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Abstract

The deposition of the amyloid �-protein (A�) is one of the pathological hallmarks of Alzheimer’s disease (AD). A�-deposits show the
morphology of senile plaques and cerebral amyloid angiopathy (CAA). Senile plaques and vascular A�-deposits occur first in neocorti-
cal areas. Then, they expand hierarchically into further brain regions. The distribution of A� plaques throughout the entire brain, thereby,
correlates with the clinical status of the patients. Imaging techniques for A� make use of the hierarchical distribution of A� to distin-
guish AD patients from non-AD patients. However, pathology seen in AD patients represents a late stage of a pathological process start-
ing 10–30 years earlier in cognitively normal individuals. In addition to the fibrillar amyloid of senile plaques, oligomeric and monomeric
A� is found in the brain. Recent studies revealed that oligomeric A� is presumably the most toxic A�-aggregate, which interacts with
glutamatergic synapses. In doing so, dendrites are presumed to be the primary target for A�-toxicity. In addition, vascular A�-deposits
can lead to capillary occlusion and blood flow disturbances presumably contributing to the alteration of neurons in addition to the direct
neurotoxic effects of A�. All these findings point to an important role of A� and its aggregates in the neurodegenerative process of AD.
Since there is already significant neuron loss in AD patients, treatment strategies aimed at reducing the amyloid load will presumably
not cure the symptoms of dementia but they may stop disease progression. Therefore, it seems to be necessary to protect the brain
from A�-toxicity already in stages of the disease with minor neuron loss before the onset of cognitive symptoms.
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Introduction

Alzheimer’s disease (AD) is a slowly progressing neurodegenera-
tive disease that leads to dementia [1]. Pathologically, neuron loss
and synapse loss occur and provide a neuropathological correla-
tive for dementia [2–4]. The histopathological hallmarks that char-
acterize AD are senile plaques, neurofibrillary tangles (NFTs) and
neuropil threads (NTs) [1, 5, 6] (Fig. 1).

NFTs and NTs consist of abnormally phosphorylated �-protein
that aggregates to paired-helical filaments forming neurofibrillary

material [7–10]. These aggregates occur in the soma of nerve
cells (NFTs) as well as in neurites (NTs) [1, 7, 8] (Fig. 1). Tangle-
bearing neurons degenerate during a number of years resulting in
neuronal death [8, 11, 12]. The first step in this process is the
occurrence of abnormally phosphorylated �-protein in the cell
soma of nerve cells before aggregation and tangle formation [8].
‘Tombstone’-tangles are NFTs remaining in the neuropil after neu-
ronal death [5].
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Senile plaques (synonymous with amyloid plaques), on the
other hand, are extracellular deposits of amyloid-material in the
neuropil [1, 5]. This amyloid material consists of fibrillar aggre-
gates of amyloid �-protein (A�) (Fig. 1) [13]. A� is a 39–43 amino
acid protein, which is derived from the amyloid precursor protein
(APP) by �- and �-secretase cleavage (Fig. 2A) [14].

Cerebral amyloid angiopathy (CAA), i.e. the deposition of A� in
cerebral blood vessels, is frequently found in AD. Vascular amy-
loid deposits are most frequently found in leptomeningeal and
cortical vessels (Fig. 1H and I) [15, 16].

This review focuses on the role of parenchymal and vascular
A�-deposition for the degeneration of neurons in the AD patient as
well as in mouse models.

The deposition of A�

The deposition of A� in the human brain starts in the neocortex
and then expands hierarchically into further brain regions repre-
senting different phases of A�-deposition (Fig. 2B, Table 1)
[17–19]. These phases of A�-deposition correlate with the expan-
sion of neurofibrillary changes as represented by the Braak stages
(Fig. 2B) [17, 18]. More importantly, the expansion of A�-deposi-
tion into further brain regions also correlates well with the degree
of dementia given by the CDR-score similar to that of neurofibril-
lary tangles as represented by the Braak-stage (Fig. 3A and B)
[17]). A similar hierarchical expansion of vascular A�-deposition
was found [20]. Three stages of CAA can be distinguished 
(Fig. 2B, Table 1) and correlate with the phases of A�-plaque-dep-
osition and the degree of dementia (Fig. 3C) [20]).

