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Ecological systems contain a huge amount of quantitative variation between and within
species and locations, which makes it difficult to obtain unambiguous verification of the-
oretical predictions. Ordinary experiments consider just a few explanatory factors and are
prone to providing oversimplified answers because they ignore the complexity of the fac-
tors that underlie variation. We used multi-objective optimization (MO) for a mechanistic
analysis of the potential ecological and evolutionary causes and consequences of variation
in the life-history traits of a species of moth. Optimal life-history solutions were sought for
environmental conditions where different life stages of the moth were subject to predation
and other known fitness-reducing factors in a manner that was dependent on the duration
of these life stages and on variable mortality rates. We found that multi-objective optimal
solutions to these conditions that the moths regularly experience explained most of the
life-history variation within this species. Our results demonstrate that variation can have a
causal interpretation even for organisms under steady conditions. The results suggest that
weather and species interactions can act as underlying causes of variation, and MO acts as
a corresponding adaptive mechanism that maintains variation in the traits of organisms.
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INTRODUCTION

Characteristic of ecological thinking is the attempt to identify and classify different

forms of ecological strategies that describe regularities in the ways organisms collect

and use resources in their environment in order to maximize their fitness. Typically,

there are multiple strategies for coping with the same environmental factors, and these

alternatives are presented in terms of phenotypic trade-offs. A lot of theory has been

built around the existing alternative strategies and trade-offs, for example, between

size and number, honesty and cheating, growth and defence, and producing male or

female offspring [1,2]. Trade-offs can take place at many levels of organization ranging
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from low-level choices between physiological pathways [3] to high-level traits such as

alternative timings of life-history events [4].

In order to reach maximum fitness, organisms can adjust their innate phenotypic

strategy through phenotypic plasticity [5]. The trading off of phenotypic traits is as-

sumed to take place through finding an optimal solution to the developmental decisions

modifying phenotype [5]. As organisms interact with their local environment, it is pos-

sible to identify a large number of potential factors that produce trade-off decisions

and fitness consequences requiring plastic responses to cope with the environment.

Growth rate, for example, is a central component of fitness in many organisms and re-

quires phenotypic adjustment owing to trading off between the costs and advantages of

growing rapidly. These costs and advantages may result, for example, from time con-

straints in a seasonal environment, from predator-dependent or predator-independent

mortality, from limited food availability, or from the need to optimize other essential

physiological functions in addition to growth rate [6].

Experiments usually consider just a few phenotypic factors and hence are prone

to providing oversimplified implications for many theoretical considerations because

they ignore the full complexity of the environmental factors that underlie variation in

the phenotype [7]. For example, it is well known that weather factors modify the out-

come of experiments, and they may even shape the genetic composition of populations

[8], yet it is rare for experiments to systematically include different weather alter-

natives. Accordingly, experimental results in ecology usually contain a huge amount

of quantitative phenotypic variation among and within species and locations, which

often makes the theoretical interpretation of many experimental results difficult. Ex-

perimental simplifications work best when the formation of a specific phenotype is

investigated in a spatially and temporally restricted ecological system and under the

influence of just some specific factors. However, interpreting the complexity and vari-

ation of ecological systems in a generalizable and theoretically plausible way requires

direct consideration of the complex implications of the variation present between and

within species and locations.

It is well known that alternative phenotypic traits may provide organisms with

equal fitness. In game theoretical settings [2], for example, a typical game predicts

players who achieve equal fitness with clearly distinctive phenotypic strategies. In ac-

tual ecological systems, there are more than two or three phenotypic traits and envi-

ronmental factors that contribute to an organism’s final fitness. For example, the final

fitness of an insect might depend on egg size and number, and on the oviposition sites

of eggs, as well as on all other insect traits that contribute to them.

Multi-objective optimization (MO) is a method for solving problems that opti-

mizes a large number of objectives (such as a set of phenotypic traits contributing
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to an insect’s fitness) and that simultaneously involves trade-offs among the alterna-

tive objectives [9]. MO is essentially an extension of traditional optimization models,

which concentrate on optimization of decisions concerning only single traits. For ex-

ample, single-trait optimization might investigate the timing of metamorphosis in the

life history of an organism [4] without considering the potential fitness consequences

of other life events, such as the timing of oviposition. An MO problem, in turn, could

include a search space of alternative timings for all life stages, with the timings be-

ing expressed in terms of their fitness consequences. MO could then be used to find

the best set of timings for maximizing fitness, thereby forming an optimal lifetime

phenotypic life-history strategy.

The logic of MO somewhat resembles game theory, and MO can be thought of

as a multi-dimensional game with continuous strategies. Similar to game theory [2],

different combinations of phenotypic traits can produce alternative but equally optimal

solutions to maximize fitness. This also distinguishes MO from classical optimization,

where a single global optimum is commonly assumed and sought. An MO problem

may involve an unfixed number of environmental factors that act as ‘opponents’ and

a player with a strategy based on a suite of continuous phenotypic traits. The pay-

offs from the player phenotype are then determined by the fitness consequences of

interactions among the phenotype and the environment where the phenotype occurs.

In engineering and economics, MO is frequently used for optimizing resource al-

location [9]. However, MO appears in the ecological and evolutionary literature rather

infrequently, and examples that develop the theory beyond plain parameter estimation

are limited to studies of the behavioural strategies of animals [10,11] and variation in

plant form and function [12,13]. Here, we suggest that MO provides a general analyti-

cal method for inferring the causes and consequences of the variation that characterizes

individual organisms and the resultant species assemblages. As an example, we will

consider variation observed experimentally in the life-history traits of an insect, and

we will show that MO provides a logical causal explanation for previously unexplained

‘random’ variation even in this simplified single-species system.

