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Abstract Finite element models without simplifying

assumptions can accurately describe the spatial and

temporal distribution of heat in machine tools as well

as the resulting deformation. In principle, this allows

to correct for displacements of the Tool Centre Point

and enables high precision manufacturing. However, the

computational cost of FE models and restriction to

generic algorithms in commercial tools like ANSYS pre-

vents their operational use since simulations have to

run faster than real-time. For the case where heat dif-

fusion is slow compared to machine movement, we in-

troduce a tailored implicit-explicit multi-rate time step-

ping method of higher order based on spectral deferred

corrections. Using the open-source FEM library DUNE,

we show that fully coupled simulations of the temper-

ature field are possible in real-time for a machine con-

sisting of a stock sliding up and down on rails attached

to a stand.
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1 Introduction

Machine tools that are capable of correcting for dis-

placements of the Tool Centre Point (TCP) caused by

thermal expansion are a promising approach for high

precision manufacturing (other approaches involve, e.g.,

design modification or thermal-error control) [21]. Most

machine tools these days are “intelligent” and employ
sensors to measure temperature. Compensating for ther-
mal errors requires knowledge of the deviation from the
machine’s reference temperature.

Since the moving parts of a machine result in strongly

position and time dependent heat sources and defor-
mations [24,25], this knowledge should ideally include

spatial and temporal variations to account for position-
dependent heating and transient effects. Since sensors
can only provide data at isolated points, computational

models are required to complement measured data and

obtain accurate temperature distributions. Obviously,

to allow for the correction of thermal errors during op-

erations, any model to be used for online error compen-

sation has to run faster than real-time in the sense that

the “look-ahead factor” satisfies

η =
simulated time

wall-clock time
> 1.

In operational use, the heat distribution would be pre-

dicted by the transient FEM solved online, probably

informed by sensor measurements. At selected time in-

tervals, the resulting deformation field would be derived

from the computed temperature field. The predicted

dislocation of the TCP would then be corrected for.

Running online FEM to predict the heat distribution

also allows to consider varying external factors like, e.g.,

environment temperature.

The faster the FEM models runs, the larger the

look-ahead factor η becomes and the further into the
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future the simulation can “see”. If, e.g., we simulate

the machine’s deformation over 10 s and this simula-

tion requires 5 s to run, we achieve a look-ahead factor

of η = 2. A larger look-ahead factor gives more time

to apply the necessary corrections. Furthermore, a very

large look-ahead factor would allow to run the model

several times, either to address uncertainties through,

e.g., an ensemble approach or to compute the necessary
correction within an optimal control framework.

Finite element models (FEM) are derived from first

principles and can thus provide a reliable and detailed
description of heat transfer and diffusion, even though
accurate specification of boundary conditions can be a

challenge [22]. Accurate transient finite element models

are very useful as they can provide spatially and tem-

porally resolved temperature fields for machines with

complex designs and geometries [25,18]. In contrast to
empirical approaches [3,23], the parameters in FEM are

physical quantities that can, at least theoretically, be

measured. Since reduced models are typically machine-

specific, their derivation also comes with a high cost in

terms of person hours. In contrast, the mesh for FEM

can be generated automatically, e.g. from CAD files,

even for machines with complex geometries.

The disadvantage of FEM is their high computa-

tional cost, which is why often reduced models are em-

ployed, sacrificing accuracy or generality for speed. Run-

ning full time-dependent FEM is considered too com-

putationally expensive to be possible in real-time: “ap-

plication of the original FE-models without any simpli-
fications [...] for model-based control-integrated correc-
tion is very time-consuming and thus impractical” [15].

Despite only resolving one machine part and employing

a time-averaged heat source instead of a full coupling,

Galant et al. report a computation time of around 5

hours to simulate a milling machine with 16,626 degrees-

of-freedom over 16 hours using ANSYS (corresponding
to η = 3.2). To the best of the authors’ knowledge,

there are no reports of simulations solving in real-time

the fully coupled transient FEM problem for a machine

with moving parts without simplifications. Recent re-

view papers also make no mention of such efforts [21,25,

20]. A combination of finite differences and FEM, called
FDEM, has been proposed that reduces computational

effort but still relies on the use of macro elements to re-

duce the size of the solved system [24]. With respect to

FDM and FEM, in a review from 2017, Cao et al. state

that “[...], due to the low efficiency, the computational

models were rarely used in online thermal error com-

pensation” [7], mentioning only approaches that rely
on steady-state FE models [9,10].

A key reason is probably that while widely used

commercial proprietary software like ANSYS [1] is easy

to use, this simplicity comes with a performance penalty

and restriction to generic numerical methods that do
not consider the special structure of the problem. To
solve the fully coupled problem in ANSYS, e.g., only

implicit Euler is applicable [27]. While implicit Euler

is a robust and widely used time stepping method, it

is only first order accurate and does not take into ac-

count the different time scales involved, leaving room

for substantial efficiency gains by using more tailored

algorithms of higher order.

Contributions We demonstrate that accurate faster than

real-time simulations with a full transient FE model
with 16,626 degrees of freedom are possible by imple-

menting a tailored higher order multi-rate time step-

ping method in the open-source finite element library

DUNE [4,14,30]. While open-source FEM libraries are

typically more difficult to use than commercial pack-

ages, they are flexible and offer efficient implementa-
tions of spatial discretisations and solvers and can be
tailored to specific problems.

Our time stepping method is based on multi-rate

spectral deferred corrections (MRSDC) [11,5,19,6,13],
focussing on the case where the movement of the ma-

chine is fast compared to diffusive heat transport and

simulated time equals multiple complete machine cy-

cles. It combines implicit treatment of heat diffusion

over larger time steps with explicit integration of the

machine movement over smaller steps. This avoids sta-

bility issues from the diffusive term, maintains accuracy
for the fast dynamics induced by machine movement
and avoids the need to reassemble a Jacobian in each

step. We demonstrate that the new method can sub-

stantially improve computational efficiency. For a look-

ahead factor of η = 10, implicit Euler provides time
discretisation errors of about 20% which is probably

too inaccurate to compute useful information about the
machine deformation. In contrast, for the same value of
η, MRSDC is about one order of magnitude more ac-

curate, yielding an error of about 3%. For a smaller
look-ahead factor of η = 2, implicit Euler can provide

errors of about 1% while MRSDC is again about an

order of magnitude more accurate, providing an error

below 0.1%.

