
P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
4
4

LatticeQCD using OpenCL

Owe Philipsen, Christopher Pinke∗, Christian Schäfer, Lars Zeidlewicz
Institut für Theoretische Physik - Johann Wolfgang Goethe-Universität
Max-von-Laue-Str. 1, 60438 Frankfurt am Main
E-mail: philipsen, pinke, cschaefer, zeidlewicz

@th.physik.uni-frankfurt.de

Matthias Bach
Frankfurt Institute for Advanced Studies / Institut für Informatik - Johann Wolfgang
Goethe-Universität
Ruth-Moufang-Str. 1, 60438 Frankfurt am Main
E-mail: bach@compeng.uni-frankfurt.de

We report on our implementation of LatticeQCD applications using OpenCL. We focus on the
general concept and on distributing different parts on hybrid systems, consisting of both CPUs
(Central Processing Units) and GPUs (Graphic Processing Units).

XXIX International Symposium on Lattice Field Theory
July 10 - 16 2011
Squaw Valley, Lake Tahoe, California

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14527183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:philipsen, pinke, cschaefer, zeidlewicz @th.physik.uni-frankfurt.de
mailto:philipsen, pinke, cschaefer, zeidlewicz @th.physik.uni-frankfurt.de
mailto:bach@compeng.uni-frankfurt.de

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
4
4

LatticeQCD using OpenCL Christopher Pinke

1. Introduction

CPU CPU

RAM

RAM

RAM

RAM

HD HD

CPU CPU

RAM

RAM

RAM

RAM

HD HD

40 QUAD

768 CN-GPU

12 Storage

Fat-Tree
Infiniband
Network

10 Gb
University
Ethernet
Backbone

6 Frontend Nodes

HD HD

HD HD

HD HDCPU CPU

RAM RAM

HD HD

RAM RAM

CPU

RAM

RAM

GPU

HD

CPU

RAM

RAM

CPU

RAM

RAM

GPU

HD

CPU

RAM

RAM

CPU

RAM

RAM

GPU

HD

CPU

RAM

RAM

Figure 1: LOEWE-CSC

Graphic Processing Units (GPUs) offer a comput-
ing architecture well suited for LatticeQCD applica-
tions. Consequently, there is an on-going software-
and algorithm development in order to incorporate
GPUs effectively into lattice simulations. See for ex-
ample [1, 2, 3, 4]. These applications are developed
and carried out predominantly on NVIDIA hardware,
consistently using the NVIDIA exclusive CUDA lan-
guage [5] for the interaction with the GPU. Using
GPUs is attractive because they have good price-per-
flop (e.g. ≈ 2,0 AC/ Gflop on a NVIDIA GTX 580
and even ≈ 0,4 AC/ Gflop on an AMD 6970 [6]) and
performance-per-watt ratios.

Recently, a new cluster was introduced at Frank-
furt University, the “LOEWE-CSC” [7]. It is dedicated
to high-performance computing, but contrary to existing clusters it solely consists of AMD hard-
ware. A sketch of its infrastructure is shown in Fig. 1. A striking feature is its heterogeneous
architecture: The majority of its compute nodes each hold two 12-core AMD Magny-Cours Cen-
tral Processing Units (CPUs) and one AMD RADEON 5870 GPU. The LOEWE-CSC is ranked
22 in the Top500 list of supercomputers [8] and rank 10 in the Green500 list of energy-efficient
supercomputers (with 718 Mflops/Watt) [9].

However, presently existing GPU appplications are mostly suitable for NVIDIA hardware.
Other than using graphic application programming interfaces (APIs) like OpenGL [10], the only
tool available to use AMD GPUs for general purposes is OpenCL [11]. This is an open standard for
parallel programming. Furthermore, it is explicitly designed for heterogeneous (or hybrid) systems,
thus being well suited for the LOEWE-CSC as well as other, non-GPU platforms. Implementations
of OpenCL can be found both from AMD (AMD Accelerated Parallel Processing (APP) [13],
formerly ATI Stream SDK) and NVIDIA (as part of CUDA).

The first lattice simulations in OpenCL were performed in [1] with staggered fermions. On
NVIDIA hardware, a significantly lower performance (25% on C1060 and 60% on S2050) of
OpenCL was reported compared to CUDA for Hybrid Monte Carlo (HMC) updates. An AMD
GPU was also considered. Here, OpenCL performance is better than on Nvidia hardware, but still
below CUDA results (50% less performance on an AMD 5870 in OpenCL than on a S2050 in
CUDA).

