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Finite density QCD effective theory Owe Philipsen

1. Introduction

QCD at finite temperature and baryon density remains a clg@len the lattice since direct
Monte Carlo simulations are prohibited by the sign problem,a complex fermion determinant,
for non-vanishing quark chemical potentjal Existing workarounds based on reweighting, Taylor
expansions inu/T or simulations at imaginary chemical potential followed dyalytic contin-
uation all introduce additional systematic errors and irequ/T <1 in order to be valid. For
an elementary introduction, see [1]. As a consequence, @B ghase diagram remains largely
unknown.

In this situation it is attractive or even mandatory to thafout effective theories which should
simplify computational problems while maintaining cottoger systematic errors. An example is
dimensional reduction at finite temperature [2]. The apginaalies on a sufficient scale separation
gT <« nT between hard and soft modes in the thermal theory. The fotimeer get integrated out
perturbatively to produce a 3d effective theory for the sofides, which can be readily simulated
on the lattice. Effective theories of the electroweak sestdhe Standard Model made the correct
predictions for the electroweak phase diagram [3], whicheveenfirmed by 4d lattice simulations
[4]. The same approach applied to Yang-Mills theory is uaedbldescribe the deconfinement tran-
sition, since the perturbative step explicitly breaks taete symmetry of Yang-Mills theory [5].
Alternatively, there are efforts to write down the most gaheentre-symmetric 3d effective action
for the soft modes [6], and fix the couplings my perturbativeegen non-perturbative matching
calculations [7]. However, foBU(3) this remains a difficult task due to the number of matching
coefficients.

In this contribution we summarise a recent solution to tl@fEm by means of strong cou-
pling expansions on the lattice. Here we describe how toréexicentre-symmetric 3d effective
theory for thermal Yang-Mills theory and simulate it on th#ice. After successful completion of
this step we include heavy quarks and compute the deconfitéraesition as a function of quark
mass and chemical potential.

2. Yang-Mills theory

2.1 General strategy
Consider the partition function of &+ 1)-dimensional lattice gauge field theory at finite
temperature(T = ﬁ) with gauge grouBU(N) and Wilson’s gauge action

7 — / [dUo] [dUi] exp [% % (trUp+trug)] , B= Zg_l;| .

Finite temperature and the bosonic nature of the degreeeefidm imply the use of periodic
boundary conditions in the time direction. Finer latticesrespond to largeN; for fixed physics.
We now integrate out the spatial degrees of freedom and betrsatically [8]

Z = / [dUo] exp|—Sur] ;

2.1)

— S = In/[dUi]exp [%%(trup+trug)] =MS+A0S+... . (2.2)
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Figure 1: First graph with a nontrivial contribution after spatialégration for a lattice with temporal extent
N; = 4. Four plaquettes in the fundamental representation ead interaction term involving two adjacent
fundamental Polyakov loogds andL;.

We expand aroun = 0 and arrange the effective couplings = An(B,N;) in increasing order
in B of their leading terms. Thus, thlg become less important the higherAs we shall see, the
interaction termss, depend only on Polyakov loops

Nr
Lj = tI’VVj =tr I_l U()(?j,'[) . (2.3)
=1

With sufficiently accurate knowledge of the relatiohg 3,N;), we are able to convert the cou-
plings of the three-dimensional theory to those of the fudidry. Determining the critical parame-
tersAn ¢ of the effective theory then gives a whole array of critiBglN; ) for - in principle - allN.

In the following we calculate strong coupling, i.e. sm@llexpansions of the leadink,.

Since the calculations are quite similar for different nemsbof colours, we now specialise
our derivation to the physically interesting caseSbf(3). For more details and the simpler case
of SU(2), see [9]. Using the character expansion as described §10,ii1], the effective action
according to Eq. (2.2) can be written as

~Sr=In [ U] [] |1+ > dra,uz)xr(up)] , (2.4)
p r#0

where the sum extends over all irreducible representatiamish dimensiond, and charactey; .
The expansion coefficients () are known as series f@U(3) or in closed form forSU(2) [10]
and in the following we us@ = a; as expansion parameter insteadBofor its better apparent
convergence. Our task is then to group together all grapiidigg the same interaction terms up
to some order irf.

The leading order result of the effective action has firshledculated in [12] and corresponds
to a sequence dfl; plaquettes that wind around the lattice in temporal dioggticf. Fig. 1.. Its
contribution is given by:

AMS =ut Y LiLj. (2.5)

Hence, to leading order the first coupling of the effectiveotly isA;(u,N;) = uNr. Corrections
consist of geometrical decorations containing additigradjuettes, e.g. a cube sitting on top of the
previous graph, etc. Calculating seven non-trivial ordeesfind for the leading coupling

A1(N; > 6,u) = u™ exp[N; (4u* + 120° — 14u° — 36u”
2955, 1851 5 1055797 i
2 10 5120

(2.6)
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Figure 2: Left: Distribution ofL for small and largé\; on a lattice withNs = 6. Right: Expectation value
of |L|. The vertical line marks the infinite-volume transition.