MATERIALS AND METHODS

(a) Study species

As an example of an MO problem, we considered the fitness consequences of life-

history traits in females of the autumnal moth Epirrita autumnata (Bkh.; Lepidoptera,

Geometridae). Epirrita autumnata is a species of moth that has a 9–10 year popula-

tion cycle producing periodic population outbreaks in northern Fennoscandia, resulting

in severe defoliations of mountain birch (Betula pubescens ssp. czerepanovii Orlova;
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Hämet-Ahti) forests [14]. It overwinters in the egg stage; the larvae hatch around the

time of budbreak in the mountain birch, after which they feed for about four to six

weeks. The subsequent pupal period takes six or more weeks, after which the adults

emerge and the females lay their eggs after mating [15]. The different life stages of

E. autumnata are the target of a well-documented group of predators and parasitoids

that have long been the subject of intense study in different population phases [16]. In

addition, the food-related fitness consequences of different forms of induced and con-

stitutive resistance, as well as the effects of a phenological mismatch between larvae

and birch, are also well documented [16].

(b) Life-history optimization in Epirrita autumnata

We implemented the life of female E. autumnata as a model that was used to solve the

optimal timing and duration of its life-history events. Different stages of life were sub-

ject to predation and other known fitness-reducing factors in a manner that was depen-

dent on the duration of these life stages. In order to account for variable combinations

of season length and predation, the model followed the life stages of E. autumnata

throughout two successive generations (figure 1). The model runs began with the first

generation at the egg stage in the spring of the first year and ended with the oviposition

of eggs by the second generation in the autumn of the second year. The final number

of oviposited eggs (both male and female) left to overwinter at the end of the second

generation was used as the final fitness measure f , such that

f = N1N2,

where N1 is the number of female eggs produced and surviving after the egg stage in

the first season:

N1 = 0.5(1−MsMlMpMoMa)Ro,

where the different Ms are the integral values of the mortality rates for the successive

life stages indicated in figure 1 and calculated for the given duration and timing of the

life stages within the given length of the first season. Ro is the integral of oviposition

rate calculated for the duration of the adult period. Equations and parameterization for

the rates are shown in the electronic supplementary material.

Figure 1. Life stages for which durations were optimized under different combinations of successive
season lengths and predation level. Predation was always equal for both seasons.
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The equivalent formula giving the number of both male and female eggs left to

overwinter during the second season (N2) is

N2 = (1−MsMlMpMoMa)Ro,

where the Ms are the integral values of mortality rates during the second season and Ro

is the integral of the oviposition rate.

The model was used to maximize f by means of resolving the optimal timing and

duration of the moth’s life history, beginning with the egg in the spring, and proceeding

to the larva, pupa, adult and oviposited egg in the autumn. In the model, time was

measured in degree days above the threshold of 2◦C (dd2).

The maximization of egg number f in the model constituted an MO problem be-

cause it was influenced by a set of alternative combinations of life-stage durations

that could be optimized with respect to the prevailing season length and predation lev-

els. The mortality rates were varied in different scenarios, in order to account for the

variable rates of parasitism and predation that E. autumnata experiences during the

different stages of its periodic population cycle (the electronic supplementary mate-

rial). In order to simplify the calculations, we assumed a constant low-, intermediate-

or high-mortality rate for all the life stages in a single simulation. This corresponds to

mortality rates between the population peaks, shortly before a population crash, and

during and shortly after a population crash, respectively.

Two seasons were considered adequate for each optimization scenario. In E. au-

tumnata, the timing of life-history events during two successive seasons shows close

coupling with each other owing to the potentially strong effect of autumnal oviposi-

tion date on larval hatching time in spring [17]. The predation levels are also likely to

remain relatively constant for most 2-year slices of the full population cycle of E. au-

tumnata. There was no good justification for examining longer time periods because

there would have been a very large number of different combinations of successive

season lengths attempting to track the random fluctuations of actual weather. For the

same reason, we deliberately chose not to seek a single global optimum for the timing

of life-history events during an entire population cycle. It would have been meaning-

less also owing to the fact that most of the successive outbreaks of E. autumanata take

place in different geographical locations including many other uncontrolled factors

besides season length [14].

(c) Validation of results

As is typical for many ecological study systems, E. autumnata shows extreme varia-

tion in its characteristics. The duration of its pupal period is a good example, because

it shows more than twofold differences among years with consequent effects on the
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timing and duration of adult and oviposition period [18], and even on the timing of lar-

val hatching in spring [17]. As we wanted to investigate the causes and consequences

of such variation with our model, we selected validation data from growth conditions

showing as close resemblance with the model scenarios as possible.

Both experimental data and field observations from different sources were used.

The basic requirement for experimental data was that multiple broods of E. autumnata

belonging to the local population were reared in outdoor conditions within the area of

the Kevo Subarctic Research Station of the University of Turku, Finland. As the data

originated from different years and experiments, it combined the potential phenotypic

and genotypic sources of variation in the life-history events. Degree days above the

threshold of 2◦C (dd2) were used as the unit of time. Both the mean duration of a life

stage and a measure of its variation were extracted from each data source (reported here

along with the results), sometimes using the original observations instead of values

directly reported in the source papers. The values were transformed into dd2 using

local weather recordings. The standard deviation was used as the measure of variation.

Total season lengths in the validation data were chosen to fall within 100 dd2 of those

used in the model, which corresponded to a maximum of 8 to 12 per cent mismatch,

depending on a particular model scenario and dataset.

