

CFS WORKING PAPER

No. 2012/18

Analyzing the Effects of Insuring Health Risks

On the Trade-off between Short Run Insurance Benefits vs. Long Run Incentive Costs

Harold L. Cole, Soojin Kim, and Dirk Krueger

Center for Financial Studies

The Center for Financial Studies, located in Goethe University's House of Finance in Frankfurt, is an independent non-profit research center, funded by the non-profitmaking organisation Gesellschaft für Kapitalmarktforschung e.V. (GfK). The CFS is financed by donations and by contributions of the GfK members, as well as by national and international research grants. The GK members comprise major players in Germany's financial industry. Established in 1967 and closely affiliated with the University of Frankfurt, it provides a strong link between the financial community and academia. CFS is also a contributor to policy debates and policy analyses, building upon relevant findings in its research areas.

The CFS Working Paper Series presents the result of scientific research on selected topics in the field of money, banking and finance. The authors were either participants in the Center's Research Fellow Program or members of one of the Center's Research Projects.

If you would like to know more about the Center for Financial Studies, please let us know of your interest.

Prof. Michalis Haliassos, Ph.D.

Prof. Dr. Use Walz

Analyzing the Effects of Insuring Health Risks* On the Trade-off between Short Run Insurance Benefits vs. Long Run Incentive Costs

Harold L. Cole ${ }^{1}$, Soojin Kim ${ }^{2}$, and Dirk Krueger ${ }^{3}$

November 29, 2012

Abstract

This paper constructs a dynamic model of health insurance to evaluate the short- and long run effects of policies that prevent firms from conditioning wages on health conditions of their workers, and that prevent health insurance companies from charging individuals with adverse health conditions higher insurance premia. Our study is motivated by recent US legislation that has tightened regulations on wage discrimination against workers with poorer health status (Americans with Disability Act of 2009, ADA, and ADA Amendments Act of 2008, ADAAA) and that will prohibit health insurance companies from charging different premiums for workers of different health status starting in 2014 (Patient Protection and Affordable Care Act, PPACA). In the model, a trade-off arises between the static gains from better insurance against poor health induced by these policies and their adverse dynamic incentive effects on household efforts to lead a healthy life. Using household panel data from the PSID we estimate and calibrate the model and then use it to evaluate the static and dynamic consequences of no-wage discrimination and no-prior conditions laws for the evolution of the cross-sectional health and consumption distribution of a cohort of households, as well as ex-ante lifetime utility of a typical member of this cohort. In our quantitative analysis we find that although a combination of both policies is effective in providing full consumption insurance period by period, it is suboptimal to introduce both policies jointly since such policy innovation induces a more rapid deterioration of the cohort health distribution over time. This is due to the fact that combination of both laws severely undermines the incentives to lead healthier lives. The resulting negative effects on health outcomes in society more than offset the static gains from better consumption insurance so that expected discounted lifetime utility is lower under both policies, relative to only implementing wage nondiscrimination legislation.

JEL Classifications: E61, H31, I18
Keywords: Health, Insurance, Incentive

[^0]Americans with Disabilities Act and its Amendment in 2009 sought to restrict the ability of employers to employ and compensate workers differentially based upon health related reasons.

In order to analyze the impact of these policies we construct a dynamic model of health insurance with heterogeneous households. As in Grossman (1972), health for these households is a state variable. A household's health state helps to determine both their productivity at work and the likelihood that they will be subject to adverse health shocks. Our model features the two-way interaction between health and income that has been emphasized in the literature. Our model of health shocks includes temporary health shocks that impact on productivity and can be offset by medical expenditures (as in Dey and Flinn 2005), and catastrophic health shocks which require nondiscretionary health expenditures to avoid death. Health status in our model is persistent and evolves stochastically. This evolution is affected by the household's efforts to maintain their health which results in a moral hazard problem as health related insurance reduces households' incentives to maintain their health. We explicitly model the choice of medical expenditure and thereby endogenously determine the health insurance policy and how it responds both to the household's state in terms of health status, age and education.

The focus of our analysis is how the distributions of health status, earnings and health insurance costs will evolve under different policy choices and the impact of these choices on welfare. We consider several different policy regimes. The first is a complete insurance benchmark in which the social planner can dictate both the health insurance contract, the effort made to maintain health and the extent of redistributive transfers that provide full insurance against all health related shocks. The second is pure competition in which workers enter into one-period employment and insurance contracts. Competition leads these contracts to partially insure the worker against within period temporary health shocks, but not against his initial health status and the transition of this status. The second is a version of the no-prior conditions restriction on health insurance in which health insurance companies compete to offer one-period health insurance contracts in which they cannot differentially charge based upon the worker's health status. The third is a version of the no-discrimination restrictions on employment in which firms cannot differentially hire or pay workers based upon their health status. In the fourth version we consider the impact of both the no-prior conditions and the no-discrimination restrictions jointly.

We study both the static and the dynamic impact of these policies. One of the key aspects of the dynamic analysis is the impact these policies have on individuals' incentives to maintain their health and the feedback this creates between the health distribution of the population and the costs of health insurance and productivity of the workforce.

We evaluate the quantitative impacts of the different policies on consumption insurance, incentives and aggregate outcomes, and, ultimately, welfare. To do so, we first estimate and calibrate the model using PSID data to match key aggregate statistics on labor earnings, medical expenditures and observed physical exercise levels. We then use the parameterized version of the model as a laboratory to evaluate different policy scenarios. Our results show that a combination of wage non-discrimination law and no prior conditions law provides full insurance against health risks and restores the first-best consumption insurance allocation in the short run, but leads to a severe deterioration of incentives and thus the population health distribution in the long run. Quantitatively evaluating the welfare consequences of this trade-off we find that even though both policies improve upon the laissez-faire equilibrium, implementing them jointly is suboptimal, relative to introducing a wage nondiscrimination in isolation.

1.1 Institutional Background

The U.S. has a long history of policy initiatives in relation to health risk. Implicitly Welfare programs, which date back to the 1930s and were greatly expanded by the Great Society in the 1960s, insure workers against a variety of shocks, implicitly including health related shocks insofar they affect earnings. Since 1965 Medicare has sought to provide health insurance to the elderly and the disabled. Medicaid has sought to provide health insurance to the poor since the 1990s. The last two decades legislation in the U.S. was passed that limits the ability of employers to condition wages on the health conditions of employees, and to discriminate against applicants with prior health conditions when filling vacant positions.

1.1.1 Wage Based Discrimination

In 1990 Congress enacted the Americans with Disabilities Act (ADA) to ensure that the disabled have equal access to employment opportunities. ${ }^{1}$ At this point a disability was interpreted as an impairment that prevents or severely restricts an individual from doing activities that are of central importance to one's daily life. In 2009 the ADA Amendments Act (ADAAA) went into effect. This act rejected the strict interpretation of the ADA, broadening the notion of a disability. This included prohibiting the consideration of measures that reduce or mitigate the impact of a disability in determining whether someone is disabled. It also allowed people who are discriminated against on the basis of a perceived disability to pursue a claim on the basis of the ADA regardless of whether the perceived disability limits or is perceived to limit a major life activity. The ADAAA excludes from the definition of a disability those temporary or minor impairments. ${ }^{2}$ Under the ADAAA people can be disabled even if their disability is episodic or in remission. For example people whose cancer is remission or whose diabetes is controlled by medication, or whose seizures are prevented by medication, or who can function at a high level with learning disabilities are all disabled under the act.

Before the ADA job seekers could be asked about their medical conditions and were often required to submit to a medical exam. The act prohibited certain inquiries and conducting a medical exam before making an employment offer. However, the job could still be conditioned upon successful completion of a medical exam. ${ }^{3}$

The ADA permits an employer to establish job-related qualifications on the basis of business necessity. However, business necessity is limited to essential functions of the job. So impairments that would only occasionally interfere with the employee's ability to perform tasks cannot be included on this list. ${ }^{4}$ A job function is essential if the job exists to perform that function or if the limited number of employees available at the firm requires that the task must be performed by this worker. Furthermore, a core requirement of the ADA is the obligation of the employer to make a reasonable accommodation to qualified disabled people. ${ }^{5}$

1.1.2 Insurance Cost and Exclusion Discrimination

In 1996, Congress passed the Health Insurance Portability and Accountability Act (HIPAA) which placed limits on the extent to which insurance companies could exclude people or deny coverage based upon preexisting conditions. Although insurance companies were allowed exclusions periods for coverage of preexisting conditions, these exclusion periods were reduced by the extent of prior insurance. In particular, if an individual had at least a full year of prior health insurance and she enrolled in a new plan with a break of less than 63 days, she could not be denied coverage. However, insurers were still allowed to charge higher premiums based upon initial conditions, limit coverage and set lifetime limits on benefits. ${ }^{6}$ There is evidence that many patients with pre-existing conditions ended up either being denied coverage, ${ }^{7}$ or having their access to benefits limited. ${ }^{8}$

The Patient Protection and Affordable Care Act of 2010 further extended protection against pre-existing conditions. Beginning in 2010 children below the age of 19 could not be excluded from their parents' health insurance policy or denied treatment for pre-existing conditions. Beginning in 2014 this restriction will apply to adults as well. Moreover, insurance companies will no longer be able to use health status to determine eligibility, benefits or premia. In addition, insurers will be prevented from limiting lifetime or annual benefits

[^1]or from taking away coverage because of an application mistake. ${ }^{9}$

1.1.3 Summary

It is our interpretation of these legislative changes that, relative to 20 years ago, it is much more difficult now for employers to condition wages on the health status of their (potential) employees and preferentially hire workers with better health. In addition, current and pending legislation will make it increasingly difficult to condition the acceptance into, and insurance premia of health insurance plans on prior health conditions.

The purpose of the remainder of this paper is to analyze the aggregate and distributional consequences of these two legislative innovations in the short and in the long run, with specific focus on their interactions.

1.2 Related Literature

Our paper incorporates health as a productive factor, and studies the effect of labor and health insurance market policies on its evolution. We allow for a two-way interaction between health shocks and earnings through worker productivity. We model medical expenditures which mitigate the impact of these health shocks. There have been a number of studies that empirically estimate the effect of health on wages. These papers (see the summary in Currie and Madrian, 1999) generally find that poor health decreases wages, both directly and indirectly through a decrease in hours worked. The effect of a health shock on wages ranges from 1% to as high as 15%. Many studies consistently find that the effects on hours worked is greater than that on wages. Specifically relevant for us is Cawley (2004).

Similarly to what we do for working age individuals, Pijoan-Mas and Rios-Rull (2012), use HRS data on self-report health status to estimate a health transition function from age 50 onwards. They find that there is an important dependence in this transition function on socioeconomic status (most importantly education), and that this dependence is quantitatively crucial for explaining longevity differentials by socioeconomic groups. As we do Hai (2012) and Prados (2012) model the interaction between health and earnings over the life cycle, but focus on the implications of their models for wage-, earnings- and health insurance inequality. ${ }^{10}$

A relatively small literature examines the incentive linkages between health insurance and health status. Bhattacharya et al. (2009) use evidence from a Rand health insurance experiment, which featured randomized assignment to health insurance contracts, to show that access to health insurance leads to increases in body mass and obesity. They argue that this comes from the fact that insurance, especially through its pooling effect, insulates people from the impact of their excess weight on their medical expenditure costs. Consistent with this, they find the impact of being health-insured is larger for public insurance programs than in private ones in which the health insurance premium is more likely to reflect the individuals' body mass.

This paper contributes to the broad literature that examines the macroeconomic and distributional implications of health, health insurance and health care policy reform. Important related contributions include Grossman (1972), Ehrlich and Becker (1972), Ehrlich and Chuma (1990), French and Jones (2004), Hall and Jones (2007), Jeske, and Kitao (2009), Jung and Tran (2010), Attanasio, Kitao and Violante (2011), Ales, Hosseini and Jones (2012), Halliday, He and Zhang (2012), Hansen, Hsu and Lee (2012), Kopecky and Koreshkova (2012), Laun (2012) and Ozkan (2012), Pashchenko and Porapakkam (2012). Brügemann and Manovskii (2010), while endogenizing health, study the macroeconomic effects of the employer-sponsored health insurance system that is unique to the US labor market. Concretely, they determine the effect of PPACA on health insurance coverage, but do not study the incentive effects of the regulation that we formalize in our model.

Several papers investigate the impact of regulation designed to limit the direct effect of health on both health insurance costs and on wages. Short and Lair (1994) examine how health status interacts with insurance choices. Madrian (1994) studies the lock-in effect of employer provided health care. Dey and Flinn (2005) estimate a model of health insurance with search, matching and bargaining and argue that employer provided health care insurance leads to reasonably efficient outcomes.

Related to our study of wage non-discrimination laws is the literature that studies the effect of the ADA legislation of 1990 on employment, wages and labor hours of the disabled (see DeLeire (2001) and Acemoglu

[^2]and Angrist (2001), for example). Most find that it has decreased the employment of the disabled. DeLeire (2001) quantifies the effect of ADA on wages of disabled workers and reports that the negative effect of poor health on the earnings of the disabled fell by 11.3% due to ADA.

Finally, a recent literature examines the impact of health on savings and portfolio choice in life cycle models that share elements with our framework. These include Yogo (2009), Edwards (2008) and Hugonnier et al. (2012). The latter study jointly portfolio of health and other asset choices. In their model health increases productivity (labor income) and decreases occurrence of morbidity and mortality shock arrival rates (as they do in our model). The paper argues that in order to explain the correlation between financial and health status, these should be modelled jointly.

2 The Model

Time $t=0,1,2, \ldots T$ is discrete and finite and the economy is populated by a cohort of a continuum of individuals of mass 1. Since we are modeling a given cohort of individuals we will use time and the age of households interchangeably. We think of T as the end of working life of the age cohort under study.

2.1 Endowments and Preferences

Households are endowed with one unit of time which they supply inelastically to the market. They are also endowed with an initial level of health h and we denote by $H=\left\{h_{1}, \ldots, h_{N}\right\}$ the finite set of possible health levels. Households value current consumption c and dislike the effort e that helps maintain their health. We will assume that their preferences are additively separable over time, and that they discount the future at time discount factor β. We will also assume that preferences are separable between consumption and effort, and that households value consumption according to the common period utility function $u(c)$ and value effort according to the period disutility function $q(e)$.

We will denote the probability distribution over the health status h at the beginning of period t by $\Phi_{t}(h)$, and denote by $\Phi_{0}(h)$ the initial distribution over this characteristic.

Assumption 1 The utility function u is twice differentiable, strictly increasing and strictly concave. q is twice differentiable, strictly increasing, strictly convex, with $q(0)=q^{\prime}(0)=0$ and $\lim _{e \rightarrow \infty} q^{\prime}(e)=\infty$.

2.2 Technology

2.2.1 Health Technology

Let ε denote the current health shock. ${ }^{11}$ In every period households with current health h remain healthy (that is, $\varepsilon=0$) with probability $g(h)$. With probability $1-g(h)$ the household draws a health shock $\varepsilon \in(0, \bar{\varepsilon}]$ which is distributed according to the probability density function $f(\varepsilon)$.

Assumption $2 f$ is continuous and g is twice differentiable with $g(h) \in[0,1]$, and $g^{\prime}(h)>0, g^{\prime \prime}(h)<0$ for all $h \in H$.

An individual's health status evolves stochastically over time, according to the Markov transition function $Q\left(h^{\prime}, h ; e\right)$, where $e \geq 0$ is the level of exercise by the individual. We impose the following assumption on the Markov transition function Q

Assumption 3 If $e^{\prime}>e$ then $Q\left(h^{\prime}, h ; e\right)$ first order stochastically dominates $Q\left(h^{\prime}, h ; e^{\prime}\right)$.

[^3]
2.2.2 Production Technology

A individual with health status h and current health shock ε that consumes health expenditures x produces $F(h, \varepsilon-x)$ units of output.

Assumption $4 F$ is continuously differentiable in both arguments, increasing in h, and satisfies $F(h, y)=$ $F(h, 0)$ for all $y \leq 0$, and $F_{2}(h, y)<0$ as well as $F_{2}(h, \bar{\varepsilon})<-1$. Finally $F_{22}(h, y)<0$ for all $y>0$ and $F_{12}(h, y) \geq 0$.

The left panel of figure 1 displays the production function $F(h,$.$) , for two different levels of the current$ health shock. Holding health status h constant, output is decreasing in the uncured portion of the health shock $\varepsilon-x$, and the decline is more rapid for lower levels of health $\left(h^{*}<h\right)$. The right panel of figure 1 displays the production function as function of health expenditures x, for a fixed level of the shock ε, and shows that expenditures x exceeding the health shock ε leave output $F(h, \varepsilon-x)$ unaffected (and thus are suboptimal). Furthermore, a reduction of the shock ε to a lower level, ε^{*}, shifts the point at which health expenditures x become ineffective to the left.

Figure 1: Production Function $F(h, \varepsilon-x)$

Figure 2: Production Function $F(h, \varepsilon-x)$ for fixed ε

The assumptions on the production function F imply that health expenditures can offset the impact of a health shock on productivity, but not raise an individual's productivity above what it would be if there had been no shock. In addition, the last assumption on F that $F_{12} \geq 0$ implies that the negative impact of a given net health shock y is lower the healthier a person is. ${ }^{12}$ The assumption $F_{2}(h, \bar{\varepsilon})<-1$ insures that, if hit by the worst health shock the cost of treating this health shock, at the margin, is smaller than the positive impact on productivity (output) this treatment has.

2.3 Time Line of Events

In the current period the timing of events is as follows

1. Households enter the period with current health status h.
2. Households choose e.
3. Firms offer wage $w(h)$ and health insurance contracts $\{x(\varepsilon, h), P(h)\}^{13}$ to households with health status h which these households accept.

[^4]

Figure 3: Timing of the Model
4. The health shock ε is drawn according to the distributions g, f.
5. Resources on health $x=x(\varepsilon, h)$ are spent.
6. Production and consumption takes place.
7. The new health status h^{\prime} of a household is drawn according to the health transition function Q.

2.4 Market Structure without Government

There are a large number of production firms that in each period compete for workers. Firms observe the health status of a worker h and then, prior to the realization of the health shocks, compete for workers of type h by offering a wage $w(h)$ that pools the risk of the health shocks and bundle the wage with an associated health insurance contract (specifying health expenditures $x(\varepsilon, h)$ and an insurance premium $P(h)$) that breaks even. Perfect competition for workers of type h requires that the combined wage and health insurance contract maximize period utility of the household, subject to the firm breaking even. ${ }^{14}$

In the absence of government intervention a firm specializing on workers of health type h therefore offers a wage $w^{C E}(h)$ (where $C E$ stands for competitive equilibrium) and health insurance contract ($x^{C E}(\varepsilon, h), P^{C E}(h)$) that solves

$$
\begin{align*}
U^{C E}(h)= & \max _{w(h), x(\varepsilon, h), P(h)} u(w(h)-P(h)) \tag{1}\\
& \text { s.t. } \\
P(h)= & g(h) x(0, h)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) x(\varepsilon, h) d \varepsilon \tag{2}\\
w(h)= & g(h) F(h,-x(0, h))+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon \tag{3}
\end{align*}
$$

Note that by bundling wages and health insurance the firm provides efficient insurance against health shocks ε, and the only source of risk remaining in the competitive equilibrium is health status risk associated with

[^5]h. This risk stems both from the dependence of wages $w(h)$ as well as health insurance premia $P(h)$ on h in the competitive equilibrium, and these are exactly the sources of consumption risk that government policies preventing wage discrimination and prohibiting prior health conditions to affect insurance premia are designed to tackle.

2.5 Government Policies

We now describe in turn how we operationalize, within the context of our model, a policy that outlaws health insurance premia to be conditioned on prior health conditions h, and a policy that limits the extent to which firms can pay workers of varying health h differential wages.

2.5.1 No Prior Conditions Law

Under this law health insurance companies are assumed to be constrained in terms of their pricing, their insurance schedule offers and their applicant acceptance criteria. The purpose of these constraints is to prevent the companies from differentially pricing insurance based upon health status. ${ }^{15}$ To be completely successful, these constraints must lead to a pooling equilibrium in which all individuals are insured at the same price. The best such regulation in addition assures that the equilibrium health insurance schedule $x(\varepsilon, h)$, given the constraints, is efficient. We now describe the regulations sufficient to achieve this goal.

The first constraint on health insurers is that a company must specify the total number of contracts that it wishes to issue, it must charge a fixed price independent of health status, and accept applications in their order of application up to the sales limit of the company. In this way, the insurance company cannot examine applications first and then decide whether or not to offer the applicant a health insurance contract.

The second constraint regulates the health expenditure schedule. If the no-prior conditions law is to have any bite the government needs to prevent the emergence of a separating equilibrium in which the health insurance companies (or the production firms in case they offer health insurance contracts) use the health expenditure schedule $x(\varepsilon, h)$ to effectively select the desired health types, given that they are barred from conditioning the health insurance premium P on h directly. Therefore, to achieve any sort of pooling in the health insurance market requires the government to regulate the health expenditure schedule $x(\varepsilon, h)$. To give the legislation the best chance of being successful we will assume that the government regulates the health expenditure schedule $x(\varepsilon, h)$ efficiently. For the same reason, since risk pooling is limited if some household types h choose not to buy insurance, we assume that all individuals are forced to buy insurance.

Given this structure of regulation and a cross-sectional distribution of workers by health type, Φ, the health insurance premium P charged by competitive firms (or competitive insurance companies, who offer health insurance in the model), given the set of regulations spelled out above, is determined by

$$
\begin{equation*}
P=\sum_{h}\left[g(h) x(0, h)+(1-g(h)) \int f(\varepsilon) x(\varepsilon, h) d \varepsilon\right] \Phi(h) \tag{4}
\end{equation*}
$$

where $x(\varepsilon, h)$ is the expenditure schedule regulated by the government. This schedule is chosen to maximize

$$
\sum_{h} u(w(h)-P) \Phi(h)
$$

with wages $w(h)$ determined by (3).

2.5.2 No Wage Discrimination Law

The objective of the government is to prevent workers with a lower health status h, and hence lower productivity, being paid less. As with the no prior conditions law, the purpose of this legislation is to help insure workers against their health status risk. However, if a production firm is penalized for paying workers with low health status h low wages, but not for preferentially hiring workers with a favorable health status (high

[^6]h), then a firm can effectively circumvent the wage nondiscrimination law. Therefore, to be effective such a law must penalize both wage discrimination and hiring discrimination by health status.

Limiting wage dispersion with respect to gross wages $w(h)$ via legislation necessitates regulation of the health insurance market as well, in order to prevent the insurance gains from decreasing wage dispersion being undone through the adjustment of employer-provided health insurance. For example, the firm could also offer health insurance and overcharge low productivity workers and undercharge high productivity workers for this insurance, effectively undermining the illegal wage discrimination. This suggests that the government will need to limit the extent to which the cost of a worker's health insurance contracts deviates from its actuarially fair value. However, this will not be sufficient to make this policy effective.