2 Description of the problem

Figure 1 shows the configuration of the machine. The

stand and rail are fixed and the corresponding compu-

tational domain is labeled Ωf. The stock moves up and

down along the rail (red surface in Figure 1) and we

refer to this part of the domain as Ωm. The equations
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parameter value unit

ρ 7200 kg
m3

Cp 460 J
kg·K

ν 50 W
mK

E 2.1 · 1011 N
m2

νP 0.3 -

αe 1.2 · 10−5 1
K

α 50

W
m2Kαi

1 10

2 100

3 100

Ti

1 24.0. . . 24.5
◦C2 22.0

3 20.0

Fig. 1 Fixed stand and stock moving along the rails. Colors
indicate different types of boundary conditions: cooling at
the right side of the stand and the back of the stock (blue),
heat exchange with the floor at the bottom (violet), heat
exchange between stand/stock plus heat generated by friction
(red) and heat exchange with the environment (green) at all
other boundaries.

modelling diffusion of heat within the two parts read

ρCp∂tTf = ν∆Tf in Ωf (1a)

ρCp∂tTm = ν∆Tm in Ωm(t). (1b)

Both geometries are coupled through the heat flux at

the moving common boundary segment ΓR(t) = Γm(t)∩
Γf at the rail. In Figure 1, ΓR(t) corresponds to the part

of the top of the rail covered by the stock at time t.

At ΓR we have heat exchange between stock and rail

and heat generation due to friction. For the sake of

simplicity, we assume thermal isolation at the rest of

the rail. Put together, we obtain boundary conditions

ν∇Tf ·
−→n = 0 on Γf,rail \ Γm(t) (2a)

ν∇Tm · −→n = α (Tf − Tm) +
η(t)

2
on ΓR(t) (2b)

ν∇Tf ·
−→n = α (Tm − Tf) +

η(t)

2
on ΓR(t). (2c)

We consider here that case where both the moving and

fixed part are made of the same material, so that νfix =

νmov = ν, see the table in Figure 1. But using different

values for conductivity would be straightforward.

Both domains are also thermally coupled to the sur-

rounding air and a cooling equipment, modelled by Robin

boundary conditions at the static pieces of the machine

ν∇Tf ·
−→n = αi (Ti − Tf) on Γf,i (3a)

ν∇Tm · −→n = αi (Ti − Tm) on Γm,i (3b)

for i = 1, 2, 3. Here, index i = 1 represents the boundary

where heat is exchanged with the environment (green in

Figure 1), index i = 2 the boundary where cooling is ap-

plied (blue in Figure 1) and finally i = 3 heat exchange
with the floor (violet in Figure 1). Each boundary uses

a different value for Ti and αi. The environmental tem-

perature is assumed to be equal to 24 ◦C at the floor

with a slight increase of 0.5 ◦C over the 2m distance to

the top of the stand, modelling a sunlit workshop on a

warm day.
Both domains are meshed independently and equa-

tions (1) are discretized using linear finite elements.

Meshes Ωf and Ωm have different basis and test func-

tion spaces Vf and Vm. Multiplying equations (1) with

the corresponding test functions, integrating each do-

main separately and inserting the boundary conditions

yields

ρCp

∫

Ωf

∂tTfϕfdx = −ν

∫

Ωf

∇Tf∇ϕfdx

+

∫

Γf,env

αf(Tenv − Tf)ϕfdS

+

∫

ΓR(t)

(

α(Tm − Tf) +
η(t)

2

)

ϕfdS

(4a)

ρCp

∫

Ωm

∂tTmϕmdx = −ν

∫

Ωm

∇Tm∇ϕmdx

+

∫

Γm,env

αm(Tenv − Tm)ϕmdS

+

∫

ΓR(t)

(

α(Tf − Tm) +
η(t)

2

)

ϕmdS (4b)

for every test function ϕf and ϕm respectively. By rep-

resenting the solutions Tf(x) =
∑

k

−→
T f,k(t)ϕf,k(x) and

Tm(x) =
∑

k

−→
T m,kϕm,k(x) in basis functions on the cor-

responding mesh we can write the continuous equations

(4a) and (4b) in their discrete forms

Mf∂t
−→
T f =Af

−→
T f +Bf,env

−→
T f +

−→
b f,env

+MBf(t)
−→
T f +CBm,f(t)

−→
T m

+
−→
b f(t) (5a)

Mm∂t
−→
T m =Am

−→
T m +Bm,env

−→
T m +

−→
b m,env

+MBm

−→
T m +CBf,m(t)

−→
T f

+
−→
b m(t) . (5b)
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To avoid duplication, we use a generic subscript X in-

stead of “m” and “f”, for “move” and “fixed” respec-

tively, when expressions are identical on both parts.

In both equations we have the standard mass matrix

MX =
∫

ΩX
ϕXϕXdx and the discrete Laplacian AX =

−ν
∫

ΩX
∇ϕX · ∇ϕXdx for every test function ϕX . We

have split the contributions from the environment in
two parts. The first part

BX,env = −

∫

ΓX,env

αXϕXϕXdS (6)

depends on the machine temperature while the second

part

−→
b X, env =

∫

ΓX,env

αXTenvϕXdS (7)

does not. The time dependent source term

−→
b X(t) =

∫

ΓR(t)

η(t)

2
ϕXdS (8)

models heat generation through friction [27]. We split

the term MX(t)
−→
T X + CBY,X

−→
T Y modelling heat ex-

change between stand and stock in two terms. The co-
efficients of the first part

MX =−

∫

ΓR(t)

αϕXϕXdS (9)

are similiar to the matrix from the Robin boundary

condition, whereas the matrix of the second part

CBY,X =

∫

ΓR(t)

αϕY ϕXdS (10)

contains basis functions from both domains. This is

the term which couples the temperature fields of both
machine components. Since both parts are meshed in-
dependently, the meshes do not match at the inter-
face. Therefore, we have to compute the intersections of

both meshes using existing methods for grid coupling in

DUNE [4,14] to evaluate the boundary integrals in (10).