Since there is a good correlation between the expansion of A�-
deposition in the brain and dementia it is obvious that the overall
distribution of A�, including diencephalic, brain stem and cerebel-
lar regions, is related to the development of dementia [17, 21, 22].
The amount of A�-deposition in a given cortical or hippocampal
region, i.e. the A�-load or semiquantitative plaque scores obtained
in these regions, does not show significant differences among dif-
ferent degrees of dementia [23–26], between control cases with
high amounts of AD-related pathology and AD cases [27–31] and
among the levels of brain atrophy [32]. However, when comparing
all non-demented cases with AD patients in a sample of 177 eld-
erly autopsy cases between 20 and 99 years of age a significant
difference in the A�-load was observed (Fig. 3D).

The deposition of A� in different areas of the brain results in
the development of different types of A�-deposits, which can be
summarized as amyloid plaques or senile plaques (for review see:
[5, 33, 34]). In spite of region-specific plaque-types the most
important distinction is made between neuritic and non-neuritic
plaques. According to the Consensus criteria of the National
Institute on Aging, and Reagan Institute Working Group on
Diagnostic Criteria for the Neuropathological Assessment of
Alzheimer’s Disease neuritic plaques are those which exhibit A�-
deposits in association with dystrophic neurites containing 

argyrophilic or thioflavin S-positive aggregates, i.e. �-aggregates
[35, 36]. Other authors also include plaques exhibiting APP-posi-
tive dystrophic neurites negative for � into the group of neuritic
plaques [34, 37]. To allow a distinction between these different
types of neuritic plaques with only one being relevant for the diag-
nosis of AD [35] it has been suggested to distinguish APP-type
neuritic plaques without �-aggregates from PHF-type neuritic
plaques [33, 38, 39]. In addition to these morphological variations
the biochemical composition varies among different plaque types
as well [40–44].

All types of A�-deposits are seen in demented as well as in
non-demented patients [18]. For example, diffuse plaque types are
the first to be deposited in the neocortex of non-demented individ-
uals [18, 19, 40, 42, 45, 46]. They also occur in a similar pattern
within the cerebellum and the brain stem when these regions
become newly involved in AD cases [17, 47]. Thus, all types A�-
deposits presumably represent AD-related A�-deposition and do
not represent morphological alterations restricted to normal
aging. Arguments favouring this hypothesis are: 1) there are cases
even in very high ages who have not developed A�-pathology [48]
(Fig. 4A); 2) mouse models overexpressing only APP show a sim-
ilar sequence of A�-deposition as human beings indicating that
the sequence of A�-deposition described in the human brain rep-
resents the course of A�-deposition starting with the first cortical
plaques in non-demented individuals and coming to an end with
the full-blown pattern of A�-deposition in AD cases [33, 49] 
(Fig. 2); and 3) advanced A�-deposition was related to a reduction
of neuronal connectivity in the human brain [50] as well as in ani-
mal models [51, 52].

The current criteria for the diagnosis of AD define AD as
dementia associated with mid – late stage NFT and neuritic plaque
pathology [35]. In these stages, significant neuronal and synaptic
loss is seen as well [4, 53].

APP-presenilin 1 double transgenic mouse models do not
show a similar pattern of A�-deposition as seen in the human
brain or in APP single transgenic mice [54]. The co-expression of
presenilin 1 under control of a HMG-CoA-promoter may explain
the differences reported in the pattern of A�-deposition in these
mice in comparison to the human brain and to mice overexpress-
ing only APP driven by a Thy-1 promoter [33, 54].

