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We present and compare new types of algorithms for lattice QCD with staggered fermions in the limit
of infinite gauge coupling. These algorithms are formulated on a discrete spatial lattice but with con-
tinuous Euclidean time. They make use of the exact Hamiltonian, with the inverse temperature beta
as the only input parameter. This formulation turns out to be analogous to that of a quantum spin
system. The sign problem is completely absent, at zero and non-zero baryon density. We compare
the performance of a continuous-time worm algorithm and of a Stochastic Series Expansion algorithm
(SSE), which operates on equivalence classes of time-ordered interactions. Finally, we apply the SSE
algorithm to a first exploratory study of two-flavor strong coupling lattice QCD, which is manageable
in the Hamiltonian formulation because the sign problem can be controlled.
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1. Introduction

Lattice QCD with staggered fermions in the strong coupling limit (SC-LQCD) is a useful effective
model of QCD, as it shares important features of QCD such as confinement and spontaneous chiral
symmetry breaking and its restoration at a transition temperature Tc. One can study the nuclear potential
as well as the phase diagram at non-zero baryon chemical potential µB [1]. These topics can not be
properly addressed with conventional, determinant-based lattice QCD using HMC algorithms, due to
the notorious sign problem: all methods available today are limited to µB/T . 1 [2]. In contrast, SC-
LQCD can be reformulated as a monomer-dimer system [3]. There, the sign problem can be made mild
due to a resummation of baryonic and mesonic degrees of freedom [4]. Due to algorithmic developments
over the last decade, in particular due to the application of the Worm algorithm to the monomer-dimer
partition function [5], SC-LQCD - which has been studied via mean field theory [6] and with Metropolis
algorithms [3, 4] since the 1980s - has experienced a revival, as simulations at finite baryon density
could be performed with modest computational demands. Moreover, the chiral limit can be studied very
economically - simulations are faster than with a finite quark mass. However, limitations remain. In
particular, only the 1-flavor (4 tastes) theory has been considered so far in the dimer-formulation. The
physically more interesting case of 2 flavors could not be addressed yet due to a severe sign problem
in the mesonic sector [7]. Here, we propose a Hamiltonian formulation of strong coupling lattice QCD
based on the Euclidean continuous time limit, where further simplifications occur. In particular, we show
that this formulation is a generalization of Hamiltonians for spin systems. It can in principle be extended
to arbitrary Nf. In this paper, we illustrate the formalism and give first Monte Carlo results obtained via
Stochastic Series Expansion for Nf = 2 and U(2) gauge group.

2. The continuous Euclidean time approach

In SC-LQCD, the gauge coupling is sent to infinity and hence the coefficient β = 2Nc/g2 of the plaque-
tte term representing the Yang Mills part FµνFµν of the action is zero. The lattice becomes maximally
coarse, and no continuum limit can be considered. But the gauge fields in the covariant derivative can be
integrated out analytically because the integration factorizes. After the Grassmann integration over the
fermions, one obtains the SC-LQCD partition function [3] in the dimer representation, which is an exact
rewriting of the 1-flavor staggered fermion action on a d +1 dimensional lattice Nd

σ ×Nτ :

S[U,χ, χ̄] = amq ∑
x

χ̄(x)χ(x)+
γ

2 ∑
x

η0(x)
[
χ̄(x)eaτ µU0(x)χ(x+ 0̂)− χ̄(x+ 0̂)e−aτ µU†

0 (x)χ(x)
]

+
1
2 ∑

x

d

∑
i

ηi(x)
[
χ̄(x)Ui(x)χ(x+ î)− χ̄(x+ î)U†

i (x)χ(x)
]

(2.1)

−→ Z(mq,µq) =
′

∑
{k,n,`}

∏
b=(x,µ̂)

(Nc− kb)!
Nc!kb!

γ
2kbδ0̂µ̂ ∏

x

Nc!
nx!