Since the productivity of a worker depends upon the extent of his health insurance, workers whose expected productivity is below their wage will face pressure to increase their productivity through increased spending on health (and hence better health insurance coverage) while those whose productivity is above their wage will have an incentive to lower their health insurance purchases. To prevent these distortions in the health insurance market and thereby achieve better consumption insurance across h types, policy makers will need to regulate the health insurance directly as well. The moderate version of health insurance regulation would be to ensure that each policy was individually optimal and actuarially fair. The most extreme version of regulation would be to combine no-wage discrimination legislation with no-prior conditions legislation and thereby achieve the static first-best, full insurance outcome. In this case health insurance would be socially efficient and actuarially fair on average (that is, across the insured population).

We will analyze both cases. It will turn out that limiting wage dispersion with respect to net wages, $w(h)-P(h)$, avoids the negative incentive effects on the health insurance market. The policy of combining both no-wage discrimination and no-prior conditions can therefore be implemented through a policy of limiting net wage dispersion. The impact of the nondiscrimination law will, unfortunately, be sensitive to the way in which the law is implemented, and in particular, to the form of punishment used. If the limitation in wage variation is achieved through a policy that penalizes the firms for discriminating, then these costs are realized in equilibrium, reducing overall efficiency in the economy. If, however, the limitation on wage variation is achieved either through the threat of punishment (e.g. through grim trigger strategies in repeated interactions between firms and the government) or through the delegation of hiring in a union hiring hall type arrangement, then costs from the wage nondiscrimination law will not be realized in equilibrium. ${ }^{16}$

Since we wish to give the no wage discrimination law the best shot of being successful, in the main text we focus on the version of the policy in which no costs from the policy are realized in equilibrium, leaving the analysis of the alternative case to appendix B. 2 and B.3. In either case we only tackle the extreme versions of these policies in which there is no wage discrimination (rather than limited wage discrimination) in equilibrium for reasons of analytic tractability. Under the policy, the firm takes as given thresholds on the size of the gap in wages or employment shares that will trigger the punishment. Assume that the wage penalty will be imposed if the maximum wage gap within the firm exceeds the threshold ε_{w}. Since type $h=0$ will receive the lowest wage in equilibrium, to avoid the penalty a firm has to offer a wage schedule that satisfies:

$$
\max _{h}|w(h)-w(0)| \leq \varepsilon_{w}
$$

Letting $n(h)$ denote the number of workers of type h hired by the firm, assume that the hiring penalty will be imposed if the employment share of type h deviates from the population average by more than δ, and hence

$$
\left|\frac{n(h)}{\sum_{h} n(h)}-\frac{\Phi(h)}{\sum_{h} \Phi(h)}\right| \leq \delta
$$

We will assume that the punishment is sufficiently dire that the firm will never choose to violate these thresholds.

We analyze the more general case in appendix B.1, but here focus on the limiting case in which the thresholds ε_{w} and δ converge to zero. In this case, the firm will simply take as given the economy-wide wage w^{*} at which it can hire a representative worker. We assume that the government regulates the insurance

[^7]market determining the extent of coverage by health type, $x(e, h)$, subject to the requirement that the offered health insurance contracts exactly break even, either health type by health type (in the absence of a no prior conditions law) or in expectation across health types (in the presence of the no prior conditions law).

Perfect competition drives down equilibrium profits of firms to zero which determines the equilibrium wage rate as

$$
\begin{equation*}
w^{*}=\sum_{h}\left\{g(h) F(h,-x(0, h))+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)[F(h, \varepsilon-x(\varepsilon, h))] d \varepsilon\right\} \Phi(h) \tag{5}
\end{equation*}
$$

The insurance premium charged to the household is

$$
\begin{equation*}
P(h)=g(h) x(0, h)+(1-g(h)) \int f(\varepsilon) x(\varepsilon, h) d \varepsilon \tag{6}
\end{equation*}
$$

in the absence of a no-prior conditions law and

$$
\begin{equation*}
P=\sum_{h}\left[g(h) x(0, h)+(1-g(h)) \int f(\varepsilon) x(\varepsilon, h) d \varepsilon\right] \Phi(h) \tag{7}
\end{equation*}
$$

in its presence. Household consumption is given by

$$
\begin{aligned}
c(h) & =w^{*}-P(h) \text { or } \\
c & =w^{*}-P
\end{aligned}
$$

depending on whether a no prior conditions law is in place or not.
Given a cross-sectional health distribution Φ the efficiently regulated health insurance contract $x(\varepsilon, h)$ is the solution to

$$
\max _{x} \sum_{h} u\left(w^{*}-P(h)\right) \Phi(h)
$$

subject to (5) and (6) if the no-prior conditions restriction is not imposed on health insurance, and subject to (7) instead of (6) if the no-prior conditions restriction is present.

We now turn to the analysis of the model, starting with a static version in which by construction the choice of effort is not distorted in equilibrium. We will show that in this case the competitive equilibrium implements an efficient allocation of health expenditures, but fails to provide efficient consumption insurance against prior health conditions, that is against cross-sectional variation in h. We then argue that a combination of a strict wage non-discrimination law and a no prior conditions law in addition results in efficient consumption insurance in the competitive equilibrium, restoring full efficiency of allocations in the regulated market economy.

3 Analysis of the Static Model

We now turn to the analysis of the static version of our model, and we will characterize both efficient and equilibrium allocations (in the absence and presence of the nondiscrimination policies). The purpose of this analysis is two-fold. First, it will result in the characterization of the optimal and equilibrium health insurance contract, a key ingredient for our dynamic model. Second, the analysis will demonstrate that in the short run (that is statically) the combination of both policies is ideally suited to provide full consumption insurance in the regulated market equilibrium, and thus restores full efficiency of the market outcome. The static benefits of these policies are then traded off against the adverse dynamic consequences on the health distribution, as our analysis of the dynamic model will uncover in the next section.

3.1 Social Planner Problem

Given an initial cross-sectional distribution over health status in the population $\Phi(h)$ the social planner maximizes utilitarian social welfare. The social planner problem is therefore given by

$$
U^{S P}(\Phi)=\max _{e(h), x(\varepsilon, h), c(\varepsilon, h) \geq 0} \sum_{h}\left\{-q(e(h))+g(h) u(c(0, h))+(1-g(h)) \int f(\varepsilon) u(c(\varepsilon, h)) d \varepsilon\right\} \Phi(h)
$$

subject to

$$
\begin{aligned}
& \sum_{h}\left\{g(h) c(0, h)+(1-g(h)) \int f(\varepsilon) c(\varepsilon, h) d \varepsilon+g(h) x(0, h)+(1-g(h)) \int f(\varepsilon) x(\varepsilon, h) d \varepsilon\right\} \Phi(h) \\
\leq & \sum_{h}\left\{g(h) F(h,-x(0, h))+(1-g(h)) \int f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon\right\} \Phi(h)
\end{aligned}
$$

We summarize the optimal solution to the static social planner problem in the following proposition, whose proof follows directly from the first order conditions and assumption 4 (see Appendix A).
Proposition 5 The solution to the social planner problem $\left\{c^{S P}(\varepsilon, h), x^{S P}(\varepsilon, h), e^{S P}(h)\right\}_{h \in H}$ is given by

$$
\begin{aligned}
e^{S P}(h) & =0 \\
c^{S P}(\varepsilon, h) & =c^{S P} \\
x^{S P}(\varepsilon, h) & =\max \left[0, \varepsilon-\bar{\varepsilon}^{S P}(h)\right]
\end{aligned}
$$

where the cutoffs satisfy

$$
\begin{equation*}
-F_{2}\left(h, \bar{\varepsilon}^{S P}(h)\right)=1 \tag{8}
\end{equation*}
$$

and the first best consumption level is given by

$$
\begin{equation*}
c^{S P}=\sum_{h}\left[g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)\left[F\left(h, \varepsilon-x^{S P}(\varepsilon, h)\right)-x^{S P}(\varepsilon, h)\right] d \varepsilon\right] \Phi(h) \tag{9}
\end{equation*}
$$

The optimal cutoff $\left\{\bar{\varepsilon}^{S P}(h)\right\}$ is increasing in h, strictly so if $F_{12}(h, y)>0$.
The social planner finds it optimal to not have the household exercise (given that there are no dynamic benefits from doing so in the static model) and to provide full consumption insurance against adverse health shocks ε, but also against bad prior health conditions as consumption is constant in h.

The optimal level of health expenditure and its implications on production is graphically presented in Figure 4. As shown in the previous proposition, optimal medical expenditures take a simple cutoff rule: small health shocks $\varepsilon<\bar{\varepsilon}^{S P}(h)$ are not treated at all, but all larger shocks are fully treated up to the threshold $\bar{\varepsilon}^{S P}(h)$. These optimal medical expenditures are displayed in Figure 4(b) for two different initial levels of health $h_{1}<h_{2}$: below the h-specific threshold $\bar{\varepsilon}^{S P}(h)$ health expenditures are zero, and then rise one for one with the health shock ε. The determination of the threshold itself is displayed in Figure 4(a). It shows that under the assumption that the impact of health shocks on productivity is less severe for healthy households $\left(F_{12}(h, y)>0\right.$, reflected as a "more concave" curve for h_{1} than for h_{2} in Figure 4(a)), then the social planner finds it optimal to "insure" healthier households less, in the sense of undoing less of the negative health shocks ε through medical treatment $x(\varepsilon, h)$. This is reflected in a lower threshold (more insurance) for h_{1} than for h_{2}, that is $\bar{\varepsilon}^{S P}\left(h_{2}\right)<\bar{\varepsilon}^{S P}\left(h_{1}\right)$. The optimal health expenditure policy function leads to a net of-health-treatment production function $F\left(h, \varepsilon-x^{S P}(\varepsilon, h)\right)$ as shown in Figure 4(c).

3.2 Competitive Equilibrium

As in the social planner problem there is no incentive for households to exercise in the static model, and thus $e(h)=0$. As described in section 2.4 the equilibrium wage and health insurance contract solves

$$
\begin{align*}
U^{C E}(h)= & \max _{w(h), x(\varepsilon, h), P(h)} u(w(h)-P(h)) \tag{10}\\
& \text { s.t. } \\
P(h)= & g(h) x(0, h)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) x(\varepsilon, h) d \varepsilon \tag{11}\\
w(h)= & g(h) F(h,-x(0, h))+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon \tag{12}
\end{align*}
$$

Figure 4: Optimal Health Expenditure and Production

The following proposition characterizes the solution to this problem:
Proposition 6 The unique equilibrium health insurance contract and associated consumption are given by

$$
\begin{align*}
x^{C E}(\varepsilon, h) & =\max \left[0, \varepsilon-\bar{\varepsilon}^{C E}(h)\right] \tag{13}\\
c^{C E}(\varepsilon, h) & =c^{C E}(h)=w^{C E}(h)-P^{C E}(h) \tag{14}\\
P^{C E}(h) & =(1-g(h)) \int_{\bar{\varepsilon}^{C E}(h)}^{\bar{\varepsilon}} f(\varepsilon)\left[\varepsilon-\bar{\varepsilon}^{C E}(h)\right] d \varepsilon \tag{15}\\
w^{C E}(h) & =g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon \tag{16}
\end{align*}
$$

and the cutoff satisfies

$$
\begin{equation*}
-F_{2}\left(h, \bar{\varepsilon}^{C E}(h)\right)=1 \tag{17}
\end{equation*}
$$

Proof. See Appendix
We immediately obtain the following
Corollary 7 The competitive equilibrium implements the socially efficient health expenditure allocation since $\bar{\varepsilon}^{C E}(h)=\bar{\varepsilon}^{S P}(h)$ for all $h \in H$.

Corollary 8 The cutoff $\bar{\varepsilon}^{C E}(h)$ is increasing in h, strictly so if $F_{12}(h, y)>0$.
While it follows trivially from our assumptions that the worker's net pay, $w(h)-P(h)$, is increasing in h, it is not necessarily true that his gross wage, $w(h)$, is increasing in h as well since optimal health expenditures are decreasing in health status. We analyze the behavior of gross wages $w(h)$ with respect to health status further in Appendix C, where we provide a sufficient condition for the gross wage schedule to be monotonically increasing in h.

In any case, the previous results show that in the static case the only source of inefficiency of the competitive equilibrium comes from the inefficient lack of consumption insurance against adverse prior health
conditions h. This can be seen by noting that

$$
\begin{aligned}
c^{S P} & =\sum_{h}\left\{g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)\left[F\left(h, \varepsilon-x^{S P}(\varepsilon, h)\right)-x^{S P}(\varepsilon, h)\right] d \varepsilon\right\} \Phi(h) \\
& =\sum_{h}\left[w^{C E}(h)-P^{C E}(h)\right] \Phi(h)=\sum_{h} c^{C E}(h) \Phi(h)
\end{aligned}
$$

In contrast to what will be the case in the dynamic model, effort trivially is not distorted in the equilibrium, relative to the allocation the social planner implements (since in both cases $e^{S P}=e^{C E}=0$). Furthermore the equilibrium allocation of health expenditures is efficient, due to the fact that the firm bundles the determination of wages and the provision of health insurance, and thus internalizes the positive effects of health spending $x(\varepsilon, h)$ on worker productivity.

Given these results it is plausible to expect, within the context of the static model, that policies preventing competitive equilibrium wages $w^{C E}(h)$ to depend on health status (a wage non-discrimination law) and insurance premia $P^{C E}(h)$ to depend on health status (a no prior conditions law) will restore full efficiency of the policy-regulated competitive equilibrium by providing full consumption insurance. We will show next that this is indeed the case, providing a normative justification for the two policy interventions within the static version of our model.

3.3 Competitive Equilibrium with a No Prior Condition Law

As discussed above, in order to effectively implement a no prior conditions law the government has to regulate the health insurance provision done by firms or insurance companies. Given a population health distribution Φ the regulatory authority solves the problem:

$$
\begin{align*}
& U^{N P}(\Phi)= \max _{x(\varepsilon, h)} \sum_{h} u(w(h)-P) \Phi(h) \tag{18}\\
& P= \text { s.t. } \tag{19}\\
& P(h)= \sum_{h}\left[g(h) x(0, h)+(1-g(h)) \int f(\varepsilon) x(\varepsilon, h) d \varepsilon\right] \Phi(h) \tag{20}\\
& w(h,-x(0, h))+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon
\end{align*}
$$

The next proposition characterizes the resulting regulated equilibrium allocation
Proposition 9 The equilibrium health expenditures under a no-prior condition law satisfies, for each $\tilde{h} \in H$

$$
x^{N P}(\varepsilon, \tilde{h})=\max \left[0, \varepsilon-\bar{\varepsilon}^{N P}(\tilde{h})\right]
$$

with cutoffs uniquely determined by

$$
-F_{2}\left(\tilde{h}, \bar{\varepsilon}^{N P}(\tilde{h})\right)=\frac{\sum_{h} u^{\prime}\left(w^{N P}(h)-P^{N P}\right) \Phi(h)}{u^{\prime}\left(w(\tilde{h})-P^{N P}\right)}
$$

The equilibrium wage, for each \tilde{h}, is given by

$$
w^{N P}(\tilde{h})=g(\tilde{h}) F(\tilde{h}, 0)+(1-g(\tilde{h})) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)\left[F\left(\tilde{h}, \varepsilon-x^{N P}(\varepsilon, \tilde{h})\right)\right] d \varepsilon
$$

and the health insurance premium is determined as

$$
P^{N P}=\sum_{h}\left[g(h) x^{N P}(0, h)+(1-g(h)) \int f(\varepsilon) x^{N P}(\varepsilon, h) d \varepsilon\right] \Phi(h) .
$$

Moreover, the optimal cutoffs are increasing in health status.

Proof. See Appendix.

Note that the health expenditure levels are no longer efficient as the government provides partial consumption insurance against initial health status when choosing the cutoff levels $\bar{\varepsilon}^{N P}(h)$, in the absence of direct insurance against low wages induced by bad health. In fact, as shown in the next proposition, it is efficient to over-insure households with bad health status and under-insure those with good health status, relative to the first-best.

Proposition 10 Let \tilde{h} be the health status whose marginal utility of consumption is equal to the population average, i.e. for \tilde{h},

$$
\begin{equation*}
-F_{2}(\tilde{h}, \bar{\varepsilon}(\tilde{h}))=\frac{\sum_{h} u^{\prime}(w(h)-P) \Phi(h)}{u^{\prime}(w(\tilde{h})-P)}=1 \tag{21}
\end{equation*}
$$

holds. ${ }^{17}$ Then,

$$
\begin{array}{ll}
\bar{\varepsilon}^{N P}(h)<\bar{\varepsilon}^{S P}(h), & \text { for } h<\tilde{h} \\
\bar{\varepsilon}^{N P}(h)=\bar{\varepsilon}^{S P}(h), & \text { for } h=\tilde{h} \\
\bar{\varepsilon}^{N P}(h)>\bar{\varepsilon}^{S P}(h), & \text { for } h>\tilde{h},
\end{array}
$$

The cutoffs $\bar{\varepsilon}(h)$ are strictly monotonically increasing in health status h.
Proof. See Appendix.
This feature of the optimal health expenditure with a no prior conditions law also indicates that mandatory participation in the health insurance contract is an important part of government regulation, since in the allocation described above healthy households cross-subsidize the unhealthy in terms of insurance premia and they are given a less generous health expenditure plan (higher thresholds) than the unhealthy.

3.4 Competitive Equilibrium with a No Wage Discrimination Law

The equilibrium with a no wage discrimination law is determined by the solution to the program:

$$
\begin{align*}
U^{N D}(\Phi)= & \max _{x(\varepsilon, h)} \sum_{h} u(w-P(h)) \Phi(h) \tag{22}\\
P(h)= & \text { s.t. } \\
w= & \sum_{h}\left\{g(h) x(0, h)+(1-g(h)) \int f(\varepsilon) x(\varepsilon, h) d \varepsilon\right]
\end{align*}
$$

Proposition 11 The equilibrium health expenditures under a no-wage discrimination law alone satisfies, for each $\tilde{h} \in H$

$$
x^{N D}(\varepsilon, \tilde{h})=\max \left[0, \varepsilon-\bar{\varepsilon}^{N D}(\tilde{h})\right]
$$

with cutoffs determined by

$$
-F_{2}\left(\tilde{h}, \bar{\varepsilon}^{N D}(\tilde{h})\right)=\frac{u^{\prime}\left(w^{N D}-P(\tilde{h})\right)}{\sum_{h} u^{\prime}\left(w^{N D}-P(h)\right) \Phi(h)} .
$$

The equilibrium wage is given by

$$
w^{N D}=\sum_{h}\left[g(h)[F(h, 0)]+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)\left[F\left(h, \varepsilon-x^{N D}(\varepsilon, h)\right)\right] d \varepsilon\right] \Phi(h)
$$

and the health insurance premium is given by, for each \tilde{h},

$$
P^{N D}(\tilde{h})=\left[g(\tilde{h}) x^{N D}(0, \tilde{h})+(1-g(\tilde{h})) \int f(\varepsilon) x^{N D}(\varepsilon, \tilde{h}) d \varepsilon\right] .
$$

[^8]Proof. Follows directly from the first order conditions of the program (22).
Unlike in the no prior conditions case, we cannot establish monotonicity in the cutoffs $\bar{\varepsilon}^{N D}(\tilde{h})$. Note that under a no prior conditions law the regulatory authority partially insures consumption of the unhealthy by allocating higher medical expenditure to them. Under a no wage discrimination law instead, there are two opposing forces, preventing us from establishing monotonicity in cutoffs $\bar{\varepsilon}^{N D}(h)$ across health groups h. On one hand, a one unit increase in medical expenditure $P(h)$ is more costly to the unhealthy since marginal utility of consumption is higher for this group. On the other hand, production efficiency calls for higher medical expenditure for the unhealthy, given our assumption of $F_{12} \geq 0$ (as was the case for the no prior conditions law). Thus the cutoffs $\bar{\varepsilon}^{N D}(h)$ need not be monotone in h.

3.5 Competitive Equilibrium with Both Policies

Finally, combining both a no-wage discrimination law and a no-prior conditions legislation restores efficiency of the regulated equilibrium since both policies in conjunction provide full consumption insurance against bad health realizations h. This is the content of the next.

Corollary 12 The unique competitive equilibrium allocation in the presence of both a no wage discrimination and a no prior conditions law implements the socially efficient allocation in the static model.

Proof. The equilibrium is the solution to

$$
\begin{aligned}
& \max _{x(\varepsilon, h)} \sum_{h} u\left(w^{*}-P\right) \Phi(h) \\
P= & \sum_{h}\left[g(h) x(0, h)+(1-g(h)) \int f(\varepsilon) x(\varepsilon, h) d \varepsilon\right] \Phi(h) \\
w^{*}= & \sum_{h}\left\{g(h) F(h,-x(0, h))+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon\right\} \Phi(h) .
\end{aligned}
$$

The result then follows trivially from the fact that this maximization problem is equivalent to the social planner problem analyzed above. The no prior conditions law equalizes health insurance premia P across health types, the no wage discrimination law implements a common wage w^{*} across health types, and the (assumed) efficient regulation of the health insurance market assures that the health expenditure schedule is efficient as well.

3.6 Summary of the Analysis of the Static Model

The competitive equilibrium implements the efficient health expenditure allocation but does not insure households against initial health conditions. Both a no-prior conditions law and a no-wage discrimination law provide partial, but not complete, consumption insurance against this risk, without distorting the effort level. The health expenditure schedule is distorted when each policy is implemented in isolation, relative to the social optimum, as the government provides additional partial consumption insurance through health expenditures. Only both laws in conjunction implement a fully efficient health expenditure schedule and full consumption insurance against initial health conditions h, and therefore restore the first best allocation in the static model. Enacting both policies jointly is thus fully successful in what they are designed to achieve in a static world (partially due to the fact that additional government regulation severely restricted the options of firms to circumvent the government policies).

4 Analysis of the Dynamic Model

We now study a dynamic version of our economy. Both in terms of casting the problem, as well as in terms of its computation we make use of the fact that there is no aggregate risk (due to the continuum of agents cum law of large numbers assumption). Therefore the sequence of cross-sectional health distributions $\left\{\Phi_{t}\right\}_{t=0}^{T}$
is a deterministic sequence. Furthermore, conditional on a distribution Φ_{t} today the health distribution tomorrow is completely determined by the effort choice $e_{t}(h)$ of households ${ }^{18}$ (or the social planner), so that we can write

$$
\begin{equation*}
\Phi_{t+1}=H\left(\Phi_{t} ; e_{t}(.)\right) \tag{23}
\end{equation*}
$$

where the time-invariant function H is in turn completely determined by the Markov transition function $Q\left(h^{\prime} ; h, e\right)$. The initial distribution Φ_{0} is an initial condition and exogenously given.

