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1. Introduction

A common approach to gain a better understanding of Yang-Mills theory, in particular the
mechanism of confinement, is to restrict the full path integral to a small subset of gauge field
configurations, which are supposed to be of physical importance. Examples are instanton gas and
liquid models (cf. [1] and references therein), ensembles of regular gauge instantons and merons
[2, 3, 4], the pseudoparticle approach [5, 6, 7, 8], caloronswith non-trivial holonomy [9, 10], and
models based on center vortices (cf. e.g. [11, 12, 13, 14, 15]).

In this paper we apply the pseudoparticle approach to SU(2) Yang-Mills theory and perform a
detailed study of the static potential for various representations.

2. The pseudoparticle approach in SU(2) Yang-Mills theory

The basic idea of the pseudoparticle approach is to approximate the Yang-Mills path integral

〈

O

〉

=
1
Z

∫

DAO[A]e−S[A] , S[A] =
1

4g2

∫

d4xFa
µνFa

µν , (2.1)

whereFa
µν = ∂µAa

ν − ∂νAa
µ + εabcAb

µAc
ν , with a small number of physically relevant degrees of

freedom. To this end, the integration over all gauge field configurations in (2.1) is restricted to a
small subset, which can be written as a linear superpositionof a fixed number of pseudoparticles1:

Aa
µ(x) = ∑

j

A ( j)C ab( j)ab
µ (x−z( j)), (2.2)

where j is the pseudoparticle index andA ( j) ∈ R, C ab( j) ∈ SO(3) andz( j) ∈ R
4 are the ampli-

tude, the color orientation and the position of thej-th pseudoparticle respectively. The functional
integration over all gauge field configurations is defined as the integration over pseudoparticle am-
plitudes and color orientations:

∫

DA . . . =

∫

(

∏
j

dA ( j)dC ( j)

)

. . . (2.3)

For the results presented in this work we have used 625 “long range pseudoparticles”, which
fall off as 1/distance, inside a hypercubic spacetime region (for details regarding this setup cf. [8]):

aa
µ ,inst.(x) =

ηa
µνxν

x2 + λ 2 , aa
µ ,antiinst.(x) =

η̄a
µνxν

x2 + λ 2 , aa
µ ,akyron(x) =

δ a1xµ

x2 + λ 2 . (2.4)

The first two types generate transverse gauge field components and are similar to regular gauge
instantons and antiinstantons, while the third type, the so-called akyron [6], is responsible for
longitudinal gauge field components. We would like to stressthat gauge field configurations (2.2)
are in general not even close to solutions of the classical Yang-Mills equations of motion, i.e. the
pseudoparticle approach is not a semiclassical model. The idea is rather to approximate physically
relevant gauge field configurations by a small number of degrees of freedom.

1In this paper the term pseudoparticle refers to any gauge field configurationaa
µ , which is localized in space and in

time, not only to solutions of the classical Yang-Mills equations of motion.
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3. Casimir scaling and adjoint string breaking

In the following the potential associated with a pair of static color chargesφ (J) and(φ (J))† in
spin-J-representation at separationR is denoted byV(J)(R). In pure Yang-Mills theory there is no
string breaking, when the charges are in the fundamental representation (J = 1/2). For charges in
the adjoint representation (J = 1) the situation is different: gluons are able to screen suchcharges
and the connecting gauge string is expected to break, when the charges are separated adiabatically
beyond a certain distance; a pair of essentially non-interacting gluelumps is formed.

The starting point to extract the static potential in spin-J-representation are “string trial states”

S(J)(x,y)|Ω〉 = (φ (J)(x))†U (J)(x;y)φ (J)(y)|Ω〉 , |x−y| = R, (3.1)

whereU (J) denotes a spatial parallel transporter. We compute temporal correlation functions

C
(J)
string(T) = 〈Ω|

(

S(J)(x,y,T)
)†

S(J)(x,y,0)|Ω〉 ∝
〈

W(J)
(R,T)

〉

(3.2)

and determine the corresponding potential values from their exponential fall-off (for details cf. [8]).

The numerical result for the fundamental potential is shownin Figure 1a (here and in the fol-
lowing we have used the valueg= 12.5 for the coupling constant). It is linear for large separations,
i.e. there is confinement. We set the physical scale by fittingV(1/2)(R) = V0 +σRand by identify-
ing the string tensionσ with σphysical= 4.2/fm2. This amounts to a spacetime region of extension
L4 = (1.85fm)4.