Variation in the duration of larval period was estimated from larval rearings inside

mesh bags attached to tree branches. In these rearings, the eggs were made to hatch in

close synchrony and larvae were then allowed to feed freely on foliage until pupation

approached. To determine the duration of larval period, the final instar larvae were

inspected daily and pupating larvae were removed from the bags. This has been a

standard rearing method for E. autumnata over many years, and is known to result in

larval periods and other performance measures that show close correspondence with

wild or uncaged larvae [17,19,20].

The duration of pupal period was estimated with data reporting the eclosion

dates of pupae kept individually in vials supplemented with a small amount of moist

Sphagnum moss and stored outdoors. As the eclosion time approached, the vials were

checked daily for the emergence of adults to determine the duration of pupal period.

This has also been a standard method for many years, and is known to result in pupal

periods matching with field-buried pupae and in eclosion dates matching with the

capture dates of adult moths in light-traps or pheromone traps [17,21,22].

The duration of the adult stage and the time in dd2 spent as eggs in autumn were

estimated, determining the time when 50 per cent of the total annual catch of adult

moths were captured by light-traps. The restriction was made because adult females

can oviposit the majority of their eggs in a shorter time than their lifespan is, or what

is indicated by a pooled sample of trapped individuals. The light-trap data were suf-
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ficient to indicate the potentially large intra-annual variation in the duration of flight

period, which is ultimately limited by the onset of winter [17, 18]. It was not crucial

to determine the exact duration of the adult period because it is the timing of eclosion

and duration of autumn with their consequences for the next season that count more.

Oviposition starts soon after eclosion, and the periods during which the female con-

tinues to oviposit and its eggs accumulate thermal sum in autumn overlap both in the

field and in our model.

For the duration of the egg stage in spring, which indicates the range for the begin-

ning of the larval period, only a single laboratory value was directly available. How-

ever, this was considered a minor problem, because E. autumnata hatches during a

short period in close synchrony with the burst of mountain birch buds. The laboratory

value and its variation fit well into the favourable hatching period that was accounted

for in the model (electronic supplementary material) and that has been reported in

several experiments [17,23].

The most sensible way of validation was to pool the mean life-stage durations and

their standard deviations observed in different sources, and to compare them against

the pooled predictions of the model. This was reasonable because the observations

usually covered only one season length that was also somewhat variable compared

with those used in the model. The pooling of data and predictions ensured that both

sets included a well-comparable range of alternative conditions. The match between

the model and the observations was quantified by calculating the coefficient of deter-

mination (R2) for predicted versus observed values of each life-stage duration, with the

duration being expressed as both its mean value and its standard deviation.

However, in order to detect potential fine-scale discrepancies between the data and

model predictions, we also split the observed data approximately into the same season

lengths as used in the model and conducted a similar validation procedure for the split

results as for the pooled results.

RESULTS

Although the optimization runs permitted a wide parameter space, the optimal duration

of E. autumnata life stages converged to values well within the range of those observed

under field conditions (figure 2; R2 = 0.93 for observed versus predicted means and

R2 = 0.52 for s.d.). A reasonable fit remained even when the observed data were split

into long, medium and short season lengths (figure 3; R2 = 0.89 for observed versus

predicted means and R2 = 0.13 for s.d.). Under short and medium season lengths, the

observed duration of the larval stage was slightly longer and the pupal period shorter

than the optimum suggested by the model (figure 3). The exact durations of the adult
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and egg stages were not precisely defined owing to their overlap. The amount of varia-

tion among and within individual scenarios was considerable, often differing by tens of

percentage points from the mean, as was also the case in the field (figure 3; electronic

supplementary material, Table S2).

Figure 2. The duration of life stages in Epirrita autumnata observed under natural light and temperature
regimes, and optimized by a model. The overall means in degree days above 2◦C (dd2) are shown. Part
of the adult stage duration belongs to the autumn eggs owing to the overlap of these stages. Black bars,
observed; white bars, model.

When a coefficient of variation was used to quantify variation (electronic supple-

mentary material, Table S2), the durations of the spring egg and larval stages were

least variable within individual scenarios, and the autumn egg stage was the most vari-

able, although the patterns were also dependent on the combinations of season length.

The average coefficient of variation in the final fitness values within each scenario

was 3 per cent (electronic supplementary material, Table S2), which suggests that the

optimization method produced stable and convergent results.

A single sample case where alternative life-stage durations produce an equal fitness

is depicted in figure 4, which shows how the duration of the pupal period can be traded

with the duration of the adult and autumn egg stages. Another example demonstrates

how successive seasons of equal length may produce different optima even for the

same predation level: under conditions of short season and high predation risk, there

was a 1.5-fold difference in the average optimal duration of the pupal stage, depending

on whether duration was optimized for the first (248 dd2) or the second (377 dd2)

season (electronic supplementary material, Table S2).