Under each policy, given a sequence of aggregate distributions $\left\{\Phi_{t}\right\}_{t=0}^{T}$ we can solve an appropriate dynamic maximization problem of an individual household for the sequence of optimal effort decisions $\left\{e_{t}(h)_{h \in H}\right\}_{t=0}^{T}$ which in turn imply a new sequence of aggregate distributions via (23). Our computational algorithm for solving competitive equilibria then amounts to iterating on the sequences $\left\{\Phi_{t}, e_{t}\right\}$. Within each period the timing of events follows exactly that of the static problem in the previous section.

4.1 Social Planner Problem

The dynamic problem of the social planner is to solve

$$
V\left(\Phi_{0}\right)=\max _{\left\{e_{t}(h)\right\}} \sum_{t=0}^{T} \beta^{t}\left\{U^{S P}\left(\Phi_{t}\right)-\sum_{h} q\left(e_{t}(h)\right) \Phi_{t}(h)\right\}
$$

where $\left\{\Phi_{t+1}\right\}$ is determined by equation (23) and

$$
\begin{aligned}
U^{S P}(\Phi) & =\max _{x(\varepsilon, h), c(\varepsilon, h)} \sum_{h}\left\{g(h) u(c(0, h))+(1-g(h)) \int f(\varepsilon) u(c(\varepsilon, h)) d \varepsilon\right\} \Phi(h) \\
& =u\left(c^{S P}(\Phi)\right)
\end{aligned}
$$

is the solution to the static social planner problem characterized in section 3.1:

$$
x^{S P}(\varepsilon, h)=\max \left[0, \varepsilon-\bar{\varepsilon}^{S P}(h)\right]
$$

with cutoffs defined by

$$
\begin{equation*}
-F_{2}\left(h, \bar{\varepsilon}^{S P}(h)\right)=1 \tag{24}
\end{equation*}
$$

and consumption of each household given by

$$
c^{S P}(\Phi)=\sum_{h}\left[g(h) F(h, 0)+(1-g(h)) \int_{\varepsilon} f(\varepsilon)\left[F\left(h, \varepsilon-x^{S P}(\varepsilon, h)\right)-x^{S P}(\varepsilon, h)\right] d \varepsilon\right] \Phi(h) .
$$

We now want to characterize the optimal effort choice by the social planner, the key dynamic decision in our model both in the planner problem and the competitive equilibrium. In contrast to households in the competitive equilibrium, the social planner fully takes into account the effect of effort choices today on the aggregate health distribution and thus aggregate consumption tomorrow.

A semi-recursive formulation of the problem is useful to characterize the optimal effort choice, but also to explain the computational algorithm for the social planner problem. For a given cross-sectional distribution Φ_{t} at the beginning of period t the social planner solves:

$$
\begin{align*}
V_{t}\left(\Phi_{t}\right) & =u\left(c_{t}\right)+\max _{e_{t}(h)_{h \in H},}\left\{-\sum_{h} q\left(e_{t}(h)\right) \Phi_{t}(h)+\beta V_{t+1}\left(\Phi_{t+1}\right)\right\} \\
\text { s.t. } c_{t} & =c^{S P}\left(\Phi_{t}\right) \\
\Phi_{t+1}\left(h^{\prime}\right) & =\sum_{h} Q\left(h^{\prime} ; h, e_{t}(h)\right) \Phi(h) \tag{25}
\end{align*}
$$

[^9]In appendix D we discuss how we solve this problem numerically, iterating on sequences $\left\{c_{t}, e_{t}(h), \Phi_{t}(h)\right\}_{t=0}^{T}$ from the terminal condition $V_{T}\left(\Phi_{T}\right)=u\left(c_{T}\right)$. To characterize the optimal effort choice, for an arbitrary time period t we obtain the first order condition:

$$
\begin{aligned}
q^{\prime}\left(e_{t}(h)\right) \Phi_{t}(h) & =\beta \sum_{h^{\prime}} \frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)} \cdot \frac{\partial \Phi_{t+1}\left(h^{\prime}\right)}{\partial e_{t}(h)} \\
& =\beta \sum_{h^{\prime}} \frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)} \cdot \frac{\partial Q\left(h^{\prime} ; h, e_{t}(h)\right)}{\partial e_{t}(h)} \Phi_{t}(h)
\end{aligned}
$$

This simplifies to

$$
\begin{equation*}
q^{\prime}\left(e_{t}(h)\right)=\beta \sum_{h^{\prime}} \frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)} \cdot \frac{\partial Q\left(h^{\prime} ; h, e_{t}(h)\right)}{\partial e_{t}(h)} \tag{26}
\end{equation*}
$$

Thus the marginal cost of extra effort $q^{\prime}\left(e_{t}(h)\right)$ is equated to the marginal benefit, the latter being given by the the benefit that effort has on the health distribution tomorrow, $\frac{\partial Q\left(h^{\prime} ; h, e_{t}(h)\right)}{\partial e_{t}(h)}$, times the benefit of a better health distribution $\frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)}$ from tomorrow on. By assumption $1, q^{\prime}(0)=0$, and assumption 3 guarantees that the right hand side of equation (26) is strictly positive. Therefore the social planner finds it optimal to make every household exert positive effort to lead a healthy life: $e_{t}(h)>0$ for all t and all $h \in H$.

From the envelope theorem the benefit of a better health distribution is given by:

$$
\begin{equation*}
\frac{\partial V_{t}\left(\Phi_{t}\right)}{\partial \Phi_{t}(h)}=u^{\prime}\left(c_{t}\right) \cdot \Psi(h)-q\left(e_{t}(h)\right)+\beta \sum_{h^{\prime}} \frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)} \cdot Q\left(h^{\prime} ; h, e_{t}(h)\right) \tag{27}
\end{equation*}
$$

Here $\Psi(h)$ denotes the expected output, net of health expenditures, that an individual of health status h delivers to the social planner. ${ }^{19}$

4.2 Competitive Equilibrium without Policy

In our model, since absent wage and health insurance policies households do not interact in any way, we can solve the dynamic programming problem of each household independently of the rest of society. The only state variables of the household are her current health h and age t, and the dynamic program reads as:

$$
\begin{equation*}
v_{t}(h)=U^{C E}(h)+\max _{e_{t}(h)}\left\{-q\left(e_{t}(h)\right)+\beta \sum_{h^{\prime}} Q\left(h^{\prime} ; h, e_{t}(h)\right) v_{t+1}\left(h^{\prime}\right)\right\} \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
U^{C E}(h)= & \max _{x(\varepsilon, h), w(h), P(h)} u(w(h)-P(h)) \\
& \text { s.t. } \\
w(h)= & g(h) F(h,-x(0, h))+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon \\
P(h)= & g(h) x(0, h)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) x(\varepsilon, h) d \varepsilon
\end{aligned}
$$

[^10]is the solution to the static equilibrium problem in section 3.2, which was given by:
\[

$$
\begin{aligned}
& x^{C E}(\varepsilon, h)=\max \left[0, \varepsilon-\bar{\varepsilon}^{C E}(h)\right] \\
& c^{C E}(h)=w^{C E}(h)-P^{C E}(h) \\
& P^{C E}(h)=(1-g(h)) \int_{\bar{\varepsilon}^{C E}}^{\bar{\varepsilon}}(h) \\
& w^{C E}(h)\left[\varepsilon-\bar{\varepsilon}^{C E}(h)\right] d \varepsilon \\
& w^{C E}=g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon
\end{aligned}
$$
\]

with cutoff:

$$
-F_{2}\left(h, \bar{\varepsilon}^{C E}(h)\right)=1
$$

Note again that the provision of health insurance is socially efficient in the competitive equilibrium.
In contrast to the social planner problem, and in contrast to what will be the case in a competitive equilibrium with a no-wage discrimination law or a no-prior conditions law, in the unregulated competitive equilibrium there is no interaction between the maximization problems of individual households. Thus the dynamic household maximization problem can be solved independent of the evolution of the cross-sectional health distribution. It is a simple dynamic programming problem with terminal value function

$$
v_{T}(h)=U^{C E}(h)
$$

and can be solved by straightforward backward iteration.
Given the solution $\left\{e_{t}(h)\right\}$ of the household dynamic programming problem and given an initial distribution Φ_{0} the dynamics of the health distribution is then determined by the aggregate law of motion (23). The optimal choice $e_{t}(h)$ solves the first order condition

$$
\begin{equation*}
q^{\prime}\left(e_{t}(h)\right)=\beta \sum_{h^{\prime}} \frac{\partial Q\left(h^{\prime} ; h, e_{t}(h)\right)}{\partial e_{t}(h)} v_{t+1}\left(h^{\prime}\right) \tag{29}
\end{equation*}
$$

Note that at time t when the decision $e_{t}(h)$ is taken the function $v_{t+1}($.$) is known. Furthermore, given$ knowledge of v_{t+1} and the optimal e_{t} the period t value function v_{t} is determined by (28). As in the social planner problem, by assumptions 1 and 3 effort $e_{t}(h)$ is positive for all t and h.

4.3 Competitive Equilibrium with a No Prior Condition Law

As discussed above, we assume that the government in every period takes as given the health distribution Φ_{t} and enforces the no prior condition law and regulates health insurance contracts efficiently, as in the static analysis of section 3.3. We now make explicit that the solution of the static government regulation problem (18)-(20) is a function of the cross-sectional health distribution,

$$
\begin{equation*}
x^{N P}\left(\varepsilon, \tilde{h} ; \Phi_{t}\right)=\max \left[0, \varepsilon-\bar{\varepsilon}^{N P}\left(\tilde{h} ; \Phi_{t}\right)\right] \tag{30}
\end{equation*}
$$

with cutoffs for each $\tilde{h} \in H$ determined by

$$
\begin{equation*}
-F_{2}\left(\tilde{h}, \bar{\varepsilon}^{N P}\left(\tilde{h} ; \Phi_{t}\right)\right) u^{\prime}\left(w^{N P}\left(\tilde{h} ; \Phi_{t}\right)-P^{N P}\left(\Phi_{t}\right)\right)=\sum_{h} u^{\prime}\left(w^{N P}\left(h ; \Phi_{t}\right)-P^{N P}\left(\Phi_{t}\right)\right) \Phi_{t}(h):=E u^{\prime}\left(\Phi_{t}\right) \tag{31}
\end{equation*}
$$

and

$$
\begin{align*}
w^{N P}\left(h ; \Phi_{t}\right) & =g(h) F(h, 0)+(1-g(h)) \int f(\varepsilon)\left[F\left(h, \varepsilon-x^{N P}\left(\varepsilon, h ; \Phi_{t}\right)\right)\right] d \varepsilon \tag{32}\\
P^{N P}\left(\Phi_{t}\right) & =\sum_{h}\left[g(h) x^{N P}\left(0, h ; \Phi_{t}\right)+(1-g(h)) \int f(\varepsilon) x^{N P}(\varepsilon, h ; \Phi) d \varepsilon\right] \Phi_{t}(h) \tag{33}
\end{align*}
$$

In order for the household to solve her dynamic programming problem she only needs to know the sequence of wages and health insurance premia $\left\{w_{t}(h), P_{t}\right\}$, but not necessarily the sequence of distributions that led to it. Given such a sequence the dynamic programming problem of the household then reads as

$$
\begin{equation*}
v_{t}(h)=u\left(w_{t}(h)-P_{t}\right)+\max _{e_{t}(h)}\left\{-q\left(e_{t}(h)\right)+\beta \sum_{h^{\prime}} Q\left(h^{\prime} ; h, e_{t}(h)\right) v_{t+1}\left(h^{\prime}\right)\right\} \tag{34}
\end{equation*}
$$

with terminal condition $v_{T}(h)=u\left(w_{T}(h)-P_{T}\right)$. As before the optimality condition reads as

$$
\begin{equation*}
q^{\prime}\left(e_{t}(h)\right)=\beta \sum_{h^{\prime}} \frac{\partial Q\left(h^{\prime} ; h, e_{t}(h)\right)}{\partial e_{t}(h)} v_{t+1}\left(h^{\prime}\right) \tag{35}
\end{equation*}
$$

and thus equates the marginal cost of providing effort, $q^{\prime}(e)$ with the marginal benefit of an improved health distribution tomorrow. Although equation (35) looks identical to equation (29) from the unregulated equilibrium, the determination of the value functions that appear on the right hand side of both equations is not (compare the first terms on the right hand sides of equations (28) and (34)). The difference in these equations highlights the extra consumption insurance induced by the no-prior conditions law, in that with this policy the health insurance premium does not vary with h. This extra consumption insurance, ceteris paribus, reduces the variation of v_{t+1} in h^{\prime} and thus limits the incentives to exert effort in order to achieve a (stochastically) higher health level tomorrow. In appendix E we describe a computational algorithm to solve the dynamic model with a no-prior conditions law.

4.4 Competitive Equilibrium with a No Wage Discrimination Law

The main difference to the previous section is that now the static health insurance contract and premium are given by health spending

$$
\begin{equation*}
x^{N D}\left(\varepsilon, \tilde{h} ; \Phi_{t}\right)=\max \left[0, \varepsilon-\bar{\varepsilon}^{N D}\left(\tilde{h} ; \Phi_{t}\right)\right] \tag{36}
\end{equation*}
$$

with cutoffs for each $\tilde{h} \in H$ determined by

$$
\begin{equation*}
-F_{2}\left(h, \bar{\varepsilon}^{N D}(h)\right) E u_{t}^{\prime}=u^{\prime}\left(w^{N D}\left(\Phi_{t}\right)-P^{N D}\left(h, \Phi_{t}\right)\right) \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
E u_{t}^{\prime}:=\sum_{h} u^{\prime}\left(w^{N D}\left(\Phi_{t}\right)-P^{N D}\left(h, \Phi_{t}\right)\right) \Phi_{t}(h) . \tag{38}
\end{equation*}
$$

The equilibrium wage is given by

$$
\begin{equation*}
w^{N D}\left(\Phi_{t}\right)=\sum_{h}\left\{g(h) F(h, 0)+(1-g(h)) \int f(\varepsilon)\left[F\left(h, \varepsilon-x^{N D}\left(\varepsilon, h ; \Phi_{t}\right)\right)\right] d \varepsilon\right\} \Phi_{t}(h) . \tag{39}
\end{equation*}
$$

The equilibrium health insurance premium depends on whether a no prior conditions law is in place or not: Without such policy the premia are given as

$$
\begin{equation*}
P^{N D}\left(h ; \Phi_{t}\right)=P^{N D}(h)=(1-g(h)) \int f(\varepsilon) x^{N D}(\varepsilon, h) d \varepsilon \tag{40}
\end{equation*}
$$

whereas with both policies in place the premium is determined by ${ }^{20}$

$$
\begin{equation*}
P^{B o t h}\left(\Phi_{t}\right)=\sum_{h}\left[(1-g(h)) \int f(\varepsilon) x^{B o t h}(\varepsilon, h) d \varepsilon\right] \Phi_{t}(h) \tag{41}
\end{equation*}
$$

For a given sequence of wages $\left\{w_{t}, P_{t}(h)\right\}$ the dynamic problem of the household reads as before:

$$
\begin{equation*}
v_{t}(h)=u\left(w_{t}-P_{t}(h)\right)+\max _{e_{t}(h)}\left\{-q\left(e_{t}(h)\right)+\beta \sum_{h^{\prime}} Q\left(h^{\prime} ; h, e_{t}(h)\right) v_{t+1}\left(h^{\prime}\right)\right\} \tag{42}
\end{equation*}
$$

and the terminal condition $v_{T}(h)=u\left(w_{T}-P_{T}(h)\right)$, first order conditions and updating of the value function for this version of the model are exactly the same, mutatis mutandis, as under the previous policy. In appendix E we discuss the algorithm to solve this version of the model.

[^11]
4.5 Competitive Equilibrium with Both Laws

If both policies are in place simultaneously, we can give a full analytical characterization of the equilibrium without resorting to any numerical solution procedure. We do so in the next

Proposition 13 Suppose there is a no wage discrimination and a no prior condition law in place simultaneously. Then

$$
e_{t}(h)=0 \text { for all } h, \text { and all } t .
$$

The provision of health insurance is socially efficient. From the initial distribution Φ_{0} the health distribution in society evolves according to (23) with $e_{t}(h) \equiv 0$.

The proof is by straightforward backward induction and is given in Appendix A. In the presence of both policies there are no incentives, either through wages or health insurance premia, to exert effort to lead a healthy life. Since effort is costly, households won't provide any such effort in the regulated dynamic competitive equilibrium. Thus in the absence of any direct utility benefits of better health the combination of both policies leads to a complete collapse in incentives, with the associated adverse long run consequences for the distribution of health in society.

Equipped with these theoretical results and the numerical algorithms to solve the various versions of our model we now map our model to cross-sectional health and exercise data from the PSID to quantify the effects of government regulations on the evolution of the cross-sectional health distribution, as well as aggregate production, consumption and health expenditures.

5 Bringing the Model to the Data

5.1 Augmenting the Model

The model described so far only included the necessary elements to highlight the key static insurancedynamic incentive trade-off we want to emphasize. However, to insure that the model can capture the significant heterogeneity in health, exercise and health expenditure data observed in micro data we now augment it in four aspects. We want to stress, however, that none of the qualitative results derived so far rely on the absence of these elements, which is why we abstracted from them in our theoretical analysis.

First, in the data some households have health expenditures in a given year from catastrophic illnesses that exceed their labor earnings. In the model, the only benefit of spending resources on health is to offset the negative productivity consequences of the adverse health shocks ε. Thus it is never optimal to incur health expenditures that exceed the value of a worker's production in a given period. In order to capture these large medical expenditures in data and arrive at realistic magnitudes of health insurance premia we introduce a second health shock. This exogenous shock z stands in for a catastrophic health expenditure shock, and when households receive the z-shock, they have to spend z; otherwise, they die (or equivalently, incur a prohibitively large utility cost). Households in the augmented model are assumed to either not receive any health shock, face either a z-shock, or an ε-shock, but not both. We denote by $\mu_{z}(h)$ the mean of the health expenditure shock z, conditional on initial health h, and by $\kappa(h)$ the probability of receiving a positive z-shock. Households that received a z-shock can still work, but at a reduced productivity $\rho<1$ relative to healthy workers. As described in more detail in appendix F.1, the z-shock merely scales up health insurance premia by $\mu_{z}(h)$ and introduces additional health-related wage risk (since z-shocks come with a loss of $1-\rho$ of labor productivity).

Second, in our model so far all variation in wages was due to either health (h and $\varepsilon-x$) or age t. When bringing the model to the data we permit earnings in the model to also depend on the education educ of a household, and consequently specify the production function as $F(t, e d u c, h, \varepsilon-x)$. Given this extension we have to take a stance on how households of different education levels interact in equilibrium under each policy. Since our objective is to highlight the insurance aspect of both policies with respect to healthrelated consumption risks we assume that even in the presence of a wage discrimination law individuals with higher education can be paid more, and that health insurance companies can charge differential premia to individuals with heterogeneous education levels even in the presence of a no-prior conditions law.

Third, for the model to have a change of generating the observed heterogeneity in exercise levels of individuals that are identical in terms of their age, health and education levels we introduce preference shocks to the disutility from effort. Instead of being given by $q(e)$, as in the theoretical analysis so far, the cost of exerting effort is now assumed to be given as $\gamma q(e)$, where $\gamma \in \Gamma$ is an individual-specific preference shock that is drawn from the finite set Γ at the beginning of life and remains constant during the individual's life cycle. ${ }^{21}$ Note that since γ only affects the disutility of effort which is separable from the utility of consumption, the analysis of the static model in section 3 remains completely unchanged (and so do the optimal health insurance contracts and health expenditure allocations). In the analysis of the dynamic model, since γ is a permanent shock, all expressions involving $q($.$) turn into \gamma q($.$) but the analysis is$ otherwise unaltered. Under the maintained assumption that wages and insurance premia are allowed to differ across different γ-groups even in the presence of the laws (an assumption that parallels the one made in the previous paragraph) there is no interaction between the different ($\gamma, e d u c$) types and equilibrium allocations under all policies can be solved for each ($\gamma, e d u c$) pair separately. ${ }^{22}$ These assumptions again highlight the role of $(\gamma, e d u c)$-heterogeneity modeled here: it is not the focal point of our insurance vs. incentives analysis, but rather allows us to capture some of the heterogeneity in outcomes in the data and thus avoids attributing all of this observed heterogeneity to health differences. Ignoring these other sources of heterogeneity would quantitatively overstate likely both the insurance benefits as well as the incentive costs of the policies we analyze in this paper. Consistent with the introduction of preference and skill (education) heterogeneity the initial distribution over household types is now denoted by $\Phi_{0}(h, \gamma, e d u c)$ and will be determined from the data (but exploiting predictions of the structural model).

The last, and perhaps most significant departure from the theoretical model is that we now endow the household with a health-dependent continuation utility $v_{T+1}(h)$ from retirement. The theoretical model implicitly assumed that this continuation utility was identically equal to zero, independent of the health status at retirement. The vector $v_{T+1}(h)$ will be determined as part of our structural model estimation. Endowing individuals with nontrivial continuation utility at retirement avoids the counterfactual prediction of the model that effort is zero in the last period of working life, T. This assumption also introduces a direct utility benefit from better health (albeit one that materializes at retirement) and thus avoids the complete collapse of incentives to provide effort under both policies (that is, proposition 13 no longer applies).

In the rest of this section, we use the so extended version of our model to estimate parameters to match PSID data on health, expenditure and exercise in 1999. In the main body of the paper, we describe the procedure we follow in a condensed form, relegating the detailed data description and estimation procedures to the Appendix F. Once the model is parameterized and its reasonable fit of the data established, in section 6 we then use it to analyze the positive and normative short- and long-run consequences of introducing non-discrimination legislation.

5.2 Parameter Estimation and Calibration

The determination of the model parameters proceeds in three steps. First, we fix a small subset of parameters exogenously. Second, parts of the model parameters can be estimated from the PSID data directly. These include the parameters governing the health transition function $Q\left(h^{\prime} \mid h, e\right)$, the probabilities $(g(h), \kappa(h))$ of receiving the ε and z health shocks, as well as the productivity effect of the z-shocks given by ρ. Third, (and given the parameters obtained in step 1 and 2) the remaining parameters (mainly those governing the production function F, the ε-shock distribution $f(\varepsilon)$ and preferences) are then determined through a method of moments estimation of the model with PSID wage, health and effort data. We now describe these three steps in greater detail.

[^12]
5.2.1 A Priori Chosen Parameters

First, we choose one model period to be six years, a compromise between assuring that effort has a noticeable effect on health transitions (which requires a sufficiently long time period) and reasonable sample sizes for estimation (which speaks for short time periods). We then select two preference parameters a priori. Consistent with values commonly used in the quantitative macroeconomics literature we choose a risk aversion parameter of $\sigma=2$ and a time discount factor of $\beta=0.96$ per annum.

5.2.2 Parameters Estimated Directly from the Data

In a second step we estimate part of the model parameters directly from the data, without having to rely on the equilibrium of the model.

