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Strong coupling effective theory with heavy fermions Stefano Lottini

1. Introduction

Solving QCD via lattice simulations has proven to be a formidable problem, even unsurmount-
able, as of now, as soon as the quark chemical potentialµ = µB/3 is switched on, i.e. if the finite-
density part of the phase space is under study. Hence, various alternative approaches have been
developed to gain knowledge; some are based onµ = 0 and extrapolate to finiteµ , while other
rely on building effective models and approximate descriptions that capture, to a certain extent, the
basic dynamics of the system under study.

A dimensionally-reduced effective theory based on strong-coupling expansion was introduced
for the pure gauge sector in [1]: it offers robust predictivepower in locating the thermal transition,
can be improved order by order in a systematic fashion and studied numerically with relatively
small efforts. Here we report on the inclusion of heavy fermions in the theory, implemented through
a hopping-parameter expansion, and on the introduction of anonzero chemical potential, with a
sign problem well under control even at largeµ .

This contribution offers a sketchy overview on the subject and focuses only on some of its
features: for a more detailed discussion, we refer the interested reader to [6].

2. Effective theory

The theory under study comes from applying simultaneously strong-coupling and hopping
parameter expansions to the Wilson action (on a lattice withtemporal extentaNτ = 1/T, lattice
spacinga, and gauge couplingβ ); it is then suitable to investigate, with the advantages ofa simpli-
fied, dimensionally reduced model, the heavy quark region ofthe QCD phase space.

It is possible to integrate out the spatial links by means of astrong coupling expansion, which
results in an action whose terms are each given by an effective coupling (function of the original
parametersβ , Nτ , µ and the hopping parameterκ) and consist of Polyakov loopsLi ≡ TrWi =

Tr∏Nτ
τ=1U0(i,τ). The partition function thus correctly reproduces theZ3 centre symmetry of the

gauge sector as well as its breaking by the introduction of a finite quark massM. In practical
applications, we restrict ourselves to just a few terms in such an effective action.

A remarkable aspect of this theory is that the definition of its partition function is not expressed
with an action linear in the couplings; this is due to the possibility of performing a partial resum-
mation among certain classes of graphs, which appears to improve convergence. Also, this calls
for a careful definition of the suitable observables to characterise the phase structure.

Moreover, in the pure gauge case it has been already observedthat the resulting phase transi-
tion, albeit remaining first-order, is much weaker than in the linear (i.e. un-resummed) case, thus
resembling QCD more closely. The critical effective coupling λ0 for the quarkless theory can be
translated into a table ofβc(Nτ) by means of strong-coupling mappings, obtaining results close to
those of full 4D simulations, allowing for a continuum extrapolation, which yieldsTc = 250(14)
MeV (Fig. 1).

Heavy quarks enter the model through an expansion in the hopping parameterκ ; this results
in a sum over closed loops which translates to a series expansion in mixed powers ofκ and u
(the latter being the first non-trivial coefficient in the character expansion of the Yang-Mills action,
u(β ) = β/18+ . . .). Partial resummations within classes of similar terms lead to writing the quark
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Figure 1: Continuum limit of the pure gauge transition temperatureTc, from the effective theory.

contribution in the form of a determinant. If a quark chemical potentialµ is turned on, each loop
will pick up an additional factoreaµNτ = eµ/T raised to the power of its winding number.

When rewriting the model in terms ofLi , a “potential” term appears, encoding the reduced
Haar measure on the group and the Jacobian from expressing each Li as:

dLeV = dθdφe2V , L(θ ,φ) = eiθ +eiφ +e−i(θ+φ) , e2V(L) = 27−18|L|2+8ReL3−|L|4 ;
(2.1)

the partition function studied has then the form:

Z(λ ,h,h) =
∫

∏
x

dLxe
Vx

(

∏
<i j>

[

1+2λReLiL
∗
j

]

)(

∏
x

det
[

(1+hWx)
2Nf (1+hW†

x )
2Nf

]

)

, (2.2)

with effective couplingsλ (β ,Nτ ,κ) as given in [1, 6], and, to leading order,h = (2κeaµ )Nτ and
h= (2κe−aµ)Nτ (expressed to higher orders in [6]). The number of flavoursNf is from now on set
to one, although thanks to the small values ofh,h involved a linear approximation can be safely
used to restoreh→ Nf h.