Neurotoxicity of A�

Synaptic and neuron loss are features of the pathological picture
in AD cases [2–4]. The use of animal models overexpressing APP
leading to the deposition of A� allowed the confirmation of synap-
tic loss as a potential result from A�-aggregation [55]. Neuron
loss has only been observed in one APP-transgenic mouse model
whereas others did not exhibit this pathology [49, 56]. APP-pre-
senilin 1-double transgenic mice showed similar neuron loss [57].
However, mutant presenilin 1 is not only responsible for A�-pro-
duction but also involved in other neuronal cell death mechanisms
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Fig. 1 (A–C) Senile plaques in the temporal neocortex of AD cases. All layers are occupied by senile plaques, which contain A� as demonstrated by
immunolabelling with an antibody raised against A�17–24 (4G8). In the higher magnification, the fibrillar nature of the A� deposits can be seen (arrows in
B). The ‘needle-like’ appearance characterized even diffuse A�-deposits (arrows in B; [152]). C shows a cored neuritic plaques stained in a combination
of a Gallyas-silver staining for neurofibrillary material (black) and anti-A�8–17 (6F3D) immunohistochemistry (brown). The amyloid core (*) is seen in the
center of the plaques surrounded by a halo of diffuse A�-deposits (arrows). Here dystrophic neurites occur, which contain argyrophilic neurofibrillary
material (arrowheads) indicative for neuritic plaques [35]. Adjacent to the cored neuritic plaques there is a NFT (t). (D, E) NFTs and NTs in the temporal
cortex of an AD case. NFTs are most prominent in the pyramidal cell layers III and V. NFTs and neuropil threads contain fibrillar material detected be the
Gallyas silver methods (D). These fibrils consist of aggregates of abnormally phosphorylated �-protein (E). With the antibody against abnormal �-protein
not only Gallyas-positive fibrils are marked but also non-aggregated abnormal �-protein (E; [8]). (F, G) NFTs (arrows) and NTs (arrowheads) in the subicu-
lum/ CA1 region at the higher magnification level. Both structures are stained with the Gallyas silver method and an antibody directed against abnormal
�-protein (AT-8). The neuron indicated with the open arrow shows accumulation of abnormal �-protein in the pre-tangle status. (H, I) Cerebral amyloid
angiopathy in the parietal cortex of an AD patient. There are A�-deposits in leptomeningeal and cortical vessels (arrows in H). The higher magnification
shows the destruction of the vessel wall by A�-deposits that replace smooth muscle cells of the media (arrows in I). The numbers I–VI indicate the cor-
tical layers in A and D. Calibration bar in I valid for: A � 300 �m; B � 30 �m; C, I � 15 �m; D, H � 150 �m; E � 370 �m; F, G � 50 �m.
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not depending on A�-aggregation [58–60]. Mouse models carry-
ing a presenilin mutation may, therefore, not be ideally suited for
studying A�-induced neurodegeneration.

Despite the lack of neuron loss most APP-transgenic mouse
models showed ‘cognitive symptoms’ [61–63]. Recently, A�-
oligomers have been found in the AD and APP-transgenic mouse
brain [64]. A�-oligomers interact with glutamatergic synapses
[65–67] and inhibit long-term potentiation [68, 69]. The injection
of dodecameric A�-oligomers, i.e. ‘A�*56’ into the brain induced
transient ‘cognitive symptoms’ in the treated animals [70].
However, it is not clear whether such transient ‘clinical’ changes
have a distinct morphological correlative or not. The E693�

Mutation of the APP gene was recently identified in a Japanese
pedigree of AD patients [71]. The mutant A� peptide showed
enhanced oligomerization but no fibrillization [71] arguing in
favour of A�-oligomers as a toxic A� form at least in the brain of
the diseased APP E693� family members.

