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Abstract

Natural Killer Gene Complex (NKC)–encoded C-type lectin-like receptors (CTLRs) are expressed on various immune cells
including T cells, NK cells and myeloid cells and thereby contribute to the orchestration of cellular immune responses. Some
NKC-encoded CTLRs are grouped into the C-type lectin family 2 (CLEC2 family) and interact with genetically linked CTLRs of
the NKRP1 family. While many CLEC2 family members are expressed by hematopoietic cells (e.g. CD69 (CLEC2C)), others
such as the keratinocyte-associated KACL (CLEC2A) are specifically expressed by other tissues. Here we provide the first
characterization of the orphan gene CLEC2L. In contrast to other CLEC2 family members, CLEC2L is conserved among
mammals and located outside of the NKC. We show that CLEC2L-encoded CTLRs are expressed as non-glycosylated,
disulfide-linked homodimers at the cell surface. CLEC2L expression is fairly tissue-restricted with a predominant expression
in the brain. Thus CLEC2L-encoded CTLRs were designated BACL (brain-associated C-type lectin). Combining in situ
hybridization and immunohistochemistry, we show that BACL is expressed by neurons in the CNS, with a pronounced
expression by Purkinje cells. Notably, the CLEC2L locus is adjacent to another orphan CTLR gene (KLRG2), but reporter cell
assays did neither indicate interaction of BACL with the KLRG2 ectodomain nor with human NK cell lines or lymphocytes.
Along these lines, growth of BACL-expressing tumor cell lines in immunocompetent mice did not provide evidence for an
immune-related function of BACL. Altogether, the CLEC2L gene encodes a homodimeric cell surface CTLR that stands out
among CLEC2 family members by its conservation in mammals, its biochemical properties and the predominant expression
in the brain. Future studies will have to reveal insights into the functional relevance of BACL in the context of its neuronal
expression.
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Introduction

The mammalian Natural Killer Gene Complex (NKC) repre-

sents a cluster of genes encoding for C-type lectin-like receptors

(CTLRs) mainly expressed on hematopoietic cells such as myeloid

cells, T cells or the name giving Natural Killer (NK) cells [1,2].

Common hallmark of NKC-encoded CTLRs is a type II

transmembrane topology with a single extracellular C-type

lectin-like domain (CTLD) engaged in binding of proteinaceous

ligands instead of carbohydrates, the typical ligands of lectins [2].

The CTLD is characterized by six conserved cysteins and a

hydrophobic ‘WIGL’ motif that stabilize the lectin-like fold by

forming intramolecular disulfide bonds and a hydrophobic core,

respectively [2,3]. NKC-encoded CTLRs are subdivided into

‘killer cell lectin-like receptors’ (KLRs), such as NKG2D, and

other ‘C-type lectin molecules’ (CLECs). The latter include

members of the CLEC2 family of CTLR that share distinct

sequence characteristics [4]. The CLEC2 family comprises CD69,

the mouse Clr molecules and the human members LLT1, AICL

and KACL, with CD69 being the only NKC-encoded CLEC2

family member conserved in both species [2,4]. While NKC-

encoded KLRs, including members of the NKRP1 subfamily, are

expressed on NK cells or other effector lymphocytes [4–8], the

tissue expression of CLEC2 family members broadly varies. For

instance, human molecules LLT1, AICL and KACL were

described to be expressed on B-cells, monocytes and keratinocytes,

respectively [9–11], while transcripts of mouse Clr-d and Clr-f

recently were specifically associated with the eye and the intestine,

respectively [12]. It has been shown that several CTLRs of the

NKRP1 and CLEC2 families that are encoded in the NKC in

tight genetic linkage constitute receptor-ligand pairs with certain

NKRP1 receptors engaging one or several CLEC2 family

members [13]. For example, mouse Nkrp1d was shown to bind

Clr-b, while Nkrp1f was shown to bind Clr-c, -d, and -g [13–16].

Similarly, human LLT1 engages NKRP1A (CD161) [17,18] and

the related NKp80 and NKp65 receptors bind the adjacently

encoded AICL and KACL molecules, respectively [9,10]. While

some of these receptor-ligand pairs inhibit NK cell effector

functions (e.g. NKRP1A/LLT1), others (e.g. NKp80/AICL;

NKp65/KACL) stimulate NK cell cytotoxicity [9–11,18]. Collec-

tively, there has been quite some progress in defining NKRP1

receptors and their CLEC2 family ligands, paired with insights
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into their expression, however, the in vivo function of these

genetically linked receptor/ligand pairs remains poorly under-

stood.

In the present study we investigate the expression of the hitherto

uncharacterized CLEC2 family gene CLEC2L. We show that

CLEC2L encodes for a homodimeric cell surface CTLR that is

predominantly expressed in the brain and hence was termed

BACL (brain-associated C-type lectin).

Materials and Methods

Ethics Statement
Buffy coats of healthy volunteers were obtained after written

informed consent from the German Red Cross, Frankfurt am

Main (approved by the local ethics committee of the University

Hospital Frankfurt am Main). Usage of pseudonymized autopsy

material (human brain) for research purposes was approved by the

local ethics committee of the University Hospital Frankfurt am

Main. The need for informed consent has been waived by the

Ethical Committee. Animal experiments were approved by the

local authorities (Regierungspräsidium Darmstadt, Germany;

permit numbers F146/02 and F94/Anz03) and performed in full

compliance with the respective national guidelines.

