finnis

and Brown16 is repeated here and improved by including the

FIG. 10. Comparison between the streamwise-velocity

profiles from Fig. 4 in the work of Tandiono et al.53

(symbols) and our numerical solutions (lines): Blasius

(solid line), upwash (dashed line and triangles), down-

wash (dashed-dotted line and circles). The wall-normal

coordinate is η̃ = y∗
√

U∗∞/(x∗ν∗), as in the work of

Tandiono et al.53
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FIG. 11. Iso-contours of the stream-

wise velocity in the cross-flow plane at

three streamwise locations. Left: mea-

surements of Tandiono et al.53 [Adapted

from their Fig. 2 and reproduced with

permission from Tandiono, T., Winoto,

S., and Shah, D., “On the linear and non-

linear development of Görtler vortices,”

Phys. Fluids 20(9), 094103 (2008).

Copyright 2008 AIP Publishing LLC.]

Right: present results.

effects of nonlinearity. Finnis and Brown16 only provided an

upper limit of the free-stream turbulence level in their exper-

iments, i.e., Tu < 0.15%. In our simulation, Tu = 0.04% is

chosen to match the experiments at the first location. As shown

in Fig. 12 (left), good agreement is obtained in the linear and

nonlinear stages of the disturbance development, with the devi-

ation due to nonlinearity being predicted by our numerical

results.

3. Comparison with experimental data
by Swearingen and Blackwelder

The experiments of Swearingen and Blackwelder51

focused on the development of naturally occurring Görtler vor-

tices in the boundary layer over a concave plate with a radius

of curvature r∗
0

= 3.2 m and free-stream velocity U∗∞ = 5 m/s.

A honeycomb and four fine-mesh screens were placed ahead

of the test section to control the free-stream turbulence level.

The measured turbulence intensity was Tu = 0.07%, and span-

wise deviations in the free-stream velocity of less than 0.5%

were detected. A turbulence intensity Tu = 0.14% was used in

our numerical simulation in order to best fit the experimental

data at the first two streamwise locations. This is justified by

the lack of more detailed information on the composition of

the free-stream turbulence. The average spanwise wavelength

and the kinematic viscosity extracted from the experiments are

λ∗z = 23 mm and ν∗ = 1.455× 10�5 m2/s, respectively. The com-

parison between our numerical results and the experiments

of Swearingen and Blackwelder51 is shown in Fig. 12 (right)

in terms of the streamwise evolution of urms�max. The linear

growth rate, the location of the nonlinear saturation, and the

amplitude of the saturated vortices are captured accurately by

our simulations. The agreement is very good up to x∗ = 1 m.

At the last two locations, high-frequency fluctuations due to

secondary instability may have become sufficiently intense to

affect the evolution of the Görtler vortices.

4. Comparison with experimental data
by Peerhossaini and Bahri

Peerhossaini and Bahri35 studied the nonlinear instability

of Görtler vortices triggered by free-stream grid turbulence.

Measurements were taken over a concave wall with a radius

of curvature r∗
0

= 0.65 m and with a free-stream turbulence

level Tu = 0.7%. The spanwise wavelength λ∗z is approxi-

mately 30 mm. A frequency f ∗ = 0.5 Hz was chosen for

FIG. 12. Streamwise evolution of urms�max and compar-

ison with the experimental data of Finnis and Brown16

(left) and Swearingen and Blackwelder51 (right).
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FIG. 13. Left: streamwise evolution of disturbance