DISCUSSION

In general, the type of phenotypic plasticity predicted by our model in the optimal

life-stage durations reflects the ability of individual organisms to alter their life history
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Figure 3. The duration of life stages in Epirrita autumnata as observed in field conditions or optimized
by a model under different season lengths. Means with standard deviations in degree days above 2◦C
(dd2) are shown. The observed values are based on brood- or treatment-specific values, depending on the
availability of data, and typically relied on recalculation of time in dd2. Sources of observed data are:
(a) larva [20], pupa [24]; (b) larva [25], pupa [17]; (c) larva [17,26], pupa [24]; (a–c) adult and autumn
egg [17]. The observed periods spent as adults or autumn eggs were estimated by determining the time
when 50% of the total annual adult moths were captured by light-traps (n = 2 years each). The duration
of spring egg stage in (b) was based on a laboratory value [26]. Part of the adult stage duration belongs
to autumn eggs owing to the overlap of these stages. Black bars, observed; white bars, model.

or other vital traits in response to the conditions in which they live. The causes of

plasticity may vary, but the unifying explanation is that organisms attempt to optimize

their fitness-determining traits with respect to the prevailing environment [5]. This

causal relationship may not, however, always be clear, as the plastic responses may

show much variation even under identical conditions. In E. autumnata, for example,

conclusive stage-specific optimization of larval and pupal period has not been observed

before. For larval development, Tammaru (p. 86 in [27]) concluded that ‘the reaction
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Figure 4. The optimal durations of life stages can be different in alternative solutions to a single steady-
state scenario. The predictions were calculated for a short first season and medium second season, and
a high predation level. Both solutions produced 0.45 as the final fitness value (electronic supplementary
material, Table S2).

norms appeared not to be optimal within the explanatory framework of the model’. For

pupal period, Tammaru et al. (p. 1674 in [18]) concluded that ‘there is a substantial

amount of environmental variance in pupal period that is not interpretable as resulting

from a deterministic reaction norm, either adaptive or constraint-based. It provides,

therefore, a candidate for random environmental variance.’

Our model demonstrated that apparently random variation may not be random af-

ter all. On the contrary, variation can be a direct mechanistic consequence of alterna-

tive optimal solutions to an MO problem, which sheds light on the potential causes

of random variation in life-history traits or, by the same logic, in other fitness-related

biological traits [13]. We were very much able to repeat the patterns of variability ob-

served in the duration of life stages in E. autumnata, even though the model included

only some season lengths combined with a subset of other environmental factors po-

tentially affecting the fitness of E. autumnata. There were no unique optimal life-stage

durations, but the optima varied greatly according to the change in the combination

of season length and mortality risk with each population phase (figure 3; electronic

supplementary material, Table S2). In addition, as is typical for solutions in MO, the

model predicted alternative optima even in a steady-state situation (figure 4). The most

notable discrepancy between the model predictions and the data was that the opti-

mal larval period during the short and medium seasons was shorter than the average

observed in the field. However, extending the larval period may be feasible because

growing long directly enhances the fecundity of E. autumnata [27] and the final sea-

son length in dd2 cannot be predicted yet at the larval stage. In an evolutionary time

scale consisting of several generations and variable season lengths, the fitness costs of

an unnecessarily short larval stage could be more serious than the potential predation

risks associated with extending the larval period.

A large amount of variation can persist in the population because the true optima

in the field may constantly change according to environmental conditions, and a sin-

gle strategy would not be optimal to all situations. Variation may appear random and
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act as if it serves as an adaptation to random fluctuations of the environment, yet it

can have a clear identifiable and quantifiable explanation as our model suggested, and

hence also a highly heritable genetic background maintained through associated selec-

tive forces in an evolutionary time scale [18]. Although additional explanatory factors

could have been incorporated into our model, such as the potential behavioural re-

sponses of the moth to its environmental conditions, they would not necessarily have

changed the overall predictions. Additional factors might influence alternative optima

at a fine scale, but would augment overall variation only if they predicted optima that

were outside the values predicted by the current model.

Phenotypic plasticity shows variation also in itself, but the ecological and evo-

lutionary causes and consequences of this variation remain poorly known [5,28]. Al-

though multiple optima are not a mandatory outcome of MO, our example showed that

MO can predict adaptive variation in phenotypes even under stable conditions as very

different phenotypes may have equal fitness (figure 4), which has also been demon-

strated experimentally in bacteria [29]. It is interesting to note the parallels of this

mechanistic prediction with the recent findings of neutral biodiversity theory, which

demonstrate that the demographic performance of phenotypically different but trophi-

cally similar species coexisting in the same place can be identical on a per capita basis

in terms of their rates of birth, death, dispersal and speciation [30]. In essence, neutral

theory implicitly assumes that MO may explain inter-specific variation in the traits of

coexisting species.

Many aspects of variation and plasticity, along with their genetic and environmen-

tal causes, have been examined in the literature. It appears, however, that with the

exception of a few sample studies [10–13], the ecological literature has not explic-

itly considered the potential of multi-objective solutions as a general explanation of

variation in the traits of organisms. Although often unexplained and overlooked in ex-

perimental studies, variation can serve a clearly interpretable and vital function for or-

ganisms. MO can be used as a mathematical method for a strictly mechanistic analysis

of the ecological and evolutionary causes and consequences of this variation. Although

its efficient usage may involve laborious data collection and require a thorough knowl-

edge of the system under investigation, should not this be a necessary precondition for

all mechanistic explanations of functioning in biological systems?
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ELECTRONIC SUPPLEMENTARY MATERIAL

The text here describes the rationalisation and parameterisation of the model in (a)

to (d), and shows the average optimisation results of individual model scenarios in

Table S2 (e).

(a) Description of the model

Each life history stage was assumed to be subject to a specific mortality rate that re-

flected the contribution of known mortality factors for E. autumnata as a function of

dd2s spent in the given stage. It was assumed that a stage-specific, physiologically con-

strained minimum had to be met during each life stage to ensure normal development,

while 700 dd2s was used as a common maximum for all stages. In order to explore

the whole parameter space, the minimum and maximum durations of each life stage

were well beyond the typical values for E. autumnata. Beyond these limits, any values

were acceptable on the condition that the total duration of the different stages did not

deviate from the total length of the season, which means that the sum of the duration

of each life stages always had to match the total season length.