Cells and Transfectants
Cell lines were purchased from the Deutsche Sammlung von

Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Ger-

many). BWZ.36 reporter cells were a kind gift of N. Shastri,

University of California, Berkeley [19]. Peripheral blood mono-

nuclear cells (PBMC) of healthy donors were isolated from buffy

coats (German Red Cross, Frankfurt am Main) by density gradient

centrifugation. Adherent cells were cultured in DMEM (PAA,

Pasching, Austria), suspension cells in RPMI 1640 (Sigma,

Steinheim, Germany). All media contained 10% FCS, 2 mM

Glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin (all

from PAA). For analyses of protein expression, RSV-BACL

constructs were transiently transfected into 293T cells using

AppliFect reagent (AppliChem, Darmstadt, Germany) according

to the manufacturer’s instructions. Upon transfection, cells were

cultured in complete DMEM medium for 48 h before analysing

BACL expression by flow cytometry or immunoblotting. For the

generation of stable transfectants, 293 cells were transfected with

AppliFect and selected in complete DMEM medium with 1.8 mg/

Figure 1. The CLEC2L-encoded CTLR is highly conserved and a member of the CLEC2 subfamily of CTLR. (A) Amino acid sequence
alignment of the CTLDs of mouse Clec2l (mClec2l) and human CLEC2L (hCLEC2L) with NKC-encoded CLEC2 family members and other NKC-encoded
CTLRs of human or mouse origin. Alignment starts with the first out of six highly conserved cysteines (Cys1 to Cys6) of the CTLD that are highlighted
in black and numbered (bottom line) accordingly. The ‘WIGL’ motif of the hydrophobic core is indicated by asterisks (bottom line) and shaded, as are
other conserved CTLD residues. Dots indicate sequence gaps. (B) Phylogenetic tree of the CTLD sequences shown in (A). Tree was generated with the
PHYLIP program (http://evolution.genetics.washington.edu/phylip.html).
doi:10.1371/journal.pone.0065345.g001
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ml G418 sulphate. Transfection of suspension cells (BWZ.36,

RMA) was performed by electroporation using 20 mg of linearized

plasmid DNA and the Gene Pulser XcellTM (Bio-Rad, Munich,

Germany) (250 V, 950 mF) followed by selection in RPMI 1640

medium containing the appropriate concentration of G418

sulphate (1.8 mg/ml for BWZ.36, 1 mg/ml for RMA).

Figure 2. The CLEC2L gene and its products. (A) Map of the genomic region containing the CLEC2L gene in human and mouse. Boxes represent
genes, arrows transcriptional orientation. The distance of the orphan genes CLEC2L and KLRG2 is indicated. Adjacent genes are HIPK2 (homeodomain
interacting protein kinase 2) and LUC7L2 (LUC7-like 2). (B) Schematic representation (true to scale) of the exon/intron structure of the human CLEC2L
gene with the five exons numbered and the 39 UTR sequence in light gray. (C) Schematic representation of protein domains encoded by the five
exons. Cyt = cytoplasmic domain, TM = transmembrane domain, CTLD = C-type lectin-like domain. (D) Alignment of the human and mouse CLEC2L
amino acid sequences. Dashes indicate identical amino acids, dots represent sequence gaps. The conserved cysteines of the CTLD are in black, the
cysteines of the stalk are marked by arrows. The ‘WIGL’ motif is shaded and the predicted transmembrane region boxed.
doi:10.1371/journal.pone.0065345.g002
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Reverse Transcription and Quantitative PCR
Total RNA of most human tissue samples was purchased from

Life Technologies (Darmstadt, Germany) except for bone marrow

(Clontech, Saint-Germain-en-Laye, France). RNA from PBMC

and mouse tissues was isolated using peqGOLD TriFast (Peqlab,

Erlangen, Germany). Total RNA from PBMC and mouse organs

was treated with DNAse I and reverse transcribed using MMLV-

RT RNAse H- mutant and random primers (all from Promega,

Mannheim, Germany). Resulting cDNA was subjected to

TaqManH quantitative PCR for 45 cycles on the Applied

BiosystemsH StepOnePlusTM cycler (Life Technologies, Darm-

stadt, Germany) with the FAM-labeled probe 59 CCA GGC TG

39 (#64 UPL library; Roche, Mannheim, Germany) and the

following pairs of oligonucleotides: 59 GAC CCG TTT GAT

CCG GAC A 39 and 59 AGT ATA GGC CAT CTT GCT GCA

39 (hBACL), 59 ACC CAG ACA CAT TCA CTA TCT C 39 and

59 TCA CGT ATA GGC CAT CTT GC 39 (mBACL). For

normalization, amplification of human TBP or eukaryotic 18S

rRNA was monitored using TaqManH endogenous control assays

(Life Technologies).

