
Proceedings of Recent Advances in Natural Language Processing, pages 40–45,
Varna, Bulgaria, Sep 4–6 2017.

https://doi.org/10.26615/978-954-452-049-6_006

An Extensible Multilingual Open Source Lemmatizer

Ahmet Akera,b and Johann Petraka and Firas Sabbahb

Department of Computer Science, University of Sheffielda

Department of Information Engineering, University of Duisburg-Essenb

a.aker@is.inf.uni-due.de, johann.petrak@sheffield.ac.uk
firas.sabbah@stud.uni-due.de

Abstract

We present GATE DictLemmatizer, a mul-
tilingual open source lemmatizer for the
GATE NLP framework that currently sup-
ports English, German, Italian, French,
Dutch, and Spanish, and is easily exten-
sible to other languages. The software
is freely available under the LGPL li-
cense. The lemmatization is based on the
Helsinki Finite-State Transducer Technol-
ogy (HFST) and lemma dictionaries au-
tomatically created from Wiktionary. We
evaluate the performance of the lemma-
tizers against TreeTagger, which is only
freely available for research purposes.
Our evaluation shows that DictLemma-
tizer achieves similar or even better re-
sults than TreeTagger for languages where
there is support from HFST. The per-
formance drops when there is no sup-
port from HFST and the entire lemmatiza-
tion process is based on lemma dictionar-
ies. However, the results are still satisfac-
tory given the fact that DictLemmatizer is
open-source and can be easily extended to
other languages. The software for extend-
ing the lemmatizer by creating word lists
from Wiktionary dictionaries is also freely
available as open-source software.

1 Introduction

The process of lemmatization is an important
part of many computational linguistics applica-
tions such as Information Retrieval (IR) and Natu-
ral Language Processing (NLP). In lemmatization,
inflected forms of a lexeme are mapped to a canon-
ical form that is referred to as the lemma. The task
of finding the correct lemma for a word in context
is often complicated by the fact that a word can be

the inflected form of more than one lexeme each of
which may have different lemmas. Lemmas can be
used in various ways for NLP, for instance, to im-
prove the performance of text similarity metrics.
For this application, all words are mapped to their
lemma before a similarity is calculated. Lemmas
are also often used in information retrieval and in-
formation extraction to better identify and group
terms which occur in their inflected forms.

The task of finding lemmas is different and
harder than finding stems. Stemming is often used
as a much cruder heuristic approach to map in-
flectional forms of words to some canonical form,
but unlike lemmatization does not differentiate
between different lexemes which could have the
same inflectional form and it is possible for the
stem of a word to not be a valid lexeme of the lan-
guage.

The TreeTagger (Schmid, 2013) software pro-
vides lemmatization for 20 languages including
English, German, Italian, French, Dutch and
Spanish. However, it is not open source and it is
not straightforward to use it for non-research or
commercial applications. There exist a few other
lemmatizers which are open for non-research pur-
poses (Lezius et al., 1998; Perera and Witte, 2005;
Bär et al., 2013; Cappelli and Moretti, 1983)1.
However, these lemmatizers are mostly concerned
with only one language and do not provide a broad
coverage like the TreeTagger.

In this paper, we describe GATE DictLemma-
tizer, a plugin for the GATE NLP framework2

(Cunningham et al., 2011) that performs lemma-
tization for English, German, Italian, French,
Dutch, and Spanish and is freely available under
the LGPL license. The GATE NLP framework
is one of the most widely used frameworks for

1https://github.com/giodegas/
morphit-lemmatizer

2https://gate.ac.uk

40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/145317183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.26615/978-954-452-049-6_006


applied natural language processing. It is imple-
mented in Java, freely available under the permis-
sive LGPL license and can be extended through
plugins.

Our method combines the Helsinki Finite-State
Transducer Technology (HFST)3 (Lindén et al.,
2011) and word-lemma dictionaries obtained from
Wiktionary. Since we use separate dictionaries de-
pending on the word category, the method also
depends on a POS tagger for the language. The
word dictionaries are obtained automatically from
Wiktionary4 data dumps. The code for creating
the dictionaries automatically is available as free
and open-source software.5 This software can be
used to easily add dictionaries for new languages
to the DictLemmatizer. The plugin also contains
the HFST models for the 4 languages for which
models are available: English, German, French
and Italian.6

The rest of the paper is structured as fol-
lows. First we describe our method of performing
lemmatization (Section 2). Our lemmatizer uses
automatically generated lemma dictionaries. The
process of obtaining such dictionaries from Wik-
tionary is outlined in Section 3. In Section 4 we
detail the release information. Next, in Section 5
we evaluate the performance of our lemmatizer.
We use the TreeTagger for comparison. We con-
clude in Section 6.