Numerical results for higher representation potentials (J = 1, . . . ,5/2) are shown in Figure 1b.
According to the Casimir scaling hypothesis these potentials are supposed to fulfill

V(1/2)(R) ≈
V(1)(R)

8/3
≈

V(3/2)(R)

5
≈

V(2)(R)

8
≈

V(5/2)(R)

35/3
(3.3)

for intermediate separations. Figure 1c shows that this is the case for the adjoint potential, while
there are slight deviations forJ ≥ 3/2. This is in agreement with what has been observed in 4d
SU(2) lattice gauge theory [16].
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Figure 1: a) The fundamental static potentialV(1/2) as a function of the separationR. b) “Pure Wilson loop
static potentials”V(J) for different representations as functions of the separationR. c) RatiosV(J)/V(1/2) as
functions of the separationR compared to the Casimir scaling expectation.
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Note that there is no sign of string breaking for the adjoint potential even for separations
R>
∼1.6fm. This is, because string trial states have poor overlap to the ground state, which is ex-

pected to resemble a two gluelump state. The solution to overcome this problem is to use a whole
set of trial states containing not only string trial states (3.1), but also “two-gluelump trial states”

∑
j=x,y,z

G j(x)G j(y)|Ω〉 , G j(x) = Tr
(

φ (1)(x)B j(x)
)

, |x−y| = R. (3.4)

We extract the adjoint potential from the corresponding correlation matrices by solving a general-
ized eigenvalue problem and by computing effective masses (for details cf. [8]). Results are shown
in Figure 2a. The potential saturates at around two times themagnetic gluelump mass (which is
≈ 1000MeV atg = 12.5 in this regularization [8]) at separationRsb≈ 1.0fm. This string breaking
distance as well as the observed level ordering (the first excited state is an excited string state for
small separations, then becomes a two gluelump state and finally a string state again, etc.) is in
agreement with results from lattice computations [17, 18].

To investigate, whether the gluonic string really breaks, when two static charges are separated
adiabatically, we perform a mixing analysis. During the computation of effective masses we obtain
approximations of the ground state and the first excited state,

|0〉 ≈ a0
string|string〉+a0

2g-lump|2g-lump〉 , |1〉 ≈ a1
string|string〉+a1

2g-lump|2g-lump〉,(3.5)

where|string〉 and|2g-lump〉 are normalized trial states. The overlaps|a j
...|

2 are shown as functions
of the separation in Figure 2b and 2c. The transition betweenstring and two-gluelump states is
rapid but smooth indicating that string breaking is presentin the pseudoparticle approach.

4. Conclusions and outlook

We have computed static potentials for various representations within the pseudoparticle ap-
proach. While the fundamental static potential is linear for large separations, we clearly observe
string breaking for the adjoint representation. Both the string breaking distanceRsb≈ 1.0fm and
the level ordering are in agreement with lattice results, and a mixing analysis indicates a rapid, but
smooth transition between a string and a two gluelump state,when two static charges are separated

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

V
(1

)  in
 M

e
V

R in fm

a)   string and two-gluelump trial states

second excited state
first excited state

ground state

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

|a
..

.
0
|2

R in fm

b)   overlaps of the ground state approximation

string
two-gluelump

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

|a
..

.
1
|2

R in fm

c)   overlaps of the first excited state approximation

string
two-gluelump

Figure 2: a) The adjoint static potentialV(1) and its first two excitations as functions of the separationR.
b) Overlaps of the ground state approximation to the trial states as functions of the separationR. c) Overlaps
of the first excited state approximation to the trial states as functions of the separationR.
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adiabatically. Moreover, higher representation potentials exhibit Casimir scaling. We conclude
that the pseudoparticle approach is a model, which is able toreproduce many essential features of
SU(2) Yang-Mills theory.

Currently our efforts are focused on applying the pseudoparticle approach to fermionic theo-
ries. First steps in this direction have been successful [19, 20]. Now we intend to consider QCD,
where a cheap computation of exact all-to-all propagators should be possible due to the small num-
ber of degrees of freedom involved. Another appealing possibility is an application to supersym-
metric theories, where an exact realization of supersymmetry might be possible due to translational
invariance present in pseudoparticle ensembles.
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