Health Transition Function $Q\left(h^{\prime} \mid h, e\right)$ The PSID includes measures of light and heavy exercise levels ${ }^{23}$ starting in 1999 which we use to estimate health transition functions. We denote by e^{l} and e^{h} the frequency of light and heavy exercise levels, and assume the following parametric functional form for the health transition function:

$$
Q\left(h^{\prime} ; h, e^{l}, e^{h}\right)= \begin{cases}\left(1+\pi\left(h, e^{l}, e^{h}\right)^{\alpha_{i}(h)}\right) G\left(h, h^{\prime}\right), & \text { if } h^{\prime}=h+i, i \in\{1,2\} \\ \left(1+\pi\left(h, e^{l}, e^{h}\right)\right) G\left(h, h^{\prime}\right), & \text { if } h^{\prime}=h, h>1 \text { or } h^{\prime}=h+1, h=1 \\ \left(\frac{1-\sum_{h^{\prime} \geq h} Q\left(h^{\prime} ; h, e^{l}, e^{h}\right)}{\sum_{h^{\prime}<h} G\left(h, h^{\prime}\right)}\right) G\left(h, h^{\prime}\right), & \text { if } h^{\prime}=h-1, h>1 \text { or } h^{\prime}=h, h=1\end{cases}
$$

where

$$
\pi\left(h, e^{l}, e^{h}\right)=\phi(h)\left(\delta e^{l}+(1-\delta) e^{h}\right)^{\lambda(h)}
$$

Since light and heavy physical exercise can have different effects on health transition, we give weight δ on light exercise, and $(1-\delta)$ on heavy exercise. We think of $\delta e^{l}+(1-\delta) e^{h}$ as the composite exercise level e used in the theoretical analysis of our model.

Health Shock Probabilities $g(h)$ and $\kappa(h)$ In our model, $g(h)$ represents the probability of not receiving any shock, and $\kappa(h)$ is the probability of facing a z-shock. Since we assume that households do not receive both an ε-shock and a z-shock in the same period, the probability of facing an ε-shock is given by $1-$ $g(h)-\kappa(h)$. From PSID, we first construct the probabilities of having a z-shock and an ε-shock. We define households that have received a z-shock as those who were diagnosed with cancer, a heart attack, or a heart disease ${ }^{24}$ and those who spent more on medical expenditures than their current income when hit with a health shock. Households with all other health shocks or those who missed work due to an illness are categorized as having received an ε-shock.

Impact ρ of a z-shock on Productivity Using the criterion for determining ε and z-shocks specified above, we use mean earnings of those with a z-shock relative to those without any health shock to directly estimate ρ.

5.2.3 Parameters Calibrated within the Model

In a final step we now use our model to find parameters governing the production function, the ε - and z-shock distribution, the distribution of preference parameters for exercise, and the terminal value function $v_{T+1}\left(h^{\prime}\right)$.

[^13]The structure of our model allows us to calibrate the parameters in two separate steps. The first part of the estimation consists of finding parameters for the production function and distribution of health shocks, and only involves the static part of the model from section 3. This is the case since realized wages and health expenditures in the model are determined in the static part and are independent of effort decisions and the associated health evolution in the dynamic part of the model. In a second step we then employ the dynamic part of the model to estimate the preference distribution for exercise and the terminal value of health. ${ }^{25}$

Production Function and Health Status We assume the following parametric form for the production technology:

$$
F(t, e d u c, h, \varepsilon-x)=A(t, e d u c) h+\frac{(k-(\varepsilon-x))^{\phi(a, e d u c)}}{h^{\xi(a, e d u c)}}, \quad 0<\phi(\cdot), \xi(\cdot)<1, A(\cdot)>0 .
$$

The production function captures two effects of health on production: the direct effect (first term) and the indirect effect which induces the marginal benefit of health expenditures x to decline with better health (that is $-F_{12}<0$). The term $A(t, e d u c)$ allows for heterogeneity in age and education of the effect of health on production and thus wages. Here age can take seven values, $t \in\{1,2, \ldots, 7\}$ and we classify individuals into two education groups, those that have graduated from high school and those that have not: educ $\in\{$ less than High School, High School Grad\}. We also allow for differences in marginal effects of medical expenditures on production across education and two broad age groups through parameters $\phi(a, e d u c)$ and $\xi(a, e d u c)$, where $a \in\{$ Young,Old $\}$. We define Young as those individuals between the ages of 24 and 41 and the rest as Old. This age classification divides our sample roughly in half. We represent the functions $A(t, e d u c), \phi(a, e d u c)$ and $\xi(a, e d u c)$ by a full set of age and education dummies.

Since in the unregulated equilibrium the production of individuals (after health expenditures have been made) equals their labor earnings, we use data on labor earnings of households with different health status $\left(\frac{w\left(h_{2}\right)}{w\left(h_{1}\right)}, \frac{w\left(h_{3}\right)}{w\left(h_{1}\right)}, \frac{w\left(h_{4}\right)}{w\left(h_{1}\right)}\right)$ as well as relative average earnings of the Young and the Old to pin down the health levels $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$ in the model. ${ }^{26}$ Moreover, since $A(t, e d u c)$ captures the effects of age t and education educ on labor earnings we use conditional (on age and education) earnings to pin down the 14 (7×2) parameters $A(t, e d u c)$.

In order to determine the values of the dummies representing $\phi(\cdot)$ and $\xi(\cdot)$ we recognize that in the model they determine the expenditure cutoffs for the ε-shock, as a function of individual health status. Thus we use medical expenditure data to estimate these parameters. More specifically the four parameters representing $\phi(a, e d u c)$ are determined to fit the percentage of labor earnings spent on medical expenditure (averaged over h) for each ($a, e d u c$)-group and the four parameters representing $\xi(a, e d u c)$ are chosen to match the percentage of labor earnings spent on medical expenditures (averaged over (a, educ) groups) for each level $h \in H$ of household health. ${ }^{27}$

Distribution of Health Shocks In order to estimate the parameters governing the distribution of health shocks ε we exploit the theoretical result from section 3 that medical expenditures on these shocks is linear in the shock: $x^{*}(\varepsilon, h)=\max \{0, \varepsilon-\bar{\varepsilon}(h)\}$. Thus the distribution of medical expenditures x coincides with that of the shocks themselves, above the endogenous health-specific threshold $\bar{\varepsilon}(h)$. French and Jones (2004) argue that the cross-sectional distribution of health care costs ${ }^{28}$ can best be fitted by a log-normal distribution (truncated at the upper tail). We therefore assume that the health shocks ε follow a truncated \log-normal

[^14]distribution:
$$
f\left(\varepsilon ; \mu_{\varepsilon}, \sigma_{\varepsilon}, \underline{\varepsilon}, \bar{\varepsilon}\right)=\frac{\frac{1}{\epsilon \sigma_{\varepsilon}} \phi\left(\frac{\ln \varepsilon-\mu_{\varepsilon}}{\sigma_{\varepsilon}}\right)}{\Phi\left(\frac{\ln \bar{\varepsilon}-\mu_{\varepsilon}}{\sigma_{\varepsilon}}\right)-\Phi\left(\frac{\ln \bar{\varepsilon}-\mu_{\varepsilon}}{\sigma_{\varepsilon}}\right)}
$$
where ϕ and Φ are standard normal pdf and cdf. We then choose the mean and standard deviation $\left(\mu_{\varepsilon}, \sigma_{\varepsilon}\right)$ of the shocks such that the endogenously determined mean and standard deviation of medical expenditures in the model matches the mean and standard deviation of health expenditures for those with ε-shocks from the data.

For the catastrophic health shock z, apart from the probability of receiving it (which was determined in section 5.2.2), only the mean expenditures $\mu_{z}(h)$ matter. We use the percentage of labor income spent on catastrophic medical expenditures, conditional on health status h, to determine these.

Distribution of Exercise Preference Parameters With estimates of the production function and health shock distributions in hand we now calibrate the preference for exercise distribution, using the dynamic part of the model. We assume that the effort utility cost function takes the form

$$
\gamma q(e)=\gamma\left[\frac{1}{1-e}-(1+e)\right]
$$

The functional form for q guarantees that $q^{\prime \prime}(e)>0$, that $q(0)=q^{\prime}(0)=0$ and that $\lim _{e \rightarrow 1} q^{\prime}(e)=\infty$. We assume that for each education group the preference shock γ can take two (education-specific) values, $\gamma \in\left\{\gamma_{1}(e d u c), \gamma_{2}(e d u c)\right\}$. We treat these values (4 in total) as parameters. The initial joint distribution Φ_{0} over types $(h, e d u c, \gamma)$ is then determined by the eight numbers $\Phi_{0}\left(\gamma_{1} \mid e d u c, h\right)$ that give the fraction of low cost $\left(\gamma_{1}\right)$ individuals for each of the eight (educ, h)-combinations. Thus we have to a total of 12 parameters determining preference heterogeneity in the model. We choose the initial distribution $\Phi_{0}\left(\gamma_{1} \mid e d u c, h\right)$ so that model effort levels match mean effort levels in period 1 (ages 24-29), conditional on health (4 targets) and conditional on education (2 targets), and mean effort levels in period 7 (ages 60-65), conditional on education (2 targets) in the data. To pin down the four values $\gamma(e d u c)$, we use the aggregate mean and standard deviation of effort in period 1, and the measure of households with fair and excellent health in the last period, $t=7$.

Marginal Value of Health at Terminal Date As discussed above, absent direct benefits from better health upon retirement households in the model have no incentive to exert effort, whereas in the data we still see a significant amount of exercise for those of ages 60 to 65 . By introducing a terminal and health dependent continuation utility $v_{T+1}(h)$ this problem can be rectified. Given the structure of the model and the parametric form of the health transition function $Q\left(h^{\prime} \mid h, e\right)$ only the differences in the continuation values

$$
\Delta_{i}=v_{T+1}\left(h_{i}\right)-v_{T+1}\left(h_{i-1}\right), \text { for } i=2,3,4
$$

matter for the choice of optimal effort in the last period T. We choose the $\Delta_{2}, \Delta_{3}, \Delta_{4}$ such that the model reproduces the health-contingent average effort levels of the 60 to 65 year olds, for h_{2}, h_{3}, h_{4}.

The data targets and associated model parameters are summarized in Tables 9 and 10. The estimated parameter values are reported in Table 11, together with their performance in matching the empirical calibration targets.

5.3 Model Fit

Our model is fairly richly parameterized (especially along the production function/labor earnings dimension). It is therefore not surprising that it fits life cycle earnings profiles well. We have also targeted effort levels for very young and very old households (the latter by health status), but have not used data on h-specific effort levels (apart from at the final pre-retirement age) in the estimation. How well the model captures the age-effort dynamics is therefore an important "test" of the model. Figures 5 (for mean effort) and 27-30 in appendix G. 1 (for effort by health status) plot the evolution of effort (exercise) over the life cycle both in the data and in the model. The dotted lines show the one-standard deviation confidence bands. From

Figure 5 we see that our model fits the average exercise level over the life cycle very well, and Figures 2730 show the same to be true for effort conditional on Very Good and Excellent health. For households with Fair and Good health the model fit is not quite as good as that for the Very Good and the Excellent health groups, but still within the one-standard deviation confidence bands (which are arguably quite wide though, on account of smaller samples once conditioning both on age and health). ${ }^{29}$

Figure 5: Average Effort in Model and Data

6 Results of the Policy Experiments: Insurance, Incentives and Welfare

After having established that the model provides a good approximation to the data for the late 1990's and early 2000's in the absence of non-discrimination policies, we now use it to answer the main counterfactual question of this paper, namely, what are the effects of introducing these policies (one at a time and in conjunction) on aggregate health, consumption and effort, their distribution, and ultimately, on social welfare.

The primary benefit of the non-discrimination policies is to provide consumption insurance against bad health, resulting in lower wages and higher insurance premia in the competitive equilibrium. However, these policies weaken incentives to exert effort to lead a healthy life, and thus worsen the long run distribution of health, aggregate productivity and thus consumption. In the next two subsections, we present the key quantitative indicators measuring this trade-off: first, the insurance benefits of policies, and second, the adverse incentive effects on aggregate production and health. Then, in subsection 6.3 , we display the welfare consequences of our policy reforms. In the main text we focus on weighted averages of the aggregate variables and welfare measures across workers of different (educ, γ)-types, and document the disaggregated results (which are qualitatively, and to a great extent, quantitatively similar to the averaged numbers) in appendix G.2.

6.1 Insurance Benefits of Policies

Turning first to the consumption insurance benefits of both policies, we observe from figure 6 that the combination of both policies is indeed effective in providing perfect consumption insurance. As in the social planner problem, within-group consumption dispersion, as measured by the coefficient of variation, is zero for all periods over the life cycle if both a no-prior conditions law and a no-wage discrimination law are in place (the lines for the social planner solution and the equilibrium under both policies lie on top of one

[^15]another and are identically equal to zero). ${ }^{30}$ This is of course what the theoretical analysis in sections 3 and 4 predicted. Also notice from figure 6 that a wage non-discrimination law alone goes a long way towards providing effective consumption insurance, since the effect of differences in health levels on wage dispersion is significantly larger than the corresponding dispersion in health insurance premia. Thus, although a noprior conditions law in isolation provides some consumption insurance and reduces within-group consumption dispersion by about 30%, relative to the unregulated equilibrium, the remaining health-induced consumption risk remains significant.

Figure 6: Consumption Dispersion
Another measure of the insurance benefits provided by the non-discrimination policies is the level of crosssubsidization or implicit transfers: workers do not necessarily pay their own competitive (actuarially fair) price of the health insurance premium or/and they are not fully compensated for their productivity. Under no-prior conditions policy, as established theoretically in Proposition 10, the healthy workers subsidize the premium of the unhealthy. Similarly, wages of the unhealthy workers are subsidized by the healthy, productive workers under the no-wage discrimination policy. Moreover, under both policies, there is cross-subsidization in both health insurance premia and wages.

Figure 7: Cross Subsidy: Excellent Health

Figure 8: Cross Subsidy: Fair Health

Figures 7 and 8 plot the degree of cross-subsidization over the life cycle, both for households with excellent and those with fair health, and Table 13 in appendix G. 2 summarizes the transfers for all health groups. The

[^16]plots for the health insurance premium measures the differences between the actuarially fair health insurance premium a particular health type household would have to pay and the actual premium paid in the presence of either a no-prior conditions policy or the presence of both policies. Similarly, the wage plots display the difference between the productivity of the worker (and thus her wage in the unregulated equilibrium) and the wage received under a no-wage discrimination policy and in the presence of both policies. Negative numbers imply that the worker is paying a higher premium, or is paid lower wage than in a competitive equilibrium without government intervention. Thus such a worker, in the presence of government policies, has to transfer resources to workers of different (lower) health types. Reversely, positive numbers imply that a worker is being subsidized, i.e., she is paying a lower premium and is paid higher wage.

We observe from Figure 7 that the workers with excellent health significantly cross-subsidize the other workers, both in terms of cross-subsidies in health insurance premia as well as in terms of wage transfers. To interpret the numbers quantitatively, note that average consumption of the excellent group is 1.04 when young and 1.75 when aged 42-47. Thus the wage transfers delivered by this group amount to $12-14 \%$ of average consumption when young and close to 30% in prime working age (note that the share of workers in excellent health in the population has shrunk at that age, relative to when this cohort of workers was younger). From figure 7 we also observe that the implicit transfers induced by a no-prior conditions law are still significant (they amount to $3-7 \%$ of consumption for young workers of excellent health, and $4-10 \%$ when middle-aged), but quantitatively smaller than those implied by wage-nondiscrimination legislation.

Figure 8 displays the same plots for households of fair health. These households are the primary recipients of the transfers from workers with excellent health, ${ }^{31}$ and for this group (which is small early in the life cycle but grows over time) the transfers are massive. In terms of their average competitive equilibrium consumption, the implicit health insurance premium subsidies amount to a massive $37-60 \%$ and the wage transfers amount to a staggering $65-75 \%$ of pre-policy average consumption of this group. Although these transfers shrink (as a fraction of pre-policy consumption) over the life cycle as the share of households with fair health increases and that with excellent health declines, they continue to account for a significant part of consumption for households of fair health. These numbers indicate that the insurance benefits from both policies, and specifically from the wage nondiscrimination law, will be substantial.

An interesting property of the subsidies is that the level of subsidization implied by a given policy is higher when only one of the non-discrimination laws is enacted, relative to when both policies are present. This is especially true for the no-prior conditions law and is due to the fact that the government insures the workers with bad health through an inefficient level of medical expenditure.

Thus far, we have discussed the insurance benefits of the non-discrimination policies. In the next subsection, we analyze the aggregate dynamic effects of the policies on production and the health distribution.

6.2 Adverse Incentive Effects on Aggregate Production and Health

The associated incentive costs from each policy are inversely proportional to their consumption insurance benefits, as figure 9 shows. In this figure we plot the average exerted effort over the life cycle, in the socially optimal and the equilibrium allocations under the various policy scenarios. In a nutshell, effort is highest in the solution to the social planner problem, positive under all policies, ${ }^{32}$ but substantially lower in the presence of the non-discrimination laws.

More precisely, two important observations emerge from figure 9. First, the policies that provide the most significant consumption insurance benefits also lead to the most significant reductions in incentives to lead a healthy life. It is the very dispersion of consumption due to health differences, stemming from health-dependent wages and insurance premia that induce workers to provide effort in the first place, and thus the policies that reduce that consumption dispersion the most come with the sharpest reduction in

[^17]incentives. Whereas a no-prior conditions law alone leads to only a modest reduction of effort, with a wage nondiscrimination law in place the amount of exercise household find optimal to carry out shrinks more significantly. Finally, if both policies are implemented simultaneously the only benefit from exercise is a better distribution of post-retirement continuation utility, and thus effort plummets strongly, relative to the competitive equilibrium.

The second observation we make from figure 9 is that the impact of the policies on effort is most significant at young and middle ages, whereas towards retirement effort levels under all polices converge. This is owed to the fact that the direct utility benefits from better health materialize at retirement and are independent of the nondiscrimination laws (but heavily discounted by our impatient households), whereas the productivity and health insurance premium costs from worse health accrue through the entire working life and are strongly affected by the different policies. ${ }^{33}$

Figure 9: Effort

Figure 10: Average Health

Given the dynamics of effort over the life cycle (and a policy invariant initial health distribution), the evolution of the health distribution is exclusively determined by the health transition function $Q\left(h^{\prime} ; h, e\right)$. Figure 10 which displays average health in the economy under the various policy scenarios is then a direct consequence of the effort dynamics from Figure 9. It shows that health deteriorates under all policies as a cohort ages, but more rapidly if a no-prior conditions law and especially if a wage nondiscrimination law is in place. As with effort, the conjunction of both policies has the most severe impact on public health.

Figure 12 demonstrates that the decline of health levels over the life cycle also induce higher expenditures on health (insurance) later in life. The level of these expenditures (and thus their relative magnitudes across different policies) are determined by two factors, a) the health distribution (which evolves differently under alternative policy scenarios) and b) the equilibrium health expenditures, which are fully determined by the thresholds $\bar{\varepsilon}(h)$ from the static analysis of the model and that vary across policies. The evolution of health is summarized by figure 10, and figure 11 displays the health dependent thresholds $\bar{\varepsilon}(h)$ for the youngest households. ${ }^{34}$ Recall from section 3 that the thresholds $\bar{\varepsilon}(h)$ under the unregulated competitive equilibrium and the equilibrium with both policies are socially efficient and thus the three graphs completely overlap. Also observe that, relative to the efficient allocation (=unregulated equilibrium) under the no-prior conditions law workers with low health are strongly over-insured (they have lower thresholds, $\bar{\varepsilon}^{N P}\left(h_{i}\right)>\bar{\varepsilon}^{S P}\left(h_{i}\right)$ for $i=1,2)$ and workers with very good and excellent health are slightly under-insured. This was the content of Proposition 10, and it is quantitatively responsible for the finding that health expenditures are highest under this policy. The reverse is true under a no-wage discrimination law: low health types are under-insured and high types are over-insured, relative to the social optimum, but quantitatively these differences are minor.

Finally, figures 13 and 14 display aggregate production and aggregate consumption over the life cycle. Since the productivity of each worker depends on her health and on the non-treated fraction of her health

[^18]

Figure 11: Cutoffs

Figure 12: Health Spending
shock, aggregate output is lower, ceteris paribus, under policy configurations that lead to a worse health distribution and that leave a larger share of health shocks ε untreated. From figure 13 we observe that the deterioration of health under a policy environment that includes a wage nondiscrimination policy is especially severe, in line with the findings from figure 10. Interestingly, the more generous health insurance (for those of fair and good health) under a no-prior conditions law alone leads to output that even exceeds that in the unregulated equilibrium, despite the fact that the health distribution under that policy is (moderately) worse. But health expenditures of course command resources that take away from private consumption, and as figure 14 shows, resulting aggregate consumption over the life cycle under this policy is substantively identical to that under the wage discrimination law (and the consumption allocation is more risky under the no-prior conditions legislation). Relative to the unregulated equilibrium both policies thus entail a significant loss of average consumption in society (in one case, because less is produced, in the other case because more resources are spent on productivity enhancing health goods); the same is even more true if both policies are introduced jointly.

Figure 13: Production

Figure 14: Consumption

Overall, the effect on aggregate effort, health, production and thus consumption suggests a quantitatively important trade-off between consumption insurance and incentives. Within the spectrum of all policies, the unregulated equilibrium provides strong incentives at the expense of risky consumption, whereas a policy mix that includes both policies provides full insurance at the expense of a deterioration of the health distribution. The effects of the no-prior conditions law on both consumption insurance and incentives are modest, relative
to the unregulated equilibrium. In contrast, implementing a no wage discrimination law or both policies insures away most of the consumption risk, but significantly reduces (although does not eliminate completely) the incentives to exert effort to lead a healthy life, especially early in the life cycle. In the next subsection we will now document how these two quantitatively sizable but countervailing effects translate into welfare consequences from hypothetical policy reforms.

6.3 Welfare Implications

In this section we quantify the welfare impact of the policy innovations studied in this paper. For a fixed initial distribution $\Phi_{0}(h)$ over health status, ${ }^{35}$ denote by $W(c, e)$ the expected lifetime utility of a cohort member (where expectations are taken prior to the initial draw h of health) from an arbitrary allocation of consumption and effort over the life cycle. ${ }^{36}$ Our consumption-equivalent measure of the welfare consequences of a policy reform is given by

$$
W\left(c^{C E}\left(1+C E V^{i}\right), e^{C E}\right)=W\left(c^{i}, e^{i}\right)
$$

where $i \in\{S P, N P, N W, B o t h\}$ denotes the policy scenario under consideration. Thus $C E V^{i}$ is the percentage reduction of consumption in the competitive equilibrium consumption allocation required to make households indifferent (ex ante) between the competitive equilibrium allocation ${ }^{37}$ and that arising under policy regime i.