2. OpenCL

In the following, we will present the general ideas of OpenCL and explain important terms.
For more information see [12]. The generic concept of an OpenCL application consists of a
“host“ program and several “compute devices“ (see Fig. 2). They live together on a so called
“platform“. The host controls memory management and calculations carried out on the devices,

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
4
4

LatticeQCD using OpenCL Christopher Pinke

while each device may either be a GPU, a CPU or any other kind of supported compute de-
vice. A single device then consists of a bunch of ”compute units“ (on a multicore CPU this
would be a single core) which in turn can consist of one or more ”processing elements“ that carry

HostCompute
Device

Compute
Unit

Processing
Element

Figure 2: OpenCL Concept

out the actual computations. This of course reflects the ar-
chitecture of GPUs. On CPUs a compute unit (i.e. a sin-
gle core) and a processing element may also be the same,
although this depends on the specific model and OpenCL
implementation used. It should be noted that on a CPU it
is possible to split up a multicore CPU into several devices,
effectively grouping the cores suited for specific tasks.

Furthermore, execution commands for OpenCL func-
tions (”kernels”) are scheduled in one or more “command queues” via the host. The queue launches
execution of kernels on a specific device and also handles memory commands. Synchronization on
this level is possible only within a command queue.

Central objects of any OpenCL application are the kernels. These have to be written in the
OpenCL C programming language, which is based on a subset of C99, the C standard. Optionally,
“native kernels“ can be included from libraries. Kernels are executed using an up to 3-dimensional
index space, where each index can be mapped on an instance of the kernel, which in turn are called
”work items”. Several work items make up a ”work group“, which allows for synchronization
between work items. Kernels can access memory on various levels, ranging from ”global” (e.g.
the main memory on the GPU) to “private” (e.g. General Purpose Registers (GPRs) of a GPU
stream-core). Besides the nomenclature, the setup is very similiar to CUDA.

It is important to emphasize here that OpenCL allows for data- as well as for task parallel
applications, meaning that it is on the one hand possible to perform SIMD computations and on
the other hand to perform different (possibly independent) tasks in a parallel fashion, providing
OpenMP [14] or UNIX’s pthreads functionality automatically.

In order to have a hardware-independent programming model, the actual OpenCL program is
compiled and built at runtime of the (host) application. This is done using an OpenCL inherent
compiler.

3. Implementation

The physical problems we are currently interested in are investigations of the quark gluon
plasma (QGP) and the thermal transition of QCD with dynamical fermions [15, 16, 17] as well
as in pure gauge theory (PGT). These have yet been carried out mainly relying on the tmlqcd
program suite [18] and an application written with QDP++ [19]. Several features shall thus be
provided by the OpenCL application: On the PGT side we need a SU(3) heatbath algorithm [20],
whereas on the fermionic side we require an HMC algorithm including standard features (even-odd
preconditioning, 2MN integrator, multiple integration timescales) for N f = 2 twisted-mass Wilson
fermions [18, 21]. Also, ILDG-compatible I/O is required [22].

In order to account for the fundamentally different concept of OpenCL we decided to write
an all new program. The implementation of the desired features mentioned above resulted in four
executables, providing the possiblity to generate gauge configurations as well as calculate phys-

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
4
4

LatticeQCD using OpenCL Christopher Pinke

ical observables of interest for pure gauge theory and dynamical fermions. All calculations are
performed in OpenCL. In the following we will go to some details describing the concrete imple-
mentation.

Basic

Kappa Random

Heatbath Spinor LA

Correlators Fermions

HMC

(a) OpenCL module classes

Basic

Inverter

HMC

Heatbath

Transport-

coefficients

(b) Gaugefield classes

Figure 3: Structure of opencl modules- and gaugefield classes
The host program was set up in C++ in order to implement independent program parts easily

using C++ classes and to have extension capabilities in a natural way.
The central object is the class gaugefield, which incorporates the initialization of OpenCL

and holds an application-specific number of opencl_device-objects. As the name indicates,
the latter class contains all compute device-related parts, such as kernels or memory objects, and
eventually executes the kernels on a specific device. The class gaugefield is also dedicated to
synchronize the physical gauge field when it is used on several devices.

The specific physical problems were implemented as child classes of gaugefield and
opencl_module, containing the problem-related functionality (see Fig. 3). Furthermore, for
each physical problem a number of “tasks” can be defined which then again can contain a num-
ber of device objects to carry out this task. For example, the inverter executable essentially
performs two tasks, the inversion of the fermion matrix and the calculation of correlators. This
concept will prove useful when looking at hybrid applications.