One can express the fermion part entirely as a function ofL,L∗:

Qx ≡ det[(1+hWx)(1+hW†
x )]

2 = [(1+hLx+h2L∗
x +h3)(1+hL∗x +h

2
Lx+h

3
)]2 . (2.3)

Nonlinearities aside, the above partition function can be compared to a three-state Potts model
with a spin-spin interaction (∼ λ ) and an external magnetic field (∼ h,h) acting on each spin: from
knowledge of the Potts case [7, 8], that has the same symmetrypattern, we expect a phase structure
in (h,λ ) at zero chemical potential (meaningh = h) as depicted in Fig. 2 (left). If the chemical
potential is switched on, we haveh 6= h, but the qualitative shape of the phase structure should not
change. In the latter case, however, we use for convenience the “reduced”he−µ/T ≡ h̃.

3. Numerical results

The numerical investigation was performed with a Metropolis algorithm directly implement-
ing the partition function Eq. 2.2: the sign problem appearing as soon asµ 6= 0 is treated in the
usual way by folding the phase into the observable and updating according to the norm of the
configuration weight. It turns out that on systems as large asN3

s = 243 the average sign is well
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Figure 2: Left: Expected phase space for zero chemical potential. Right: Pseudocritical line forµ = 0. The
line is a fit to Eq. 3.2. Also shown is the critical point.

larger than zero up to values ofµ/T of three or more, thus posing no big trouble.1 Each datapoint
produced represents a statistics of about 106 configurations, analysed with the binning technique in
order to estimate uncertainties meaningfully.

Besides the usual observables, suitable for an action linear in its couplings, we also use their
“nonlinear” counterparts (apart from trivial factors, they reduce to the former forλ ,h,h→ 0):

Elin ≡
1

3N3
s

∑
<i j>

2ReLiL
∗
j , Qlin ≡

1
N3

s

∣

∣

∣∑
i

Li

∣

∣

∣
; E≡

1
λ

1
3N3

s
∑
<i j>

log
(

1+2λReLiL
∗
j

)

, Q≡
1
h

1
N3

s
∑
x

logQx .

(3.1)
From these observables, the susceptibility and the Binder fourth cumulant have been built as
χO = N3

s (〈O
2〉− 〈O〉2) and B4,O = 〈(O−〈O〉)4〉

〈(O−〈O〉)2〉2 . The main goal of this work is to map the phase

structure in the(h̃,λ , µ
T ) space: first, the case of zero chemical potential is studied,then we intro-

duce a realµ .

3.1 Zero chemical potential

The investigation proceeds in two steps: first, the pseudo-critical line λpc(h) is mapped, sub-
sequently its critical point(λc,hc) is located. The pseudo-critical line is found by fixing six val-
ues of 0.0002≤ h ≤ 0.0012, and for each value by performing aλ -scan at various system vol-
umes, identifying four volume-dependent pseudocriticality estimators (extrema of susceptibility
and Binder cumulant ofElin ,Qlin). Then, for each of those estimators, an infinite-volume extrap-
olation λpc(h,Ns) = λpc(h)+c1(h)N−α

s gives a thermodynamic limit which we find to mutually
agree. The whole pseudocritical line is parametrised as

λpc(h) = λ0−a1h . (3.2)

A fit to the six points works well (Fig. 2, right) and givesa1 = 1.797(18) andλ0 = 0.18805(1),
the latter roughly reproducing the pure-gauge critical point found in [1]. 2 The linearity can be
explained by a first-order expansion, in the small couplingsinvolved, of the free energy of the
system [7].

1Also, the configurations yielding a minus sign from the gaugepart are extremely rare and can be in fact ignored at
these system volumes and in the region of parameter space of interest

2The slight deviation between the two results is due to the small volumes used in [1] for the determination.
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Figure 3: Effect of the rotation(E,Q) → (E′,Q′) in locating theµ = 0 critical line. Top panel: original
observables. Bottom panel: rotated observables. On the left the (normalised, centred) histogram is shown
for the sample caseNs = 20, h = 0.000742, on the right the behaviour of the third moment ofQ (Q′) is
plotted for various system volumes. Vertical lines mark thecritical hc. Note that the largest volumes show,
for the rotatedQ′, a third moment essentially zero around the critical point.

In order to locate the critical point, we switch to the nonlinear observables, Eq. 3.1, and mea-
sure them alongλpc(h) at various system sizes up toNs = 24. Close to the critical point, and
focusing onQ, we expect the following scaling laws for the susceptibility and Binder cumulant:

χQ = Nγ/ν
s fχQ(x) , B4,Q = fB4,Q(x) ; x≡ (h−hc)N

1/ν
s , (3.3)

with critical indices dictated by the three-dimensional Ising universality class, i.e.γ/ν ≃ 1.962,ν ≃

0.6302. Moreover, universality also impliesfB4,Q(0) ≃ 1.604. Writing f (x) as a series inx, the
susceptibility and Binder cumulant data were fitted to the above expectation keepingNs ≥ 20,
with rather stable results against different truncations for f (x), different scaling windows, fixing or

leaving free the critical indices, and we get the final values(λc,hc) =
(

0.18672(7),0.000731(40)
)

.
Another, more rigorous method is employed in [3] to identifythe critical point (see also [4]

for an application to a model similar to ours). The two-dimensional distribution of(E,Q) is subject
to a rotation→ (E′,Q′), with zero covariance; then, the critical line is defined as the locus where,
in the thermodynamic limit, the third moment of the centred marginal distribution ofQ′ vanishes,
〈Q′3〉

〈Q′2〉
3
2
= 0. We explicitly verified that, around the critical point andfor large enough volumes, the

rotatedQ′ essentially satisfies this requirement along the line identified as described above (Fig. 3).