Now, we combine both equations in (5) into one

coupled system

(

Mf 0

0 Mm

)

∂t
−→
T =

(

Af +Bf,env 0

0 Am +Bm,env

)

−→
T

+

( −→
b f,env
−→
b m,env

)

+

(

MBf(t) CBm,f(t)

CB
T
m,f(t) MBm

)

−→
T

+

( −→
b f(t)
−→
b m(t)

)

(11)

by introducing
−→
T =

( −→
T f
−→
T m

)

. We also replace the mass

matrices Mf and Mm by their row sum-lumped version

[2].

In preparation for the introduction of the multi-rate

time stepping in the next section, we split the right

hand side function into the following parts

−→
f I(

−→
T ) =

(

Af +Bf,env 0

0 Am +Bm,env

)

−→
T (12)

−→g (t) =

( −→
b f,env
−→
b m,env

)

(13)

−→
f E(

−→
T , t) =

(

MBf(t) CBm,f(t)

CB
T
m,f(t) MBm

)

−→
T +

( −→
b f(t)
−→
b m(t)

)

.

(14)

With this notation (11) can compactly be written as

M∂t
−→
T (t) =

−→
F (

−→
T (t), t) =

−→
f I(

−→
T (t))+

−→
f E(

−→
T (t), t)+−→g (t).

(15)

Since we consider the regime where heat diffusion is

slow compared to machine movement,
−→
f I represents a

slow process. In contrast,
−→
f E represents the fast cou-

pling process and generation of heat from friction. Eval-

uating
−→
f E requires detecting the intersection of finite

elements at the interface between the two components,

which can be expensive. Lastly, −→g (t) models heat ex-

changes with the environment, floor and cooling, which

are also slow relative to the movement of the machine.

This splitting is motivated by the following time

scale argument. Heat in the machine dissipates towards

a stationary state on a time scale τc =
ρCpL

2

ν
, where L

is a characteristic length. The second time scale τm is

given by the time it takes the stand to travel along the

rail once. One limiting case would be τc/τm → 0. Here,

machine movement is infinitely fast compared to heat
diffusion which would result in some aggregate effective

heat source on the rail without resolving stock move-
ment. The other limiting case is τc/τm → ∞, where

heat across the machine adjusts to a new steady state
instantaneously after each infinitesimal movement of

the stock without transients.

For the machine studied here, the edge length L =

0.5m leads to τc = 16,560 s. In contrast, the material

parameters in Table 1 result in a diffusive time scale

of τm = 12 s. Therefore, we have a clear scale separa-
tion in the sense that τc ≫ τm which we exploit in our

algorithm.
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Deformations. The stationary deformation −→u is given

by the equations of linear elasticity

µ∆−→u + (λ+ µ)∇ (∇ · −→u ) =
−→
f th +

−→
f mech , (16)

where the thermal stress

−→
f th = α(3λ+ 2µ)∇ · I[T (t)− T (0)] (17)

is due to deviation from the reference temperature [16,

8]. We use Lame‘s parameters µ = E
2(1+νP ) and λ =

EνP

(1+ν)(1−2νP ) but specified the Young‘s modulus E and

Poisson‘s ratio νP in the table in Figure 1. We focus

here only on thermally induced deformations and ignore

mechanical loads, so that
−→
f mech = 0. This is in line

with what is typically done in the literature [15,24] and

most papers do not even mention the mechanical part.

A detailed investigation of the role of umech would be

interesting but is beyond the scope of this paper.

3 Numerical time stepping method

In this section, we present a time stepping algorithm

with a problem-specific multi-rate splitting based on
spectral deferred corrections [11] that will reduce solu-

tion times significantly compared to a standard implicit

Euler method.

The term
−→
f I models diffusion of heat. Resolving it

accurately requires a time step ∆t = O(∆x) while sta-

bility for an explicit integrator requires ∆t = O(∆x2).
To resolve all geometrical features of the machine the

mesh has many small elements with diameters of the

order of 2× 10−4 m whereas the stand is 2m high and

has a 0.5m by 0.5m base. Given the values for ν, ρ, Cp

in Figure 1, an explicit integrator would require a time

step

∆t ≤
ρCp∆x2

ν
= 0.0027 s (18)

for stability, which is orders of magnitude too small to

be efficient. Therefore, f I is treated implicitly with a

larger time step. The term −→g is independent of
−→
T and

models heat exchange with the environment which is

a slow process. Therefore, we use the same large time

step as for
−→
f I .

In contrast, for
−→
f E , modelling the movement of

parts of the machine, we require that ∆t = O(∆x
v
)

(v being the speed of the machine). Otherwise, the

stock moves across multiple mesh cells in one time step,

creating a “stroboscope effect” and highly unrealistic

temperature distributions [28]. There is thus no ben-

efit integrating
−→
f E implicitly because taking a large

time step is impossible anyway. Furthermore, implicit

treatment of this term leads to a time-dependent Ja-

cobian and a potentially large number of evaluations,

each of which would require detecting intersections. To

avoid both issues, we integrate
−→
f E explicitly but with

a smaller time step.

Finally, to achieve better computational efficiency,

we want our time stepping method to be at least second

order accurate. Derivation of both implicit-explicit and

multi-rate method of higher order is challenging and we

employ the spectral deferred corrections framework for

this purpose.

When using a finer spatial mesh, computing the in-
tersections becomes cheaper relative to solving the full

problem. Therefore, we expect the cost of
−→
f E to go

down compared to
−→
f I , making the splitting approach

more efficient. However, this will also depend on the

precise stability properties of the method which we have

not yet studied in detail. A corresponding analysis is

beyond the scope of this paper and left for future work.

Single-rate spectral deferred correction

Before discussing the multi-rate spectral deferred cor-

rection (SDC) algorithm, we first describe its single-rate

variant. Consider the initial value problem (15) over one

time step [tn, tn+1]. Let

tn ≤ τ1 < . . . < τM ≤ tn+1

denote a set of quadrature nodes within the time step.