In order to emphasize the importance of the dynamic analysis in assessing the normative consequences of different policies we also report the welfare implications of the same policy reforms in the static version of the model in section 3. Similar to the dynamic consequences we compute the static consumption-equivalent loss (relative to the competitive equilibrium) as

$$
U\left(c^{C E}\left(1+S C E V^{i}\right)\right)=U\left(c^{i}\right)
$$

where $U(c)$ is the expected utility from the period 0 consumption allocation ${ }^{38}$, under the cross-sectional distribution Φ_{0}, and thus is determined by the static version of the model. ${ }^{39}$ Therefore $S C E V^{i}$ provides a clean measure of the static gains from better consumption insurance induced by the policies against which the dynamic adverse incentive effects have to be traded off.

The static welfare consequences reported in the first column of Table 1 that isolate the consumption insurance benefits of the policies under consideration are consistent with the consumption dispersion displayed in Figure 6. Perfect consumption insurance, as implemented in the solution to the social planner problem and also achieved if both policies are implemented jointly, are worth close to 6% of unregulated equilibrium consumption. Each policy in isolation delivers a substantial share of these gains, with the no wage discrimination law being more effective than the no-prior conditions law.

[^19]$$
U\left(c^{C E}\right)=U^{C E}\left(\Phi_{0}\right) \text { for } i \in\{S P, N P, N W, \text { Both }\}
$$
and
$$
U\left(c^{C E}\right)=\int U^{C E}(h) d \Phi_{0}
$$

	Static $C E V^{i}$	Dynamic $C E V^{i}$
Social Planner	5.6527	16.4799
Competitive Equilibrium	0.0000	0.0000
No Prior Conditions Law	4.1593	6.9782
No Wage Discrimination Law	5.3486	9.5399
Both Policies	5.6527	8.1656

Table 1: Aggregate Welfare Comparisons

Turning now to the main object of interest, the dynamic welfare consequences (column 2 of Table 1) paint a somewhat different picture. Consistent with the static analysis, both policies improve on the laissez-faire equilibrium, and the welfare gains are substantial, ranging from 6% to 9.5% of lifetime consumption. The sources of these welfare gains are improved consumption insurance (as in the static model) and reduced effort (which bears utility costs), which outweigh the reduction in average consumption these policies entail (recall Figure 14). Furthermore, as in the static model a wage nondiscrimination law dominates a no-prior conditions law. In light of Figures 14 and 6 this does not come as a surprise: both policies imply virtually the same aggregate consumption dynamics, but the no-prior conditions law provides substantially less consumption insurance.

But what we really want to stress is that there are crucial differences to the static analysis. First and foremost, it is not optimal to introduce a no-prior conditions law once a wage non-discrimination law is already in place. The latter policy already provides effective (albeit not complete) consumption insurance, and the further reduction of incentives and associated mean consumption implied by the no prior conditions law makes a combination of both policies suboptimal. The associated welfare losses of pushing social insurance too far amount to about 1.3% of lifetime consumption. ${ }^{40}$ Finally we see that in contrast to the static case the best policy combination (a wage nondiscrimination law alone) does not come close to providing welfare as high as the social optimum: the gap between these two scenarios turns out to about 7% of lifetime consumption. This gap is due to inefficiently little consumption insurance, inefficiently low aggregate consumption and an inefficient health expenditure allocation (see again Figure 11), although the latter effect is quantitatively modest. This effect is however quantitatively crucial in explaining why the noprior conditions law in isolations fares worse than the wage nondiscrimination policies (and a combination of both policies, which restores efficiency in health expenditures, recall proposition 12).

	Fair	Good	Very Good	Excellent
Social Planner	56.5681	13.7796	14.4002	10.5597
Competitive Equilibrium	0.0000	0.0000	0.0000	0.0000
No Prior Conditions Law	36.3452	7.9579	4.2954	0.5892
No Wage Discrimination Law	45.8741	14.4826	6.6942	-1.8221
Both Policies	54.2835	13.2129	5.0420	-4.4532

Table 2: Welfare Comparison in the Dynamic Economy Conditional on Health
The welfare consequences reported in Table 1 were measured under the veil of ignorance, before workers learn their initial health level. They mask very substantial heterogeneity in how workers feel about these policies once their initial health status in period 0 has been revealed. Given the transfers across health types displayed in Figures 7 and 8 and the persistence of health status this is hardly surprising. Table 2 quantifies this heterogeneity by reporting dynamic consumption-equivalent variation measures, computed exactly as before, but now computed after the initial health status has been materialized. Broadly speaking, the lower a worker's initial health status, the more she favors policies providing consumption insurance. For the middle two health groups the ranking of policies coincides with that in the second column of Table 1 ; households with excellent health prefer only the no prior conditions law (and thus only very moderate implicit transfers) to the unregulated equilibrium, whereas young households with fair health would support the simultaneous

[^20]introduction of both policies. The differences in the preference for different policy scenarios across different h-households are quantitatively very large: whereas fair-health types would be willing to pay 54% of laissez faire lifetime consumption to see both policies introduced, households of excellent health would be prepared to give up 4.5% of lifetime consumption to prevent exactly this policy innovation.

7 Conclusion

In this paper, we studied the effect of labor and health insurance market regulations on evolution of health and production, as well as welfare. We showed that both a no-wage discrimination law (an intervention in the labor market), in combination with a no-prior conditions law (an intervention in the health insurance market) provides effective consumption insurance against health shocks, holding the aggregate health distribution in society constant. However, the dynamic incentive costs and their impact on health and medical expenditures of both policies, if implemented jointly, are large. Even though both policies improve upon the laissez-faire equilibrium, implementing them jointly is suboptimal (relative to introducing a wage nondiscrimination in isolation). We therefore conclude that a complete policy analysis of health insurance reforms on one side and labor market (non-discrimination policy) reforms cannot be conducted separately, since their interaction might prove less favorable despite welfare gains from each policy separately.

These conclusions rest in part on our assumption that both policies can be implemented optimally at no direct overhead cost. To us, this assumption seems potentially more problematic for the no-wage discrimination policy than the no-prior conditions policy because match-specificity between a worker and a firm appears to be more important than between a worker and a health insurance company. One can likely implement the no-prior conditions policy through the health insurance exchanges proposed by Obama Care in which a government agency links those seeking health insurance to health insurance providers and thereby overcomes, at low cost, the incentives of the health insurance companies to cherry-pick their clients. However, a similar institution (e.g. something akin to a union hall type institution), is likely to demand higher costs, given the specificity in most worker-firm matches. In addition, the average output produced by a worker-firm pair is much larger than the expenses involved in health insurance (both in our model as well as in the data). ${ }^{41}$

Finally, our analysis of health insurance and incentives over the working life has ignored several potentially important avenues through which health and consumption risk affect welfare. First, the benefits of health in our model are confined to higher labor productivity, and thus we model the investment motives into health explicitly. It has abstracted from an explicit modeling of the benefits better health has on survival risk, although the positive effect of health h on the continuation utility after retirement partially captures this effect in our model, albeit in a fairly reduced from. Similarly, better health might have a direct effect on flow utility during working life. ${ }^{42}$ Finally, in our analysis labor income risk directly translates into consumption risk, in the absence of household private saving. We conjecture that the introduction of self-insurance via precautionary saving against this income risk further weakens the argument in favor of the policies studied in this paper. Future work has to uncover whether such an extension of the model also affects, quantitatively or even qualitatively, our conclusions about the relative desirability of these policies.

[^21]
References

[1] Acemoglu, D. and J. Angrist (2001), "Consequences of Employment Protection? The Case of the Americans with Disabilities Act." Journal of Political Economy, Volume 109, No. 5, 915-957.
[2] Ales, L., R. Hosseini, and L. Jones (2012), "Is There "Too Much" Inequality in Health Spending Across Income Groups?" Working Paper.
[3] Attanasio, O., S. Kitao and G. Violante (2011), "Financing Medicare: A General Equilibrium Analysis," Demography and the Economy (chapter 9), J. Shoven (ed.), University of Chicago Press.
[4] Battacharya, J., K. Bundorf, N. Pace and N. Sood (2009), "Does Health Insurance Make You Fat?," NBER Working Paper 15163.
[5] Brügemann, B. and I. Manovskii (2010), "Fragility: A Quantitative Analysis of the US Health Insurance System," Working paper, University of Pennsylvania
[6] Cawley, J. (2004), "The Impact of Obesity on Wages," Journal of Human Resources, 39(2), 451-474
[7] Currie, J. and B. Madrian (1999), "Health, Health Insurance and the Labor Market." In Handbook of Labor Economics, Volume 3C, edited by David Card and Orley Ashenfelter, Amsterdam: North Holland, 3309-3407.
[8] DeLeire, T. (2001). "Changes in Wage Discrimination against People with Disabilities: 1984-93." Journal of Human Resources, Volume 35, No. 1, 144-158.
[9] M. Dey and C. Flinn (2005), "An Equilibrium Model of Health Insurance Provision and Wage Determination," Econometrica 73, 571-627.
[10] Edwards, R. (2008), "Health Risk and Portfolio Choice," Journal of Business and Economic Statistics, 26, 472-485.
[11] Ehrlich, I. and G. Becker (1972), "Market Insurance, Self-Insurance, and Self-Protection," Journal of Political Economy, 80, 623-648.
[12] Ehrlich, I. and H. Chuma (1990), "A Model of the Demand for Longevity and the Value of Life Extension," Journal of Political Economy, 98, 761-782.
[13] French, E. and J. Jones (2004), "On the Distribution and Dynamics of Health Care Costs," Journal of Applied Economics, 19, 705-721.
[14] Grossman, M. (1972), "On the Concept of Health Capital and the Demand for Health," Journal of Political Economy, 80(2), 223-255.
[15] Hai, R. (2012), "Causes and Consequences of Increasing Inequality in Health Insurance and Wages," Working Paper.
[16] Hall, R. and C. Jones (2007), "The Value of Life and the Rise in Health Spending," Quarterly Journal of Economics, 122(1), 39-72.
[17] Halliday, T., H. He and H. Zhang (2012), "Health Investment over the Life Cycle," Working Paper, University of Hawaii.
[18] Hansen, G., M. Hsu and J. Lee (2012), "Health Insurance Reform: The Impact of a Medicare Buy-In," NBER Working Paper 18529.
[19] Hugonnier, J., F. Pelgrin and P. St-Amour (2012), "Health and (Other) Asset Holdings," Working Paper.
[20] Jeske, K. and S. Kitao (2009), "U.S. Tax Policy and Health Insurance Demand: Can a Regressive Policy Improve Welfare?," Journal of Monetary Economics, 56, 210-221.
[21] Jung, J. and C. Tran (2010), "Health Care Financing over the Life Cycle, Universal Medical Vouchers and Welfare," Working Paper, Towson University.
[22] Kass, N., A. Medley, M. Natowicz, S. Chandros Hull, R. Faden, L. Plantinga and L. Gostin (2007), "Access to Health Insurance: Experiences and Attitudes of Those with Genetic versus Non-genetic Medical Conditions," American Journal of Medical Genetic, 143A, 707-717.
[23] Kopecky, K. and T. Koreshkova (2012), "The Joint Impact of Social Security and Medicaid on Incentives and Welfare," Working Paper.
[24] Laun, T. (2012), "Optimal Social Insurance with Endogenous Health," Working Paper.
[25] Madrian, B. (1994), "Employment-Based Health Insurance and Job Mobility: Is There Evidence of Job-Lock?," Quarterly Journal of Economics, 109, 27-54.
[26] Ozkan, S. (2012), "Income Differences and Health Care Expenditures over the Life Cycle," Working Paper, Federal Reserve Board.
[27] Pashchenko, S. and P. Porapakkarm (2012), "Quantitative Analysis of Health insurance Reform: Separating Regulation from Redistribution," Review of Economic Dynamics, forthcoming.
[28] Pijoan-Mas, J. and V. Rios-Rull (2012), "Heterogeneity in Expected Longevities," Working Paper.
[29] Prados, M. (2012). "Health and Earnings Inequality," Working Paper.
[30] Sommers, A. (2007), "Access to Health Insurance, Barriers to Care, and Service Use among Adults with Disabilities," Inquiry, 43, 393-405.
[31] Yogo, M. (2009), "Portfolio Choice in Retirement: Health Risk and the Demand for Annuities, Housing, and Risky Assets," NBER Working Paper 15307.

A Proofs of Propositions

Proposition 5

Proof. Since exercise does not carry any benefits in the static model, trivially $e^{S P}=0$. Attaching Lagrange multiplier $\mu \geq 0$ to the resource constraint, the first order condition with respect to consumption $c(\varepsilon)$ is

$$
u^{\prime}(c(\varepsilon, h))=\lambda
$$

and thus $c^{S P}(\varepsilon, h)=c^{S P}$ for all $\varepsilon \in E$ and $h \in H$. Thus, not surprisingly, the social planner provides full consumption insurance to households. The optimal health expenditure allocation maximizes this consumption

$$
c^{S P}=\max _{x(\varepsilon, h)} \sum_{h}\left\{g(h)[F(h,-x(0, h))-x(0, h)]+(1-g(h)) \int f(\varepsilon)[F(h, \varepsilon-x(\varepsilon, h))-x(\varepsilon, h)] d \varepsilon\right\} \Phi(h)
$$

Denoting by $\mu(\varepsilon, h) \geq 0$ the Lagrange multiplier on the constraint $x(\varepsilon, h) \geq 0$, the first order condition with respect to $x(\varepsilon, h)$ reads as

$$
-F_{2}(h, \varepsilon-x(\varepsilon, h))+\mu(\varepsilon, h)=1
$$

Fix $h \in H$. By assumption $4 F_{22}(h, y)<0$ and thus either $x(\varepsilon, h)=0$ or $x(\varepsilon, h)>0$ satisfying

$$
-F_{2}(h, \varepsilon-x(\varepsilon, h))=1
$$

for all ε. Thus off corners $\varepsilon-x(\varepsilon, h)=\bar{\varepsilon}^{S P}(h)$ where the threshold satisfies

$$
\begin{equation*}
-F_{2}\left(h, \bar{\varepsilon}^{S P}(h)\right)=1 \tag{43}
\end{equation*}
$$

Consequently

$$
x^{S P}(\varepsilon, h)=\max \left[0, \varepsilon-\bar{\varepsilon}^{S P}(h)\right] .
$$

The fact that $\bar{\varepsilon}^{S P}(h)$ is increasing in h, strictly so if $F_{12}(h, y)>0$, follows directly from assumption 4 and (43).

Proposition 6

Proof. Attaching Lagrange multiplier $\mu(h)$ to equation (11) and $\lambda(h)$ to equations (12) the first order conditions read as

$$
\begin{align*}
u^{\prime}(w(h)-P(h)) & =\lambda(h)=-\mu(h) \tag{44}\\
\lambda(h) F_{2}(h,-x(0, h)) & \leq \mu(h) \tag{45}\\
& =\text { if } x(0, h)>0 \\
\lambda(h) F_{2}(h, \varepsilon-x(\varepsilon, h)) & \leq \mu(h) \tag{46}\\
& =\text { if } x(\varepsilon, h)>0
\end{align*}
$$

Thus off corners we have

$$
\begin{equation*}
F_{2}(h, \hat{\varepsilon}-x(\hat{\varepsilon}, h))=F_{2}(h, \varepsilon-x(\varepsilon, h))=K \tag{47}
\end{equation*}
$$

for some constant K. Thus off corners $\varepsilon-x(\varepsilon, h)$ is constant in ε and thus medical expenditures satisfy the cutoff rule

$$
\begin{equation*}
x^{C E}(\varepsilon, h)=\max \left[0, \varepsilon-\bar{\varepsilon}^{C E}(h)\right] . \tag{48}
\end{equation*}
$$

Plugging (48) into (46) and evaluating it at $\varepsilon=\bar{\varepsilon}^{C E}(h)$ yields

$$
\begin{equation*}
\lambda(h) F_{2}\left(h, \bar{\varepsilon}^{C E}(h)\right)=\mu(h) . \tag{49}
\end{equation*}
$$

Using this result in the second part of (44) delivers the characterization of the equilibrium cutoff levels

$$
F_{2}\left(h, \bar{\varepsilon}^{C E}(h)\right)=-1 \text { for all } h \in H
$$

which are unique, given the assumptions imposed on F. Wages, consumption and health insurance premia then trivially follow from (11) and (12).

Proposition 9

Proof. Let Lagrange multipliers to equations (19) and (20) be μ and $\lambda(h)$, respectively. Then, the first order conditions are:

$$
\begin{aligned}
\sum_{h} u^{\prime}(w(h)-P) \Phi(h) & =\mu \\
u^{\prime}(w(h)-P) \Phi(h) & =\lambda(h) \\
(1-g(h)) f(\varepsilon)\left[-F_{2}(h, \varepsilon-x(\varepsilon, h))\right] \lambda(h) & \leq \mu(1-g(h)) f(\varepsilon) \Phi(h) \\
& =\text { if } x(\varepsilon, h)>0 \\
g(h)\left[-F_{2}(h,-x(0, h))\right] \lambda(h) & \leq \mu g(h) \Phi(h) \\
& =\text { if } x(0, h)>0
\end{aligned}
$$

Thus, off-corners we have

$$
F_{2}(h, \varepsilon-x(\varepsilon, h))=F_{2}(h, \hat{\varepsilon}-x(\hat{\varepsilon}, h))=K
$$

for some constant K and the cutoff rule is determined by

$$
\begin{equation*}
u^{\prime}(w(h)-P)\left[-F_{2}\left(h, \bar{\varepsilon}^{N P}(h)\right)\right]=\sum_{h} u^{\prime}(w(h)-P) \Phi(h) . \tag{50}
\end{equation*}
$$

Moreover, let us take the derivative of (50) with respect to h.

$$
\begin{aligned}
& u^{\prime \prime}(w(h)-P) \frac{\partial w(h)}{\partial h} F_{2}+u^{\prime}(w(h)-P)\left\{F_{12}+F_{22} \frac{\partial \bar{\varepsilon}^{N P}(h)}{\partial h}\right\}=0 \\
& u^{\prime \prime}(w(h)-P) \frac{\partial \bar{\varepsilon}^{N P}(h)}{\partial h} \frac{\partial w(h)}{\partial \bar{\varepsilon}^{N P}(h)} F_{2}+u^{\prime}(w(h)-P)\left\{F_{12}+F_{22} \frac{\partial \bar{\varepsilon}^{N P}(h)}{\partial h}\right\}=0 \\
\Rightarrow & \frac{\partial \bar{\varepsilon}^{N P}(h)}{\partial h}\left\{u^{\prime \prime}(w(h)-P) F_{2} \frac{\partial w(h)}{\partial \bar{\varepsilon}^{N P}(h)}+u^{\prime}(w(h)-P) F_{22}\right\}=-u^{\prime}(w(h)-P) F_{12}
\end{aligned}
$$

Note that as $\bar{\varepsilon}$ increases $w(h)$ decreases, since $F(h, \varepsilon-x(\varepsilon, h))$ is decreasing for $\varepsilon<\bar{\varepsilon}$, and constant for $\varepsilon \geq \bar{\varepsilon}$. Thus, we have

$$
\frac{\partial \bar{\varepsilon}^{N P}(h)}{\partial h}>0 .
$$

Proposition 10

Proof. From (21), we immediately obtain

$$
-F_{2}\left(h, \bar{\varepsilon}^{N P}(h)\right)=\frac{\sum u^{\prime}(w(h)-P) \Phi(h)}{u^{\prime}(w(h)-P)}=\begin{aligned}
& <1 \\
& >1
\end{aligned} \Rightarrow \begin{aligned}
& \bar{\varepsilon}^{N P}(h)<\bar{\varepsilon}^{S P}(h) \\
& \bar{\varepsilon}^{N P}(h)=\bar{\varepsilon}^{S P}(h) \\
& \bar{\varepsilon}^{N P}(h)>\bar{\varepsilon}^{S P}(h)
\end{aligned}
$$

as $-F_{2}\left(h, \bar{\varepsilon}^{S P}(h)\right)=1$.
Let us take $h_{L}<\tilde{h}<h_{H}$, and suppose

$$
\begin{equation*}
-F_{2}\left(h_{L}, \bar{\varepsilon}^{N P}\left(h_{L}\right)\right)>1>-F_{2}\left(h_{H}, \bar{\varepsilon}^{N P}\left(h_{H}\right)\right) \tag{51}
\end{equation*}
$$

i.e.

$$
\begin{aligned}
\bar{\varepsilon}^{N P}\left(h_{H}\right)<\bar{\varepsilon}^{S P}\left(h_{H}\right) & \Rightarrow w^{N P}\left(h_{H}\right)>w^{S P}\left(h_{H}\right) \\
\bar{\varepsilon}^{N P}\left(h_{L}\right)>\bar{\varepsilon}^{S P}\left(h_{L}\right) & \Rightarrow w^{N P}\left(h_{L}\right)<w^{S P}\left(h_{L}\right),
\end{aligned}
$$

where $w^{S P}(h)=g(h) F(h, 0)+(1-g(h)) \int f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon$. Then, we have

$$
u^{\prime N P}\left(c\left(h_{H}\right)-P\right)<u^{\prime S P}\left(c\left(h_{H}\right)-P\right)<u^{\prime S P}\left(c\left(h_{L}\right)-P\right)<u^{\prime N P}\left(c\left(h_{L}\right)-P\right)
$$

where the second inequality follows from (54). This result, in combination with (51) implies

$$
u^{\prime N P}\left(c\left(h_{L}\right)-P\right)\left[-F_{2}\left(h_{L}, \bar{\varepsilon}^{N P}\left(h_{L}\right)\right)\right]>u^{\prime N P}\left(c\left(h_{H}\right)-P\right)\left[-F_{2}\left(h_{H}, \bar{\varepsilon}^{N P}\left(h_{H}\right)\right)\right]
$$

a contradiction to (21).
Proposition 13
Proof. Is by backward induction. Trivially $e_{T}(h)=0$. In period T, since both policies are in place, the wage and health insurance premium of every household is independent of h. Thus

$$
v_{T}(h)=u\left(w_{T}-P_{T}\right)=v_{T}
$$

and therefore the terminal value function is independent of h. Now suppose for a given time period t the value function v_{t+1} is independent of h. Then from the first order condition with respect to $e_{t}(h)$ we have

$$
q^{\prime}\left(e_{t}(h)\right)=\beta v_{t+1} \sum_{h^{\prime}} \frac{\partial Q\left(h^{\prime} ; h, e\right)}{\partial e}
$$

But since for every e and every $h, Q\left(h^{\prime} ; h, e\right)$ is a probability measure over h^{\prime} we have $\sum_{h^{\prime}} \frac{\partial Q\left(h^{\prime} ; h, e\right)}{\partial e}=0$ and thus $e_{t}(h, \gamma)=0$ for all h, on account of our assumptions on $q^{\prime}($.$) . But then$

$$
v_{t}(h)=u\left(w_{t}-P_{t}\right)+\left\{-0+\beta v_{t+1} \sum_{h^{\prime}} Q\left(h^{\prime} ; h, 0\right)\right\}=u\left(w_{t}-P_{t}\right)+\beta v_{t+1}=v_{t}
$$

since $\sum_{h^{\prime}} Q\left(h^{\prime} ; h, 0\right)=1$ for all h. Thus v_{t} is independent of h. The evolution of the health distributions follows from (23), and given these health distributions wages and health insurance premia are given by (39) and (41).