In situ Hybridization
For in situ hybridization BACL cDNA was cloned into the

pBluescript II KS(+) vector and used as template for in vitro

transcription with T3 or T7 RNA polymerases and the DIG RNA

labeling mix (all from Roche) to generate digoxigenin (DIG)-

labeled probes. Subsequently, free nucleotides were removed by

RNA precipitation. In situ hybridization on vibratome sections was

performed as described previously [20]. Briefly, brain tissues from

paraformaldehyde (PFA)-perfused adult C57BL/6 mice and

human PFA-stored brain tissues were washed with phosphate-

buffered saline (PBS), embedded in a BSA-gelatine mix (15% (w/v)

BSA, 0.5% (w/v) gelatine in PBS, 2.5% Glutaraldehyde) and cut

into sagittal sections (thickness: 80 mm) using a vibratome (Leica,

Wetzlar, Germany). Sections were dehydrated by subsequent

incubations in increasing concentrations of methanol and stored at

220uC. Prior to hybridization sections were rehydrated, bleached

with 6% H2O2 and equilibrated in a pre-hybridization solution

(50% (v/v) formamide, 2% (w/v) blocking reagent (Roche), 0.2 M

NaCl, 1.1 mM Tris, 8.9 mM Tris-HCl, 5 mM Na2HPO4,

5.6 mM NaH2PO4
.H2O, 5 mM EDTA) at 65uC for 5 h.

Subsequently, sections were incubated in hybridization solution

(pre-hybridization solution with additional 10% (w/v) dextran

Figure 3. CLEC2L encodes a disulfide-linked homodimeric CTLR readily expressed on the cell surface. (A) 293T cells transiently
transfected with carboxyterminally FLAG-tagged mouse CLEC2L cDNA (solid line) or vector control (filled) were analysed by flow cytometry using
anti-FLAG mAb M2. (B, C) Immunoblots of 293T cells transiently transfected with FLAG-tagged mouse CLEC2L cDNA. CLEC2L proteins in cellular
lysates were detected with mAb M2. Lysates of mock-transfected 293T cells (mock) served as controls. (B) Lysates of 293T cells expressing mouse
CLEC2L proteins were separated by reducing (red; left panel) or non-reducing SDS-PAGE (non-red; right panel). Lysates were treated with PNGase F
for protein deglycosylation (reducing conditions) where indicated. (C) Lysates of 293T cells expressing wildtype mouse CLEC2L (wt) or mouse CLEC2L
mutants were separated by reducing (left panel) or non-reducing SDS-PAGE (right panel). Stalk region of CLEC2L was mutated, with cysteines 93 and/
or 96 substituted by alanines.
doi:10.1371/journal.pone.0065345.g003
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sulfate, 1x Denhardt’s and 1 mg/ml yeast RNA) containing 1 mg/

ml DIG-labeled probe overnight at 65uC. Sections were repeatedly

washed with a low stringency buffer (50% formamide/1X SSC)

and a high stringency buffer (50% formamide/0.2X SSC) at 65uC.

Then sections were blocked with 10% sheep serum (Sigma) in

Tris-buffered saline/0.1% Tween-20 (TBST) for 5 h at 4uC and

incubated with alkaline phosphatase-conjugated anti-DIG-Fab

(Roche) (1:2000) in 1% sheep serum in TBST overnight at 4uC.

Sections were washed 4x 1 h in TBST and developed by addition

of nitro blue tetrazolium chloride/5-Bromo-4-chloro-3-indolyl

phosphate mix (NBT/BCIP mix, Roche) for at least 20 min.

Stained sections were post-fixed with 4% PFA/0.1% Glutaralde-

hyde for 1 h and mounted onto glass slides for visualization.

cDNA Cloning, Chimeric Reporter Constructs and
Mutagenesis

Total cDNA from brain tissue of a C57BL/6 mouse was used

for amplification of the BACL cDNA with the following

oligonucleotides: 59 ATG GAG CCG GCC CGG GAG CC 39

and 59 TCA CGT ATA GGC CAT CTT GCT GCA CAC 39. In

a second PCR, NheI and XhoI restriction sites were added for

cloning into the RSV.5neo expression vector containing C-

terminal FLAG- and hexahistidine tags. Mutagenesis was

performed using the QuickChange site-directed mutagenesis kit

(Stratagene, Santa Clara, USA) and the RSV-BACL vector. For

the generation of reporter constructs the nucleotide sequences for

the C-type lectin-like ectodomains were amplified with the

following pairs of oligonucleotides: 59 AGC AAC ATG TGC

CCG GAG GAC TG 39 and 59 GCT ACT CGA GAG TAT

AGG CCA TC 39 for BACL from human brain cDNA and 59

AGC AAC ATG TGC CCC CCA GGC TG 39 and 59 GCT

ACT CGA GCT GGG TCC CCT TG 39 for KLRG2 from

human thyroid gland cDNA. These oligonucleotides contained

overlapping sequences for fusion with sequences encoding for the

stalk region and transmembrane domain of Ly49A and the

cytoplasmic domain of mouse CD3f, amplified from an existing

reporter construct (NKG2D-Ly49A-CD3f). The resulting fusion

products were equipped with NheI and XhoI restriction sites and

cloned into the RSV.5neo expression vector containing C-

terminal FLAG- and hexahistidine tags. All cloned PCR products

were verified by restriction digestion and sequencing.

Generation of Soluble BACL-ectodomains and Antibody
Production

The ectodomain of BACL was cloned into the pSec-Tag2

vector by restriction free cloning. To this aim, a PCR with the

oligonucleotides 59 GAA TGG CAC GAA AAG CCG GCC TCC

AAG GGC TGC ATC AAG TG 39 and 59 GAT CCT CTT

CTG AGA TGA GTT TTT GTT CAG TAT AGG CCA TCT

TGC TGC A 39 was performed in presence of the RSV-BACL

vector. In a second PCR the product was introduced into the

pSec-Tag2 vector, fusing the BACL ectodomain to an N-terminal

secretory targeting sequence and C-terminal c-myc- and hexahis-

tidine-tags. The pSec-BACL vector was transfected into 293 cells

using AppliFect (AppliChem) and stable cell clones were selected

with 0.2 mg/ml hygromycin B. For large scale protein production

293 cells were cultured in a CELLine bioreactor (Integra,

Fernwald, Germany). Soluble BACL-ectodomains were collected

from the cell culture supernatant and purified by affinity

chromatography with a Ni-NTA column (GE Healthcare,

Munich, Germany). The purified protein was used for the

immunization of chicken and subsequently, whole IgY antibodies

were collected from the egg yolk (Gallus Immunotech, Fergus,

Canada). BACL-specific IgY was further enriched by affinity

purification with a BACL-loaded affinity column (Gallus Im-

munotech).