We denote the distances between nodes by ∆τm =

τm−τm−1 for m = 2, . . . ,M and ∆τ1 = τ1−tn. The an-

alytical solution of (15) satisfies the integral equations

M
−→
T (τm) = M

−→
T (tn) +

∫ τm

tn

−→
F (

−→
T (s), s) ds (19)

for m = 1, . . . ,M . We approximate the integral using

a quadrature rule, resulting in the discrete approxima-

tions

M
−→
T m = M

−→
T (tn) +

M
∑

j=1

qm,j

−→
F (

−→
T j , τj) (20)

of (19) with
−→
T m ≈

−→
T (τm). The quadrature weights

qm,j are given as integrals over Lagrange polynomi-

als [29]. This approach is known as collocation and the

unknowns
−→
T m correspond to the stages of a fully im-

plicit Runge-Kutta method with Butcher tableau [17,

Theorem 7.7]. Theoretically, these can be computed us-

ing a Newton-Raphson method to solve the M coupled

nonlinear equations (20) but the large size of the nonlin-

ear system makes this approach impractical for systems
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with a large number of degrees-of-freedom, in particular

semi-discrete partial differential equations. Subtracting

equations (19) for m and m − 1 yields the “node-to-

node” variants of the integral equations

M
−→
T (τm) = M

−→
T (τm−1) +

∫ τm

τm−1

−→
F (

−→
T (s), s) ds. (21)

Instead, spectral deferred corrections employ an it-

erative procedure which avoids assembly of the full sys-

tem. Each iteration can be computed by a “sweep”

through the quadrature nodes with a low order method.

Semi-implicit SDC (SISDC) [26] starts with an initial

prediction step using IMEX-Euler to generate approx-
imate values

−→
T 0

m from

M
−→
T 0

m = M
−→
T 0

m−1 +∆τm

(−→
f I(

−→
T 0

m) +−→g (τm)
)

+∆τm
−→
f E(

−→
T 0

m−1, τm−1) (22)

for m = 1, . . . ,M with
−→
T 0

0 =
−→
T (tn). This provides a

first order accurate approximation of
−→
T at the quadra-

ture nodes. Then, to increase the order, SISDC proceeds

with the following iterative correction

M
−→
T k+1

m = M
−→
T k+1

m−1 +∆τm

(−→
f I(

−→
T k+1

m )−
−→
f I(

−→
T k

m)
)

+∆τm

(−→
f E(

−→
T k+1

m−1, τm−1)−
−→
f E(

−→
T k

m−1, τm−1)
)

+ Imm−1.

(23)

with

Imm−1 :=

M
∑

j=1

sm,j

−→
F (

−→
T k

j , τj) ≈

∫ τm

τm−1

−→
F (

−→
T (s), s) ds.

(24)

The weights are given by sm,j := qm,j − qm−1,j for

m = 2, . . . ,M and s1,j := q1,j . Note that since the

source term −→g does not change with k, −→g (τm)−−→g (τm)

cancels out but it is considered in the correction steps

through
−→
F (

−→
T k

j , τj) in the quadrature term Imm−1.

For k → ∞, if the iteration converges and
−→
T k+1

m −
−→
T k

m → 0 for m = 1, . . . ,M , Equation (23) reduces to

M
−→
T m = M

−→
T m−1 + Imm−1 (25)

which is the discrete counterpart of (21). Applying this

equation recursively to retrieve the zero-to-node variant
shows that the

−→
T k+1

m converge to the solutions
−→
T m

of (20). However, the appeal of SDC stems from the

fact that it is not necessary to fully solve the collocation

Fig. 2 Standard quadrature nodes τm, m = 1, . . . ,M (grey
squares) and embedded quadrature nodes τm,p, p = 1, . . . , P
(black and white circles) within a time step [tn, tn+1] in
multi-rate spectral deferred correction (MRSDC) for M = 4
standard nodes and P = 3 embedded nodes. We use no-left
equidistant nodes, that is tn is not a standard quadrature
nodes and τ1 = τ1,3 is part of the first set of embedded nodes
(τ1,j)j=1,...P in [tn, τ1], but not an embedded node in [τ1, τ2].

problem. It can be shown [29] that, if the time step is
small enough, each iteration reduces the residual

rk := max
m=1,...,M

∥

∥

∥

∥

∥

∥

M
−→
T k

m −M
−→
T (tn)−

m
∑

j=1

Imm−1

∥

∥

∥

∥

∥

∥

(26)

by a factor proportional to∆t. Therefore, each iteration

increases the formal order of the method by one, up

to the order of the underlying quadrature rule which

depends on M and the chosen type of nodes. Thus,

by adjusting the runtime parameter K and M , SISDC
allows to generate a split scheme of arbitrary order.

Multi-rate spectral deferred correction

Multi-rate SDC (MRSDC) has been first introduced by

Bourlioux, Layton and Minion [5]. In MRSDC, a set

of embedded quadrature nodes τm,p, p = 1, . . . , P , is
introduced in between each pair [τm−1, τm] of standard

quadrature nodes as illustrated in Figure 2. Therefore,
we have a total of M × P nodes

tn ≤ τ1,1 < . . . < τ1,P ≤ τ1 < . . . < τM,P ≤ τM ≤ tn+1.

(27)

For simplicity, we assume here that the rightmost quadra-

ture node always coincides with the endpoint of the in-

terval so that τM = tn+1 and τm,P = τm. Furthermore,
we use equidistant quadrature nodes where tn is not

a standard node (that is, tn < τ1) and τm−1 is not a

quadrature node for the embedded nodes τm,p (that is,

τm−1 < τm,1). While equidistant nodes limit the formal

order of the quadrature rule to the number of nodes

(instead of, e.g., twice the number of nodes for Gauss-

Legendre quadrature), it significantly improves SDC’s

convergence in the very stiff limit [32]. The fast chang-

ing term
−→
f E is approximated by a cumulative sum of

the embedded nodes (that is, with small steps) while

the slowly changing terms
−→
f I and −→g are approximated

only at the standard nodes.
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Analogously to the equations (21) at the standard

nodes, the integral equations at the embedded nodes
read

M
−→
T (τm,p) = M

−→
T (τm,p−1) +

∫ τm,p

τm,p−1

−→
F (

−→
T (s), s) ds.