As was mentioned in section 2, the OpenCL environment has to go through certain initializa-
tion processes before the actual calculations can be carried out. A schematic flow of this process is
shown in Fig. 4. The major part of the initialization is spent on generating the kernels. This is done
in a couple of steps: First, the files needed for the kernel code are collected, after that an OpenCL
“program“ is compiled and linked using the OpenCL compiler. This program can then be used to
build kernels referring to functions declared with __kernel within the previously read-in source
code.

C++-Hostprogram

Gaugefield

Get Platform Init Context

Task 0 Task 1 . . .

Init Queue

OpenCL device 0 OpenCL device 1 . . .

Compile/Input-

Parameters

Collect Sourcefiles/Compileoptions Init Buffers/Kernels

Further Execution. . .

Figure 4: Schematic flow of program initialization

We found it convenient to build ev-
ery kernel as a stand alone program
since the kernel is the object of inter-
est. The compiler generates binary files
which can be used to extract informa-
tions about the kernel, e.g. GPR usage,
which is useful for benchmarking and
optimization. They can also be reused
for kernel generation at a later program
run. This speeds up the initialization
time significantly.

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
4
4

LatticeQCD using OpenCL Christopher Pinke

One can influence the whole process at this point by means of the simulation parameters.
The latter are typically read in at runtime of the host, so one can e.g. switch between CPU and
GPU simply via the input file. Since the kernels are compiled only at runtime, one can pass the
simulation parameters (e.g. NT, NS, β , . . .) to them as compile time parameters. This is a nice way
of avoiding many kernel arguments as well as to “hard code” the parameters into the kernel code.

 40

 45

 50

 55

 60

 65

 70

 75

 80

16
4

24
3
*8 24

4
32

3
*12

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

fl
o

p
s
 [

G
fl
o

p
s
]

g
lo

b
a

l
b

a
n

d
w

id
th

 u
ti
liz

a
ti
o

n
 [

G
B

/s
]

lattice volume

flops
bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

16
4

24
3
*8 24

4
32

3
*12

ti
m

e
 [

s
]

lattice volume

Figure 5: Dslash performance on AMD 5870 on various even-odd preconditioned lattices (statistics are of
O(10k) for each volume).

In fermionic applications, the most time-consuming part is the inversion of the fermion matrix
and the non-diagonal part of the Dirac matrix (“dslash”), respectively. On GPUs, this problem is
always bandwidth-limited and tuning is required to achieve a satisfiying amount of the maximum
bandwidth (on an AMD 5870 this is e.g. 154 GB/s). Our (even-odd preconditioned) dslash imple-
mentation currently performs at 45 - 60 GFlops in double precision calculations (with a bandwidth
utilization of up to 105 GB/s) over a wide range of lattice sizes (See Fig. 5). We will give more per-
formance results for AMD hardware (also considering memory optimizations like RECONSTRUCT
TWELVE [3]) in a future publication.

4. Hybrid strategies

Having a hybrid system as the LOEWE-CSC at hand, the question arises how one can use this
infrastructure effectively. Both GPU and CPU hold several advantages, qualifying them for certain
tasks. GPUs outperform CPUs when it comes to floating point operations, whereas a CPU can in
general operate a bigger amount of memory and a bigger cache, just to name a few. OpenCL can
be used quite easily to distribute computations over a hybrid system.

Device 0 Device 1

Synchronize

Calc Obs Update Ingredients

Figure 6: Simplest hybrid strategy.

A typical scenario in lattice simulations
is the iterative calculation of some observ-
ables out of a sequence of gauge configu-
rations. The simplest case one can have
is an observable that does not require any
synchronization in between its calculation.
Given 2 devices, one can distribute two gen-
eralized tasks among them, as depicted in
Fig. 6. One task calculates the observable while in the meantime the other provides the ingre-

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
4
4

LatticeQCD using OpenCL Christopher Pinke

dients required for the next iteration’s calculation. Synchronization between the devices is carried
out at the start of each iteration.

We implemented this concept for two observables, the N f = 2 mesonic flavour doublet corre-
lators with quantum number Γ,

CΓ =−Tr
(
S†

u(x0,x)γ5ΓSu(x0,x)Γγ5
)
, (4.1)

for which one has to provide the propagator Su(x0,x)∼M−1b(x0) (where M is the fermion matrix
and b a point source at site x0), and the second order transport coefficent κ of the Quark Gluon
Plasma [23]. κ can be extracted from the retarted propagator GR at zero Matsubara frequency,

GR(ω = 0,~q) = G(0)− κ

2
|~q |2 +O(|~q |3) , (4.2)

which can be calculated on a given gauge configuration by the euclidean correlator GE according
to

GR(ω = 0,~q) = GE(ω = 0,~q) = N ∑
x,y

eq3(x3−y3) 〈T12(x)T12(y)〉 . (4.3)

Tµν is a discretization of the energy-momentum tensor using clover-plaquettes [24].