B Further Analysis of the No-Wage Discrimination Case

B. 1 Health Insurance Distortions with No-Wage Discrimination

The firm's break-even condition is

$$
\sum_{h}\left\{g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)\left[F\left(h, \varepsilon-x^{N P}(\varepsilon, h)\right)\right] d \varepsilon-w(h)\right\} \Phi(h)=0
$$

and hence on average the production level of a worker will equal his gross wage. Taking $\varepsilon_{w}>0$ and $\delta>0$ as given, workers for whom the wage limits, $\max _{h, h^{\prime}}\left|w(h)-w\left(h^{\prime}\right)\right| \leq \varepsilon_{w}$, bind will be paid either more or less than their production level depending on whether the wage discrimination bound binds from above or below. The firm will optimally choose to hire less than the population share of any health type h whose wage is above their production level, and hence some of these workers will be unemployed. Since we have assume that there is no cost to working and workers pay for their own insurance, competition over health insurance will lead these workers to increase their health insurance, $x(e, h)$, so that their productivity is within ε_{w} of their wage $w(h)$. In the limit as $\varepsilon_{w} \rightarrow 0$, this implies that

$$
\begin{equation*}
w(h)=g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)\left[F\left(h, \varepsilon-x^{N P}(\varepsilon, h)\right)\right] d \varepsilon, \tag{52}
\end{equation*}
$$

holds and they are fully employed, or $w(h)-P(h)=0$. On the flip side, there will be excess demand for workers whose expected production is more than $w(h)$, they will therefore find it optimal to either lower their insurance, and in the limit as $\varepsilon \rightarrow 0$ either (52) holds they or set $x(e, h)=0$ if they end up at corner with respect to health insurance. Assuming that neither corner binds, this implies that the no-wage discrimination policy will be undone by adjustments in the health insurance market. This motivated our assumption that the government will choose to regulate the health insurance market to prevent this outcome as part of the no-wage discrimination policy.

For health types for which the bounds do not bind, market clearing implies that

$$
w(h)=g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)\left[F\left(h, \varepsilon-x^{N P}(\varepsilon, h)\right)\right] d \varepsilon
$$

while actuarial fairness implies that

$$
\left.P(h)=(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon) x^{N P}(\varepsilon, h)\right) d \varepsilon .
$$

Hence, an efficient health insurance contract for this type will maximize $w(h)-P(h)=w^{C E}(h)-P^{C E}(h)$. Since $w^{C E}(h)-P^{C E}(h)$ is increasing in h, it follows that the wage bound binds for the lowest and highest health types.

B. 2 No-Wage Discrimination with Realized Penalties in Equilibrium

Here we assume that the firm must pay a cost for having wage dispersion conditional on health type or for having the health composition of its work force differ from the population average. The wage variation penalty is assumed to take the form

$$
C \sum_{h}[w(h)-w(0)]^{2} n(h),
$$

since health type 0 will have the lowest wage in equilibrium, and where C is the penalty parameter and $n(h)$ is measure of type h workers the firm hires. Note that with this penalty function the penalty will apply to all workers with health $h>0 .{ }^{43}$ The penalty from having one's composition deviate from the population average is given by

$$
\sum_{h} D\left[\frac{n(h)}{\sum n(h)}-\frac{\Phi(h)}{\sum \Phi(h)}\right]^{2}
$$

Since these penalties are small for small deviations, it will turn out that penalty costs will be realized in equilibrium. Since both of these penalties are real we need to subtract them from production. We will assume that there too the government will regulate the insurance market to prevent workers low health status workers raising their productivity by over-insuring themselves against health risks and high health status workers lowering their productivity by under-insuring themselves.

We begin analyzing this case by assuming that the penalties for wage discrimination C and hiring discrimination D are both finite and then we examine the equilibrium in the limit as they become large. The firm takes as given the health policy of the worker and the equilibrium wage $w(h)$ and chooses the measure of each health type to hire $n(h)$ so as to maximize

$$
\begin{aligned}
& \max _{n(h)} \sum_{h}\left[g(h)[F(h,-x(0, h))-x(0, h)]+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)[F(h, \varepsilon-x(\varepsilon, h))-x(\varepsilon, h)] d \varepsilon-w(h)\right] n(h) \\
& \left.-C \sum_{h}\left[w(h)-w^{*}\right)\right]^{2} n(h)-\sum_{h}\left[\frac{n(h)}{\sum n(h)}-\frac{\Phi(h)}{\sum \Phi(h)}\right]^{2},
\end{aligned}
$$

[^22]where w^{*} is the average wage, this would mean that low productivity workers are more costly and less productive, which will discourage hiring them. Hence, with this form the low productivity workers will only be employed because of the compositional penalty, which means that the hiring penalty must bind at the margin. Hence the less than average productivity workers will be in positive net supply in equilibrium, which will complicate the analysis because some of these workers will be employed and some will not be.
where w^{*} is taken here to mean the lowest wage. Trivially, the firm will want to hire more than the population share of any type h for whom
\[

$$
\begin{aligned}
N(h) \equiv & {\left[g(h)[F(h,-x(0, h))-x(0, h)]+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)[F(h, \varepsilon-x(\varepsilon, h))-x(\varepsilon, h)] d \varepsilon-w(h)\right] } \\
& \left.-C\left[w(h)-w^{*}\right)\right]^{2}
\end{aligned}
$$
\]

is positive and less that the population share if $N(h)$ is negative. Since all firms share this condition, they will all choose the same relative shares of each type of worker. Since workers are willing to work so long as $w(h)-P(h)>0$, it follows that $w(h)$ cannot be more than w^{*} if $N(h)$ is not positive. To see this note that there would be excess supply of type h workers and hence the labor market would not clear. Moreover, a firm would rather hire a worker of type h at $w^{*}-\varepsilon$ than for w^{*} for ε small. Hence, if $w(h)=w^{*}$, then $N(h)=0$ so long as $w^{*}-P(h)>0$. Hence, for the labor market to clear for each health type, either $N(h)=0$ for type h or $N(h)>0$ but $w(h)-P(h)=0$. This implies the following proposition.

Proposition 14 If C and D are positive but finite, and $w(h)-P(h)>0$ for all h, then in equilibrium all households are hired, all firms are representative, and the wage $w(h)$ is equal to a worker's productivity less the cost of paying him.

Since the government can set $x(\varepsilon, h)=0$ which implies that $P(h)=0$, we assume that $w(h)-P(h)>0$ for all health types.

B. 3 Realized Penalties with Both Policies

Since all that workers care about is their net wage $\tilde{w}(h)$, which is also equal to their consumption, it follows that workers are indifferent over contracts that offer combinations of a gross wage $w(h)$ and medical costs $P(h)$ for which $\tilde{w}(h)=w(h)-P(h)$ is constant. Hence, it is natural to assume that the firm takes the equilibrium net wage function $\tilde{w}(h)$ as given and chooses the measure of each health type to hire, $n(h)$, and its health plan, $x(\varepsilon, h)$, to solve the following problem

$$
\begin{aligned}
& \max _{n(h), x(\varepsilon, h)} \sum_{h}\left[g(h)[F(h,-x(0, h))-x(0, h)]+(1-g(h)) \int_{0}^{\bar{\varepsilon}} f(\varepsilon)[F(h, \varepsilon-x(\varepsilon, h))-x(\varepsilon, h)] d \varepsilon-\tilde{w}(h)\right] n(h) \\
& -C \sum_{h}[\tilde{w}(h)-\tilde{w}(0)]^{2} n(h)-\sum_{h} D\left[\frac{n(h)}{\sum n(h)}-\frac{\Phi(h)}{\sum \Phi(h)}\right]^{2} .
\end{aligned}
$$

Proposition 15 If C and D are positive but finite, then in equilibrium all households are hired, all firms are representative, the net wage $\tilde{w}(h)$ is equal to a worker's productivity less the cost of paying him more than $\tilde{w}(0)$, and $\tilde{w}(0)=w^{C E}(0)-P(0)$. The firm optimally sets $x(\varepsilon, h)=x^{C E}(\varepsilon, h)$. As $C \rightarrow \infty, \tilde{w}(h) \rightarrow \tilde{w}(0)$.
Proof. The optimality condition for $x(h, \varepsilon)$ if $\varepsilon=0$ is

$$
F(h,-x(0, h))-1 \leq 0
$$

and if $\varepsilon>0$ is

$$
F(h, \varepsilon-x(\varepsilon, h))-1 \leq 0 \text { w. equality if } x(\varepsilon, h)>0 .
$$

These are the same conditions as in the competitive equilibrium.
Next, we show that $\tilde{w}(h)$ has to be increasing in h and hence $\tilde{w}(0)$ is the lowest paid type. The wage penalty is w.r.t. to the lowest paid worker type, which we denote by w^{*}. Given that optimum insurance is the same as in the competitive equilibrium, it follows that the net earnings per worker is $w^{C E}(h)-P^{C E}(h)-\tilde{w}(h)$, and from before $w^{C E}(h)-P^{C E}(h)$ is increasing in h. Hence, for the firm to break even

$$
\begin{aligned}
& \sum_{h}\left[w^{C E}(h)-P^{C E}(h)-\tilde{w}(h)\right] n(h) \\
-\quad & C \sum_{h}\left[\tilde{w}(h)-w^{*}\right]^{2} n(h)-\sum_{h} D\left[\frac{n(h)}{\sum n(h)}-\frac{\Phi(h)}{\sum \Phi(h)}\right]^{2}=0,
\end{aligned}
$$

and the optimality condition for $n(h)$ is

$$
\begin{aligned}
& {\left[w^{C E}(h)-P^{C E}(h)-\tilde{w}(h)\right]-C\left[\tilde{w}(h)-w^{*}\right]^{2} } \\
-\quad & D\left[\frac{n(h)}{\sum n(h)}-\frac{\Phi(h)}{\sum \Phi(h)}\right]\left[1-\frac{n(h)}{\sum n(h)}\right] \frac{1}{\sum n(h)}=0 .
\end{aligned}
$$

This condition implies that a firm will hire more that the population share of any type h for whom

$$
\tilde{N}(h) \equiv w^{C E}(h)-P^{C E}(h)-\tilde{w}(h)-C\left[\tilde{w}(h)-w^{*}\right]^{2}>0
$$

and less than the population share if the reverse is true. However any health type h that are not fully employed in equilibrium would have excess members who would be happy to be hired any positive wage. Hence, either type h is paid the lowest equilibrium wage or they are fully employed. Hence, any type h for whom $w(h)>w^{*}$ are fully employed. Any type receiving the lowest wage must be fully employed since the firm would be willing to hire more of these workers if we lowered the bottom wage by ε. Since all workers are fully employed, it follows that all firms will choose to be representative to avoid the hiring penalty, and that $\tilde{w}(0)=w^{C E}(0)=w^{*}$ and $\tilde{w}(h)$ is increasing h. Finally, since the marginal penalty for a deviation in a type's net wage from the economy-wide lowest type's wage is given by

$$
-C[\tilde{w}(h)-\tilde{w}(0)]^{2},
$$

and since this cost goes to infinity as $C \rightarrow \infty$ for any positive wage gap, it follows that as C becomes large $\tilde{w}(h) \rightarrow \tilde{w}(0)$, and all of the workers are paid as if they were the lowest health status type and all of their productivity gap is absorbed by the cost of discriminating on wages. Q.E.D.

The fact that the productivity advantage of higher health status individuals is completely absorbed by the discrimination costs means that the society as a whole gets no gain from their productivity advantage. So the health expenditures that raise their productivity above the lowest type are inefficient. In addition, expenditure on the lowest health type relaxes the wage discrimination penalty on other types. So this equilibrium outcome is not socially efficient.

C Wages in the Competitive Equilibrium

To understand the implications of proposition 6 for the behavior of equilibrium wages, note that our results imply that the equilibrium competitive wage is given by

$$
\begin{aligned}
w^{C E}(h)= & g(h) F(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}^{C E}}(h) \\
& f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon \\
& +(1-g(h)) \int_{\bar{\varepsilon}^{C E}(h)}^{\bar{\varepsilon}} f(\varepsilon) F\left(h, \bar{\varepsilon}^{C E}(h)\right) d \varepsilon
\end{aligned}
$$

Hence

$$
\left.\left.\begin{array}{rl}
\frac{d w^{C E}}{d h}= & g^{\prime}(h)\left[\begin{array}{c}
F(h, 0)-\int_{0}^{\bar{\varepsilon}^{C E}}(h) \\
-\int_{\bar{\varepsilon}^{C E}}^{\varepsilon}(h)
\end{array} f(\varepsilon) F(h, \varepsilon-x(\varepsilon, h)) d \varepsilon\right. \\
& \left.+g(h) F_{1}(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}^{C E}}(h)\right) d \varepsilon
\end{array}\right] \quad f(\varepsilon) F_{1}(h, \varepsilon-x(\varepsilon, h)) d \varepsilon\right]
$$

since net effect of the change in the integrand bounds generated by $\frac{d \bar{\varepsilon}^{C E}(h)}{d h}$ is zero. Next note that our optimality condition for $\bar{\varepsilon}^{C E}(h),(17)$, implies that

$$
F_{12}\left(h, \bar{\varepsilon}^{C E}(h)\right) d h+F_{22}\left(h, \bar{\varepsilon}^{C E}(h)\right) d \bar{\varepsilon}^{C E}(h)=0
$$

and hence

$$
\frac{d \bar{\varepsilon}^{C E}(h)}{d h}=\frac{-F_{12}\left(h, \bar{\varepsilon}^{C E}(h)\right)}{F_{22}\left(h, \bar{\varepsilon}^{C E}(h)\right)} .
$$

This result, along with (17), implies that

$$
\begin{align*}
& \left.\left.\frac{d w^{C E}(h)}{d h}=g^{\prime}(h)\left[\begin{array}{c}
F(h, 0)-\int_{0}^{\bar{\varepsilon}^{C E}}(h) \\
-\int_{\bar{\varepsilon}^{C E}}^{\bar{\varepsilon}}(h)
\end{array} f(\varepsilon) F\left(h, \bar{\varepsilon}^{C E}(h)\right) d \varepsilon . x\right)\right) d \varepsilon\right] \tag{53}\\
& +g(h) F_{1}(h, 0)+(1-g(h)) \int_{0}^{\bar{\varepsilon}^{C E}(h)} f(\varepsilon) F_{1}(h, \varepsilon-x(\varepsilon, h)) d \varepsilon \\
& +(1-g(h)) \int_{\bar{\varepsilon}^{C E}(h)}^{\bar{\varepsilon}} f(\varepsilon) F_{1}\left(h, \bar{\varepsilon}^{C E}(h)\right) d \varepsilon \\
& -(1-g(h)) \int_{\bar{\varepsilon}^{C E}(h)}^{\bar{\varepsilon}} f(\varepsilon) F_{2}\left(h, \bar{\varepsilon}^{C E}(h)\right) \frac{F_{12}\left(h, \bar{\varepsilon}^{C E}(h)\right)}{F_{22}\left(h, \bar{\varepsilon}^{C E}(h)\right)} d \varepsilon .
\end{align*}
$$

All of the terms in (53) are trivially positive except the last, which is negative since $F_{22}<0$. However, so long as the spillover ratio F_{12} / F_{22} evaluated at $\left(h, \bar{\varepsilon}^{C E}(h)\right)$ is not too negative then, then wages will vary positive with health status. Note that this is trivially implied if the direct effect of the change in health status offsets the spillover, or

$$
\begin{equation*}
F_{1}\left(h, \bar{\varepsilon}^{C E}(h)\right)-F_{2}\left(h, \bar{\varepsilon}^{C E}(h)\right) \frac{F_{12}\left(h, \bar{\varepsilon}^{C E}(h)\right)}{F_{22}\left(h, \bar{\varepsilon}^{C E}(h)\right)}>0 . \tag{54}
\end{equation*}
$$

Note that this is a condition purely on the fundamentals of the economy since $\bar{\varepsilon}^{C E}(h)$ is given by an (implicit) equation that depends only on exogenous model elements. We summarize our results in the following proposition:

Proposition 16 The competitive wage is increasing in h if (53) is positive.

D Computation of the Social Planner Problem

The idea to solve the problems in (25) is to iterate on sequences $\left\{c_{t}, e_{t}(h), \Phi_{t}(h)\right\}$, using the first order condition (26) for the optimal effort choice and the envelope condition (27). To initialize the iterations, note that

$$
\begin{align*}
V_{T}\left(\Phi_{T}\right) & =u\left(c_{T}\right) \\
\frac{\partial V_{T}\left(\Phi_{T}\right)}{\partial \Phi_{T}(h)} & =u^{\prime}\left(c_{T}\right) \cdot\left[g(h) F(h, 0)+(1-g(h)) \int_{\varepsilon} f(\varepsilon)\left[F\left(h, \varepsilon-x^{S P}(\varepsilon, h)\right)-x^{S P}(\varepsilon, h)\right] d \varepsilon\right] \\
& \equiv u^{\prime}\left(c_{T}\right) \cdot \Psi(h) \tag{55}
\end{align*}
$$

For these expressions we only need to know c_{T}, the term $\Psi(h)$ is just a number that depends on h and is known once we have solved the static insurance problem. This suggests the following algorithm to solve the dynamic social planner problem:

Algorithm 17 1. Guess a sequence $\left\{c_{t}\right\}_{t=0}^{T}$

2. Determine $\frac{\partial V_{T}\left(\Phi_{T}\right)}{\partial \Phi_{T}(h)}$ from (55)
3. Iterate on t to determine $\left\{e_{t}(h)\right\}_{t=0}^{T-1}$
(a) For given $\frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)}$ use (26) to determine $e_{t}(h)$.
(b) Use $c_{t}, e_{t}(h), \frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)}$ and (27) to determine $\frac{\partial V_{t}\left(\Phi_{t}\right)}{\partial \Phi_{t}(h)}$
4. Use the initial distribution Φ_{0} and $\left\{e_{t}(h)\right\}_{t=0}^{T-1}$ to determine $\left\{\Phi_{t}\right\}_{t=0}^{T}$ and thus $\left\{c_{t}^{\text {new }}\right\}_{t=0}^{T}$.
5. If $\left\{c_{t}^{\text {new }}\right\}_{t=0}^{T}=\left\{c_{t}\right\}_{t=0}^{T}$ we are done. If not, set $\left\{c_{t}\right\}_{t=0}^{T}=\left\{c_{t}^{\text {new }}\right\}_{t=0}^{T}$ and go to 1 .

This algorithm is straightforward to implement numerically, since we only have to iterate on the aggregate consumption sequence, not on the sequence of distributions. In particular, the only moderately costly operation comes in step 2a) but even there we only have to solve one nonlinear equation in one unknown (although we have to do it $T * \operatorname{card}(H)$ times per iteration).

E Computation of the Equilibrium with a No-Prior-Conditions Law and/or a No-Wage Discrimination Law

The algorithm to solve this version of the model shares its basic features with that for the social planner problem, but differs in terms of the sequence of variables on which we iterate:

Algorithm 18 1. Guess a sequence ${ }^{44}\left\{E u_{t}^{\prime}, P_{t}\right\}_{t=0}^{T}$.

2. Given the guess use equations (30)-(33) to determine health cutoffs and wages $\left\{\bar{\varepsilon}_{t}^{N P}(h), w_{t}(h)\right\}$.
3. Given $\left\{w_{t}(h), P_{t}\right\}$, solve the household dynamic programming problem (34) for a sequence of optimal effort policies $\left\{e_{t}(h)\right\}_{t=0}^{T}$.
4. From the initial health distribution Φ_{0} use the effort functions $\left\{e_{t}(h)\right\}_{t=0}^{T}$ to derive the sequence of health distributions $\left\{\Phi_{t}\right\}_{t=0}^{T}$ from equation (23).
5. Obtain a new sequence $\left\{E u_{t}^{\text {inew }}, P_{t}^{\text {new }}\right\}_{t=0}^{T}$ from (32) and (33).
6. If $\left\{E u_{t}^{\text {new }}, P_{t}^{\text {new }}\right\}_{t=0}^{T}=\left\{E u_{t}^{\prime}, P_{t}\right\}_{t=0}^{T}$ we are done. If not, go to step 1. with new guess $\left\{E u_{t}^{\text {new }}, P_{t}^{\text {new }}\right\}_{t=0}^{T}$.

The algorithm for no-wage discrimination is a slight modification of that for no-prior conditions. The algorithm iterates over $\left\{E u_{t}^{\prime}, w_{t}\right\}_{t=0}^{T}$. In Step 1 given the guess use equations (36)-(40) to determine health cutoffs and premia $\left\{\bar{\varepsilon}_{t}^{N P}(h), P_{t}(h)\right\}$. In Step 4 obtain a new sequence $\left\{E u_{t}^{\text {new }}, w_{t}^{\text {new }}\right\}_{t=0}^{T}$ from (39) and (38). With both policies, equation (41) replaces (40) in all expressions.

F Details for Data and Calibration

F. 1 Details of the Augmented Model Analysis: Inclusion of the z-shock

We assume that households must incur the cost z, when the z-shock hits. This assumption and the fact that households are risk averse imply that the z-shock will be fully insured in the competitive equilibrium under any policy (and of course by the social planner).

Moreover, we assume that households receiving a z-shock can still work, but that their productivity is only ρ times that of a healthy worker. Therefore, in a competitive equilibrium, the wage of a worker with health status h is given by

$$
w(h)=g(h) F(h, 0)+\rho \kappa(h) F(h, 0)+(1-g(h)-\kappa(h)) \int F(h, \varepsilon-x(\varepsilon, h)) f(\varepsilon) d \varepsilon
$$

and the health insurance premium is determined as

$$
P(h)=(1-g(h)-\kappa(h)) \int x(\varepsilon, h) f(\varepsilon) d \varepsilon+\mu_{z}(h)
$$

Given our assumptions there is no interaction between the z-shocks and the health insurance contract problem associated with the ε-shock since it is prohibitively costly by assumption not to bear the z-expenditures. The

[^23]role of the z-expenditures is to soak up the most extreme health expenditures observed in the data associated with catastrophic illnesses, but to otherwise leave our theory from the previous sections unaffected.

The static analysis goes through completely unchanged in the presence of the z-shocks. In the dynamic analysis the benefits of higher effort e and thus a better health distribution $\Phi_{t}(h)$ now also include a lower probability $\kappa(h)$ of receiving a positive z-shock and a lower mean expenditure $\mu_{z}(h)$ from that shock with better health h. This extension of the model leads to straightforward extensions of the expressions derived in the analysis of the dynamic model in section 4, and does not change any of the theoretical properties derived in sections 3 and 4.

F. 2 Descriptive Statistics of the PSID Data

Before we proceed to descriptive statistics of the PSID data, we summarize, in Table 3, the mapping between variables in our model and data.