amplitude calculated as the integral of perturbation

energy and comparison with experimental data of

Peerhossaini and Bahri.35 Right: streamwise evolution

of urms�max for rt = 0 and rt = 0.16 and comparison of

the latter case with DNS solution from Fig. 22 in the work

of Schrader et al.46

our simulations. The frequency parameter Fb = 13.6 is in the

range for which Schrader et al.46 showed the growth rates

of the low-frequency and unsteady Görtler vortices to be

almost identical. As a check, we repeated the simulations for

f ∗ = 0.25 Hz and very similar results to those with f ∗ = 0.5 Hz

were obtained. The integral of the perturbation energy, i.e.,

Eu = ∫ ∞0 u′2(y)dy, where u′ represents the streamwise com-

ponent of the disturbance velocity, was chosen as a measure

of perturbation growth. The comparison is shown in Fig. 13

(left). Our numerical results predict the nonlinear satura-

tion to occur at x∗ ≈ 0.43 m, but the perturbation energy at

x∗ = 0.26 m is half of the experimental value. This discrepancy

can be ascribed to the uncertainty in the evaluation of λ∗z and to

the lack of information on the composition of the free-stream

disturbance. The wall-normal profiles of the streamwise veloc-

ity disturbance at two locations are also compared in Fig. 14.

The shape of the profiles agrees well with our results, with the

profile at x∗ = 0.425 m exhibiting the two distinct peaks. At

x∗ = 0.26 m, our simulation predicts a lower peak than the

experiments, resulting in a lower perturbation energy, as shown

in Fig. 13 (left). At x∗ = 0.425 m, the numerical peak closer

to the free stream is slightly less intense than the experimental

data, while the peak closer to the wall is slightly stronger. The

resulting integral of the perturbation energy is very close to

the experimental data, again consistent with Fig. 13 (left).

5. Comparison with direct numerical simulation data
by Schrader et al.

Finally, a comparison with the DNS results of Schrader

et al.46 is performed. Schrader et al.46 studied the impact

of broadband free-stream turbulence with different frequency

spectra and intensities on Görtler boundary layers. The free-

stream turbulence field indicated as FST3 in their Table 4 is

selected for our comparison. This turbulence field is charac-

terized by low-frequency components f ∗ = 2–32.5 Hz and is

nearly isotropic in the cross-flow plane. The turbulence level is

Tu = 0.1%. The frequency and the spanwise wavenumber cor-

respond to the most energetic unsteady perturbation present

in the boundary layer, according to their Fig. 23. In Fig. 13

FIG. 14. Comparison between the streamwise-velocity

profiles from Figs. 7(b) and 7(c) in the work of

Peerhossaini and Bahri35 (symbols) and our numerical

solutions (lines).

FIG. 15. Effect of Aw on the downstream evolution of

urms�max (left) and growth rate ᾱ (right) for the case

where suction is applied on the mode (0, 0).
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(right), we compare the predicted streamwise velocity r.m.s

with the results by Schrader et al.46 The linearized solution is

also displayed to show that nonlinear interactions are at play.

Our numerical solution matches the DNS data very well up to

x = 200, after which the agreement slightly deteriorates

because of a lower perturbation growth rate in the DNS as

compared to our solution. At this location, transition starts and

small-scale fluctuations affect the disturbance r.m.s., which

may explain the little discrepancy observed in this region.

F. Wall transpiration

The effect of wall transpiration is studied for the flow

parameters of case 1 of Table I and rt = 0.1. Three factors

are considered to quantify the effect of the control: the linear

growth rate ᾱl, the location x̄s, and the saturation amplitude us

defined as follows. The growth rate ᾱl is calculated by averag-

ing ᾱ(x̄) over the downstream region where the growth of the

corresponding uncontrolled case is quasi-exponential (refer

to Fig. 6, case rt = 0.1) because the vortices do not undergo

a modal stage in the wall-transpiration case. The saturation

location x̄s is defined as the downstream position where ᾱl(x̄)

first crosses the zero and the saturation amplitude is defined

as us = urms−max(x̄s). The control is effective if ᾱ and us are

reduced and x̄s is shifted downstream.

Steady two-dimensional suction, i.e., v̂0,0(η=0) = Aw with

Aw < 0, is considered first. Figure 15 shows the downstream

development of the maximum urms and of the growth rate

for different forcing amplitudes. The control of mode (0, 0)

is beneficial as both the intensity and the growth rate of the

disturbance are attenuated. This effect is enhanced as the forc-

ing amplitude is increased (refer also to Table IV). The cases

where the control is applied on the first and second spanwise

harmonics, i.e., v̂0,n(η=0) = Aw (with n = 1, 2), are shown in

TABLE IV. Mode (0, 0).