Immunohistochemistry
Brain tissues from adult C57BL/6 mice were quick-frozen in

liquid nitrogen and sagittal sections (thickness: 10 mm) were

prepared on glass slides with a cryomicrotome (Leica). Single cells

were stained as cytospin preparations on glass slides. Prior to

staining tissues were fixed with acetone and bleached with the

BLOXALLTM blocking solution (Vector Laboratories, Peterbor-

ough, UK). Tissues were treated with 3% (w/v) BSA to reduce

non-specific binding and incubated with the primary antibody

overnight at 4uC. For blocking experiments anti-BACL IgY was

preincubated with soluble BACL 20 min on ice before addition to

the slides. After staining, slides were washed in TBS and incubated

with a biotinylated secondary antibody, followed by HRP-

conjugated streptavidin (Dako, Hamburg, Germany) and detec-

tion with SIGMAFASTTM 3,39-Diaminobenzidine tablets (Sigma).

Slides were counterstained with Mayer’s Hemalaun solution

(AppliChem) and mounted in AquaTec (Merck, Darmstadt,

Germany) for visualization.

Flow Cytometry
Transfectants were incubated with either anti-FLAG antibody

M2 (Sigma), anti-MICA antibody AMO1 [21], or mouse IgG1

isotype control at a final concentration of 5 mg/ml and secondary

stainings were performed using PE-conjugated goat anti-mouse

IgG antibody (Jackson ImmunoResearch Laboratories, Newmar-

ket, UK). Anti-BACL or pre-immune IgY antibodies were used in

a final concentration of 1.8 mg/ml and detected with FITC-

conjugated donkey anti-chicken IgY antibodies (Gallus Immuno-

tech). All samples were analysed with a FACSCantoTM II (BD

Biosciences, Heidelberg, Germany).

Immunoprecipitation and Immunoblotting
For immunoblot analysis, transiently transfected 293T cells

were lysed using lysis buffer (50 mM Tris pH 8, 150 mM NaCl,

1% NP-40) containing the Complete protease inhibitor cocktail

(Roche). Tissues from adult C57BL/6 mice or human brain tissue

samples were passed through a 100 mm nylon mesh before lysis.

For immunoprecipitation lysates were incubated with UltraLink

Biosupport resin (Thermo Scientific, Rockford, USA) preloaded

with anti-BACL or pre-immune IgY. Precipitation was carried out

for 4 h at 4uC under gentle rotation. For deglycosylation, samples

Figure 4. CLEC2L is predominantly expressed in the brain. (A) Quantitative RT-PCR of CLEC2L transcripts in various human tissues. Data are
normalized to human TBP and arbitrarily set relative to CLEC2L transcript levels of kidney (*). (B) Quantitative RT-PCR of CLEC2L transcripts in various
tissues of C57BL/6 mice. Data are normalized to 18S rRNA and arbitrarily set relative to CLEC2L transcript levels of kidney (*). (C) In situ hybridization of
C57BL/6 mouse brain sections confirmed pronounced CLEC2L expression in the brain with particularly high levels in cerebellar Purkinje cells. In situ
hybridization was performed using DIG-labeled sense (control) and anti-sense mouse CLEC2L probes. (D) Quantitative RT-PCR of CLEC2L transcripts in
various brain regions isolated from C57BL/6 mice. Whole brain sample (**) was included for comparison. Data are normalized to 18S rRNA and
arbitrarily set relative to CLEC2L transcript levels of kidney (*). (E) In situ hybridization of tissue sections of human cerebellum using DIG-labeled sense
(control) and anti-sense human CLEC2L probes.
doi:10.1371/journal.pone.0065345.g004
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Figure 5. Broad brain presence of BACL is associated with neuronal tissue. (A) BACL proteins in mouse brain. Cryosections of whole mouse
brain (C57BL/6 mice) were either stained with BACL-specific or control (pre-immune) chicken IgY followed by biotin-conjugated anti-chicken IgY
antibodies. Enlarged sections of mouse cerebellum highlight BACL expression (brown) by Purkinje cells. Nuclei are counterstained (blue). (B) BACL
proteins in human brain. Cryosections of human cortex and cerebellum were stained with BACL-specific IgY followed by biotin-conjugated anti-

BACL, a Brain-Associated Lectin-Like Receptor

PLOS ONE | www.plosone.org 7 June 2013 | Volume 8 | Issue 6 | e65345



were treated with PNGase F (New England Biolabs, Frankfurt,

Germany) according to the manufacturer’s instructions. 50 mg of

total lysate or immunoprecipitates were separated by SDS-PAGE

in a Mini-PROTEANH Tetra Cell (Bio-Rad) and transferred to

PVDF membranes (Roth, Arlesheim, Switzerland) by semi-dry

blotting. Membranes were stained with anti-FLAG mAb M2

(Sigma) in a final concentration of 1 mg/ml followed by detection

using a horseradish peroxidase (HRP)-conjugated goat anti-mouse

IgG antibody (Jackson ImmunoResearch Laboratories). Precipi-

tated BACL protein was detected by incubation with anti-BACL

IgY in a final concentration of 1.8 mg/ml followed by incubation

with HRP-conjugated donkey anti-chicken IgY antibody (Gallus

Immunotech).