In spring, the eggs of E. autumnata are the prey of invertebrate predators [1]. These

effects were modelled as a constant density-independent mortality rate per dd2 spent

at the egg stage (see (c)). The increased mortality risk caused by an asynchronous

hatching of eggs in relation to the bud burst of mountain birch was included in the

mortality function of the egg stage in spring (c). Mortality was considered to increase

steeply if hatching occurred before foliage was available on 70 dd2 because the supply

of alternative food sources is negligible and the larvae cannot survive without food for

long [2]. The time of bud burst in mountain birch shows considerable variation around

the mean, but the only means of dispersal for the larvae is ballooning in the wind

using a silken thread, which appears to be an inefficient method for locating alternative

host trees and results in lowered survival rates where there is increased asynchrony.

The total minimum time requirement of 100 dd2s used in the model for egg hatching

was lower than that estimated experimentally [3]. Although the accumulation of dd2s

required for egg hatching (hatchdd2) may already start in the autumn [3], there is

evidence that the eggs of E. autumnata undergo a diapauses [4], hence it was assumed

that at least 20 dd2s had to be accumulated in spring in order for hatching to take place.

Larval mortality was modelled as a function of hatchdd2 (c) because the effects of

larval mortality factors depend largely on both the timing of larval hatching and on the

timing of the larval stage within the season [3]. The rate of larval mortality in E. au-

tumnata can be highly variable, and it is influenced by both invertebrate and vertebrate

predators, parasitoids, food quality, and the degree of phenological synchronization
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with the mountain birch [5]. Larval mortality was modelled in a density-dependent

manner and accounted for the fact that the chances of survival decline both around

population peaks and also when the season progresses and concurrent increases in the

rates of parasitism and predation [3] combine with a decrease in food quality [6]. The

minimum time requirement for the larval stage was set at 200 dd2s, which was well be-

low the reported 200 dd5s [3]. The density-dependent larval mortality functions were

considered adequate also to account for the fitness decrease due to the induced resis-

tance of the host plant to E. autumnata larvae [5,6].

In E. autumnata, the larval stage also contributes to the maximization of the fitness

measure by influencing the number of eggs that an adult can oviposit because the final

egg number is directly determined by the weight of female larvae at the time of pu-

pation [7]. The growth rate and timing of different larval instars was estimated on the

basis of instar-specific observations [3]. In addition, the function for the larval growth

rate was adjusted so that the final larval weight directly corresponded to the actual pu-

pal weight, which allowed us to account for the weight loss of larvae during pupation.

Apart from temperature, the larval growth rate mainly depends on the quality of food,

including the effect of phenological synchronization between the larvae and their host

plant [5]. Hence the larval growth rate was modified by a factor r that controlled the

effect of phenological synchrony between the birch bud burst and the egg hatching of

E. autumnata as a function of the larval hatching time:

r = 1−0.0000001hatchdd23 (1)

Thus, in the function for determining the growth rate (w), the delayed hatching of eggs

results in delayed larval development in relation to birch leaves [3] and a consequent

decrease in the growth rate and final weight of larvae and pupae modelled as

w = 0.05r e−0.008(1−dd2) (2)

The maximum egg number was calculated as a function of pupal weight wp [8] which

equals the integrated value of w.

N0 =−37.27+2.33wp (3)

It was assumed that females weighing less than 30 mg as pupae were not capable of

producing any eggs (N0 = 0, if wp < 30 mg), as observed in the laboratory.

Pupal mortality is also affected by the rates of predation and parasitism [9,10] and

was modelled as constant density-dependent rates per dd2 (c). The minimum require-

ment for completing the pupal stage was set at 200 dd2s, which is below the average
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time required for the first signs of fully developed adult structure to develop in the

pupae of E. autumnata [11].

During the adult stage, survival per dd2 was assumed to increase towards the end

of the season due to decreasing predator activity (c). Adults started oviposition at the

minimum age of 10 dd2s and were assumed to lay their eggs at a rate ro = 1 egg/ dd2

(also including the daytime accumulation of dd2s) [7]. In addition to the oviposition

rate, the outcome of oviposition was affected by the simultaneous effects of adult and

egg mortality [1]. The age differences of eggs produced in the course of the oviposition

period were not considered in the optimisation. It was assumed that all the eggs started

to accumulate dd2s for hatching only after the oviposition of the last eggs, which means

that a fraction of the adult period must also be added to those eggs already laid.

The calculation of adult mortality was based on results that use calendar days

instead of dd2s [7, 12]. Therefore, to estimate the effect of dd2s on adult mortality,

we used the long-term average of daily dd2s in the autumn to construct a function

that translated calendar days into dd2s (c). Adult mortality was assumed to be lowest

during population peaks, due to inversely density-dependent predation by generalist

predators. Harvestmen (Opiliones) are the main source of mortality, with predator sat-

uration increasing with prey density [12].

The model that calculated the final fitness value included the female eggs N1 pro-

duced and surviving after the egg stage in the first season

N1 = 0.5(1−MsMlMpMoMa)Ro (4)

where capitalized Ms are the integral values of the mortality rates given in (c) and

calculated for the given duration and timing of the life stages within the given length

of the first season. Ro is the integral of oviposition rate ro calculated for the duration of

the adult period. The maximum value of Ro was limited by the maximum egg number

No determined by equation (3).

The equivalent formula giving the number of both male and female eggs left to

overwinter during the second season (N2) is

N2 = (1−MsMlMpMoMa)Ro (5)

where the capitalized Ms are the integral values of mortality rates during the second

season and Ro is the integral of the oviposition rate with its maximum limited by No.