Aw ᾱl x̄s us

0 1.09 4.96 0.184

�1 0.98 5.49 0.168

�2 0.85 6.74 0.139

Figs. 16 and 17 (refer also to Tables V and VI). The effect of

wall transpiration on the modes (0, 3) and (0, 4) is not shown

as it was found to be very weak and slightly detrimental.

The flow fields for wall-transpiration odd modes, n = 1, 3,

are independent of the sign of Aw , while for even modes,

n = 2, 4, the boundary-layer signature depends on the sign of

Aw . It follows that the sign of Aw has an impact only when the

wall-forcing is applied to those modes generated nonlinearly

by the free-stream oblique modes in the uncontrolled case.32,38

This is because these modes have indexes |m| + |n| equal to

an even integer, which is the case in our control strategy for

n = 2, 4 because we only consider steady wall transpiration,

i.e., m = 0.

For n = 1, the effect of the control is much more marked

than for n = 2 as a dramatic decrease of the saturation ampli-

tude is achieved. For n = 2, wall transpiration with Aw < 0 is

detrimental, whereas Aw > 0 is slightly beneficial. As shown

in Table V for n�1, as |Aw | is increased from 0 to 3, us becomes

less than half that of the uncontrolled case, while the satura-

tion location moves upstream and the growth rate first slightly

decreases up to |Aw | = 1 and then slightly increases. The case

|Aw | = 2 is considered the optimal compromise among these

effects because a significant reduction of us is obtained (almost

by 60%), with a slight increase of ᾱl (less than 5%) and a

limited upstream shift of x̄s (just above 30%). Increasing Aw

FIG. 16. Effect of Aw on the downstream evolution of

urms�max (left) and growth rate ᾱ (right) for the case

where wall transpiration is applied on the mode (0, 1).

FIG. 17. Effect of Aw on the downstream evolution of

urms�max (left) and growth rate ᾱ (right) for the case

where wall transpiration is applied on the mode (0, 2).
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TABLE V. Mode (0, 1).

|Aw | ᾱl x̄s us

0 1.09 4.96 0.184

0.5 0.866 4.33 0.147

1 1.009 3.84 0.109

2 1.144 3.32 0.080

3 1.27 2.99 0.070

TABLE VI. Mode (0, 2).

Aw ᾱl x̄s us

0 1.09 4.96 0.184

1 1.071 5.11 0.176

2 1.055 5.27 0.172

3 1.057 5.34 0.173

�2 1.086 5.72 0.192

to 3 would only bring an additional 5% decrease of us with

the other two effects being further deteriorated (refer also to

Fig. 16). From the scaling introduced in Sec. II, it follows that

even in the case with the strongest suction, i.e., |Aw | = 3, the

actual amplitude of the wall forcing |vw | =
√

2x̄kx/Rλ |Aw | is

very small as kx ≪ Rλ. For example, this would correspond

to |v∗w(x̄=1.13)| = 0.86%U∗∞ in the experiments of Swearingen

and Blackwelder51 and |v∗w(x̄=5.02)| = 2.76%U∗∞ in the work

of Finnis and Brown.16 The amplitudes are calculated at the

downstream location of nonlinear saturation where the effect

of the control is most pronounced.

The wall-normal profiles of ûm ,n for the optimal controlled

case (refer to case |Aw | = 2 in Table V) are shown in Fig. 18.

The (0, 0) mode is dominant in both cases and its amplitude

and wall gradient are intensified by the control. Wall transpi-

ration thus enhances the nonlinear growth of the wall-shear

stress. As already pointed out, in the uncontrolled case, the

modes (0, 1) and (1, 0) are null. By forcing the mode (0, 1)

at the wall, all the harmonics arise. The magnitude of û0,1 is

comparable to that of the mean-flow distortion and almost one

order of magnitude larger than the other modes. The mode

(1, 0) has similar amplitude and shape to the forced mode.