2 Method

To obtain lemmas we combine two strategies:
the Helsinki Finite-State Transducer Technology
(HFST)7 and word-lemma dictionaries obtained
from Wiktionary8. For both strategies, it is nec-
essary to know the coarse-grained word categories
such as “noun”, “verb”, “adposition” for each
word.

For this purpose, the lemmatizer requires the
Universal POS tags9 from the Universal Depen-
dencies project. In GATE (Cunningham et al.,

3http://www.ling.helsinki.fi/
kieliteknologia/tutkimus/hfst/

4https://www.wiktionary.org/
5https://github.com/ahmetaker/

Wiktionary-Lemma-Extractor
6https://sourceforge.net/

projects/hfst/files/resources/
morphological-transducers/

7http://www.ling.helsinki.fi/
kieliteknologia/tutkimus/hfst/

8https://www.wiktionary.org/
9http://universaldependencies.org/u/

pos/all.html

2011), POS tags can be created using different
methods or plugins, however for the evaluation
in this paper we use the ANNIE POS-tagger
(Cunningham et al., 2002) for English and the
Stanford CoreNLP POS tagger (Toutanova et al.,
2003) for all other languages. These language-
specific POS tags are then converted to Universal
Dependencies tags using mappings adapted from
https://github.com/slavpetrov/
universal-pos-tags (Petrov et al., 2011).

The lemmatizer first tries to look up each word
form in the dictionary that matches the language
and word category of the word. Currently there are
lists for the following categories: adjective, adpo-
sition, adverb, conjunction, determiner, noun, par-
ticle, pronoun, verb. If the word form is found in
the dictionary, the corresponding lemma is used.
Pre-generated dictionaries for the six supported
languages are included with the plugin.

If the word could not be found in the dictionary,
an attempt is made to find the lemma by using the
HFST model for the language, if it is available.
The HFST model returns for each word all pos-
sible morphological variants. This makes it diffi-
cult to directly find the lemma for the word. We
therefore implemented rules that use the Univer-
sal POS tag information and extract the correct
lemma. E.g. for the word “computers” the HFST
returns the following options:

compute[V]+ER[V/N]+N+PL
computer[N]+N+PL

Since we know from the POS tagger that “com-
puters” is a noun we can use that information and
extract from the HFST list the entry that refers to
a noun ([N]) - “computer”.

The HFST models are freely available only for
a few languages. For any language where there is
no HFST model, our lemmatizer will rely only on
the Wiktionary-based dictionaries.10

3 Parsing dictionaries

We implemented a Java based tool that allows
users to extract lemma information from the Wik-
tionary API. With this tool it is easy to create dic-
tionaries for additional languages not included in
the lemmatizer distribution. We refer to this tool
as Wiktionary-Lemma Extractor. It fetches for a

10In this case, it is also possible to make DictLemmatizer
work without any POS tags at all by merging the original dic-
tionaries per word type into one dictionary for unknown/u-
nidentified POS type.

41



given word form its lemma from the Wiktionary
page. In addition the tool expects the language in-
formation, such as English, German, etc. Once
these pieces of information are provided the tool
fetches through the Wiktionary API the English
version of the Wiktionary page for the queried
word. The English Wiktionary page is divided into
different areas where each area conveys a particu-
lar information such as lemma, synonym, trans-
lation, etc. Our tool isolates the lemma area and
finds the non-inflected form for the queried word.
The queried word and the non-inflected form are
saved into a database to be used as dictionary
lookup.

4 Software Availability

4.1 GATE DictLemmatizer Plugin
Most of the tools and resources for the GATE
NLP framework are created as separate plugins
which can be used as needed for a process-
ing pipeline. The approach for finding lem-
mas described earlier has been implemented
as a GATE plugin and is freely available
from https://github.com/GateNLP/
gateplugin-dict-lemmatizer. This plu-
gin only implements the lemmatization part since
there are already several plugins for tokenisation,
sentence splitting, and POS-tagging included or
separately available for GATE.

4.2 Wiktionary-Lemma Extractor
Similar to the GATE Plugin for lemmatization we
make our Wiktionary-Lemma Extractor publicly
available through github11. Along with the code
we also provide a client that ease the creation of
new dictionaries. The client just expects the input
of the target language such as English, German,
Turkish, Urdu, etc. The client first collects all
possible words for that particular language from
Wiktionary titles, determines for each title word
its lemma and finally extract the lemma dictionar-
ies. These lemma dictionaries can then be directly
injected into the GATE Plugin.

5 Evaluation

We evaluated DictLemmatizer and compared it to
TreeTagger on the following corpora:

• English British National Corpus (EN-BNC)
(Consortium, 2007; Clear, 1993)

11https://github.com/ahmetaker/
Wiktionary-Lemma-Extractor

• German Tiger Corpus (DE-Tiger) (Brants
et al., 2004)

• Universal Dependencies English tree bank
(EN-UD) (Bies et al., 2012)

• Universal Dependencies French tree bank
(FR-UD)

• Universal Dependencies German tree bank
(DE-UD)

• Universal Dependencies Spanish tree bank
(ES-UD)

• Universal Dependencies Spanish Ancora cor-
pus (ES-Ancora)

For more information on the Universal Dependen-
cies tree banks see McDonald et al. (2013).