(28)

In addition to the approximations at the standard nodes
−→
T m ≈

−→
T (τm) as in single-rate SDC we now also con-

sider approximations
−→
T m,p ≈

−→
T (τm,p) of the solution

−→
T at the embedded nodes. Then, we approximate the

integrals with the following quadrature rules

Imm−1 ≈

∫ τm

τm−1

−→
F (

−→
T (s), s) ds (29)

with

Imm−1 :=

M
∑

j=1

sm,j

(

f I(
−→
T j) + g(τj)

)

+

P
∑

p=1

ŝm,pf
E(

−→
T m,p, τm,p)

(30)

and

Ipm,p−1 ≈

∫ τm,p

τm,p−1

−→
F (

−→
T (s), s) ds (31)

with

Ipm,p−1 :=

M
∑

j=1

s̃m,p,j

(

f I(
−→
T j) + g(τj)

)

+

P
∑

q=1

sm,p,qf
E(

−→
T m,q, τm,q).

(32)

The quadrature weights are defined as follows: let lm(s)
denote the Lagrange polynomials with respect to the

standard nodes and lm,p(s) the Lagrange polynomials
with respect to one set of embedded nodes, that is

lm(τj) = δmj , m, j = 1, . . . ,M (33)

and

lm,p(τm,q) = δpq, m = 1, . . . ,M ; p = 1, . . . , P ;

q = 1, . . . , P
(34)

with δ being the Kronecker Delta. Then, the weights
are defined as

sm,j :=

∫ τm

τm−1

lj(s) ds (35a)

ŝm,p :=

∫ τm

τm−1

lm,p(s) ds (35b)

s̃m,p,j :=

∫ τm,p

τm,p−1

lj(s) ds (35c)

sm,p,q :=

∫ τm,p

τm,p−1

lm,q(s) ds. (35d)

Integral boundaries Position of function values

Standard Embedded
Standard sm,j ŝm,q

Embedded s̃m,p,j sm,p,q

Table 1 Quadrature weights for integrals between standard
or embedded nodes depending on whether approximate func-
tion values are given at standard or embedded nodes.

Thus, the weights sm,j and ŝm,p,j approximate integrals
between standard nodes while s̃m,p and sm,p,q approx-

imate integrals between embedded nodes, see Table 1.

Now we approximate the continuous integral equa-

tions (21) and (28) with their discrete counterparts

M
−→
T m = M

−→
T m−1 + Imm−1 (36)

and

M
−→
T m,p = M

−→
T m,p−1 + Ipm,p−1. (37)

Note that the integral approximations are consistent in

the sense that

Imm−1 =
P
∑

p=1

Ipm,p−1 (38)

because

sm,j =

P
∑

p=1

s̃m,p,j and ŝm,p =

P
∑

q=1

sm,p,q. (39)

Just as for the single-rate case, we consider the resid-
ual (26) at the standard nodes. In theory, we could solve

the (M + 1)× P nonlinear equations (36) and (37) di-

rectly for the
−→
T m and

−→
T m,p. However, solving such a

large system is impractical so we again rely on an iter-

ative approximation.

We start by generating a first order accurate ap-
proximation at all nodes (standard and embedded) by

computing the predictor step shown in Algorithm 1.

For every standard step [τm−1, τm], we first compute

one large implicit Euler step to generate an estimated

final value
−→
T ∗

m and compute f∗

m = f I(
−→
T ∗

m). Then, we
compute a series of small steps using explicit Euler in
−→
f E , going from τm−1 = τm,0 to τm,P = τm. The im-

plicit term remains fixed to f∗

m throughout. Finally, we

use the final results of the series of small steps
−→
T 0

m,P

as
−→
T 0

m, that is as initial value for the next embedded

step. This then provides the initial value
−→
T 0

m for the

next interval from τm to τm+1 where we start the pro-

cedure again with a large implicit step. As we show

later, the predictor step provides a first order accurate

approximation.
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Algorithm 1: Multi-rate SDC prediction step.

input :
−→
T (tn)

output:
−→
T 0

m and
−→
T 0

m,p for m = 1, . . . ,M and
P = 1, . . . , P .

1.1

−→
T 0

0 ←
−→
T (tn)

1.2 for m = 1,M do

/* Implicit step over [τm−1, τm]. */

1.3 Solve M
−→
T ∗

m = M
−→
T 0

m−1 +∆tm

(

fI(
−→
T ∗

m) + g(τm)
)

1.4 f∗

m ← fI(
−→
T ∗

m) + g(τm)
/* Set starting value at τm−1. */

1.5

−→
T 0

m,0 ←
−→
T 0

m−1

/* Sweep through embedded nodes τm,p with

explicit Euler. */

1.6 for p = 1, P do

1.7 M
−→
T 0

m,p = M
−→
T 0

m,p−1 +

∆tm,p

(

f∗

m + fE(
−→
T 0

m,p−1, τm,p−1)
)

1.8 end

/* Update value at τm by overwriting with

final value from embedded sweep (since

τm,P = τm). */

1.9

−→
T 0

m ←
−→
T 0

m,P

1.10 end

The order is then increased using the iteration shown

in Algorithm 2. It proceeds similarly to the predictor

step by combining a single large implicit step in
−→
f I

over [τm−1, τm] with P many small explicit steps for

the embedded nodes. Through numerical examples, we

will demonstrate the following properties.

(i) Convergence to collocation solution: the resid-

ual (26) decreases geometrically proportional to ∆t

and approximately at the same rate as for single-

rate SDC.

(ii) Order of accuracy: each iteration increases the
formal order by one, up to the order of the approx-

imations of the integral min {M,P}.
(iii) Computational efficiency:multi-rate SDC reduces

solution times while maintaining the same accuracy

as single-rate SDC or implicit Euler.