3.2 Real chemical potential

As already observed, with the sign problem well under control for our purposes, we basically
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Figure 4: Left: slopea1 of the pseudocritical line as a function ofµ/T, with its cosh(µ/T) description.
Right: the very weak dependence ofλc on the chemical potential. The point labelled “λc(0), reweighting”
was found with the same technique as for finiteµ as a cross-check. The slight drift inλc is explained by
a finite-size correction whose amplitude decreases asµ grows: indeed, the more accurate determination
(“scaling”) for zero chemical potential and the large-µ values agree very well.

repeat the analysis performed forµ = 0 at several values ofµ/T up to 3.0. The only difference is
that, for each chemical potential, we generate data only at asingle point(λ , h̃) and then reweight
all results to a whole 2D grid of points (the reweighting factors are complicated by the nonlinear
formulation Eq. 2.2, but if one knows the target couplings inadvance the table of weights can be
prepared as the configurations are explored by the Monte Carlo).

With the same statistics as forµ = 0, for each chemical potential the 2d grid of values
B4,Q(λ , h̃) was scanned for the line of local minima: the largest-volumeresult was taken as the
pseudocritical line and fitted toλpc(h;µ/T) = λ0(µ/T)−a1(µ/T)h̃; again, a linear relation was
sufficient, andλ0 turned out to be a constant compatible with the one in Eq. 3.2.Furthermore,
it can be argued that, neglecting higher-order corrections, the slope of the curve depends onµ/T
asa1(µ/T) =Ccosh(µ/T), a behaviour that was confirmed numerically withC = 1.814(3), in
agreement with theµ = 0 slope (Fig. 4, left).

As for the critical point determination, theµ = 0 fits encouraged us to defineh̃c(µ/T) as the
value whereB4,Q = 1.604, with an uncertainty estimated from the difference between this definition
and theh̃ at which theB4,Q for the volumes 223 and 243 cross each other. Remarkably, the critical
λc(µ/T) shows little or no dependence on the chemical potential (Fig. 4, right), which allows to
rewrite the parametrisation ofa1(µ/T) as

h̃c(µ/T) =
D

cosh(µ/T)
. (3.4)

A fit of the measured points to the above curve works indeed well, giving D = 0.00075(1) in
full agreement with theµ = 0 result (Fig. 5, left). There is, however, a slight deviation from the
above law, that we ascribe to higher terms of the expansion in(µ/T)2 which, to first order, led
to parametrisinga1(µ/T). Remarkably, a similar phenomenon occurs in the simpler case of an
effective theory constructed with the three-state Potts model, as can be seen in Fig. 5, right.

4. Conclusions and outlook

With the knowledge of the curvẽh(µ/T) we can use the heavy-quark approximate relation
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Figure 5: Left: the critical curvẽhc(µ/T) along with the best-fit to Eq. 3.4 for our effective model. Right:
the equivalent figure in the case of the three-state Potts model [8]: the fit curve, restricted toµ/T . 0.5,
shows that the same phenomenon of large-µ overestimation of the critical̃h occurs in both models as a
(tiny) deviation from the assumption of constantλc(µ/T). We plotted the data in terms ofh̃ for ease of
comparison.

h̃= Nf exp(−M/T) and obtain the critical surface in the upper-right corner ofthe Columbia plot;
in particular, for the sake of comparison with existing literature [4, 5], we quote here theµ = 0
values ofMc/T andκc(Nτ = 4) for Nf = 1,2,3 respectively:

Mc

T
= {7.22(5),7.91(5),8.32(5)} , κc(Nτ = 4) = {0.0822(11),0.0691(9),0.0625(9)} . (4.1)

By carrying on the expansions to higher orders, a more careful analysis of the feasibility of a con-
tinuum limit can be performed; this program is indeed illustrated in [6], along with the study of the
imaginary-µ side of the phase space. Another interesting direction of this study is the investigation
of the low-temperature, large density limit of the theory, besides, of course, the attempt to lower
the fermion mass as much as possible, within the range of applicability of the hopping expansion.
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