Accordingly, the final fitness measure f for optimisation becomes

f = N1N2 (6)
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(b) Optimisation scenarios

The duration and timing of the life stages was optimised in 27 different scenarios pro-

duced by the factorial arrangement of season lengths and mortality rates. The total

season lengths for the two successive seasons were varied within previously observed

limits obtained from daily temperature measurements recorded at the Kevo Subarctic

Research Station and reaching back to 1962. Here 800 dd2s was classified as a short

season, 1.000 dd2s a medium and 1.200 dd2s a long season. The three classes of mor-

tality rate constituted another part of the environmental variation in the optimisation

scenarios.

In spite of the simplifications, the search space consisted of more than 2 × 1.015

alternative combinations of season length, mortality class and life stage duration. We

used Evolver 4.0 genetic algorithm solver (Palisade Corporation, Newfield, NY, USA)

to search for the optimal solutions using ordinary PCs. Eleven optimisation runs were

conducted for each scenario using the software’s default solving methods. A single so-

lution was considered final when there was less than 5% improvement on the solution

for the next 400 successive runs.

The model was validated by comparing the predicted timings and durations of the

life stages with the values observed in E. autumnata that experienced a natural light

and temperature regime during different season lengths and population phases.

(c) Mortality functions used in the model

Table S1.

Life stage mortality rate / dd2

low intermediate high

spring egg, ms 0.0002, if hatchdd2 ≥ 70 0.0002, if hatchdd2 ≥ 70 0.0002, if hatchdd2 ≥ 70

0.0002+1−
e−0.03(70−hatchdd2),

if hatchdd2 < 70

0.0002+1−
e−0.03(70−hatchdd2),

if hatchdd2 < 70

0.0002+1−
e−0.03(70−hatchdd2),

if hatchdd2 < 70

larva, ml 0.0015e0.004(hatchdd2−130) 0.002e0.004(hatchdd2−130) 0.0025e0.004(hatchdd2−130)

pupa, mp 1−0.9993dd2 1−0.99895dd2 1−0.0.99860dd2

adult, mo 0.6e−[
dd2−500

400 ]
5

0.4e−[
dd2−500

400 ]
5

0.2e−[
dd2−500

400 ]
5

autumn egg, ma 0.006−0.0000044 dd2 0.015−0.000012 dd2 0.025−0.00002 dd2
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(e) Optimisation results

Table S2. The final fitness values and optimal life stage durations during two successive years in indi-
vidual model scenarios. The length of years and life stages are given in dd2s. The mean values and their
coefficients of variation are based on 11 optimisation runs.

Predation 1st year 2nd year Variable Mean CV

high 800 800 fitness 0.030 4.211
egg, 1st spring 71.182 1.969
larva, 1st summer 221.000 0.000
pupa, 1st summer 248.273 43.261
adult 1st autumn 247.455 43.096
egg, 1st autumn 12.091 43.522
egg, 2nd spring 88.000 6.035
larva, 2nd summer 224.455 0.576
pupa, 2nd summer 376.727 30.130
adult, 2nd autumn 100.727 117.173
egg, 2nd autumn 10.091 2.988

high 800 1000 fitness 0.434 6.089
egg, 1st spring 70.818 2.077
larva, 1st summer 221.000 0.000
pupa, 1st summer 294.818 44.644
adult 1st autumn 199.727 66.310
egg, 1st autumn 13.636 36.116
egg, 2nd spring 86.545 5.877
larva, 2nd summer 224.273 0.567
pupa, 2nd summer 626.545 1.030
adult, 2nd autumn 52.273 1.930
egg, 2nd autumn 10.364 11.6370

high 800 1200 fitness 2.097 4.356
egg, 1st spring 70.727 1.561
larva, 1st summer 221.000 0.000
pupa, 1st summer 223.364 34.692
adult 1st autumn 253.636 29.125
egg, 1st autumn 31.273 27.362
egg, 2nd spring 68.727 12.450
larva, 2nd summer 327.727 0.627
pupa, 2nd summer 603.364 1.776
adult, 2nd autumn 187.909 1.457
egg, 2nd autumn 12.273 23.073

high 1000 800 fitness 0.422 9.502
egg, 1st spring 71.909 2.672
larva, 1st summer 221.182 0.183
pupa, 1st summer 643.000 0.582
adult 1st autumn 51.273 3.388
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Table S2. (continued)

Predation 1st year 2nd year Variable Mean CV

egg, 1st autumn 12.636 39.453
egg, 2nd spring 87.545 5.833
larva, 2nd summer 224.273 0.531
pupa, 2nd summer 394.364 24.572
adult, 2nd autumn 83.818 122.931
egg, 2nd autumn 10.000 0.000

high 1000 1000 fitness 3.893 2.880
egg, 1st spring 71.818 3.674
larva, 1st summer 221.182 0.273
pupa, 1st summer 622.727 0.575
adult 1st autumn 42.818 2.041
egg, 1st autumn 10.455 14.420
egg, 2nd spring 89.545 1.684
larva, 2nd summer 225.000 0.199
pupa, 2nd summer 622.727 0.352
adult, 2nd autumn 52.727 2.557
egg, 2nd autumn 10.000 0.000

high 100 1200 fitness 30.436 10.256
egg, 1st spring 75.273 8.256
larva, 1st summer 221.727 0.608
pupa, 1st summer 635.364 1.681
adult 1st autumn 51.273 8.639
egg, 1st autumn 16.364 47.515
egg, 2nd spring 83.636 9.296
larva, 2nd summer 332.273 0.726
pupa, 2nd summer 586.636 1.693
adult, 2nd autumn 186.727 2.311
egg, 2nd autumn 10.727 14.496

high 1200 800 fitness 2.454 2.873
egg, 1st spring 70.091 0.430
larva, 1st summer 318.455 1.664
pupa, 1st summer 609.909 0.760
adult 1st autumn 172.182 5.122
egg, 1st autumn 29.364 32.102
egg, 2nd spring 70.636 13.345
larva, 2nd summer 221.364 0.763
pupa, 2nd summer 343.727 40.102
adult, 2nd autumn 154.273 91.520
egg, 2nd autumn 10.000 0.000

high 1200 1000 fitness 36.775 3.589
egg, 1st spring 70.091 0.430
larva, 1st summer 324.000 1.751
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Table S2. (continued)