Table 3: Mapping between Data and Model

Model	Description	Data	
		PSID Variable	Actual Data Used
x, μ_{z}	Medical Expenditure	Average of total expenditure reported in 1999, 2001, 2003	1997-2002
w	Earning	Average of total labor income reported in 1999, 2001, 2003	1998,2000,2002
h	Health Status	Self-reported Health in 1997	1997

Since our model period is six years, we take average of reported medical expenditure and wages over six year periods that we observe. Moreover, we use health status data from 1997 (rather than 1999) to capture the effect of health on wages and medical expenditure.

Table 4 documents descriptive statistics of key variables from the 1999 PSID data that we use in our analysis.

Table 4: Descriptive Statistics of Key Variables in PSID

	Mean	Std. Dev.	Min	Max
Age	41	10	23	65
Labor Income	30,170	40,573	0	$1,153,588$
\quad if Labor Income >0	32,076	41,097	0.55	$1,153,588$
Excellent	38,755	55,406	0	940,804
Very Good	32,768	40,351	0	$1,153,588$
Good	25,516	25,908	0	384,783
Fair	12,605	13,926	0	81,300
Medical Expenditure	1,513	4,624	0	127,815
Excellent	1,234	2,374	0	28,983
Very Good	1,647	5,812	0	127,815
Good	1,486	4,283	0	93,298
Fair	1,792	4,950	0	65,665
Health Status	2.77	0.95	1	4
Physical Activity: fraction(number) of days in a year				
Light	$0.63(230.99)$	$0.39(142.28)$	0	$1(365)$
Heavy	$0.29(105.69)$	$0.35(126.85)$	0	$1(365)$

In the PSID, each individual (head of household) self-reports his health status in a 1 to 5 scale, where 1 is Excellent, 2, Very Good, 3, Good, 4, Fair, and 5 is Poor. Even with large number of observations, only about 1% of total individuals report their health status to be poor. Thus, for our analysis, we will use four
levels of health status (merge poor and fair together). ${ }^{45}$ Since PSID reports household medical expenditure, we control for family size using modified OECD equivalence scale. ${ }^{46}$

As we model working-age population, each household starts his life as a 24 year old and makes economic decisions until he is 65 years old. Our model time period is 6 years and thus they live for 7 time periods. We choose six year time period to capture the effect of exercises on health transition. Since exercises tend to have positive longer-term effects than do medical expenditure, by allowing for a medium-term time period, we are able to quantify the impact of exercises in a more reliable way.

Data on Health Transitions Table 5 presents the transition matrix of health status over six years. We see that health status is quite persistent.

Table 5: Health Transition over 6 years

	Excellent	Very Good	Good	Fair	Total
Excellent	1,286	904	335	92	2,617
	49.14%	34.54%	12.80%	3.52%	100%
Very Good	482	1,844	1,217	274	3,817
	12.63%	48.31%	31.88%	7.18%	100%
Good	187	712	1,592	637	3,128
	5.98%	22.76%	50.90%	20.36%	100%
Fair	36	109	358	957	1,460
	2.47%	7.47%	24.52%	65.55%	100%
Total	1,991	3,569	3,502	1,960	11,022
	18.06%	32.38%	31.77%	17.78%	100%

Physical Activity Data Here, we report some statistics on physical activity.

- Variation of Physical Activity and Its Impact on Health Transition

Density of light and heavy physical activity levels by health are summarized in Figures 15 and 16. From variations in health evolution by physical activity and initial health status, we find that about 30% of variance in health status in the future is explained by health status today, whereas, light and physical activity explains about 8% and 14%, respectively. Moreover, both initial health status and light (heavy) exercise explains 46% (41%) of variance in future health outcome. ${ }^{47}$

- Physical Activity Over Time

Light physical activity has steadily decreased over time, whereas heavy physical activity decreased for a while, but started increasing in 2005 (Figures 17 and 18).

F. 3 Health Shocks, Distribution of Medical Expenditures, and Discussion of Categorization of Health Shocks

Before going into discussing the medical expenditure distribution in data, we briefly discuss the appropriate counterparts of data moments for our model. In our model, households do not consume medical care when they do not get a health shock (although, they can choose not to spend any in case of health shock, since $\left.x^{*}(h, \varepsilon)=\max \{0, \bar{\varepsilon}(h)\}\right)$. Therefore, in data, we are interested in the distribution of medical expenditure conditional on having gotten any health shocks (which we have some information in PSID).

[^24]$$
\operatorname{var}(Y)=\mathbb{E}(\operatorname{var}(Y \mid X))+\operatorname{var}(\mathbb{E}(Y \mid X)),
$$
where the former is the unexplained and the latter, explained component of the variance.

Figure 15: Density of Light Physical Activity

Figure 17: Light Activity

Figure 18: Heavy Activity

Table 6 summarizes medical expenditure by shock. Note that all numbers reported are yearly average taken over six years (1997-2002).

We see that cancer, heart attack, and heart disease incur the most medical expenditure, and thus we categorize them to be catastrophic shocks (z-shocks). Although the diseases PSID specifically reports information on are those that are common, they are not, by all means, exhaustive of the kind of health diseases that one can be diagnosed with. And this is hinted when we look at the medical expenditure statistics for those who report to have missed work due to illness. The maximum amount of medical expenditure they spend exceeds those of the others, and this might be due to some severe diseases for which they had to be treated.

Therefore, in addition to cancer, heart attack, and heart disease, we categorize those who have spent more than their labor income on medical expenditure as having had a catastrophic (z) health shock. ${ }^{48}$ Those who had a health shock that were not cancer, heart attack, or heart disease, and who spent less than their income on medical expenditure is considered to have had an ε-shock. ${ }^{49}$

Figures 19-22, plot logs of medical expenditure distribution for all population, for those with ANY health shock, those with z-shock, and those with ε-shock. By definition, mean medical expenditure of z-shock households are higher than those of ε-shock, and so are standard deviations.

[^25]Table 6: Average Medical Expenditure by Health Shock Categories

	Obs	Mean	Std. Dev.	Min	Max
All	4,226	1,513	4,624	0	127,815
No Shock	1,419	1,350	4,447	0	101,952
Any Shock	2,807	1,595	4,710	0	127,815
Catastrophic Disease Shock	168	3,745	9,363	0	93,298
Cancer	51	5,210	15,134	0	93,298
Heart Attack	46	3,334	4,705	0	27,161
Heart Disease	94	3,382	5,535	0	38,500
Light Shock	2,767	1,585	4,732	0	127,815
Diabetes	183	2,088	7,196	0	93,298
Stroke	33	2,200	4,905	0	27,161
Arthritis	322	1,684	3,166	0	38,500
Hypertension	566	1,825	6,143	0	93,298
Lung Disease	63	1,705	2,476	0	12,595
Asthma	61	1,135	1,444	0	7,170
Ill	2,351	1,637	5,040	0	127,815
z-shock	297	4,704	12,834	0	127,815
ε-shock	2,510	1,227	2,023	0	32,909

Figure 19: Average Medical Expenditure Distribution

Figure 21: Average Expenditure w/ z-shock

Figure 20: Average Expenditure with Health Shock

Figure 22: Average Expenditure w/ ε-shock

F. 4 Estimation Results

Health Transition Using the functional form described in the main body of the paper, we estimate the health transition function in the following way.

Let set of parameters to be estimated be $\boldsymbol{\theta}=\left\{\left\{G\left(h, h^{\prime}\right)\right\}, \delta, \phi(h), \lambda(h), \alpha_{1}(h), \alpha_{2}(h)\right\}$. We use Generalized Method of Moments to estimate these parameters.

We first determine the exercise intervals and assign each individual initial health status and exercise level bins, k. Using the transition from the data $\mathbb{E}\left(q^{k}\left(h^{\prime}\right)\right)$, we minimize the distance between our estimated transition function and data, i.e.

$$
\boldsymbol{\theta}=\arg \min _{\boldsymbol{\theta}}\left(\frac{1}{K} \sum_{k=1}^{K}\left[Q\left(h_{k}^{\prime} ; \boldsymbol{\theta}\right)-\mathbb{E}\left(q^{k}\left(h^{\prime}\right)\right)\right]\right) \hat{\mathbf{W}}\left(\frac{1}{K} \sum_{k=1}^{K}\left[Q\left(h_{k}^{\prime} ; \boldsymbol{\theta}\right)-\mathbb{E}\left(q^{k}\left(h^{\prime}\right)\right)\right]\right),
$$

where K denotes the total number of groups and $\hat{\mathbf{W}}$, weighting matrix. Here, we use the efficient weighting matrix.

With exercise step size of nine, ${ }^{50}$ we get the following estimated parameter values $(h=1,2,3,4$ corresponds to health being fair, good, very good, and excellent, respectively, i.e. the higher the h the better one's health status.).

$$
\begin{aligned}
\hat{G}\left(h, h^{\prime}\right) & =\left[\begin{array}{llll}
0.8742 & 0.0927 & 0.0230 & 0.0101 \\
0.6597 & 0.2547 & 0.0609 & 0.0249 \\
0.1404 & 0.3949 & 0.3442 & 0.1204 \\
0.0850 & 0.3170 & 0.5406 & 0.0573
\end{array}\right] \\
\delta & =1 \\
\phi & =[2.2796,1.1063,0.5179,8.4123] \\
\lambda & =[0.3308,0.0193,0.5939,0.1878] \\
\alpha_{1} & =[1.3274,12.8747,7.0260] \\
\alpha_{2} & =[0.8035,5.8693]
\end{aligned}
$$

The estimated transition functions are plotted in Figures 23-26. In the figures, the smoothed functions are estimated transition, whereas the straight lines represent the data. We see that our functional form fits the data quite well.

Table 7: Health Shock Probabilities by Health Status

z Observations	Any Health Shock $1-g(h)$	z Shock $\kappa(h)$	ε Shock $1-g(h)-\kappa(h)$	
All	4,226	0.66	0.07	0.59
Fair	458	0.66	0.21	0.45
Good	1,139	0.71	0.07	0.63
Very Good	1,618	0.68	0.05	0.62
Excellent	1,143	0.60	0.03	0.57

Health Shock Probabilities As seen in Table 7, there are about 7% of households who receive z-shocks over six years, and the probabilities are decreasing in health status. However, probability of getting any health shock is not the highest for the Fair health individuals (from Good to Excellent, it is monotone). This might be due to the fact that given that the health status is already bad, probabilities that one would get other minor adverse health shocks (ε shocks in the model) are not very high.

Effect of Health Shock on Productivity In Table 8, we summarize working hours and labor income reported by those with different health shock categories.

[^26]

Figure 23: GMM: Transition of Excellent Health

Figure 25: GMM: Transition of Good Health

Figure 24: GMM: Transition of Very Good Health

Figure 26: GMM: Transition of Fair Health

The six year average hours worked of those with z-shocks are about half that of the ones who did not get any shock (and worked) and they earn about half on average. Therefore, we take $\rho=0.4235$, which is the percentage of labor income earned by those with z-shock, compared to those who have worked and did not experience any health shock (since we denote earnings of those with z-shock as $\rho F(h, 0)$).

Table 8: Hours Worked and Labor Income by Health Shock

		Obs	Mean	Std. Dev.	Min	Max
Hours Worked	All	4,226	1,823	856	0	5,300
	Positive Hours	3,903	1,974	704	7	5,300
	No Shock, Positive Hours	1,259	1,987	781	14	4,732
	z-shock	297	998	1,033	0	3,640
	ε-shock	2,639	1,892	763	0	5,300
Labor Income	All	4,226	30,171	40,573	0	1,153,588
	Positive Hours	3,903	32,362	41,364	0	1,153,588
	No Shock, Positive Hours	1,259	32,606	49,358	0	940,804
	z-shock	297	13,809	25,470	0	253,560
	ε-shock	2,639	31,163	36,883	0	1,153,588

F. 5 Calibration Results

Table 9: Data Targets

	Parameters	Data Targets
Health Status	$\left\{h_{i}\right\}_{i=1,2,3,4}$	$\begin{gathered} \hline \hline \text { Income of } h_{i} \text { relative to } h_{1} \\ \log \frac{w\left(h_{2}\right)}{w\left(h_{1}\right)}=0.2739 \\ \log \frac{w\left(h_{3}\right)}{w\left(h_{1}\right)}=0.4691 \\ \log \frac{w\left(h_{4}\right)}{w\left(h_{1}\right)}=0.5948 \end{gathered}$ Income of Old relative to Young $\log \frac{w(O)}{w(Y)}=0.1114$
Production Function	$A(t, e d u c)$	Income in t of less than HS relative to Income of Young and Fair health $\begin{gathered} t=1,<H S:-0.0042 \\ t=2,<H S: 0.1449 \\ t=3,<H S: 0.1715 \\ t=4,<H S: 0.1980 \\ t=5,<H S: 0.0907 \\ t=6,<H S:-0.0969 \\ t=7,<H S:-0.1112 \end{gathered}$

Income in t of HS Grad relative to Income of Young and Fair health
$t=1, H S: 0.2980$
$t=2, H S: 0.4738$
$t=3, H S: 0.5082$
$t=4, H S: 0.5988$
$t=5, H S: 0.6060$
$t=6, H S: 0.5395$
$t=7, H S: 0.2406$

	$\phi(a, e d u c)$	\% Income spent on Med Exp. by Health $\begin{aligned} & \frac{\mathbb{E}\left(x \mid h_{1}\right)}{\mathbb{E}\left(w \mid h_{1}\right)}=0.0525 \\ & \frac{\mathbb{E}\left(x \mid h_{2}\right)}{\mathbb{E}\left(w \mid h_{2}\right)}=0.0429 \\ & \mathbb{E}\left(x \mid h_{3}\right) \\ & \frac{\mathbb{E}\left(w \mid h_{3}\right)}{[}=0.0353 \\ & \frac{\mathbb{E}\left(x \mid h_{4}\right)}{\mathbb{E}\left(w \mid h_{4}\right)}=0.0308 \end{aligned}$
	$\xi(a, e d u c)$	\% Income on Med Exp. by Education and Age $(a \in\{Y, O\})$ $\begin{aligned} & \frac{\mathbb{E}(x \mid Y,<H S)}{\mathbb{E}(w \mid Y,<H S)}=0.0386 \\ & \mathbb{E}(x \mid Y, H S) \\ & \mathbb{E}(w \mid Y, H S) \end{aligned}=0.0348$

Table 10: Data Targets (continued)

	Parameters	Data Targets
ε-shock Distribution	$\mu, \sigma_{\varepsilon}$	Mean and St.Dev of Agg. Med. Exp. on Light Shocks $\begin{aligned} & \frac{\mathbb{E}(x)}{\mathbb{E}(w)}=0.0362 \\ & \frac{\sigma(x)}{\mathbb{E}(x)}=1.6462 \end{aligned}$
z-shock Distribution	$\mu_{z}(h)$	\% of Income Spent on Catastrophic Shock by Health $\begin{aligned} & \frac{\mathbb{E}\left(z \mid h_{1}\right)}{\mathbb{E}\left(w \mid h_{1}\right)}=0.4664 \\ & \frac{\mathbb{E}\left(z \mid h_{2}\right)}{\mathbb{E}\left(w \mid h_{2}\right)}=0.2234 \\ & \frac{\mathbb{E}\left(z \mid h_{3}\right)}{\mathbb{E}\left(w \mid h_{3}\right)}=0.1520 \\ & \frac{\mathbb{E}\left(z \mid h_{4}\right)}{\mathbb{E}\left(w \mid h_{4}\right)}=0.1261 \end{aligned}$
Exercise Disutility	$\left\{\gamma_{1}(e d u c), \gamma_{2}(e d u c)\right\}$	Mean and St.Dev of Exercise in $t=1$ $\begin{gathered} \mathbb{E}\left(e_{t=1}\right)=0.5735 \\ \sigma^{2}\left(e_{t=1}\right)=0.2828 \end{gathered}$ Measure of Fair and Excellent in $t=7$ $\begin{aligned} & \Phi_{t=T}\left(h_{1}\right)=0.1944 \\ & \Phi_{t=T}\left(h_{4}\right)=0.1618 \\ & \hline \end{aligned}$
Preference Distribution	$p(\gamma \mid e d u c, h)$	$\begin{gathered} \text { Mean Exercise in } t=1 \text { by Health } \\ \mathbb{E}\left(e_{t=1} \mid h_{1}\right)=0.5030 \\ \mathbb{E}\left(e_{t=1} \mid h_{2}\right)=0.5235 \\ \mathbb{E}\left(e_{t=1} \mid h_{3}\right)=0.5950 \\ \mathbb{E}\left(e_{t=1} \mid h_{4}\right)=0.6087 \end{gathered}$ Mean Exercise by Education in $t=1,7$ $\begin{gathered} \mathbb{E}\left(e_{t=1} \mid<H S\right)=0.5303 \\ \mathbb{E}\left(e_{t=1} \mid H S\right)=0.5956 \\ \mathbb{E}\left(e_{t=7} \mid<H S\right)=0.5517 \\ \mathbb{E}\left(e_{t=7} \mid H S\right)=0.6159 \end{gathered}$
Terminal (Marginal) Value	$\left\{\Delta_{2}, \Delta_{3}, \Delta_{4}\right\}$	Exercise in the Last Period by Health $\begin{aligned} & \mathbb{E}\left(e_{t=T} \mid h_{1}\right)=0.4641 \\ & \mathbb{E}\left(e_{t=T} \mid h_{2}\right)=0.6092 \\ & \mathbb{E}\left(e_{t=T} \mid h_{3}\right)=0.6535 \end{aligned}$

Table 11: Calibrated Parameters

Parameters	Description	Value	Statistics	Data	Model
h_{1}	Health Status	0.0740	Relative log Wages in Health and Age	0.2739	0.2897
h_{2}		0.1271		0.4691	0.5215
h_{3}		0.1983		0.5948	0.6191
h_{4}		0.2194		0.1114	0.1066
$A(t=1,<H S)$	Effect of Age, Education on Productivity	1.0472	Relative log Wages in Time and Education	-0.0042	-0.0042
$A(t=2,<H S)$		2.0529		0.1449	0.1438
$A(t=3,<H S)$		2.3091		0.1715	0.1696
$A(t=4,<H S)$		2.6729		0.1980	0.1986
$A(t=5,<H S)$		1.9297		0.0907	0.0908
$A(t=6,<H S)$		0.7790		-0.0969	-0.0966
$A(t=7,<H S)$		0.6939		-0.1112	-0.1126
$A(t=1, H S)$		2.6970		0.2980	0.2919
$A(t=2, H S)$		4.0000		0.4738	0.4175
$A(t=3, H S)$		4.4284		0.5082	0.4371
$A(t=4, H S)$		6.6842		0.5988	0.6241
$A(t=5, H S)$		6.8899		0.6060	0.6314
$A(t=6, H S)$		6.0985		0.5395	0.5547
$A(t=7, H S)$		3.2487		0.2406	0.2433
$\phi(Y,<H S)$	Effect of Med. Exp. on Productivity	0.4727	\% Income on Med.Exp. by Health,Education,Age	0.0525	0.0502
$\phi(O,<H S)$		0.4917		0.0429	0.0432
$\phi(Y, H S)$		0.5435		0.0353	0.0342
$\phi(O, H S)$		0.6326		0.0308	0.0277
$\xi(Y,<H S)$		0.0103		0.0386	0.0392
$\xi(O,<H S)$		0.0050		0.0348	0.0364
$\xi(Y, H S)$		0.0122		0.0428	0.0427
$\xi(O, H S)$		0.0085		0.0356	0.0376
μ_{ε}	Mean of health shock	0.9239	Mean Medical Expenditure	0.0362	0.0405
σ_{ε}	St. Dev. of health shock	0.1048	St.Dev Medical Expenditure	1.6462	2.0163
$\mu_{z}\left(h_{1}\right)$	Mean of z-shock	0.3657		0.4664	0.4753
$\mu_{z}\left(h_{2}\right)$		0.2272	Income spent on	0.2234	0.2211
$\mu_{z}\left(h_{3}\right)$		0.1974	Catastrophic Shock	0.1520	0.1523
$\mu_{z}\left(h_{4}\right)$		0.1799		0.1261	0.1259
$\gamma_{1}(<H S)$	Disutility by Education	0.0024	Mean of Exercise, $t=1$	0.5735	0.5792
$\gamma_{2}(<H S)$		0.0928	St.Dev Exercise, $t=1$	0.2828	0.2761
$\gamma_{1}(H S)$		0.0001	Measure of Fair in $t=T$	0.1944	0.2292
$\gamma_{2}(H S)$		0.0984	Measure of Ex. in $t=T$	0.1618	0.1292
$p\left(\gamma_{1} \mid<H S, h_{1}\right)$	Pop. with γ_{1} by Health,Education	0.0473	Conditional Mean Effort by Health, Education in $t=1,7$	0.5030	0.4961
$p\left(\gamma_{1} \mid<H S, h_{2}\right)$		0.5015		0.5235	0.5201
$p\left(\gamma_{1} \mid<H S, h_{3}\right)$		0.1656		0.5950	0.6095
$p\left(\gamma_{1} \mid<H S, h_{4}\right)$		0.3229		0.6089	0.6165
$p\left(\gamma_{1} \mid H S, h_{1}\right)$		0.0544		0.5303	0.5375
$p\left(\gamma_{1} \mid H S, h_{2}\right)$		0.0712		0.5956	0.5906
$p\left(\gamma_{1} \mid H S, h_{3}\right)$		0.5109		0.5517	0.5511
$p\left(\gamma_{1} \mid H S, h_{4}\right)$		0.4884		0.6159	0.6192
Δ_{2}	Marginal value of health in $t=T$	0.0015	Conditional Mean Effort in $t=T$	0.4641	0.4937
Δ_{3}		2.0313		0.6092	0.6041
Δ_{4}		3.1129		0.6535	0.6761

G Additional Quantitative Results

G. 1 Model Fit

Figures 27-30 represent the model fit for average effort of each health level.

Figure 27: Average Effort: Fair

Figure 29: Average Effort: Very Good

Figure 28: Average Effort: Good

Figure 30: Average Effort: Excellent

G. 2 Policy Implications

Insurance Benefits Tables 12 and 13 present the weighted-averages (across education and exercise preference) of the cross-subsidies by health level under different policy regimes. We measure cross subsidies in premium by the differences between the actuarially fair health premium and premium paid under policies; and cross subsidies in wage by the differences between the aggregate wage and productivity of the worker (of a given health level). As discussed in the main text, the negative cross-subsidy implies that the worker is paying higher premium than the actuarially fair price and/or getting paid less in wages than he produces.

Since under no-prior conditions law, only premium is subsidized, and under no-wage discrimination law, only wage is subsidized, we report cross-subsidies of premium and wages under each law. The second row under each health level reports separately the subsidies of premium and wage, under both policies.