In APP-transgenic mice neuritic/dendritic degeneration has
been observed in association with amyloid plaques as well as in
the absence of A�-deposits [51, 52, 72–74]. Moreover, there is a
hierarchical vulnerability of different types of neurons to A�-
aggregates similar to that seen in the human brain [51].
Interestingly, those neurons with a prominent dendritic tree are
most susceptible to A�-induced neurodegeneration while those
with only few and small dendrites remained unaffected [51]. The
vulnerability of neurons with a prominent dendritic tree fits with
the concept of dendritic/synaptic alterations by extracellular A�-
oligomers [65–67, 69].

The role of intraneuronal A�, especially A�-oligomers in the
context of neuronal degeneration is not clear. To date it is obvious
that A� is produced by neurons [75, 76] and that it can accumu-
late within neurons [75]. Some of these neurons also showed fea-
tures of synaptic degeneration [77] and contained oligomeric A�-
aggregates [78]. However, A� also occurs in the extracellular space
of APP-transgenic mouse models and the human brain. Thus,
reuptake of A� and/ or A�-oligomers may also explain intracellular
A� and oligomeric A�-aggregates. The occurrence of A� within
multivesicular bodies [77] – multivesicular bodies are formed dur-
ing the maturation from early to late endosomes and, thereby, rep-
resent organelles of the endocytic pathway [79] – also argues in
favour of endocytosis of amyloid or amyloidogenic material.
Moreover, amyloid plaques can also be formed in mice producing
A� by extracellular cleavage of a BRI-A�42 construct [80]. Further
studies are required to clarify the role of intracellular A�.

Contribution of CAA to the 
degeneration of neurons

A total of 80–100% of the AD patients exhibit CAA [16, 81–83] (for
review see: [81, 83, 84]). The overall expansion of CAA is more
advanced in AD cases when compared to non-AD controls and it
correlates with the Braak stages, the phases of A�-deposition, and
the degree of dementia (Figs. 2 and 3) [20, 81, 85].

Fig. 2 Schematic representation of A� generation, aggregation, deposition in the brain and its relation to neuronal changes. (A) A� is the cleavage
product of �- and �-secretase cleavage of the amyloid precursor protein (APP) [14]. It is a 39–43 amino acid protein. A�40 and A�42 are the major
forms [40]. A� forms oligomers [64, 70] and fibrils [13, 86]. It is not clear whether oligomeric A� can form fibrils. However, the hypothesis that a
conformational switch of A� is decisive for either fibril formation or oligomer formation has been supported by a recent study [153]. Fibrillar and
oligomeric A� alter neurons [51, 52, 67, 69, 72–74, 154]. An interaction between A�-oligomers with glutamatergic synapses has been demonstrated
[65–67]. Moreover, neurons with a prominent, highly ramified dendritic tree are more vulnerable than neurons exhibiting only single dendrites indi-
cating a selective vulnerability of different types of neurons depending on the dendritic tree anatomy [51]. Neurons in grey represent degenerated neu-
rons whereas those painted in colour are intact. (B) The hierarchical expansion of A�-deposits throughout the brain follows five phases [17] (areas
marked in red are newly involved in A�-plaque deposition, areas marked in black are not newly involved in A�-plaque pathology but exhibit A�-
plaques): First A�-plaques occur in the neocortex (phase 1). Then they expand into allocortical regions (phase 2), the basal ganglia and the dien-
cephalon (phase 3), and into the midbrain and the medulla oblongata (phase 4). In the fifth and final phase the pons and the cerebellum also exhibit
A�-deposits. The regions of the medial temporal lobe exhibit a similar sequence of A�-plaque deposition in its subfields that strongly correlates with
these phases [17, 18] (Table 1). The expansion of A�-plaque pathology goes along with that of NFTs as indicated by the Braak-stages [19] (Braak-
stages: areas marked in light blue are newly involved in NFT pathology, areas marked in dark blue are not newly involved in NFT pathology but exhibit
NFTs). End stage A�- and NFT-pathology (A�-phase 4, 5; Braak stage V, VI) is associated with the clinical picture of AD whereas early stages (A�-
phase 1–2; Braak stage I-III) of the disease are usually not clinically apparent [17, 125]. Phase 3 and Braak-stage IV are often associated with AD but
are also found in non-demented cases [17]. Parallel with the deposition of A�-plaques and the generation of NFTs CAA develops (CAA-stages: areas
marked in scarab blue are newly involved in vascular A� deposition, areas marked in black are not newly involved in vascular A� pathology but exhibit
CAA). First vascular A�-deposits occur in the first stage of CAA in leptomeningeal and parenchymal vessels of neocortical regions. In the second stage,
allocortical regions, the midbrain and the cerebellum become involved (Table 1). In stage 3, CAA is also seen in the pons, the medulla oblongata, the
basal ganglia and the thalamus [20]. AD cases most frequently exhibit late stage CAA, i.e. CAA-stages 2 and 3 as well (see also Fig. 3C). Animal exper-
iments indicated that the phases of A�-deposition represent a time course of the development of this pathology [33]. Together with the time-depend-
ent degeneration of distinct types of neurons these data strongly suggest that A� triggers the process of AD-related neurodegeneration. This hypoth-
esis is strongly supported by the finding that A�-triggers �-pathology in APP-�-transgenic mice [155, 156] and after injection into the brain of �-sin-
gle transgenic mice [157].
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Pathologically, CAA is characterized by the deposition of A� in
leptomeningeal, cortical and subcortical cerebral vessels [86]. In
addition to arteries and veins capillaries can be affected as well
[87]. The deposition of A� in the vessel wall leads to destruction
of smooth muscle cells in the vessel wall and finally to a fragile
vessel wall [88]. In doing so, rupture of such fragile, CAA-affected
vessels can cause intracerebral hemorrhage [15, 16, 88].