Reporter Cell Assays
BWZ.36 reporter cells (16105 per well) were cultured overnight

at 37uC either in Nunclon MaxiSorpTM 96-well plates (Thermo

Scientific) precoated with anti-FLAG M2 mAb or IgG1 isotype

control (10 mg/ml), or with 26105 target cells in 96-well round-

bottom plates (Greiner Bio-one, Frickenhausen, Germany). Cells

were lysed in presence of chlorophenol red-b-D-galactopyranoside

(final concentration: 150 mM; Sigma) and b-galactosidase activity

was determined by measuring absorbance at 595 nm. For positive

control, BWZ.36 reporter cells were stimulated overnight with

10 ng/ml phorbol 12-myristate 13-acetate (PMA) and 1 mM

ionomycin.

Tumor Growth Experiments
C57BL/6J mice were purchased from Harlan Laboratories

(The Netherlands) and housed in the Zentrale Forschungseinrich-

tung of the University of Frankfurt. 3x105 cells of RMA-mock,

RMA-BACL and RMA-MICA*07 cells [21] were injected s.c. into

the left flank of the mice and tumor growth was monitored by

measuring tumor surface with a metric caliper. Animals were

sacrificed when tumors reached a size of ,200 mm2 or on day 35

after tumor inoculation. Statistical analysis was performed by two-

way ANOVA with a Bonferroni post-test using Prism 5 software

(GraphPad, La Jolla, USA).

chicken IgY antibodies or with secondary antibody only (control). Apparent BACL expression (brown) by cortical neurons and Purkinje cells. Nuclei are
counterstained (blue) (nc = neuronal cell, gc = glial cell, Pc = Purkinje cell).
doi:10.1371/journal.pone.0065345.g005

Figure 6. Brain-associated BACL molecules. (A, B) Depiction of BACL proteins from mouse and human brain. (A) BACL proteins
immunoprecipitated from cellular lysates of mouse cerebrum and cerebellum, respectively, were subjected to reducing (right) or non-reducing SDS-
PAGE (left) and detected by immunoblotting with anti-BACL IgY. No BACL was detected in lysates of spleens or in control immunoprecipitates (pre-
immune IgY). (B) BACL proteins immunoprecipitated from cellular lysates of human cerebellum and cortex, respectively, were subjected to reducing
(right) or non-reducing SDS-PAGE (left) and detected by immunoblotting with anti-BACL IgY. No BACL was detected in control immunoprecipitates
(pre-immune IgY). (A, B) Cellular lysates were included as input controls (inp).
doi:10.1371/journal.pone.0065345.g006

BACL, a Brain-Associated Lectin-Like Receptor

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e65345



BACL, a Brain-Associated Lectin-Like Receptor

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e65345



Figure 7. Reporter assays failed to provide evidence for a BACL receptor. (A) Bright expression of FLAG-tagged hBACL-CD3f or hKLRG2-
CD3f chimera on stably transfected BWZ.36 cells detected by flow cytometry using anti-FLAG mAb M2 (solid lines). IgG1 isotype control stainings are
filled. (B) Functional responsiveness of BACL-CD3f or KLRG2-CD3f expressing BWZ.36 reporter cells upon overnight stimulation with immobilized
mAb M2, but not with control IgG1. (C) BWZ.36-hKLRG2-CD3f cells or mock-transfected BWZ.36 controls were cultured overnight with 293T cells
transiently transfected with hBACL or mock-transfected 293T cells. (D, E) Mock-transfected BWZ.36 controls or BWZ.36-hBACL-CD3f reporter cells
were cultured overnight with indicated NK cell lines (D) or freshly isolated human PBMC or NK cells (E). (C – E) Treatment of BWZ.36 cells with
ionomycin and PMA (P/I) served as a positive control.
doi:10.1371/journal.pone.0065345.g007

Figure 8. Tumor-associated BACL expression does not affect tumor growth in vivo. (A) Ectopic expression of BACL or MICA by the
respective RMA transfectants as revealed by flow cytometry with anti-BACL IgY or anti-MICA mAb AMO1 (solid lines). Stainings of mock-transfected
RMA for control (filled). (B) 3x105 RMA-BACL, RMA-MICA*07, or RMA-mock cells were subcutaneously inoculated in syngeneic C57BL/6 mice and
tumor growth was monitored for the indicated period with a metric caliper. While differences in tumor size were significant (starting from day 9)
between RMA-mock (n = 4) and RMA-MICA*07 (positive control, n = 3), there was no significant difference (n.s.) in tumor size between RMA-mock
and RMA-BACL (n = 4). Error bars represent SEM.
doi:10.1371/journal.pone.0065345.g008
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Results

The Orphan Gene CLEC2L Encodes for an Atypical and
Highly Conserved C-type Lectin-like Receptor of the
CLEC2 Family