Wall transpiration strongly inhibits the forced mode (1, 1) and

the second harmonic (2, 0). The former undergoes a consid-

erable distortion: the wall gradient is significantly attenuated

and the two peaks are shifted further from the wall, with the

peak close to the free stream becoming more pronounced. The

enhancing effect of the disturbance near the free stream is

also observed on the other harmonics. By intensifying the

nonlinear effects, especially the mean-flow distortion given

FIG. 18. Streamwise velocity profiles of the mean-flow

distortion, forced mode, and higher harmonics at x̄ = 4

(thick line) and x̄ = 6 (thin line) for the uncontrolled (solid

line) and the optimal controlled (dashed line) cases. The

latter correspond to the case |Aw | = 2 in Table V.
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FIG. 19. Nonlinear evolution of the wall-shear stress

τ
0,0
w and of its integral contributions M̃i, as defined in

identity (13) for the uncontrolled (left) and optimally

controlled (right) cases.

by mode (0, 0), the wall transpiration causes a marked stabi-

lization of the boundary-layer disturbances and an increased

nonlinear growth of the wall shear-stress as compared to the

uncontrolled case.

G. Analysis of the nonlinear increase
of the wall-shear stress

The increase of wall-shear stress is further studied through

the integral relation (13). The downstream development of the

wall-shear stress τ
0,0
w and its integral contributions is shown in

Fig. 19 (left) without wall transpiration and in Fig. 19 (right)

with wall transpiration. In the uncontrolled case, the nonlinear

effects, and thus τ
0,0
w and M̃i, are negligible up to x̄ ≈ 2.5.

After this location, τ
0,0
w closely follows the convective term

M̃2, while M̃3 and M̃4 have opposite signs and balance each

other.

Downstream from x̄ ≈ 4.5, M̃1 and M̃5 increase slightly

but almost cancel out, while M̃3 and M̃4 are still of very sim-

ilar opposite magnitude but decay to zero as the dynamics of

τ
0,0
w is almost entirely regulated by M̃2. The balance between

M̃3 and M̃4 denotes the almost pure interaction between the

convective transport of the wall-normal velocity v̂0,0 due to

the Blasius shear (M̃3) and the averaged downstream rate of

change of the streamwise Reynolds stresses, ûu|0,0 (M̃4). The

integral relation (13) therefore reveals the key result that the

increase of the wall-shear stress is almost only due to M̃2,

caused by the convective streamwise transport of û0,0 by the

Blasius velocity F ′.
All the terms M̃i in the right-hand side of (13) are inten-

sified (in absolute value) by the control. In the presence of

wall transpiration, the wall-shear stress τ
0,0
w starts growing

much closer to the leading edge than in the uncontrolled case,

i.e., from x = 1, primarily because of M̃2, which is the term

amplified the most by the wall transpiration. While the term

M̃3 is largely unaffected by the control, further downstream,

the enhanced M̃1 is now almost completely balanced by the

two terms that only involve the streamwise velocity distur-

bance with respect to the Blasius flow, i.e., M̃5 (like in the

uncontrolled case) and M̃4, which is not negligible when

wall-transpiration occurs.