All corpora were converted to GATE documents
using format specific open-source software121314.
The software and setup for carrying out all evalu-
ation is also available online.15

Note that for this comparison, the GATE
Generic Tagger Framework plugin16 was used to
wrap the original TreeTagger software. This plu-
gin does not use the full processing pipeline of
the original TreeTagger software17 but instead just
uses the tree-tagger binary to retrieve per-
token information.

All corpora were converted so that the token
boundaries from the corpus were preserved for the
conversion to GATE format. However, for the
evaluation, the tokens produced by the annotation
pipeline are based on the GATE tokenizer and can
therefore differ from the correct tokens as present
in the tree bank. We list the performance of the
tokeniser used together with the performance of
the lemmatizer on the tokens which match ex-
actly. Some corpora use corpus-specific ways to
represent multi-token words or multi-word tokens
which cannot be represented in an identical way as
GATE annotations and so these cases get excluded

12https://github.com/GateNLP/
corpusconversion-bnc

13https://github.com/GateNLP/
corpusconversion-tiger

14https://github.com/GateNLP/
corpusconversion-universal-dependencies

15https://github.com/johann-petrak/
evaluation-lemmatizer

16https://gate.ac.uk/userguide/sec:
parsers:taggerframework

17

42



from the evaluation. Results of the evaluation re-
ported in accuracy are shown in Table 1.

From the results in Table 1 we can see that
for English and German, DictLemmatizer out-
performs TreeTagger. For French, TreeTagger
achieves better performance in the test corpora;
however, for the training corpora DictLemmatizer
achieves better results. For Spanish, the TreeTag-
ger results are much better. The reason for this is
that apart from TreeTagger’s outstanding perfor-
mance on the Spanish corpora, the HFST inducer
is not used in our Lemmatizer for Spanish because
there is no HFST model available, so the lemma-
tization is performed only using the lemma dic-
tionaries obtained from Wiktionary.18 Although
there is a big performance difference for the Span-
ish language, we consider that this result is satis-
factory given the restrictions.

To get a better indication of the performance of
each of the two strategies for the other languages,
we also performed evaluations using the DictLem-
matizer where we used only the dictionary-based
or only the HFST-based approach. Table 2 shows
the results for all corpora except Spanish (where
only the dictionary is used by default). We can
see that for English and German the performance
of using just HFST and using just lemma dictio-
naries achieve comparable results, though using
only lemma dictionaries is always slightly better.
This pictures looks different when we look at the
French language. There using only HFST clearly
wins against using only the lemma dictionaries
and achieves around 10% better accuracy. Nev-
ertheless both resources are complementary and
when combined boost the results as seen in Table
1.

In addition to the Wiktionary source, the word
lists can be extended by an annotated training cor-
pus. We tested this by finding the 500 most fre-
quent incorrect assignments on each of the Uni-
versal Dependencies training corpora grouped by
target POS tag and adding those to the dictionar-
ies for each language. The evaluations using those
extended word lists are shown in 1 with the indi-
cation ”DL-TR”. This improves the accuracy on
all Universal Dependencies training and test sets
and on the BNC corpus, but slightly decreases ac-

18In our evaluation we focused on languages which are
rich in resources and high performing lemmatizers such as
English, German and French and also supported by HFST
and languages that are less rich in terms of resources and also
has no support by the HFST tool such as Spanish.

curacy on the Tiger corpus.
Along with the accuracy figures, we also

recorded the time needed to process each corpus
(see Table 1). The timing information only gives
a rough indication because we show the results of
a single run only, and because the machine was
under different load for different runs. Also note
that the times for the TreeTagger include the over-
head of wrapping the original TreeTagger binary
for use in a Java plugin. The implementation of the
Generic Tagger Framework plugin executes the bi-
nary for every document, so the timing informa-
tion includes the overhead for this and thus also
depends on the average document size for a cor-
pus, while the timing for the DictLemmatizer does
not. However, from these rough results we can still
see that DictLemmatizer is always significantly
faster than the TreeTagger for the concrete GATE-
plugin implementations that were compared.

6 Conclusion

In this paper we presented a lemmatizer for six
languages: English, German, Italian, French,
Dutch and Spanish that is easily extensible to other
languages. We compared the performance of our
lemmatizer to the one of TreeTagger. Our results
show that our lemmatizer achieves similar or bet-
ter results when there is support from HFST. In
case there is no HFST support we still achieve sat-
isfactory results.