A� deposition in capillaries distinguishes two types of CAA:
CAA-type 1 � CAA with capillary CAA; and CAA-type 2 � CAA
without capillary involvement [89]. Other authors suggested
that capillary involvement represents most severe CAA but not
a distinct type [90]. The strong association of the apolipopro-
tein E (APOE) 	4-allele with the capillary type as well as to the
occurrence of capillary CAA in all stages of parenchymal A�-
deposition [89] argue in favour of distinct types of CAA.
Recently, CAA-induced capillary occlusion has been found to
explain blood flow disturbances in an APP-transgenic mouse

model [91]. Moreover, other authors described functional
deficits in these mice [92] indicating an affection of those thal-
amic nuclei, which exhibit capillary CAA with capillary occlusion
[91]. Imaging studies revealed that hypoperfusion is well known
in the brains of AD patients [93–95]. In the light of these results
CAA-related capillary occlusion is one possible morphological
correlative for hypoperfusion. Ischaemic lesions were usually
not found near capillary occlusions in human and transgenic
mouse brain [91]. However, cerebral infarction is a well-known
complication of CAA [15, 16].

These studies suggest that CAA with capillary occlusion 
contributes to neuronal dysfunction in AD in addition to direct
neurotoxic effects of A�. This conclusion is supported by the pre-
dominant occurrence of capillary CAA (CAA-type 1) in AD cases
[83, 90, 96] (Fig. 5).

Clinical impact of A� and its 
therapeutic possibilities

Since A� plays a key role in the pathogenesis of AD and since A�

is a driving force for neuritic and synaptic degeneration it is a pri-
mary target for therapy. Today, blocking A�-production by �- or
�-secretase inhibition [97–100], and active and passive vaccina-
tion against A� [101–103] appear to be promising strategies.