IV. SUMMARY

This paper has presented theoretical and numerical results

on the generation and nonlinear development of unsteady

Görtler vortices in an incompressible boundary layer over a

concave wall. Görtler rolls are excited by free-stream vorti-

cal disturbances, whose amplitudes are large enough for the

boundary-layer response to become nonlinear at downstream

locations where the spanwise wavelength is comparable with

the local boundary-layer thickness. Only the low-frequency

components of the oncoming perturbation are of interest, as

they are known from experiments to penetrate and amplify the

most into the boundary layer. The present mathematical frame-

work follows that of Ricco et al.40 for the nonlinear evolution

of Klebanoff modes over a flat plate and extends it to account

for centrifugal effects caused by the concavity of the wall. The

formation and development of the induced disturbances are

governed by the nonlinear unsteady boundary-region equa-

tions, with the centrifugal force included. The influence of

the upstream and free-stream forcing is taken into account by

imposing the appropriate initial and far-field boundary condi-

tions, which are shown to be the same as those employed by

Ricco et al.40

Nonlinearity has an attenuating impact on the boundary-

layer signature, and this effect is significantly enhanced in

the presence of a concave wall. The wall-normal profiles of

the streamwise velocity undergo a pronounced shape mod-

ification as the flow evolves downstream due to a shift of

the perturbations towards the outer edge of the boundary

layer.

Sufficiently downstream, the nonlinear solutions obtained

with different values of Tu are stabilized to the same level,

proving that the initial amplitude of the disturbance becomes

unimportant. At low turbulence intensities, the perturbation

exhibits a quasi-exponential growth with the growth rate

being intensified for more curved walls and longer wave-

lengths. At moderate turbulence levels, which are typical

of turbomachinery applications, the Görtler vortices do not

undergo an exponential growth because nonlinear effects come

into play and saturate rapidly. As a result, for sufficiently

high Tu, the wall curvature, which only affects the exponen-

tially growing part of the disturbance, does not influence the

boundary-layer response. While the majority of the studies

on Görtler flows have focused on steady vortices, unsteadi-

ness is shown to have a considerable effect on the overall

disturbance energetics when the boundary layer is subject

to free-stream turbulence. In the unsteady case, in addition

to the energy exchange between the forced mode and the

mean-flow distortion, which has been observed in steady

analyses, the contribution of the spanwise-averaged harmonic
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with double the frequency of the forced mode becomes

significant.

An extensive comparison with experimental and DNS data

has also been carried out and very good quantitative agreement

has been obtained. We have also shown that steady spanwise-

modulated wall transpiration can increase the wall-shear stress,

thus rendering the boundary layer more stable and markedly

attenuating the growth of the Görtler vortices. The enhanced

wall-shear stress has been further studied by a novel inte-

gral relation involving the convective terms of the streamwise

momentum equation.

Future directions include the extension of the present

analysis to account for compressibility effects in high-speed

boundary-layer flows. Such an investigation is of particular

interest for turbomachinery applications as Görtler vortices

increase the heat transfer between the pressure surfaces of gas-

turbine blades and the working fluid.8 Our theoretical approach

will again provide the rigorous upstream perturbation, its

entrainment into the boundary layer, and the interaction of the

boundary layer with the far-field continuous forcing. Finally,

the present model where the oncoming perturbation is synthe-

sized by a pair of oblique modes will be extended to account

for a continuum of free-stream low-frequency components,61

which are relevant disturbances triggering bypass transition.
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APPENDIX: DERIVATION OF THE INTEGRAL
RELATION FOR THE WALL-SHEAR STRESS

Equation (13) is derived as follows. The streamwise

momentum equation (7) is first integrated from 0 to η. The

wall-normal gradient of the mode û0,0 at the wall is then

isolated in the left-hand side (l.h.s.),

∂û0,0

∂η

�����η=0

=

∂û0,0

∂η
− 2x̄rt ̂̄uv̄ 0,0 +

∫ η

0

ηF ′′û0,0dη − 2x̄

∫ η

0

F ′
∂û0,0

∂x̄
dη +

∫ η

0

F
∂û0,0

∂η
dη

−2x̄

∫ η

0

F ′′v̂0,0dη − 2rt x̄

∫ η

0

∂̂̄uū

∂x̄

�����0,0

dη + rt

∫ η

0

η
∂̂̄uū

∂η

�����0,0

dη. (A1)

Further integration between 0 and η leads to

η
∂û0,0

∂η

�����η=0

= û0,0 − 2x̄rt

∫ η

0

̂̄uv̄ |0,0dη +

∫ η

0

∫ η

0

I(x̄, η)dηdη,

(A2)

where

I(x̄, η) = ηF ′′û0,0 − 2x̄F ′
∂û0,0

∂x̄
+ F
∂û0,0

∂η
− 2x̄F ′′v̂0,0

− 2rt x̄
∂̂̄uū

∂x̄

�����0,0

+ rtη
∂̂̄uū

∂η

�����0,0

.