Known members of the CLEC2 family are C-type lectin-like

receptors (CTLRs) encoded in the Natural Killer Gene complex

(NKC) which is located on human chromosome 12p13 and mouse

chromosome 6F3. CLEC2 proteins include CD69, human AICL,

KACL, and LLT1, and mouse Clr-molecules. Apart from CD69

no other CLEC2 family member has been described to be

conserved in both species. Here we provide the first characteriza-

tion of the CLEC2 gene CLEC2L that is highly conserved in man

and mouse. The computational translation of the CLEC2L open

reading frame revealed a type II transmembrane protein with a

prototypical C-type lectin-like domain (CTLD) at the carbox-

yterminus. The latter is characterized by hallmark residues such as

a central hydrophobic WIGL motif and six conserved cysteines

that form three intramolecular disulfide bonds stabilizing the C-

type lectin fold [2,3] (Figure 1A). The CTLD of human CLEC2L

exhibits highest sequence similarity to CD69 (40% identity/59%

similarity), followed by the CTLD of LLT1 (35%/58%) and

KACL (34%/55%), respectively. Amino acid alignments also

revealed that CLEC2L uniquely shares with other CLEC2 family

members a shortened sequence stretch between Gly84 and Cys88

(positions refer to CTLD of hCLEC2L; Figure 1A). Moreover,

this analysis also revealed a strong conservation (95% identity) of

the CTLDs of human and mouse CLEC2L proteins that by far

exceeds the conservation of NKC-encoded CTLRs (Figure 1B).

Interestingly, the CLEC2L gene is not located within the NKC but

on human chromosome 7q34 and mouse chromosome 6B1,

respectively, spanning ,20 kb (Figure 2A, B). Further, a

CLEC2L gene is documented for many other mammalian species

including rodents, primates, even-toed ungulates, and carnivores

(http://www.ncbi.nlm.nih.gov/gene/?term = clec2l). The human

CLEC2L gene consists of five exons, with exon 1 encoding the

cytoplasmic domain, exon 2 the transmembrane domain and

exons 3, 4, and exon 5 the extracellular ectodomain giving rise to a

protein of 214 amino acids (aa) with a predicted molecular mass of

23.9 kDa (Figure 2C, D). Amino acid sequences of the predicted

mouse and human CLEC2L proteins only slightly differ at a total

of 11 positions (Figure 2D). The extended CLEC2L cytoplasmic

domain comprises about 70 aa and contains no known tyrosine-

based signaling motifs but instead extended proline-rich regions

and several serine residues that may relay extracellular signals.

The transmembrane domain contains no charged amino acids

arguing against association with signaling adaptors and is followed

by a short stalk region (10 aa) with two cysteines involved in

homodimerization (see below). Contrarily to other known CTLRs,

the CLEC2L ectodomain contains no obvious sites prone to N- or

O-linked glycosylation.

CLEC2L Gives Rise to a Disulfide-linked Homodimeric Cell
Surface CTLR

To assess whether CLEC2L, like other CLEC2 genes, encodes a

transmembrane C-type lectin-like receptor expressed at the cell

surface, the CLEC2L open reading frame was cloned from brain

cDNA of C57BL/6 mice and expressed in 293T cells. Flow

cytometric analyses of transiently transfected 293T cells revealed

that the CLEC2L-encoded FLAG-tagged CTLR is readily

expressed at the cell surface (Figure 3A). Immunoblots of the

corresponding 293T lysates revealed a protein with a molecular

mass of ,25 kDa matching the predicted molecular mass for the

FLAG-tagged non-glycosylated CTLR. As expected, deglycosyla-

tion did not alter the apparent molecular mass (Figure 3B).

Under non-reducing conditions, tagged CLEC2L proteins ap-

peared with a molecular mass of ,55 kDa in immunoblots

(Figure 3B) suggesting the occurrence as disulfide-linked homo-

dimers. The ectodomain of CLEC2L contains a total of eight

cysteines with six of them engaged in the intramolecular

stabilization of the conserved lectin-like fold (see above,

Figure 1). To address whether the two cysteines of the stalk

region (Figure 2D) account for CLEC2L dimerization, CLEC2L

mutants with the respective alanine substitutions were generated.

While both single mutants (C93A; C96A) migrated in non-

reducing SDS-PAGE like wild-type CLEC2L, the double mutant

(C93A/C96A) migrated like monomeric CLEC2L (Figure 3C),

demonstrating that formation of stable CLEC2L homodimers is

due to intermolecular disulfide bonds involving both cysteines of

the CLEC2L stalk.

Brain-associated Expression of CLEC2L
To obtain first insights into the functional context of CLEC2L

we investigated CLEC2L tissue expression. Quantitative RT-PCR

(qPCR) employing oligonucleotides amplifying parts of exon 4 and

5 of CLEC2L was used to address the abundance of CLEC2L

transcripts in human and mouse tissues. Among the 24 analyzed

human tissues, unexpectedly, high abundance of CLEC2L

transcripts was only found for human brain (Figure 4A). Low

levels of CLEC2L transcripts were detected in primary hemato-

poietic organs (bone marrow and thymus) while other tissues only

contained very low or undetectable levels of CLEC2L transcripts.