(2amq)
nx ∏

`

w(`),

w(`) = σ(`)γNc ∑x |`0(x)| exp(NcNτr`aτ µ), (2.2)

with mq the quark mass and µ = 1
Nc

µB the quark chemical potential, σ(`) = ±1 a geometry dependent
sign and r(`) the winding number of baryon loop `. The sum ∑

′ is over admissible configurations,
namely those which fulfill the Grassmann constraint

nx + ∑
µ̂=±0̂,...±d̂

(
kµ̂(x)+

Nc

2
|`µ(x)|

)
= Nc ∀x ∈V. (2.3)

Since color degrees of freedom have been integrated out, configurations are defined in terms of mesons
- represented by the monomers nx ∈ {0, . . .Nc} and dimers kµ(x) ∈ {0, . . .Nc} (non-oriented meson hop-
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pings) - and baryons - represented by self-avoiding closed loops constituted by `µ(x) ∈ {−1,0,+1}.1

Here, we consider the chiral limit, mq = 0 where monomers are absent: nx = 0.
In Eq. (2.1) we have introduced an anisotropy γ in the Dirac couplings. This complication is necessary

because the chiral restoration temperature is given by roughly aT ' 1.5, and on an isotropic lattice
with aT = 1/Nτ we could not reach sufficiently high temperatures. Furthermore, varying γ is the only
way to vary the temperature continuously. The temperature is thus aT = f (γ)/Nτ with f (γ) = a/aτ .
However, the functional dependence f (γ) of the ratio of the spatial and temporal lattice spacings on γ is
not known. Naive inspection of the derivatives in Eq. (2.1) would indicate f (γ) = γ , but this only holds
at weak coupling. In contrast, the mean field approximation of SC-QCD based on a 1/d-expansion [6]
suggests that aTc = γ2

c Nτ is the sensible, Nτ -independent identification in leading order in 1/d. We have
emphasized elsewhere [8] by analytic arguments and numerical investigation that this identification is the
only suitable one which renders observables like the chiral susceptibility and the specific heat finite in the
limit Nτ ,γ→∞. However, this limit (keeping γ2

c Nτ fixed) is approached with significant, sometimes non-
monotonic 1/Nτ corrections. To circumvent such extrapolation problems, we consider the continuous
Euclidean time (CT) limit: Nτ → ∞, γ → ∞, with γ2/Nτ ≡ aT fixed. Hence we are left with only one
parameter β ≡ Nτ/γ2 to set the thermal properties, and all discretization errors introduced by a finite Nτ

are removed. Moreover, in the baryonic sector the partition function simplifies greatly: baryons become
static in the CT limit, hence the sign problem is completely absent. Additionally, multiple spatial dimers
ki(x)> 1 become completely suppressed (see [8]) and one can derive the CT partition function:

ZCT(β ,µ) = ∑
k∈2N

(β/2)k
∑

G ′∈Γk

e3µβBv̂NL
L v̂NT

T with k = ∑
b=(x,î)

kb =
NL +NT

2
, NL/T = ∑

x
nL/T (x)

(2.4)
where B is the baryon number, and Γk is the set of equivalence classes G ′ of graphs containing a total
number k of spatial hoppings, equivalent up to time shifts of the vertices. The vertex weights vL = 1
and vT = 2/

√
3 label L- and T-types of vertices as illustrated Fig. 1 (left). An important property of the

partition function Eq. (2.4) is that spatial dimers are distributed uniformly in time. The lengths ∆β of
“dashed” or “solid” time intervals (see Fig. 1 left) are then, according to a Poisson process, exponentially
distributed: P(∆β ) ∝ exp(−λ∆β ), ∆β ∈ [0,β ] with λ the “decay constant” for spatial dimer emission
λ = (2d−∑µ nB(x± µ̂))/4. This is the basis for the continuous time Worm algorithm presented in [8].

3. The 1-flavor Hamiltonian

The Hamiltonian formulation can be obtained from Eq. (2.4) by realizing that the degrees of freedom
can be mapped on a spin system. We can restrict the discussion to the mesonic sector U(Nc), since
baryons are static for Nc > 2. Notice that, except for spatial hoppings, meson lines are time-like and
form dimer chains alternating between keven

0 (~x) ∈ {0, . . .Nc} and kodd
0 (~x) with kodd

0 (~x) = (Nc− keven
0 (~x))

on even and odd time-slices. One can then introduce the observable

Sz(~x, t) =
(−1)x+y+z+t

2
(2k0(~x, t)−Nc) ∈ {−Nc/2, . . .Nc/2} (3.1)

which is constant on static lines. The “spin” Sz simply counts the number of time-like meson hoppings,
and is in no way related to the spin of the quarks. Spatial dimers can then be oriented consistently,
such that for each spatial dimer between a pair of neighboring sites 〈~x,~y〉, one unit of spin ∆Sz = ±1 is
transferred from site~x to site~y. Hence the total spin Sz ≡ Sz(t) = ∑~x∈V Sz(~x, t) is globally conserved.