Inhibitors for the �-secretase often also block Notch-process-
ing and, therefore, go along with severe side effects, i.e. alteration

A: Disease stage at which senile plaques and CAA appear in the differ-
ent regions of the human brain

Brain region Senile plaques CAA

Frontal cortex Phase 1 Stage 1

Parietal cortex Phase 1 Stage 1

Temporal cortex Phase 1 Stage 1

Occipital cortex Phase 1 Stage 1

Hippocampal formation Phase 2 Stage 2

Insular cortex Phase 2 Stage 2

Cingulate cortex Phase 2 Stage 2

Entorhinal cortex Phase 2 Stage 2

Amygdala Phase 2 Stage 2

Hypothalamus Phase 3 Stage 2

Thalamus Phase 3 Stage 3

Basal ganglia Phase 3 Stage 3

Basal forebrain nuclei Phase 3 Stage 3

Midbrain Phase 4 Stage 2

Medulla oblongata Phase 4 Stage 3

Pons Phase 5 Stage 3

Cerebellum Phase 5 Stage 2

B: Disease stage at which senile plaques appear in the different subdi-
visions of the medial temporal lobe

MTL region Senile plaques

Temporal cortex Phase 1

Entorhinal cortex (except pre-
 layer) Phase 2

CA1/ Subiculum Phase 2

Presubicular region Phase 3

Molecular layer of the Fascia Dentata Phase 3

MTL: white matter Phase 3

CA4 Phase 4

Pre-
 layer of the entorhinal cortex Phase 4

Table 1:

The phases of senile plaque deposition indicate in which phase a given
region is involved in A�-plaque pathology [17]. Likewise the stage of
CAA indicates in which stage a given region is involved in CAA [20].
The grey shades indicate the correlating severities of A�-phases and
CAA-stages.

The expansion of A�-deposition in the different subfields of the medial
temporal lobe correlates with that in the entire brain [17]. The table
depicts which medial temporal lobe subfields are involved in which
phase of A�-deposition in the medial temporal lobe [18]. The grey
shades indicate the correlating severities of A�-deposition in the
medial temporal lobe.
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of lymphopoiesis and intestinal cell differentiation [104]. Newly
developed �-secretase inhibitors are sought to block the �-secretase
specific for APP-processing and to avoid Notch-related side
effects [97, 100]. In higher doses �-secretase inhibitors are capa-
ble of promoting carcinogenesis [105]. Absence of BACE-1 in
BACE-1-knockout/ APP-transgenic mice reduced the A�-load in
comparison to APP-transgenic mice with endogenous BACE-1
activity [106–108]. In addition, the �-secretase (BACE-1) function
is also involved in synaptic plasticity and myelination [107, 109,
110]. Thus, so far �- and �-secretase inhibitors are not clinically
proven and the side effects reported for such inhibitors imply a
very careful and critical testing of such drugs in the future.

Non-steroidal anti-inflammatory drugs like ibuprofen and
indomethacin also modulate the �-secretase cleavage of APP
[111]. Although these drugs are well proven and widely used in
rheumatology, their impact for the treatment of AD is controver-
sially discussed [112–116].

Vaccination strategies are successful in APP-transgenic mice
[101–103]. Both, active and passive vaccination, lead to a reduction
of the A�-load and improve the performance of APP-transgenic
mice in cognitive tests [101–103]. Active vaccination has already
been tested in human beings. Although active vaccination leads to
a reduction of A� in the brain [117–119] and to a slower progres-
sion of cognitive decline [120] severe side effects, i.e. aseptic
meningoencephalitis occurred in 6% of the treated patients [121].
There was no evidence so far that A�-vaccination improved cog-
nition of demented patients [122]. The aseptic meningoencephali-
tis after A�-vaccination is a T-cell-mediated inflammatory reaction
induced by the dominant T-cell epitope A�10–24 [123]. The devel-
opment of vaccines sparing such epitopes appears to be very
promising [123]. A further side effect observed after passive
immunization in animal models was an increased frequency of
hemorrhages due to CAA [124]. An option to avoid such side
effects triggered by vascular A�-deposition could be to start with