CPU GPU

Load gauge configuration

Sync Su(x0,x)

Calc CΓ Perform inversion

(a) Mesonic correlator CΓ

CPU GPU

Sync gauge configuration

Calc κ Update gauge configuration

(b) Transportcoefficient κ

Figure 7: Hybrid strategies for two observables of interest.

The concrete implementations can be seen in Fig. 7, where we considered the case of one
CPU and one GPU device in the system (note that e.g. on one LOEWE-CSC node, one CPU
device has by default 2*12 = 24 cores). The assignments of the different tasks to the devices came
quite naturally, since κ’s calculation requires much more memory ressources than the heatbath
algorithm and the inversion of the fermion matrix is carried out faster on the GPU.

5. Conclusions

We presented to some detail our implementation of LatticeQCD applications using OpenCL.
This is a quite different approach compared to other applications around, which mainly operate on
NVIDIA hardware using CUDA. Since OpenCL is a hardware-independent programming model,
any hardware can be used, which offer an optimal price-per-flop ratio. Especially, parallel cal-
culations can be performed quite simply in OpenCL, allowing for applications suited for hybrid
architectures. We gave two examples using GPU and CPU devices at the same time effectively.
We are currently benchmarking and optimizing our code to exploit the compute powers of the
LOEWE-CSC and AMD hardware in general, providing an alternative to NVIDIA hardware bound
applications.

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
4
4

LatticeQCD using OpenCL Christopher Pinke

Acknowledgments

O. P. and C. P. are supported by the German BMBF grant FAIR theory: the QCD phase dia-
gram at vanishing and finite baryon density, 06MS9150. L.Z. is supported by the DFG grant phase
transition and screening masses in N f = 2 QCD, PH 158/3-1. M. B., O. P, and C. S. are supported
by the Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse.
M.B. is supported by the GSI Helmholtzzentrum für Schwerionenforschung. C.P. acknowledges
travel support by the Helmholtz Graduate School HIRe for FAIR.

References

[1] C. Bonati, G. Cossu, M. D’Elia and P. Incardona, arXiv:1106.5673 [hep-lat].

[2] R. Babich, M. A. Clark and B. Joo, arXiv:1011.0024 [hep-lat].

[3] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun. 181 (2010)
1517 [arXiv:0911.3191 [hep-lat]].

[4] R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower and S. Gottlieb, arXiv:1109.2935 [hep-lat].

[5] http://developer.nvidia.com/category/zone/cuda-zone

[6] http://geizhals.at/

[7] http://compeng.uni-frankfurt.de/index.php?id=86

[8] http://www.top500.org/list/2011/06/100

[9] http://www.green500.org/lists/2011/06/top/list.php

[10] http://www.opengl.org/

[11] http://www.khronos.org/opencl/

[12] Khronos Working Group, The OpenCL Specification, http://www.khronos.org/registry/cl/.

[13] http://developer.amd.com/SDKS/AMDAPPSDK

[14] http://openmp.org/wp/

[15] E. M. Ilgenfritz, K. Jansen, M. P. Lombardo, M. Muller-Preussker, M. Petschlies, O. Philipsen and
L. Zeidlewicz, Phys. Rev. D 80 (2009) 094502 [arXiv:0905.3112 [hep-lat]].

[16] O. Philipsen and L. Zeidlewicz, Phys. Rev. D 81 (2010) 077501 [arXiv:0812.1177 [hep-lat]].

[17] F. Burger et al., arXiv:1102.4530 [hep-lat].

[18] K. Jansen and C. Urbach, Comput. Phys. Commun. 180 (2009) 2717 [arXiv:0905.3331 [hep-lat]].

[19] http://usqcd.jlab.org/usqcd-docs/qdp++/

[20] M. Creutz, Phys. Rev. D21 (1980) 2308-2315.; N. Cabibbo and E. Marinari, Phys. Lett. B 119 (1982)
387.; A. D. Kennedy, B. J. Pendleton, Phys. Lett. B156 (1985) 393-399.

[21] A. Shindler, Phys. Rept. 461 (2008) 37 [arXiv:0707.4093 [hep-lat]].

[22] http://cssm.sasr.edu.au/ildg/

[23] P. Romatschke and D. T. Son, Phys. Rev. D 80 (2009) 065021 [arXiv:0903.3946 [hep-ph]].

[24] Y. Maezawa, H. Abuki, T. Hatsuda and T. Koide, PoS LATTICE2010 (2010) 201 [arXiv:1012.2222
[hep-lat]].

7