(iv) Smooth temperature profiles: the smaller time

step for the coupling in MRSDC leads to a smoother

temperature profile than implicit Euler which re-

sults in more realistic deformations since those de-

pend on the temperature gradient.

Properties (i) and (ii) are demonstrated for a two di-

mensional problem of reduced complexity while (iii)

and (iv) are demonstrated for the fully coupled 3D ma-

chine.

Algorithm 2: Multi-rate SDC correction sweep.

input :
−→
T (tn) and

−→
T k

m,
−→
T k

m,p for m = 1, . . . ,M ,
p = 1, . . . , P .

output: updated values
−→
T

k+1
m ,

−→
T

k+1
m,p

/* Update the integral terms */

2.1 Update Imm−1, m = 1, . . . ,M according to (29)

2.2 Update I
p
m−1,p−1, m = 1, . . . ,M ; p = 1, . . . , P

according to (31)
/* Value at beginning of time step τ0 = tn is

brought forward from previous step and remains

the same for all iterations k. */

2.3

−→
T

k+1
0 ←

−→
T (tn)

2.4 for m = 1,M do

/* Implicit correction step over [τm−1, τm].
Note that the g(τm) term cancels out but is

included in Imm−1. */

2.5 Solve M
−→
T ∗

m =

M
−→
T

k+1
m−1 +∆tm

(

fI(
−→
T ∗

m)− fI(
−→
T k

m)
)

+ Imm−1

2.6 f∗

m ← fI(
−→
T ∗

m)− fI(
−→
T k

m)
/* Set starting value at τm−1. */

2.7

−→
T

k+1
m,0 ←

−→
T

k+1
m−1

2.8 for p = 1, P do

/* Sweep through embedded nodes τm,p with

explicit Euler. */

2.9

M
−→
T k+1

m,p = M
−→
T

k+1
m,p−1 +∆tm,pf

∗

m

+∆tm,pf
E(
−→
T

k+1
m,p−1, τm,p−1)

−∆tm,pf
E(
−→
T k

m,p−1, τm,p−1)

+ I
p
m,p−1

2.10 end

/* Update value at τm by overwriting with

final value from embedded sweep (since

τm,P = τm). */

2.11

−→
T

k+1
m ←

−→
T

k+1
m,P

2.12 end

4 Convergence to collocation solution and

formal order of accuracy

We demonstrate the theoretical properties (i) and (ii)

of the method for a simplified 2D version of the full

problem that is cheap to solve and allows to easily run

simulations for a wide range of parameters. The con-
figuration is sketched in Figure 3. In this scenario, the

stand is a rectangle with variable temperature while the

stock is represented as a smaller rectangle of constant

temperature T0, gliding left and right. We neglect the

rails and prescribe the heat flux ν∇Tfix = α(T0 − T )
at the intersection. The stock moves horizontally with

velocity v = −0.1m s−1. At the remaining boundaries,
we assume thermal isolation and apply a zero flux con-

dition. The stand is discretized with bilinear finite el-

ements. In the similar way as for the 3D problem we

obtain the equation

M∂t
−→
T =(νA+ αMB(t))

−→
T + αCB(t)1T0 . (40)
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T (t)

v0

x

y

Fig. 3 The 2D domain with the red boundary line at the
top. This red line represents the moving flux with reference
temperature v0 and the remaining black lines correspond to
zero flux.

Fig. 4 The temperature field after 20 seconds, i.e. the source
square reached the left corner. The temperature tail from the
center to the left boundary is clearly visible

The matrices A, M, MB and CB are analogous to the

full problem, but we dropped the subscript “fix”. Our
splitting is now straightforward. The slow implicit part

f I and the fast part fE are

−→
f I(

−→
T ) =νA

−→
T (41a)

−→
f E(

−→
T , t) =αMB(t)

−→
T + αCB(t)1T0 (41b)

whereas g(t) = 0 due to the fact the we neglect the

thermal exchange with the environment. Figure 4 shows

the temperature field after t = 20s when the stock is

located at the left side. Following the movement of the

stock, the temperature increases at the boundary from

the center to the left corner with heat dissipating slowly

into the stand.

To demonstrate (i), Figure 5 shows the residual (26)

plotted against the iteration index k for three different

time steps. As a guide to the eye, lines proportional to

∆tk are shown. Results from SDC with M = 5 nodes

(dashed lines) and MRSDC with (M,P ) = (5, 8) nodes
(solid lines) are shown. Residuals are nearly identical

for both methods with only small differences for the

largest step size te
5 . For both methods, the residuals de-

cay proportional to ∆tk so that smaller time steps lead

to faster convergence. Eventually, both methods repro-

duce the collocation solution up to machine precision.
Note that similar residuals do not necessarily mean that

SDC and MRSDC give comparable accuracy, only that
they approximate their respective collocation solution
to roughly the same degree.

To demonstrate (ii), Figure 6 shows the measured

order of convergence for a wide range of time steps

for MRSDC with (M,P ) = (5, 2) nodes (dashed lines)

and (M,P ) = (5, 8) nodes (solid lines). Color indicates
the number of iterations, ranging from k = 0 (predic-

tor only) up to k = 4 (predictor plus four correction
sweeps). The exact solution against which we compare

is computed by running the method with a time steps

many orders of magnitude smaller. Since order is de-

fined for step sizes approaching zero, we see some in-

consistent behavior for larger time step sizes. With de-

creasing step size, however, measured order approaches
the theoretically expected order of min(M,P, k + 1).

This illustrates that MRSDC, just as single-rate SDC,
improves formal order by one per iteration up to the

order of the underlying quadrature rules.

5 Real-time simulation of the 3D fully coupled

machine

We now demonstrate that MRSDC implemented in DUNE

can accurately solve the 3D fully coupled problem accu-

rately with look-ahead factors η ≫ 1. Further, we show

that the multi-rate time stepping produces a smoother

temperature field and more accurate approximations of

deformations. We focus on the error from the time dis-
cretization since the FEM approach used in space is
standard and its analysis is now textbook material.