To assess evolutionary conservation of this tissue-restricted

expression pattern, various tissues of C57BL/6 mice were

examined for CLEC2L transcripts. Again, the most abundant

CLEC2L expression was found for mouse brain, while all other

investigated tissues contained low or undetectable levels of

CLEC2L transcripts (Figure 4B). Similar results were obtained

in analyses of tissues from BALB/c mice (data not shown). The

abundant CLEC2L expression in the brain prompted further

studies to assign the expression to a given cell type. Thus, in situ

hybridization was employed to visualize CLEC2L transcripts in

brain sections of adult C57BL/6 mice. Using a probe covering the

entire CLEC2L coding sequence, CLEC2L expression was clearly

detectable in the cortex, the olfactory bulb and the hippocampus

and showed highest levels for cerebellar Purkinje cells (Figure 4C).

This expression pattern was confirmed by hybridization with a

non-overlapping probe derived from 39 UTR of CLEC2L (data

not shown) and further corroborated by qPCR of mouse brain

compartments (Figure 4D). Likewise, in situ hybridization of

sections of human cerebellum revealed CLEC2L expression by the

Purkinje cell layer (Figure 4E). Collectively, these data demon-

strate predominant CLEC2L expression in the brain, with

marginal or no expression in other tissues. Hence, the CLEC2L-

encoded CTLR was termed BACL (brain-associated C-type

lectin).

Neuronal BACL Expression
For detection of endogenous BACL expression there was a need

for a specific reagent as no commercial antibodies were available.

To this aim, soluble human BACL ectodomains were expressed in

stably transfected 293 cells, purified from supernatants by affinity

chromatography (Figure S1A), and subsequently used for

immunization of chicken. Resulting affinity-purified chicken IgY

was shown to specifically detect ectopically expressed both human

and mouse BACL in flow cytometry, immunoblotting, and

immunocytochemistry, respectively (Figure S1B–D). Hence,

BACL-specific IgY was employed for immunohistochemical
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analyses of mouse brain. As shown in Figure 5A, BACL-specific

IgY, but not control IgY, clearly stained Purkinje cells and other

neuron-rich brain regions. This staining could be blocked by pre-

incubation with soluble BACL (data not shown). In conjunction

with the results of the in situ hybridization (Figure 4C) these data

clearly demonstrate prominent BACL expression in the mouse

brain. Similarly, immunohistochemical analyses of human brain

regions revealed BACL expression by cortical neurons and

cerebellar Purkinje cells (Figure 5B). Using anti-BACL IgY,

BACL proteins were immunoprecipitated from lysates of brains of

man and mice (Figure 6) and shown to display molecular masses

upon reducing (,24 kDa) or non-reducing SDS-PAGE

(,50 kDa) corresponding to ectopically expressed BACL

(Figure 3). BACL precipitation was further confirmed by mass

spectrometry analysis of the precipitate (data not shown). These

results demonstrate that expression of BACL in the brain can be

attributed to neurons raising the question of the functional

significance thereof.

Genetic Linkage of BACL with the Orphan CTLR KLRG2
Genetic linkage of certain C-type lectin-like receptor-ligand

pairs in the mouse NKC was first reported in 2003 by Yokoyama

and colleagues [13]. Since then, a couple of other interactions

between genetically linked CTLRs of the NKRP1 and CLEC2

families has been described for the murine NKC, but also for the

human NKC [9,10,14–18]. As pointed out above, in close

proximity to the CLEC2L locus in both man and mouse there is

a locus of an uncharacterized orphan CTLR termed KLRG2.

Although this designation suggest a close relationship to the CTLR

KLRG1, the putative CTLR KLRG2 is not more related to

KLRG1 than to NKG2D (Figure 1B). However, due to the

genetic linkage, we hypothesized that KLRG2 may represent a

receptor for BACL. To directly test this possibility, BWZ.36

reporter cells were generated expressing FLAG-tagged fusion

proteins comprising the ectodomains of BACL and KLRG2,

respectively, merged with cytoplasmic domains of CD3f for

signaling. Both, BWZ.36-BACL and BWZ.36-KLRG2 reporter

cells expressed the respective fusion proteins at high levels at the

cell surface as determined by flow cytometry (Figure 7A) and

both chimeric receptors strongly stimulated BWZ.36 cells upon

antibody-mediated crosslinking (Figure 7B). However, no activity

was detected when 293T cells expressing the human BACL

protein were co-cultured with BWZ.36-KLRG2 reporter cells

(Figure 7C). Hence, BACL and KLRG2 did not interact, at least

not in the context of this reporter assay. However, it cannot be

ruled out that certain posttranslational modifications or other

modifiers absent in BWZ.36 or 293T cells may be a prerequisite of

functional KLRG2-BACL interaction. We further investigated a

possible engagement of BACL by receptors present on NK cells.

As shown in Figure 7D and 7E, none of the co-cultures of

BWZ.36-BACL with any of the indicated NK cell lines or freshly

isolated NK cells or PBMC resulted in a significant response by

BWZ.36-BACL reporter cells.

BACL does not Affect Tumor Growth
NK cells are known to play a significant role in tumor

surveillance. Extensive work has been done to study NKG2D-

mediated tumor rejection in vivo exploiting syngeneic tumor

models. Overexpression of mouse and human NKG2D ligands

such as Rae-1, H60, MULT-1, and MICA on tumor cells resulted

in a retarded tumor growth or tumor rejection due to NK-cell

mediated cytolysis [21–23]. This prompted us to test whether

BACL expression may evoke immune responses altering tumor

cell growth in vivo. To this aim, we monitored subcutaneous tumor

growth of BACL-overexpressing RMA cells (Figure 8A) in a

syngeneic mouse tumor model. Whereas growth of MICA-

expressing RMA cells was significantly retarded as expected,

growth of BACL-expressing RMA was comparable to mock-

transfected cells (Figure 8B). Similar results were obtained with

varying numbers of RMA tumor cells inoculated (data not shown).