Fig. 3 Expansion of A�-plaque pathology in the medial temporal lobe (Phase of A�-deposition) [18] (A), NFTs (Braak stage [19]) (B), and CAA (CAA-
stage) [20] (C) in the brain of non-demented and demented patients. The degree of dementia is given by the CDR-score. AD cases (cases with CDR-
scores of 1–3; other causes of dementia were excluded) showed more widely distributed A�-plaques (A; n � 214 cases; Student’s t-test P < 0.001),
NFTs (B; n � 214 cases; Student’s t-test P < 0.001), and CAA (C; n � 67 cases; Student’s t-test P < 0.001) than non-demented cases with CDR-scores
of 0. MCI patients with a CDR-score of 0.5 [158, 159] showed intermediate stages. (D) The A�-load (obtained as described earlier [44]) in the tem-
poral neocortex was also higher in AD cases than in non-demented individuals with a CDR-score of 0 (n � 177 cases; Student’s t-test P < 0.001).
Mean values are presented and the standard deviation is indicated by the bars.
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Fig. 4 (A) The frequency of patients with
A�-deposits increases with age. Only
11% of the patients older than 90 years
of age were free of A�-deposits in a sam-
ple of 506 autopsy cases. Accordingly,
the prevalence of higher phases of A�-
deposition as observed in the medial
temporal lobe [18] also increases with
age. (B) Similar to the deposition of A�

NFTs occur in most individuals older than
90 years. In our sample, there was no
one free of NFTs at this age. The percent-
age of cases with NFTs in cases younger
than 71 years of age was strikingly higher
than that of those with A�-plaques. This
result is in line with previously published
samples [48]. (C) In parallel with the
increasing frequency of A�-deposits and
NFTs in elderly people CAA occurs more
often in advanced ages and the preva-
lence of higher stages increases when
compared with younger age groups. This
is demonstrated in a sample of 88
autopsy cases (reproduced with kind per-
mission from [83]).
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A�-vaccination already in asymptomatic patients without CAA
[122]. In animal models, this therapeutic setting has been shown
to be superior compared with beginning at later stages [102].
Taken together, vaccination strategies appear to be very promising
but this treatment strategy still needs to be successfully tested in
human beings for its therapeutic effects and drug safety.

As already described above, A�-deposits occur not only in AD
patients but also in cognitively normal individuals [19, 45, 46].
The hierarchical expansion of neurofibrillary and A�-pathology
throughout the brain starts with the first senile plaques in the neo-
cortex and the first NFTs in the transentorhinal region, the basal
nucleus of Meynert and the dorsal raphe nucleus in non-demented
individuals [12, 17, 19, 125–127] (Fig. 2B, Table 1). In APP-trans-
genic mice a similar sequence of A�-deposition has been reported
as in the human brain [33] arguing in favour of the hypothesis that
overall A�-deposition in AD is the end stage of a pathological
process starting with the first neocortical plaques. The strong cor-
relation between NFT distribution as represented by the Braak-
stage and the expansion of A�-deposition throughout the brain
further supports this notion [17]. Following this hypothesis, pre-
clinical AD starts in non-demented patients approximately 20–30
years before the onset of dementia [48, 128] without major neu-
ronal loss. In doing so, these patients with the earliest signs of AD
pathology would be the best candidates for a protection from fur-
ther A�-toxicity, e.g. by vaccination.

The identification of such early, asymptomatic stages of AD is
not possible today before autopsy. However, autopsy studies
revealed that initial stages of AD-related pathology prevail in most
individuals older than 60 years of age [48] (Fig. 4). The prevalence
of advanced stages of AD-related pathology increases with age
[48] (Fig. 4). The prevalence of end stage AD-related pathology,
thereby, correlates with the clinical picture of AD (Fig. 3A–C). The
increase of early stages precedes that of end stages by 20–30
years [48, 128]. Extrapolation of the prevalence of AD with

increasing life expectancy predicts a dramatic rise of symptomatic
AD patients in the future (Fig. 4). This demographic prediction
strongly underscores the importance to protect people from AD
whenever applicable before symptoms arise.