1Note that U(3) describes a purely mesonic system, while SU(3) contains baryons.
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Figure 1: Left: Typical 2-dimensional configurations in discrete (top)
and continuous time (bottom) at the same temperature, where multiple
dimers are absent and baryons (red) become static. L- and T-vertices
have different weights. Meson lines can be oriented in a consistent
way. Right: Mapping of static mesons (time-like chains) to a “spin”.

In the case of gauge group U(1) (lattice QED in the strong coupling limit), the Hamiltonian is identical
to that of the XY Model in zero field: Ĥ = ∑〈~x,~y〉σ

+σ−, with σ± = σ1± iσ2 the spin raising/lowering
operators constructed from the Pauli matrices. The generalization to U(Nc) reads

Z(β ) = Tr
[
e−β Ĥ

]
, Ĥ =−1

2 ∑
〈~x,~y〉

(
J+~x J−~y +h.c.

)
J+ =


0
v1 0

. . .
. . .
vNc 0

, vk =

√
k(1+Nc− k)

Nc

(3.2)
with J− = (J+)T which are spin lowering/raising operators. The off-diagonal matrix elements vk are
generalized vertex weights. For Nc = 3, we can identify vL ≡ v1 = v3 = 1, vT ≡ v2 = 2/

√
3. Note that

the operators J± reflect the existence of a lowest and highest weight, J−|−Nc/2〉= 0, J+|Nc/2〉= 0, and
fulfill as well the commutation relation Nc

2 [J+,J−] ≡ Jz = diag(−Nc/2, . . .Nc/2) with Jz|Sz〉 = Sz|Sz〉.
This justifies the characterization of static lines in terms of a “spin” quantum number.

4. Stochastic Series Expansion

The partition function Eq. (2.4), which is a sum of weighted diagrams in a perturbative series in β ,
can be sampled via diagrammatic Monte Carlo techniques such as the continuous time worm algorithm
[9] or the Stochastic Series Expansion (SSE) [10]. Here, we restrict to SSE: as we will see, it can be
easily generalized to Nf > 1 once we have constructed the corresponding Hamiltonian. SSE is based on
a rewriting of the partition function by inserting identity and diagonal matrix elements:

Z(β ) = Tr
[
e−β Ĥ

]
= ∑

χ

∑
{SL}

β κ(L−κ)!
L!

〈
χ

∣∣∣∣∣ L

∏
i=1

Ĥai,bi

∣∣∣∣∣χ
〉
, Ĥ1,b = c1, Ĥ2,b =

1
2

(
J+~x J−~y +h.c.

)
(4.1)

where χ is a state vector and SL is a time-ordered sequence of indices: SL = {[a1,b1], [a2,b2], . . . [aL,bL]}
characterizing - together with an initial state χ - a graph in Z(β ). L is the number of operators and
κ < L the order in the expansion in β . The indices ai = 0 correspond to the identity, ai = 1 to the
diagonal matrix element c1, where c can be adjusted in order to simplify the algorithm, and ai = 2 to
non-diagonal matrix elements. The index bi = 〈~x,~y〉 ∈V d denotes a bond on the lattice, and for ai = 0,
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bi = 0 denotes a dummy bond. For any finite volume and given temperature, only a finite number of
orders in β contribute. L can be set to be larger than this number, making SSE approximation-free. The
algorithm consists of two kinds of updates: (1) a Metropolis update changing the order in β :

P([0,0] 7→ [1,b]) =
N3

σ dβ
〈
χ|Ĥ1,b|χ

〉
L−κ

, P([1,b] 7→ [0,0]) =
L−κ +1

N3
σ dβ

〈
χ|Ĥ1,b|χ

〉 , (4.2)

and (2) the operator loop update, visiting a set of bonds in succession, starting from an input leg and de-
termining the output leg with heatbath probability ∝