Table 12: Cross-Subsidy by Health Level under Different Policy Regimes: Young

Health	Policy	Prem.	Wage	Prem.	Wage	Prem.	Wage
		0.276	0.285	0.306	0.370	0.290	0.368
	Both Policies	0.141	0.247	0.123	0.319	0.111	0.310
Good	One Policy	0.041	0.107	0.014	0.111	-0.012	0.084
	Both Policies	0.011	0.102	-0.007	0.096	-0.019	0.066
Very Good	One Policy	-0.030	-0.029	-0.0850	-0.138	-0.106	-0.199
	Both Policies	-0.011	-0.026	-0.034	-0.143	-0.045	-0.205
Excellent	One Policy	-0.071	-0.139	-0.114	-0.269	-0.132	-0.338
	Both Policies	-0.033	-0.129	-0.054	-0.266	-0.067	-0.338

Table 13: Cross-Subsidy by Health Level under Different Policy Regimes:Old

Health	Policy	Prem.	Wage	Prem.	Wage	Prem.	Wage	Prem.	Wage
		One Policy	0.352	0.481	0.3402	0.470	0.316	0.411	0.245
0.266									
Fair	Ooth Policies	0.105	0.411	0.103	0.404	0.104	0.353	0.107	0.214
	One Policy	-0.034	0.094	-0.044	0.080	-0.043	0.064	-0.026	0.033
	Both Policies	-0.024	0.073	-0.025	0.066	-0.025	0.058	-0.023	0.035
Very Good	One Policy	-0.151	-0.318	-0.155	-0.333	-0.150	-0.291	-0.121	-0.172
	Both Policies	-0.050	-0.327	-0.052	-0.337	-0.052	-0.288	-0.051	-0.157
Excellent	One Policy	-0.173	-0.505	-0.177	-0.521	-0.173	-0.461	-0.149	-0.291
	Both Policies	-0.073	-0.507	-0.075	-0.519	-0.075	-0.451	-0.074	-0.267

Welfare Implications Tables 14 and 15 present the static and dynamic consumption equivalent variations for each (educ, γ)-groups as well as the aggregates.

	$\left(<\mathrm{HS}, \gamma_{L}\right)$	$\left(<\mathrm{HS}, \gamma_{H}\right)$	$\left(\right.$ HS Grad, $\left.\gamma_{L}\right)$	$\left(\right.$ HS Grad, $\left.\gamma_{H}\right)$	Aggregate
Social Planner	2.6341	8.4298	1.6131	7.5427	5.6527
Competitive Equilibrium	0.0000	0.0000	0.0000	0.0000	0.0000
No Prior Conditions Law	1.9557	7.1836	1.1334	5.2777	4.1593
No Wage Discrimination Law	2.4443	7.4681	1.5778	7.2692	5.3486
Both Policies	2.6341	8.4298	1.6131	7.5427	5.6527

Table 14: Welfare Comparisons in Static Economy

	$\left(<\mathrm{HS}, \gamma_{L}\right)$	$\left(<\mathrm{HS}, \gamma_{H}\right)$	$\left(\right.$ HS Grad, $\left.\gamma_{L}\right)$	$\left(\right.$ HS Grad,$\left.\gamma_{H}\right)$	Aggregate
Social Planner	7.8120	14.4481	17.1213	17.8447	16.4799
Competitive Equilibrium	0.0000	0.0000	0.0000	0.0000	0.0000
No Prior Conditions Law	5.4108	7.7063	5.8094	7.6374	6.9782
No Wage Discrimination Law	6.4213	8.6671	8.7076	10.6941	9.5399
Both Policies	4.9908	6.7668	8.3978	8.8680	8.1656

Table 15: Welfare Comparisons in Dynamic Economy
Moreover, in Table 16 are the lifetime welfare comparisons in the dynamic economy, conditional on health and (educ, γ)-group.

Type	Policy	Fair	Good	Very Good	Excellent
Low Educ, Low γ	Social Planner	45.6618	8.3078	7.3379	2.5327
	Comp. Eq.	0.0000	0.0000	0.0000	0.0000
	No Prior	34.3609	6.9402	3.0803	-0.4095
	No Wage	34.9972	9.7912	3.1518	-3.5944
	Both	46.4916	9.0499	1.0363	-7.0393
Low Educ, High γ	Social Planner	46.4190	9.7199	8.1054	3.1847
	Comp. Eq.	0.0000	0.0000	0.0000	0.0000
	No Prior	31.4642	5.7174	1.7938	-1.5060
	No Wage	33.8613	9.1959	2.4047	-4.2708
	Both	42.5672	6.9865	-1.2339	-9.1102
High Educ, Low γ	Social Planner	69.4954	18.5571	18.0361	14.2185
	Comp. Eq	0.0000	0.0000	0.0000	0.0000
	No Prior	49.3466	13.5551	6.6835	2.3228
	No Wage	66.9188	24.0447	11.2267	1.8703
	Both	78.9321	25.3647	11.2843	0.7706
High Educ, High γ	Social Planner	62.4530	15.3438	13.7657	9.6096
	Comp. Eq.	0.0000	0.0000	0.0000	0.0000
	No Prior	38.6852	8.1877	2.9285	-0.4819
	No Wage	52.4471	15.7693	4.0127	-4.5987
	Both	60.3707	14.3834	1.4297	-8.1014

Table 16: Lifetime Welfare Comparisons in the Dynamic Economy Conditional on Type and Health

H Sensitivity Analysis

H. 1 Robustness of Results with Respect to Age and Gender

The PSID asks questions on ethnicity ${ }^{51}$, and among them, we take those who answered to be of a national origin (47% of the total sample in 1997) to test robustness. We also restrict our sample to males (about 77%) for the second robustness check.

The health transition function and production function related parameters are the key driving forces of our quantitative results. Therefore, we provide evidence for the similarity in health transition and the labor earnings over the life cycle between the total population and the subsamples.

For the health transition function $Q\left(h^{\prime} \mid h, e\right)$, we obtain a measure of differences in the estimated probabilities and the data moments, i.e., $\chi^{2}=\sum_{i=1, N} \frac{q^{\text {data }}\left(h^{\prime \prime}\right)-Q^{e s t}\left(h^{\prime i}\right)}{Q^{e s t}\left(h^{\prime i}\right)}$, where the $q^{\text {data }}\left(h^{\prime i}\right)$ and $Q^{e s t}\left(h^{\prime i}\right)$ are the actual data and the estimated probability of a worker with initial health status h with exercise level $e^{i 52}$ ending up being health status of h^{\prime} in the next period. The χ^{2} value for the health transition is 1.16 and 1.02 for whites and males, where the $\chi_{49,0.05}^{2}{ }^{53}$ is 79 .

Moments Description		All	Whites	Male
	$t=1$	-0.0042	-0.0892	0.0320
	$t=2$	0.1449	0.2026	0.1214
	$t=3$	0.1715	0.2464	0.1653
Income by Age of Less than HS	$t=4$	0.1980	0.2901	0.2091
	$t=5$	0.0907	0.0014	0.0183
	$t=6$	-0.0969	-0.3306	-0.1409
	$t=7$	-0.1112	-0.0970	-0.0742
	$t=1$	0.2980	0.3019	0.2990
	$t=2$	0.4738	0.5867	0.4835
	$t=3$	0.5082	0.6073	0.5522
Income by Age of HS Grad.	$t=4$	0.5988	0.6274	0.6027
	$t=5$	0.6060	0.6500	0.6216
	$t=6$	0.5395	0.5276	0.5366
	$t=7$	0.2406	0.1792	0.3376
	Fair	0.0525	0.0573	0.0482
\% Income Spent on Med. Exp.	Good	0.0429	0.0428	0.0395
	Very Good	0.0353	0.0376	0.0346
	Excellent	0.0308	0.0320	0.0290
\% Income Spent on Med. Exp	Young	0.0386	0.0350	0.0373
by Less than HS	Old	0.0348	0.0357	0.0376
\% Income Spent on Med. Exp.	Young	0.0428	0.0465	0.0495
by HS Grad	Old	0.0356	0.0379	0.0447

Table 17: Moments for the Subsample of Population
With regards to the production function, we provide in Table 17, the data moments associated with the subsamples, in comparison with the full sample. The qualitative features of the moments are similar across different samples: although the absolute numbers for the changes in income over the life-cycle vary in their levels, the gradients over the life cycle are similar. Thus our quantitative results are robust to restricting our samples to white and males.

[^27]
H. 2 Benefits of Effort Not Related to Labor Productivity

So far the only benefit of effort e consisted in probabilistically raising health in the future which in turn impacts positively future wages and health insurance premia. As a result, a combination of both policies reduces optimal effort to zero, unless a health-dependent terminal continuation utility (as in the quantitative version of our model) is introduced. We now briefly argue that our main results do not necessarily hinge on this assumption. Suppose that the net cost of providing effort is given by

$$
\gamma[q(e)-\theta e] .
$$

Our previous specification is a special case with $\theta=0$, and $\gamma \theta$ measures the direct utility benefit from one unit of exercise. In the absence of any other benefits from exercise (say, from higher wages or lower health insurance premia), as in the economy with both laws in place, the optimal effort level $e^{B P}$ now solves

$$
q^{\prime}\left(e^{B P}\right)=\theta
$$

and thus $e^{B P}>0$ if and only if $\theta>0$. Thus for a given function q the parameter θ governs the minimal effort level that each household will provide, and thus a lower bound below which no policy can distort effort levels.

The equations determining optimal effort levels (equation (26) for the social planner problem and equation (29) for the competitive equilibrium under the various policies) with preference shocks γ and direct utility benefits from exercising $\gamma \theta e$ now become

$$
\begin{aligned}
q^{\prime}\left(e_{t}(h)\right) & =\theta+\frac{\beta}{\gamma} \sum_{h^{\prime}} \frac{\partial V_{t+1}\left(\Phi_{t+1}\right)}{\partial \Phi_{t+1}\left(h^{\prime}\right)} \cdot \frac{\partial Q\left(h^{\prime} ; h, e_{t}(h)\right)}{\partial e_{t}(h)} \\
q^{\prime}\left(e_{t}(h)\right) & =\theta+\frac{\beta}{\gamma} \sum_{h^{\prime}} \frac{\partial Q\left(h^{\prime} ; h, e_{t}(h)\right)}{\partial e_{t}(h)} v_{t+1}\left(h^{\prime}\right)
\end{aligned}
$$

and for any given initial health level h, for any preference shock γ and any policy the optimal effort level is simply shifted upwards.

CFS Working Paper Series:

No.	Author(s)	Title
2012/17	Carmen Lee Roman Kräussl Leo Paas	The Effect of Anticipated and Experienced Regret and Pride on Investors' Future Selling Decisions
2012/16	Roman Kräussl Stefan Krause	Has Europe Been Catching Up? An Industry Level Analysis of Venture Capital Success over 1985-2009
2012/15	Robert Wuebker William Schulze Roman Kräussl	Is Venture Capital a Local Business? A Test of the Proximity and Local Network Hypotheses
2012/14	Fabian Bornhorst Ashoka Mody	Test of the German Resilience
2012/13	Adrian Alter Andreas Beyer	The Dynamics of Spillover Effects during the European Sovereign Debt Turmoil
2012/12	John F. Cogan John B. Taylor Volker Wieland Maik Wolters	Fiscal Consolidation Strategy
2012/11	Athanasios Orphanides Volker Wieland	Complexity and Monetary Policy
2012/10	Christopher Carroll Jiri Slacalek Martin Sommer	Dissecting Saving Dynamics: Measuring Wealth, Precautionary, and Credit Effects
2012/09	Marja Liisa Halko Markku Kaustia	Are Risk Preferences Dynamic? Withinsubject Variation in Risk-taking as a Function of Background Music
2012/08	Annamaria Lusardi Olivia S. Mitchell Vilsa Curto	Financial Sophistication in the Older Population

[^0]: * We thank Hanming Fang, lourii Manovskii and participants at EUI, EIEF, the Penn Macro Lunch and the Annual Meeting for Society for Economic Dynamics 2012 for many helpful comments. Krueger gratefully acknowledges _nancial support from the NSF under grant SES-0820494.
 1 University of Pennsylvania and NBER
 2 University of Pennsylvania
 3 University of Pennsylvania, CEPR, CFS, NBER, and Netspar

[^1]: ${ }^{1}$ The ADA sets the federal minimum standard of protection. States may have a more stringent level.
 ${ }^{2}$ Under the ADAAA major life activities now include: caring for oneself, performing manual tasks, seeing, hearing, eating, sleeping, walking, standing, lifting, bending, speaking, breathing, learning, reading, concentrating, thinking, communicating, working, as well as major bodily functions.
 ${ }^{3}$ For example, the Equal Employment Opportunity Commission (EEOC) has ruled that an employee may be asked "how many days were you absent from work?", but not "how many days were you sick?".
 ${ }^{4}$ For example, an employer cannot require a driver's license for a clerking job because it would occasionally be useful to have that employee run errands. Also qualification cannot be such that a reasonable accommodation would allow the employee to perform the task.
 ${ }^{5}$ These accommodations include: a) making existing facilities accessible and usable b) job restructuring c) part-time or modified work schedules d) reassigning a disabled employee to a vacant position e) acquiring or modifying equipment or devices f) providing qualified readers or interpreters.
 ${ }^{6}$ See http://www.healthcare.gov/center/reports/preexisting.html
 ${ }^{7}$ See Kass et al. (2007).
 ${ }^{8}$ See Sommers (2006).

[^2]: ${ }^{9}$ See again http://www.healthcare.gov/center/reports/preexisting.html
 ${ }^{10}$ Both papers also study the impact of compulsary health insurance legislation.

[^3]: ${ }^{11}$ In the quantitative analysis we will introduce a second, fully insured (by assumption) health shock to provide a more accurate map between our model and the health expenditure data.

[^4]: ${ }^{12}$ This is also the approach taken by Hugonnier et al. (2012) and Ehrlich and Chuma (1990).
 ${ }^{13}$ Since we restrict attention to static contracts, whether firm offers contracts before or after the effort is undertaken does not matter.

[^5]: ${ }^{14}$ Note that instead of assuming that firms completely specialize by hiring only a specific health type of workers h we could alternatively consider a market structure in which all firms are representative in terms of hiring workers of health types according to the population distribution and pay workers of different health h differential wages according to the schedule $w^{C E}(h)$. In other words health variation in wages and variation in hired health types h are perfect substitutes at the level of the individual firm in terms of supporting the competitive equilibrium allocation.

[^6]: ${ }^{15}$ Consistent with this restricted purpose, we will assume that the government cannot use health insurance to offset underlying differences in productivity coming from, say, education. This will prove important in the quantitative section.

[^7]: ${ }^{16}$ The delegation method is similar to the structure we assumed in the insurance market since insurance companies were restricted to serving their customers on a first-come-first-serve basis. This assumption to us seems more problematic in the labor market because of the idiosyncratic nature of the benefits to the worker-firm match.

[^8]: ${ }^{17}$ For the purpose of the proposition it does not matter whether $\tilde{h} \in H$ or not.

[^9]: ${ }^{18}$ We assert here that the optimal effort in period t is only a function of the current individual health status h. We will discuss below the assumptions required to make this assertion correct.

[^10]: ${ }^{19}$ Note that

 $$
 \Psi(h)=\left[g(h) F(h, 0)+(1-g(h)) \int_{\varepsilon} f(\varepsilon)\left[F\left(h, \varepsilon-x^{S P}(\varepsilon, h)\right)-x^{S P}(\varepsilon, h)\right] d \varepsilon\right]
 $$

 is exclusively determined by the optimal cut-off rule $\bar{\varepsilon}^{S P}(h)$ for health expenditures, which is independent of c_{t} or Φ_{t}.

[^11]: ${ }^{20}$ Wages still take the form as in (39), but with $x^{B o t h}(\varepsilon, h)$ replacing $x^{N D}(\varepsilon, h)$. Recall from the static analysis that $x^{B o t h}(\varepsilon, h)=x^{S P}(\varepsilon, h)$, that is, the medical expenditure schedule is socially efficient.

[^12]: ${ }^{21}$ It does not matter whether firms/health insurance companies observe a worker's preference parameter γ since they engage only in short-term contracts and since h is observable (γ only affects effort and firms as well as health insurance companies do not care how the individual's health evolves due to the restriction of attention to short-term contracts).
 ${ }^{22}$ In order to obtain a meaningful welfare comparison with socially optimal allocations we also solve the social planner problem separately for each $(\gamma, e d u c)$ combination, therefore ruling out ex ante social insurance against bad initial ($\gamma, e d u c$) draws.

[^13]: ${ }^{23}$ Number of times an individual carries out light physical activity (walking, dancing, gardening, golfing, bowling, etc.) and heavy physical activity (heavy housework, aerobics, running, swimming, or bicycling).
 ${ }^{24}$ These three diseases lead to the most mean medical expenditures, relative to other health conditions reported in the data.

[^14]: ${ }^{25}$ Even though we describe the parameters and calibration targets of the different model elements in separate subsections below for expositional clarity, the parameters for production function and health shock distributions are calibrated jointly, using the targets in these sections. Similarly, the parameters for exercise preference distribution and marginal value of health at terminal date are calibrated jointly, using the observations in both subsections.
 ${ }^{26}$ The categories \{Excellent, Very Good, Good, Fair\} used in the data itself have no cardinal interpretation.
 ${ }^{27}$ Since there is more variation in the data for labor earnings than by health spending by age we decided to use a finer age grouping when estimating $A(t, e d u c)$ using wage data than when estimating $\xi(a, e d u c)$ and $\phi(a, e d u c)$ using health (expenditure) data.
 ${ }^{28}$ They use HRS and AHEAD data. Health care costs include health insurance premia, drug costs and costs for hospital, nursing home care, doctor visits, dental visits and outpatient care.

[^15]: ${ }^{29}$ For Fair and Good health, our model predicts higher exercise level between the ages of 30 and 54 than in the data. This is partly due to a composition effect: in the second period of life, many workers with low disutility for exercise have fair health and exercise a lot, leading to an increase in the average exercise level for the fair health group. One mechanical way of rectifying this problem would be to let the values the taste parameter γ can take on vary with age, reflecting differences in taste for exercise at different stages of life.

[^16]: ${ }^{30}$ Due to the presence of heterogeneity in education levels and preferences the economy as a whole displays non-trivial consumption dispersion even in the presence of both policies (as it does in the solution of the restricted social planner problem).

[^17]: ${ }^{31}$ Table 13 in the appendix shows that households with very good health are also called upon to deliver transfers, albeit of much smaller magnitude, and workers with good health are on the receiving side of (small) transfers. As the cohort ages the share of households in these different health groups shifts, and towards the end of the life cycle the now larger group of households with fair health receives subsidies from all other households, at least with respect to health insurance premia.
 ${ }^{32}$ Recall that, relative to the theoretical analysis, we have introduced a terminal value of health which induces not only effort in the last period even under both policies, but through the continuation values in the dynamic programming problem, positive effort in all periods. How quantitatively important this effect is for younger households depends significantly on the time discount factor β.

[^18]: ${ }^{33}$ In fact, absent the terminal (and policy invariant) direct benefits from better health the differences in effort levels across policies remain fairly constant over the life cycle.
 ${ }^{34}$ The figures are qualitatively similar for older cohorts.

[^19]: ${ }^{35}$ Recall that we carry out our analysis for each (educ, γ)-type separately and report averages across these types. Thus in what follows Φ_{0} suppresses the (policy-independent) dependence of the initial distribution on (educ, γ).
 ${ }^{36}$ That is, using the notation from section 4 , for the socially optimal allocation

 $$
 W\left(c^{S P}, e^{S P}\right)=V\left(\Phi_{0}\right)
 $$

 and for equilibrium allocations, under policy i,

 $$
 W\left(c^{i}, e^{i}\right)=\int v_{0}^{i}(h) d \Phi_{0}
 $$

 ${ }^{37}$ Recall that even the social planner problem is solved for each specific ($\gamma, e d u c$) group separately and thus also does not permit ex-ante insurance against unfavorable ($\gamma, e d u c$)-draws. We consider this restricted social planner problem because we view the results are better comparable to the competitive equilibrium allocations.
 ${ }^{38}$ In the static version of the model effort is identically equal to zero in the social planner problem and in the equilibrium under all policy specifications, and therefore disutility from effort is irrelevant in the static version of the model.
 ${ }^{39}$ Thus, using the notation from section 3

[^20]: ${ }^{40}$ It should be stressed that these conclusions follow under the maintained assumption that a wage nondiscrimination law is indeed fully successful in curbing health-related wage variation, and does so completely costlessly.

[^21]: ${ }^{41}$ To put these potential costs in perspective, from our quantitative results it follows that if as little as 3% of production was consumed in implementing the no-wage discrimination policy (and the no prior conditions policy is cost-free), then it is the latter policy that would constitute the ex ante preferred policy option.
 ${ }^{42}$ As we argue in appendix H at least in one extension of the model introducing a direct flow utility benefit from better health leaves our analysis qualitatively unchanged.

[^22]: ${ }^{43}$ If we have assumed that the form of the penalty was

 $$
 C \int_{h}\left[w(h)-w^{*}\right]^{2} \psi(h) d h
 $$

[^23]: ${ }^{44}$ Instead of $\left\{E u_{t}\right\}$ one could iterate on $\left\{w_{t}(h)\right\}$ which is more transparent, but significantly increases the dimensionality of the problem.

[^24]: ${ }^{45}$ Labor income and medical expenditure data for fair health in Table 4 include poor (5) in data.
 ${ }^{46}$ Each additional adult gets the weight of 0.5 , and each child, 0.3 .
 ${ }^{47}$ From the law of total variance, we know

[^25]: ${ }^{48}$ Categorizing catastrophic health shocks using expenditures as percentage of income is not new. There has been discussion on insuring catastrophic health shocks, and they mostly refer to high amount of expenditure as percentage of income.
 ${ }^{49}$ In PSID sample, median of percentage of labor income spent on medical expenditure is 2%, and the mean, 132%. Only about 5% of households with health shocks spend medical expenditure in excess of their labor income.

[^26]: ${ }^{50}$ The PSID has exercise data from 1999 to 2009 . The total number of observations for 6 year transition is $11,022$.

[^27]: ${ }^{51}$ The exact choices are American (5\%); Hyphenated American (e.g., African-American, Mexican-American) (14\%); National origin (e.g., French, German, Dutch, Iranian, Scots-Irish) (47%); Nonspecific Hispanic identity (e.g., Chicano, Latino) (2%); Racial (e.g., white or Caucasian, black) (29\%) and; 6 Religious (e.g., Jewish, Roman, Catholic, Baptist).
 ${ }^{52}$ We divide the population into five exercise bins, and use them to evaluate the differences, as we do in our estimation procedure. The only difference is that due to the shortage of observations (since we only use half the total sample), instead of nine bins (in the full model), we use five bins.
 ${ }^{53}$ The degrees of freedom is 49 , as the number of observations are $4 \times 4 \times 5$ (Health Today $\times \sharp$ Health Tomorrow $\times \sharp$ Exercise Bins), and the number of parameters, 30 ($80-1-30$). Using the full sample, the χ^{2} value is 0.9986 .