Both the DictLemmatizer and the lemma dic-
tionary collector software are available freely for
commercial use under the LGPL license. The dic-
tionary collector can be used to easily extend the
lemmatizer to new languages that are currently not
included in DictLemmatizer.

Acknowledgments

This work was partially supported by the Euro-
pean Union under grant agreement No. 687847
COMRADES and PHEME project under the grant
agreement No. 611223.

References
Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2013.

Dkpro similarity: An open source framework for
text similarity. In ACL (Conference System Demon-
strations). pages 121–126.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English web treebank LDC2012T13. Web

43



Corpus TT DL DL-TR Time DL Time TT
EN-BNC 0.927 0.938 0.958 1:47:23 3:11:29
EN-UD-Test 0.922 0.945 0.972 0:00:14 0:11:08
EN-UD-Train 0.920 0.941 0.972 0:01:18 1:14:54
DE-Tiger 0.804 0.940 0.925 0:12:12 0:53:07
DE-UD-Test 0.841 0.915 0.946 0:00:44 0:13:34
DE-UD-Train 0.783 0.910 0.944 0:05:08 3:02:56
FR-UD-Test 0.902 0.881 0.961 0:00:12 0:03:00
FR-UD-Train 0.882 0.896 0.973 0:04:10 1:31:28
ES-Test 0.904 0.779 0.936 0:00:18 0:01:47
ES-Train 0.884 0.797 0.954 0:02:41 0:45:50
ES-Ancora-Test 0.993 0.806 0.950 0:00:26 0:05:30
ES-Ancora-Train 0.993 0.807 0.953 0:07:21 0:58:06

Table 1: Performance of TreeTagger (TT) and our Dictionary Lemmatizer (DL) and Dictionary Lem-
matizer trained on the UD training set (DL-TR) on different corpora. Figures are accuracy of lemma
(ignoring case) for tokens matching the corpus token boundaries, times are in HH:MM:SS.

Corpora HFST Lemma Dicts
BNC-EN 0.89 0.924
UD-Test-EN 0.905 0.933
UD-Train-EN 0.90 0.928
Tiger-DE 0.812 0.853
UD-Test-DE 0.827 0.827
UD-Train-DE 0.817 0.827
UD-Test-FR 0.878 0.799
UD-Train-FR 0.894 0.819

Table 2: Performance of DictLemmatizer (HFST
only and Wiktionary lemma dictionary only) on
different corpora.

Download. Philadelphia: Linguistic Data Consor-
tium.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. Tiger: Linguistic interpretation of a ger-
man corpus. Research on Language and Computa-
tion 2(4):597–620. https://doi.org/10.1007/s11168-
004-7431-3.

Amedeo Cappelli and Lorenzo Moretti. 1983. Aspetti
della rappresentazione della conoscenza in linguis-
tica computazionale, volume 5. Pacini.

Jeremy H. Clear. 1993. The digital word. MIT
Press, Cambridge, MA, USA, chapter The
British National Corpus, pages 163–187.
http://dl.acm.org/citation.cfm?id=166403.166418.

BNC Consortium. 2007. The british national corpus,
version 3 (bnc xml edition). Distributed by Ox-
ford University Computing Services on behalf of the

BNC Consortium. http://www.natcorp.ox.
ac.uk/. http://www.natcorp.ox.ac.uk/.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. GATE:
A Framework and Graphical Development Envi-
ronment for Robust NLP Tools and Applications.
In Proceedings of the 40th Anniversary Meeting
of the Association for Computational Linguistics
(ACL’02).

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus
Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. 2011. Text
Processing with GATE (Version 6).

Wolfgang Lezius, Reinhard Rapp, and Manfred Wet-
tler. 1998. A freely available morphological ana-
lyzer, disambiguator and context sensitive lemma-
tizer for german. In Proceedings of the 17th interna-
tional conference on Computational linguistics. As-
sociation for Computational Linguistics, pages 743–
748.

Krister Lindén, Erik Axelson, Sam Hardwick, Mi-
ikka Silfverberg, and Tommi Pirinen. 2011. HFST–
framework for compiling and applying morpholo-
gies pages 67–85.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Os-
car Tackstrom, Claudia Bedini, Nuria Bertomeu
Castello, and Jungmee. 2013. Universal dependency
annotation for multilingual parsing. In Lee Proceed-
ings of ACL 2013.

Praharshana Perera and René Witte. 2005. A self-
learning context-aware lemmatizer for german. In

44



Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 636–643.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2011. A universal part-of-speech tagset. CoRR
abs/1104.2086. http://arxiv.org/abs/1104.2086.

Helmut Schmid. 2013. Probabilistic part-ofispeech
tagging using decision trees. In New methods in lan-
guage processing. Routledge, page 154.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology.
Association for Computational Linguistics, Strouds-
burg, PA, USA, NAACL ’03, pages 173–180.

45