Predation 1st year 2nd year Variable Mean CV

pupa, 1st summer 605.636 1.063
adult 1st autumn 180.818 6.566
egg, 1st autumn 19.455 56.885
egg, 2nd spring 80.545 13.740
larva, 2nd summer 223.091 0.884
pupa, 2nd summer 633.727 2.055
adult, 2nd autumn 52.636 2.587
egg, 2nd autumn 10.000 0.000

high 1200 1200 fitness 197.998 2.615
egg, 1st spring 70.182 0.576
larva, 1st summer 312.636 2.767
pupa, 1st summer 613.455 1.016
adult 1st autumn 164.545 7.244
egg, 1st autumn 39.182 36.876
egg, 2nd spring 60.818 23.757
larva, 2nd summer 325.909 0.375
pupa, 2nd summer 612.091 2.692
adult, 2nd autumn 187.909 4.581
egg, 2nd autumn 13.273 36.615

intermediate 800 800 fitness 0.001 0.465
egg, 1st spring 71.818 2.141
larva, 1st summer 221.000 0.000
pupa, 1st summer 476.455 0.368
adult 1st autumn 20.636 2.445
egg, 1st autumn 10.091 2.988
egg, 2nd spring 90.091 0.599
larva, 2nd summer 225.273 0.207
pupa, 2nd summer 454.182 0.257
adult, 2nd autumn 20.455 2.553
egg, 2nd autumn 10.000 0.000

intermediate 800 1000 fitness 0.048 1.258
egg, 1st spring 71.636 2.187
larva, 1st summer 221.000 0.000
pupa, 1st summer 476.455 0.330
adult 1st autumn 20.636 2.445
egg, 1st autumn 10.273 8.805
egg, 2nd spring 89.818 1.093
larva, 2nd summer 225.091 0.240
pupa, 2nd summer 637.364 0.256
adult, 2nd autumn 37.727 1.238
egg, 2nd autumn 10.000 0.000

intermediate 800 1200 fitness 0.489 6.194
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Table S2. (continued)

Predation 1st year 2nd year Variable Mean CV

egg, 1st spring 71.273 1.892
larva, 1st summer 221.000 0.000
pupa, 1st summer 472.818 1.177
adult 1st autumn 20.727 3.120
egg, 1st autumn 14.182 37.154
egg, 2nd spring 85.818 6.140
larva, 2nd summer 324.364 0.372
pupa, 2nd summer 612.364 1.303
adult, 2nd autumn 167.455 1.718
egg, 2nd autumn 10.000 0.000

intermediate 1000 800 fitness 0.048 0.635
egg, 1st spring 74.273 5.963
larva, 1st summer 221.636 0.365
pupa, 1st summer 656.364 0.810
adult 1st autumn 37.727 2.084
egg, 1st autumn 10.000 0.000
egg, 2nd spring 90.182 0.449
larva, 2nd summer 225.182 0.268
pupa, 2nd summer 453.909 0.250
adult, 2nd autumn 20.727 2.254
egg, 2nd autumn 10.000 0.000

intermediate 1000 1000 fitness 6.344 1.260
egg, 1st spring 74.000 5.506
larva, 1st summer 221.364 0.365
pupa, 1st summer 656.636 0.695
adult 1st autumn 37.818 1.985
egg, 1st autumn 10.182 5.923
egg, 2nd spring 89.818 0.671
larva, 2nd summer 225.364 0.359
pupa, 2nd summer 636.455 0.301
adult, 2nd autumn 38.364 2.109
egg, 2nd autumn 10.000 0.000

intermediate 1000 1200 fitness 43.451 1.148
egg, 1st spring 75.909 5.816
larva, 1st summer 221.909 0.425
pupa, 1st summer 654.364 0.843
adult 1st autumn 37.727 1.238
egg, 1st autumn 10.091 2.988
egg, 2nd spring 89.909 0.335
larva, 2nd summer 325.455 0.160
pupa, 2nd summer 607.000 0.410
adult, 2nd autumn 167.636 1.629
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Table S2. (continued)