〈
χ(x)χ(y)|Ĥaibi |χ ′(x)χ ′(y)

〉
. In Fig. 2 we compare

different observables obtained from SSE and/or CT-Worm. We want to stress that a new observable, the
spin susceptibility χS =

β

V

〈
(∑i Sz

i )
2
〉
, is also sensitive to the chiral transition. It measures the fluctuations

in the number of time-like mesons, and is thus analogous (but not equal) to the specific heat.
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Figure 2: Observables in 1-flavor U(3): (top row) energy density and susceptibility measured with CT-
worm and SSE agree; (bottom left) spin susceptibility measured with SSE; (bottom right) chiral suscep-
tibility measured with CT-Worm.

5. The 2-flavor formulation and first results for U(2) gauge group

In the strong coupling limit, only one of the four tastes of staggered fermions remains light, since taste
splitting is maximal. It was argued in [1] that the nuclear interaction in 1-flavor SC-LQCD is due to
entropic forces: the presence of static baryons modifies the pion bath, with the modulation proportional
to the ρ-propagator. However, with 1 flavor pion exchange cannot not occur, because mesons do not
couple to baryons. Pion exchange can only be studied by going to Nf > 1. But no 2-flavor formulation
of staggered SC-QCD suitable for finite-density Monte Carlo exists, as already the mesonic sector has
a severe sign problem [7]. After reviewing the problems with the conventional dimer representation of
SC-QCD, we derive a sign-problem-free Hamiltonian formulation in continuous Euclidean time.

The 1-link integrals which appear in the strong coupling limit can be expressed in terms of the gauge-
invariant terms [11]. For SU(2) and U(2), the 1-link integals (valid for any Nf) are

zSU(2)(x,y) =
∞

∑
n=0

(X +∆)n

n!(n+1)!
, zU(2)(x,y) =

∞

∑
i, j=0

X i +Z j

(i+2 j+1)!i!( j!)2 (5.1)
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u u( x )uu ( y ) d d ( x)d d ( y ) u d (x )d u( y) d u (x )u d ( y)

u d (x )u u( y )
d u (x )d d ( y )

u u( x )ud ( y )
d d ( x)d u ( y )

O (γ
2
):

O (γ
4
):

unflavored mesons flavored mesons

mixed mesons

negative weight: -1/2positive weight: 1/4

π
+ π-

UD+π+π-+α+β

βα

U D

Figure 3: Left: definition of unflavored, flavored, and mixed dimers. Right: 2x2 sample configurations
with positive and negative weight.

with X = tr(mm†)=U+D+π++π− the sum of Nf = 2 unflavored (U=ūu and D=d̄d) and Nf(Nf−1)= 2
flavored mesons, ∆ = det(m)+det(m†) the diquark+anti-diquark term, and Z = det(mm†) = X2−UD−
π+π−+α + β a mesonic term. Here, α = ūdxd̄uxūuyd̄dy and β = ūuxd̄dxūdyd̄uy are the potentially
problematic contributions, which correspond to the mixing of UD and π+π− dimer pairs (obtained via
non-trivial Wick-contractions), as illustrated Fig. 3. In particular, if a configuration contains an odd
number of α or β links, according to the Grassmann constraint (see [7]) the configuration has a negative
sign. The essential feature of the continuous Euclidean time formulation is that multiple spatial dimers,
and hence also α and β spatial dimers, are suppressed. They can only enter in static lines, where they
can be resummed with other static lines so that the sign problem disappears completely. Combining
time-like dimers of alternating orders is analogous to the procedure discussed in the Nf = 1 case [8]:
Chains of alternating orders O(γ2k)×O(γ2NcNf−2k) are resummed in a way consistent with the constraint
Eq. (2.3). This gives rise to new conserved quantum numbers: the spin is now composed of Nf separate
spins Sz = ∑