The no-slip condition on the streamwise velocity has been used

for both integrations. Equation (A2) is now integrated between

0 and an arbitrary wall-normal location h in the free stream,

i.e., where F ′ = 1, F ′′ = 0, to find

h2

2

∂û0,0

∂η

�����η=0

=

∫ h

0

û0,0dη − 2x̄rt

∫ h

0

∫ η

0

̂̄uv̄ |0,0dηdη

+

∫ h

0

∫ η

0

∫ η

0

I(x̄, η)dηdηdη. (A3)

By integrating by parts the last two terms in the l.h.s., Eq. (A3)

is recast into

∂û0,0

∂η

�����η=0

=

2

h2

∫ h

0

û0,0dη +
4x̄rt

h2

∫ h

0

(η − h)̂̄uv̄ |0,0dη

+
1

h2

∫ h

0

(η − h)2I(x̄, η)dη. (A4)

It is clear that although h is present in the right-hand side (r.h.s.)

of (A4), the wall-shear stress in the l.h.s. does not depend on h.

Therefore, it is convenient to eliminate h from Eq. (A4) by

taking the limit h → ∞. The first term in the r.h.s. of (A4),

related to the mean-flow distortion û0,0, and the second term

in the r.h.s., containing the Reynolds stress ̂̄uv̄ |0,0, vanish. The

last term in the r.h.s. simplifies as the kernel term (η � h)2

disappears. The following expression for the wall-shear stress

is thus obtained as

∂û0,0

∂η

�����η=0

=

∞∫

0

[
ηF ′′û0,0 − 2x̄F ′

∂û0,0

∂x̄
+ F
∂û0,0

∂η
− 2x̄F ′′v̂0,0

− 2rt x̄
∂̂̄uū

∂x̄

�����0,0

+ rtη
∂̂̄uū

∂η

�����0,0

]
dη. (A5)

The third and last terms in the r.h.s. of (A5) are further

simplified by using integration by parts and the no-slip

and far-field boundary conditions to obtain the final integral

expression (13).

It is worth remarking that the final expression (13) is

valid for either uncontrolled or wall-transpiration cases. In the
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original FIK identity for the case of turbulent channel flows

with uniform suction on one wall and uniform blowing on

the other wall [Eq. (16) in the work of Fukagata et al.19], the

y-independent transpiration velocity appears explicitly outside

of the second integral in order to single out the effect of this

quantity. In our case, the averaged quantity v̂0,0 depends on η,

and therefore it is not convenient to decompose the v̄ velocity

of the Reynolds stresses in the r.h.s. of (A4) into the sum of

v̂0,0 and the fluctuating component, as performed in the work

of Fukagata et al.,19 because v̂0,0 could not be moved outside

of the integral. However, this point only applies to expres-

sion (A4) and not to the simpler final relation (12) because,

as proved by taking the limit h → ∞ in (A4), the Reynolds

stresses ̂̄uv̄ |0,0 are not present in the final expression (13).

The Reynolds stresses instead play a crucial role in

the identities for confined turbulent channel flows and

open free-stream turbulent boundary layers, derived in the

original FIK publication.19 The integral equation for open

turbulent boundary layers derived by Fukagata et al.19 does

contain the term proportional to the Reynolds stresses because

the upper limit of the wall-normal integration is fixed, i.e., it

is the boundary-layer thickness. It is therefore in a form anal-

ogous to our relation (A4), where h appears explicitly and the

Reynolds stresses are present in the second term in the r.h.s.
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instability of steady and unsteady Görtler vortices induced by free-stream

vortical disturbances,” J. Fluid Mech. 829, 681–730 (2017).
15Dongdong, X., Zhang, Y., and Wu, X., “Nonlinear evolution and sec-
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