The physical parameters and geometries are the same

as in Naumann et al. [27], except for the movement pro-

file of the stock and the simulation time. We let the

stock move according to

s(t) = a sin

(

2π

ε
t

)

+ s0, (42)

in meters with a =0.495m and s0=0.505m. The move-

ment of the stock is periodic with each period hav-

ing length ε = 24s. We simulate 10 periods for a fi-
nal time of T = 240s. Our MRSDC time stepping uses

(M,P ) = (3, 2) quadrature nodes and 24 time steps of

length ∆t = 1.0s per period. As initial data we use the

stationary temperature profile for the machine at rest

but subject to thermal coupling with the environment

and cooling equipment

M
−→
T (0) =

−→
f I(

−→
T (0)) +−→g (0) . (43)

Figure 7 shows the temperature field at the end of

the simulation at t = 4min. The maximum tempera-
ture (up to 25.7 ◦C) is found at the center of rails. The
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Fig. 5 Residual versus iteration count k for SDC with M = 5
nodes (dashed lines) and MRSDC with (M,P ) = (5, 8) nodes
(solid lines). Both convergence to the collocation solution at
approximately the same rate proportional to ∆tk (indicated by
grey lines).
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Fig. 6 Measured convergence order of MRSDC with (M,P ) =
(5, 8) nodes (solid line) and (M,P ) = (5, 2) nodes (dashed
lines) for k = 0, 1, 2, 3, 4 iterations. The order matches the
theoretically expected value of min(M,P, k + 1). Note that for
(M,P ) = (5, 2) computing more than k = 2 iterations does not
increase the order further because P = 2 limits the order of the
collocation method to two.

fact that we cool the right side of the stand with fixed

temperature of 22.0 ◦C while the left side is exposed

to room temperatures of up to 24.5 ◦C creates a slight
asymmetry with the left rail being warmer. Minimum

temperatures of 21.8 ◦C are found at the floor which
has a temperature of 20 ◦C and thus removes heat from

the machine. Temperatures at the top of the sides are

somewhat higher than towards the bottom because of

the small vertical temperature gradient in the environ-

ment and the cooling at the bottom.

The graphs on the right of Figure 7 illustrate the

spatial and temporal variation of the temperature field
in specific parts of the machine. The upper Figure shows
the temperature along the indicated cross-section of the

right rail at three different times. For reference, the tem-

perature at t = 8 2
3ε computed with implicit Euler is

shown as well. Toward the center of the rail (at around

y = 1.25m), the heat generated with each passage of
the stock slowly accumulates so that temperature is

higher at later times. After t = 9 2
3 periods, the temper-

ature has increased by up to 1.4 ◦C above the reference

temperature. The strongest warming is seen around the

center and the temperature increase becomes less pro-

nounced towards the ends of the rail. There, the longer

time between passages of the stock leaves enough time
for the heat to dissipate and only a small increase in
temperature of about 0.1 ◦C is observed at the upper

and lower end. Furthermore, at full periods, the stock
is located at the center of the rail moving upwards, hav-
ing just heated the lower part, while at two-third pe-

riods the stock is near the bottom moving downwards.
This causes a slight shift in the temperature profile at
times at full periods, i.e. t=9ε and t = 10ε, compared

to times t = 2
3ε,

4
3ε, . . ..

The lower Figure in 7 shows the transient effects

from the moving stock. Each of the two transits per

period (one while moving downwards, one while mov-

ing upwards) leads to an increase in temperature, fol-

lowed by a more gradual decrease due to heat diffusion.

Because the time without transits increases for points
away from the center of the rail, there is a longer period
of time for the heat to diffuse, leading to less warming.

Transient profiles are therefore not the same throughout

the machine but vary with spatial position and models

that rely on a separation of spatial and temporal co-

ordinates will not be able to capture this effect. Points

near the center (2 and 3 in Figure 7) experience a signif-
icant net heating of 1.4 ◦C and 0.9 ◦C respectively over

the course of the simulation. In contrast, points towards

the ends of the rails (1 and 4 in Figure 7) only warm

by about 0.1 ◦C to 0.2 ◦C. There is less heating toward

the lower end of the rail because of the shorter distance

to the cooling floor.

Deviations from the reference temperature create

thermal deformation. Figure 8 shows the deformation

of the stand resulting from the temperature field shown
in Figure 7. Since deformations are of the order of 5 µm,

they are exaggerated in the figure by a factor of 104

to make them visible. The stand mainly bends toward

the rear and to the right with stronger deformations at

the top. Because of the transient and inhomogeneous

distribution of heat, deformations are not uniform but

depend strongly on time and position. The upper right
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Fig. 7 Simulated temperature field on the fixed part of the machine after t =240 s simulated time (left figure). The upper
right figure shows the cross-section of the temperature field along the black line on the rail at four different times. Note that
at times t = 2

3
ε, 4

3
ε, . . ., the stock is at the lower end of the rail. At times t = ε, 2ε, . . . it is at the centre of the rail. The lower

right figure shows the temperature over time at the four points indicated by the black dot in the left figure.

Figure shows deformations along the cross-section of
the right rail indicated in Figure 7. The vertical gradi-

ent of temperature from the bottom to the top creates

significant deformation along the y-axis. Because most

of the warming happens at the rails at the front, we ob-

serve substantial deformations in z direction. While rel-

atively small toward the floor, both z and y deformation
increase substantially towards the top. Deformations in

x direction due to the slightly asymmetric warming are

smaller with a maximum toward the center.

Next, we analyze performance of MRSDC in terms
of work-precision. Figure 9 shows achieved time dis-

cretization errors (y-axis) in the temperature field ver-

sus the look-ahead factor (x-axis) which depends on the

wall clock time required to run the simulation at this

accuracy. Lower errors require better resolution which

results in longer simulations and therefore smaller η.

The threshold between faster than real-time (η > 1)

and slower than real-time (η < 1) is indicated by a verti-
cal black line. Three classes of method are investigated:

multi-rate SDC (MRSDC, solid lines), single-rate SDC

(dash-dotted lines) and implicit Euler (dashed line).