These results did not reveal any significant immune response

provoked by BACL expression, at least in this tumor rejection

model.

Discussion

Here we provide the first description of the CLEC2L gene and

its product, a homodimeric C-type lectin-like cell surface receptor

that was termed BACL due to its brain-associated expression.

Sequence alignments define BACL as a member of the CLEC2

family of C-type lectin-like receptors that also includes CD69,

human LLT1 (CLEC2D), AICL (CLEC2B) and KACL (CLEC2A),

as well as mouse Clr molecules. Both sequence homology and

certain hallmarks of the CTLD of BACL allow for this

classification. However, BACL uniquely differs from other

members of the CLEC2 family by several criteria: (i) Contrary

to most CLEC2 family members BACL is highly conserved among

mammals, (ii) BACL is not encoded in the NKC, (iii) BACL is

devoid of N-glycosylation, (iv) BACL expression predominates in

the brain where most other CLEC2 family members are not or just

barely expressed [12].

Such tissue-restricted expression is reminiscent of several other

CLEC2 family members such as KACL, which is almost

exclusively expressed by human keratinocytes [10], or Clr-d and

Clr-f which are specifically expressed in the eye and intestine of

mice, respectively [12]. Notably, none of the numerous Clr

molecules has been found to be substantially expressed in the

mouse brain [12] underlining the peculiarity of BACL among the

CLEC2 family members.

Combining in situ hybridization and immunohistochemistry,

BACL expression was attributed to neurons, with high levels of

BACL mRNA in Purkinje cells, while no BACL mRNA was

detected in the granular layer of the cerebellum. The expression in

the cerebellum was higher than in the cerebrum, likely due to the

exceptionally high levels of BACL transcripts in Purkinje cells that

represent only less than 0.1% of the total cellular content of the

cerebellum [24]. Purkinje cells, GABAergic projection neurons in

the cerebellar cortex, are central components of the cerebellar

circuitry and essential for motor control and coordination as well

as for specific forms of motor learning [25,26]. The significance of

the strong expression of BACL associated with Purkinje cells

remains to be determined.

BACL may be involved in the cellular cross-talk of Purkinje cells

and other neurons with brain-resident cells or brain-infiltrating

immune cells involving the BACL CTLD for interaction.

Considering that NKC-encoded CLEC2 family members have

been shown to interact with genetically linked CTLR of the

NKRP1 family, we tested the possibility that the tightly linked

orphan CTLR KLRG2 may represent a ligand of BACL.

However, reporter assays did not reveal a physical interaction of

BACL with KLRG2. Having in mind the immunological function

of other CLEC2 family members, we also considered an immune-

related function for BACL. But neither in vitro reporter cell assays

suggested the presence of a BACL ligand on peripheral blood

immune cells nor inoculation of BACL-expressing tumor cell lines

provided in vivo evidence for BACL-mediated immune recogni-

tion. However, obviously, an immunological function remains

possible and of interest, as neurons are specifically targeted by
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certain viruses, some of which persist for lifetime [27]. On the

other hand, there is emerging evidence that immune-related

molecules expressed in the brain may serve functions other than

immune responses. For example, molecules structurally related to

cytokines, complement factors, and MHC class I molecules

described in developing and adult brain were linked to develop-

ment and synaptic plasticity [28–31]. Most evidence for the brain-

associated function of MHC class I-related molecules and their

receptors was gained from studies of knock-out mice (B2m/

TAP12/2, Kb/Db2/2, CD3f2/2, PirB2/2) [32].

Identification of a ligand of BACL will be of major importance

to delineate the functional relevance of BACL. Interaction of

BACL with a putative ligand also may transmit signals into

neurons as the extended and conserved cytoplasmic domain of

BACL contains long stretches of proline-rich motifs that may

recruit SH3-domain-containing proteins. Obviously, generation of

CLEC2L knock-out mice likely will further our understanding of

the function of this novel CTLR.

Concluding Remarks
The highly conserved sequence and tissue expression of the

newly described, unusual CLEC2 family member BACL argues in

favour of a functional significance in the context of neurons, but

whether this function is associated with immune recognition or

rather with development and plasticity of neuronal networks

remains to be determined by future studies.

Supporting Information

Figure S1 Generic detection of BACL proteins by BACL-
specific IgY. (A) Soluble BACL ectodomains purified by affinity

chromatography were subjected to reducing (right) and non-

reducing SDS-PAGE (left) and visualized by InstantBlue staining.

(B) Polyclonal anti-BACL chicken IgY was used to detect purified

soluble BACL ectodomains (sBACL) or mouse (mBACL) and

human BACL (hBACL) proteins in lysates of transfected 293 cells

after reducing SDS-PAGE. (C) BACL-specific IgY specifically

binds to human BACL (left) and mouse BACL (right) ectopically

expressed on BWZ.36 cells or 293 cells, respectively (upper

panels). Stainings with pre-immune IgY or of mock-transfected

cells are shown as negative controls. Corresponding stainings of

the FLAG-tagged BACL proteins with mAb M2 (or isotype

control) are shown for comparison (lower panels). (D) BACL-

specific IgY detects ectopically expressed hBACL or mBACL also

on cytospins. Pre-immune IgY stainings are shown for control.

(TIF)
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