Nf
f=1 Sz

f ∈ {−NfNc/2, . . .NfNc/2}, with Sz
f ∈ {−Nc/2, . . .Nc/2} each being conserved, and

we also get Nf(Nf−1)/2 charges Qi ∈ {−Nc, . . . ,+Nc}. In the specific case of two flavors ( f =U,D and
Q1 = Q±π ), the spins SU ,SD can be replaced by Sz and QI = Sz

U − Sz
D ∈ {−Nc, . . . ,+Nc} which may be

viewed as isospin. Here, we find in total 19 types of states, as illustrated in Fig. 4.2 The state vector and
the transition rules at spatial dimers are given by

χ =
⊗
~x∈V

∣∣∣{Sz
f (~x)} f=1,...Nf ,{Qi(~x)}i=1,...Nf(Nf−1)/2

〉
, |∆Sz|= 1 and ∑

i
|∆Qi| ∈ {0,1}. (5.2)

The Hamiltonian for Nf = 2 is now a sum of four contributions, implementing these transition rules:

Ĥ =
1
2 ∑
〈~x,~y〉

(
J+U(~x)J

−
U(~y)+ J+D(~x)J

−
D(~y)+ J+

π+(~x)J
−
π+(~y)+ J+

π−(~x)J
−
π−(~y)+h.c.

)
(5.3)

∣−2,0 〉
∣−1,π+ 〉

∣−1,π -〉

∣−1,U 〉

∣−1,D 〉

∣+1,π+ 〉

∣+1,π - 〉

∣+1,U 〉

∣+1,D 〉

∣0,0 〉 ∣+2,0 〉

∣0, 2U 〉

∣0,2 π
+ 〉

∣0,2 π
- 〉

∣0,2D 〉

∣0,U π
+ 〉

∣0,U π
-〉

∣0,D π
+ 〉

∣0,D π
- 〉

Figure 4: Classification of all
static lines for U(2) based on
“spin” quantum number and
particle content. Each static
line consists of two arrows,
dashed arrows denoting spin,
curly arrows denoting flavor-
neutral mesons content, and
solid arrows denoting charged
mesons.

2For SU(2) we also have 3 kinds of diquarks, uu, dd and ud, which are not suppressed in the CT-limit. To avoid this
complication, for Nc = 2 we restrict to U(2). For Nc = 3 this restriction is not necessary.
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The absorption J+πi
, and emission J−πi

operators can be represented as 19× 19 lower left/upper right
triangular matrices, where the entries are again given by vertex weights: vπ̂i =

1√
2

if states with S = 0
and |Q| = 1 are connected to the vertex, vπi = 1 otherwise. This Hamiltonian can be used in the SSE
algorithm to obtain results on the chiral phase transition. Our preliminary Nf = 2 results are compared
to mean field predictions in Tab. 1.

Nc Nf = 1 Nf = 2
1 3/2 [1.102(1)] 5/5 [0.77(1)]
2 4/2 [1.467(1)] 6/5 [1.04(1)]
3 5/2 [1.884(1)] 7/5

Table 1: Comparison of the critical temperature aTc between
mean field results and Monte Carlo results [in brackets] for
U(Nc) gauge groups. The new results are in column Nf = 2.
The MC value for Nf = 2, U(3) has not been measured yet.

6. Conclusion

We have given a new, Hamiltonian formulation of strong coupling lattice QCD with staggered fermions
in the chiral limit. It is based on the insight that strong coupling lattice QCD in the continuous time limit
is analogous to a spin system. A new observable, the spin susceptibility, turns out to be sensitive to the
chiral transition. Also, the Hamiltonian description allows to apply quantum Monte Carlo methods. In
[8] we have studied 1-flavor thermodynamics via the continuous time Worm algorithm. Here, we make
the first step towards 2-flavor simulations, by making use of Stochastic Series Expansion, a diagrammatic
Monte Carlo technique which we generalize to the Hamiltonian in question. SSE has the advantage that
more complicated Hamiltonians can be studied with ease. The drawback of SSE, in contrast to the
continuous time Worm, is that we do not know of a way to obtain the two-point function for free. For the
computation of the specific heat, the performance of both algorithms is quite similar. We have provided
first results on the U(2) transition with two flavors. The extension to SU(3) with finite baryon chemical
potential is more involved: the number of static lines increases to 44 in the mesonic sector.
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