MRSDC uses (M,P ) = (3, 2) nodes and k = 0, 1, 2

iterations while SDC uses M = 3 nodes and also up to
two iterations. Note that the fast component MBfix(t)

from (11) – which is treated explicitly with a small step
in the multi-rate integrator – is included in the implicit

part in single-rate SDC. This means that SDC requires

the reassembly of the Jacobian that MRSDC avoids,

creating substantial overhead.

For k = 0, both SDC and MRSDC show first or-

der convergence in the faster and slower than real-time

regime. Both methods deliver about the same efficiency,

being slightly better than implicit Euler, but MRSDC

has a slight advantage for large values of η. For higher

order and k = 1, 2, single-rate SDC is substantially
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Fig. 8 The grey geometry shows the original stand whereas the lines show the deformed stand at time t = 82
3
ε (deformations

are exaggerated by a factor of 1e4 for visibility). Heat is mainly generated at the rail, causing thermal expansion at the front,
and therefore the stand bends predominantly in the z-direction, away from the rails. The top right figure shows deformations
along the same line as in Figure 7 in x (red), y (green) and z (blue) direction. The bottom right figure shows the deformation
in point 4 in Figure 7 over time.

less efficient than MRSDC, producing larger errors for
the same η. Single-rate SDC is also mostly less efficient

than implicit Euler except for values η ≪ 1. MRSDC
with k = 1, 2 is still in the pre-asymptotic regime for

look-ahead factors larger than one, not yet showing

the theoretical convergence order. A clear difference in

the slopes of the error lines emerges only for factors

of around η ≈ 1 and smaller. Nevertheless, MRSDC

with k = 1, 2 iterations is more efficient than first order
MRSDC for most values between η = 10 to η = 1 and

significantly more efficient than implicit Euler. Only

for very coarse resolutions and values of η > 10 is

there no clear gain from higher order MRSDC with

all k = 0, 1, 2 showing roughly the same performance.
Still, the multi-rate integration makes MRSDC more

efficient than simple implicit Euler, delivering substan-
tially more accurate solutions for the same look-ahead

factors. For slower than real-time simulations with η <
1, MRSDC eventually shows its theoretical order of

convergence which significantly widens the performance
gap compared to first order implicit Euler.

We can relate the accuracy of the representation of

the temperature field to the accuracy of deformations.
Figure 10 shows the absolute error in the deformations

in x, y and z-direction, computed from the gradients

of the temperature field, along the cross-section indi-

cated in Figure 7. Solid lines marked with circles cor-
respond to MRSDC with k = 1 iteration and η = 5.0

while dashed lines indicate implicit Euler with η = 6.5.

Clearly, the higher accuracy in the computed tempera-

ture field translate into significantly more accurate de-

formations, with errors from MRSDC being at least one

order of magnitude smaller than those from implicit Eu-

ler.
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Fig. 9 Time-discretisation error for SDC (dash-dotted lines), MRSDC (straight lines) with M=3, P=2 at tend = 10ε and
implicit euler (dashed line). The black vertical line indicates η = 1.0 with simulations on the left running with η > 1 or faster
than real-time.

For the results shown above, we only computed de-

formations at the end of the simulation. In reality, one

would have to compute the deformations more frequently.

However, for linear elasticity, computing the deforma-

tions reduces to the solution of a large sparse linear sys-
tem of equations with the temperature profile as right
hand side. When computing the LU-decomposition of

the coefficient matrix at the beginning of the simula-

tion, solving for the deformations requires only a forward-

backward solve of lower and upper triangular matrices.

For the problem studied here, this took about 0.08 s

which is negligible compared to the end time 240 s so

that more frequent solves will have minimal effect on

the reported look-ahead factors.

Stronger heating. It is worth pointing out that the heat
generation in the studied problem is relatively mild but

that our method is applicable to scenarios with stronger

heating as well. We performed simulations with a 100×

stronger heat source (not shown). Since the problem is

linear, this essentially scales up all curves in Figure 10

by a factor of hundred, so that errors in the implicit

Euler go up to 10 µm while errors from MRSDC go up
to 0.1 µm. Because manufacturing tolerances in essence

pose limits on the absolute error, stronger heating will

therefore require tighter numerical tolerances which is

likely going to favour higher order method like MRSDC.

Analyzing a wider parameter range in more detail is left

for future work.

6 Conclusions and outlook

The paper introduces a multi-rate high-order time step-
ping method for simulations of heat diffusion in moving
machine tools consisting of a fixed stand and a mov-

ing stock. By implementing the algorithm in the open-

source FEM framework DUNE, we demonstrate that

accurate transient simulations of a FE model of the fully

coupled machine are possible in real-time. We show that

the higher order of multi-rate spectral deferred cor-

rections (MRSDC) improves computational efficiency

compared to implicit Euler, even for large time steps

where the method does not yet achieve its theoretical

order of accuracy. Time discretization errors of around

one percent can be achieved for look-ahead factors of

η = 10. The results illustrate the potential of solving

FEM fast enough to deliver spatially and temporally
resolved temperature fields for online compensation of

errors due to thermal deformation.

Outlook. Open source libraries like the one used in this
paper offer the possibility of significant further perfor-

mance optimization. Making use of parallelization and

high-powered accelerators like graphics processing units

or many-core CPUs would require substantial effort but
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Fig. 10 Errors in the displacements in x (red), y (green) and z (blue) direction at time t=82
3
ε along the line in figure 7. The

displacement correspond to the temperatures in the right top image of Figure 7. Lines with markers show the MRSDC(3,2)
solution with one iteration, dashed lines represent the implicit euler. The errors in the displacements from the MRSDC solutions
are about two magnitudes smaller. Results are shown for simulations using 12 time steps per period, which corresponds to a
look-ahead-factor η ≈ 5 for both methods.

could likely increase look-ahead factor by another or-

der of magnitude or more while maintaining high ac-

curacy. Exploring novel strategies like parallelization in

time [12] could increase η even further. This would even-

tually allow to use full FE model as part of filter-based
approaches that combine model and measurements into

best estimates of the state of a machine [33]. Further-
more, coupling a FE model with a suitable model for er-

ror compensation and validating it in a realistic exper-

imental setting [31] would be an important next step.
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