Predation 1st year 2nd year Variable Mean CV

egg, 2nd autumn 10.000 0.000

intermediate 1200 800 fitness 0.538 1.120
egg, 1st spring 70.000 0.000
larva, 1st summer 320.000 0.559
pupa, 1st summer 633.455 0.216
adult 1st autumn 165.000 1.355
egg, 1st autumn 11.545 24.303
egg, 2nd spring 88.727 3.422
larva, 2nd summer 224.727 0.350
pupa, 2nd summer 455.909 0.923
adult, 2nd autumn 20.636 2.445
egg, 2nd autumn 10.000 0.000

intermediate 1200 1000 fitness 45.290 2.674
egg, 1st spring 70.273 0.920
larva, 1st summer 318.364 1.091
pupa, 1st summer 633.364 0.735
adult 1st autumn 164.000 4.225
egg, 1st autumn 14.000 42.378
egg, 2nd spring 86.000 6.899
larva, 2nd summer 224.545 0.576
pupa, 2nd summer 642.182 1.103
adult, 2nd autumn 37.273 1.735
egg, 2nd autumn 10.000 0.000

intermediate 1200 1200 fitness 456.051 5.445
egg, 1st spring 70.091 0.430
larva, 1st summer 304.000 2.573
pupa, 1st summer 644.455 1.107
adult 1st autumn 144.091 7.970
egg, 1st autumn 37.364 33.068
egg, 2nd spring 62.636 19.726
larva, 2nd summer 319.364 0.770
pupa, 2nd summer 640.091 2.171
adult, 2nd autumn 166.909 1.662
egg, 2nd autumn 11.000 20.328

low 800 800 fitness 0.000 0.168
egg, 1st spring 72.636 1.273
larva, 1st summer 221.000 0.000
pupa, 1st summer 479.364 0.193
adult 1st autumn 17.000 0.000
egg, 1st autumn 10.000 0.000
egg, 2nd spring 90.091 0.335
larva, 2nd summer 225.182 0.180
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Table S2. (continued)

Predation 1st year 2nd year Variable Mean CV

pupa, 2nd summer 457.636 0.147
adult, 2nd autumn 17.091 1.764
egg, 2nd autumn 10.000 0.000

low 800 1000 fitness 0.008 0.121
egg, 1st spring 72.000 2.060
larva, 1st summer 221.000 0.000
pupa, 1st summer 480.000 0.309
adult 1st autumn 17.000 0.000
egg, 1st autumn 10.000 0.000
egg, 2nd spring 90.000 0.000
larva, 2nd summer 225.545 0.305
pupa, 2nd summer 643.455 0.127
adult, 2nd autumn 31.000 1.443
egg, 2nd autumn 10.000 0.000

low 800 1200 fitness 0.132 4.626
egg, 1st spring 72.273 5.938
larva, 1st summer 221.273 0.409
pupa, 1st summer 477.182 1.147
adult 1st autumn 17.182 3.510
egg, 1st autumn 12.091 24.100
egg, 2nd spring 87.909 3.315
larva, 2nd summer 323.364 3.464
pupa, 2nd summer 623.636 2.338
adult, 2nd autumn 155.091 1.717
egg, 2nd autumn 10.000 0.000

low 1000 800 fitness 0.008 0.315
egg, 1st spring 73.000 4.155
larva, 1st summer 221.455 0.422
pupa, 1st summer 664.636 0.599
adult 1st autumn 30.909 0.975
egg, 1st autumn 10.000 0.000
egg, 2nd spring 90.091 0.335
larva, 2nd summer 225.091 0.134
pupa, 2nd summer 457.818 0.132
adult, 2nd autumn 17.000 0.000
egg, 2nd autumn 10.000 0.000

low 1000 1000 fitness 3.497 0.817
egg, 1st spring 76.091 10.154
larva, 1st summer 222.000 0.726
pupa, 1st summer 660.909 1.410
adult 1st autumn 31.000 1.443
egg, 1st autumn 10.000 0.000
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Table S2. (continued)

Predation 1st year 2nd year Variable Mean CV

egg, 2nd spring 90.000 0.000
larva, 2nd summer 225.182 0.180
pupa, 2nd summer 644.000 0.098
adult, 2nd autumn 30.818 1.313
egg, 2nd autumn 10.000 0.000

low 1000 1200 fitness 61.752 0.711
egg, 1st spring 77.364 8.753
larva, 1st summer 222.455 0.788
pupa, 1st summer 659.182 1.287
adult 1st autumn 31.000 0.000
egg, 1st autumn 10.000 0.000
egg, 2nd spring 90.000 0.000
larva, 2nd summer 320.909 0.645
pupa, 2nd summer 622.091 0.468
adult, 2nd autumn 157.000 1.066
egg, 2nd autumn 10.000 0.000

low 1200 800 fitness 0.139 1.635
egg, 1st spring 70.000 0.000
larva, 1st summer 318.545 1.783
pupa, 1st summer 644.727 0.949
adult 1st autumn 155.636 2.136
egg, 1st autumn 11.091 27.185
egg, 2nd spring 88.909 3.391
larva, 2nd summer 225.182 0.519
pupa, 2nd summer 458.909 0.852
adult, 2nd autumn 17.000 0.000
egg, 2nd autumn 10.000 0.000

low 1200 1000 fitness 63.658 0.167
egg, 1st spring 70.091 0.430
larva, 1st summer 316.000 0.000
pupa, 1st summer 648.364 0.232
adult 1st autumn 155.545 0.926
egg, 1st autumn 10.000 0.000
egg, 2nd spring 90.182 0.449
larva, 2nd summer 225.636 0.359
pupa, 2nd summer 643.182 0.153
adult, 2nd autumn 31.000 2.040
egg, 2nd autumn 10.000 0.000

low 1200 1200 fitness 1035.280 5.414
egg, 1st spring 70.182 0.576
larva, 1st summer 306.364 2.400
pupa, 1st summer 654.182 0.947
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Table S2. (continued)

Predation 1st year 2nd year Variable Mean CV

adult 1st autumn 142.636 6.122
egg, 1st autumn 26.636 39.385
egg, 2nd spring 73.364 14.300
larva, 2nd summer 318.273 1.633
pupa, 2nd summer 643.455 2.456
adult, 2nd autumn 154.909 0.977
egg, 2nd autumn 10.000 0.000
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