Imaging techniques using specific markers, e.g. the brain amy-
loid ligand 11C-labelled Pittsburgh Compound B (PIB), have been
developed to detect A� in the brain [129–131]. These techniques
already allow a good distinction between AD and non-AD patients
[129, 130]. The pattern of A� detected with these imaging meth-
ods is similar to that seen after autopsy [17, 19, 129, 132–134].
However, reagents like PIB are not specific for binding only on A�-
deposits [135]. Other protein aggregates may cross-react with
this dye [135]. Moreover, PIB is a thioflavin S analogue [136] and,
in doing so, does not detect all diffuse A�-deposits that are seen
immunohistochemically [134]. Therefore, today it is not possible
to identify clinically normal patients with A�-plaques with these
imaging techniques in a sensitive and specific manner but one
may expect that such techniques will be improved during the next
years allowing a much more sensitive detection of A�-plaques in
the future even in non-demented individuals.

Genetic effects on A�-deposition are numerous [137, 138].
However, only four genes are widely proven for their influence on
AD pathology: APP, PS1, PS2 and APOE [139–145]. APP, PS1
and PS2 gene mutations are all associated with familial forms of
AD [139, 140, 143–146], whereas the APOE 	4 allele is associ-
ated with sporadic AD and CAA [141, 147–149]. Screening for
APP, PS1 and PS2 mutations can help to detect family members
at risk for AD [146]. For sporadic AD, APOE genotyping is often
determined in demented patients but its diagnostic value is lim-
ited [150]. APOE 	4 carriers develop clinical and neuropatholog-
ical changes of AD usually earlier than non-carriers [150]. Age
and gender, thereby, additionally modify its effects on the neu-
ropathological pattern of neurofibrillary tangle and senile plaque
distribution [151].

Fig. 5 Prevalence of CAA and its sub-
types in AD and age-matched non-
demented control cases. In non-
demented controls, most individuals
were free of CAA (60.4%). Controls with
CAA most frequently exhibited CAA-type
2 lacking capillary involvement (28.2%).
Only 11.4% of the controls showed cap-
illary CAA (CAA-type 1). On the other
hand, capillary CAA (CAA-type 1) was
found in 51% of the AD cases. Only 40%
of the AD cases exhibited CAA-type 2
and 9% were free of CAA. These data
confirm that capillary CAA is frequent in
AD [96].
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Conclusions

The deposition of A� is a slowly progressive process starting in
the neocortex. Further brain regions become involved in a hierar-
chical sequence. The spatial distribution and the expansion of
A�-plaques and CAA are, thereby, correlated. A�-aggregates, i.e.
A�-oligomers and/ or fibrillar A� aggregates induce, on the one
hand, neuritic, especially dendritic degeneration and, on the other
hand, capillary occlusion leading to cerebral blood flow distur-
bances. In doing so, there are two major mechanisms in which
A� alters the brain of AD-patients: neurotoxicity of A�-aggre-
gates and vessel occlusion. Therefore, therapeutic strategies
should not focus only on protecting the neurotoxic effects of A�

but also on the reduction of vascular deposits and an improve-
ment of cerebral blood flow. Most importantly, AD-pathology
starts in non-demented individuals a long time before the onset

of clinical symptoms. Such a long preclinical course of AD is ide-
ally suited for starting protective therapies such as vaccination.
The aim would be the prevention of clinical AD or the prolonga-
tion of the preclinical stage. In the light of the demographically
predictable increase of patients developing AD, it seems to be
better to protect people from getting AD rather than to treat
demented patients with the limitations of an already irrecoverable
altered brain.
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