For smallemN; some lower coefficients change since some graphs do notfitiatlattice, detailed
expressions for those cases are given in [9]. Inspectionigbieh order terms shows that one can
arrange a subclass as

Y <2A1Re(LiL]-*)—%fRe(LiL]f)2+...> = Y In(1+2ARe(LiL])) - (2.7)

<> <>
In a similar fashion we have calculated the leading termewfesadditional couplings. For the first
terms of the next-to-nearest neighbour couplagN;,u) we find

A2(Np > 8,u) = U™ [N (N; — )] (2.8)
while the leading coupling of adjoint loops is (valid fdf > 2)

38

9 9 81

U+ —=Uu"+... (2.9)

2v 8 8 32

A further simplification is achieved by using the trace of thelyakov loops for the path
integral measure as degrees of freedom (complex numbdeathsf matrices), and rewrite the
one-coupling partition function as

_ 1
zeﬁ:/<|_‘| dLi eV'> [1(A+2ARdiL)),  Vi=3In <27—18|Li|2+8Re(Li3)—|Li|4).
|

<ij>
(2.10)
We thus have arrived at a simple, centre-symmetric theocpoiplex scalars in three dimensions.

2.2 Numerical analysis of effective theories for hot Yang-Mis

The effective theory allows for straightforward Monte @adimulations using a standard
Metropolis update. Our first task is to establish the phasetsire of the effective theory, where
we focus on the physically interesting caseStf(3). Based on the globa(3) symmetry of the
model, one expects spontaneous breaking of that symmetspfoe critical value of the coupling
A1c. Fig. 2 shows the behaviour of the field variahlas a function ofA;. As expected from the 4d
parent theory, there is indeed a transition from a disodlerenixed phase, with values bfscat-
tering about zero, to an ordered phase at large couplingentherthreeZ (3)-phases are populated
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Figure 3: Critical line in the two-coupling space, determined fraifiL|). Dashed lines give the parameter
space representing a 4d theory with fixéd

separately. In the thermodynamic limit, one of these vaciliabe& chosen and the symmetry is
broken spontaneously. Correspondingly, the expectaaduevof|L| rises abruptly at some critical
coupling A1, as shown in Fig. 2 (right). On a finite size lattice, the phaaesition is smoothed
out, non-analyticities are approached gradually with gngwolume, as the figure illustrates.

In order to locate the critical coupling, we looked amondblecs at peaks of the susceptibility

x(Lh = N2 { (1L 1Lh) ) 2.11)

with |L| = |3 Li| After identifying a pseudo-critical1 ¢(Ns) for a number of finite systems, the
relation A1c(Ns) = A1c + szfl/" is used to extrapolate to the thermodynamic limit. The data a

compatible withv = 1/3 for the SU(3) first-order transitions and, in tH8U(2) case, the 3d Ising
valuev = 0.63002. Note that due to having only a 3d scalar theory, eventenate finite size
scaling analysis can be done in just a few days on a desktop PC.

N, M (A1, A2) (A1, Aa) 4d YM

1 | 2.7828(4) - 2.529(6) || 2.703(4)
2 || 5.1839(2) | 5.0174(4) | 5.003(5) | 5.10(5)

3 | 5.8488(1) | 5.7333(3) | 5.780(2) | 5.55(1)

4 | 6.09871(7)| 6.0523(1) | 6.0748(6) || 5.6925(2)
6 | 6.32625(4)| 6.32399(3)| 6.3225(1) || 5.8941(5)
8 | 6.43045(3)| 6.43033(2)| 6.42971(7)| 6.001(25)
10 || 6.49010(2)| 6.49008(2)| 6.48991(6)| 6.160(7)
12 || 6.52875(2)| 6.52874(1)| 6.52869(5)| 6.268(12)
14 || 6.55584(2)| 6.55583(1)| 6.55580(4)| 6.383(10)
16 || 6.57588(1)| 6.57587(1)| 6.57585(3)| 6.45(5)

Table 1: Critical couplingsB. for SU(3) from different effective theories compared to simulatiohthe 4d
theory [13, 14]. ThéN; = 1 Monte Carlo value is from our own simulation with standaab®bo-Marinari

plaguette update.
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Figure 4: Left: Critical coupling for theSU(3) pure gauge transition, calculated from; using the maps
Eq. 2.6. Right: Critical temperature for the pure gauge dénement transition, extracted from the 3d
effective theory, Eg. (2.10).

Next we investigated the influence of a second coupling oretfeetive theory, i.e. the next-
to-nearest-neighbour coupling and the adjoint loop couplind,. In these two-dimensional pa-
rameter spaces, there is a critical line separating the gtriorand the broken phases. However,
for a givenN¢, only a one-dimensional manifold in this space represdmsnage of the original
gauge theory, since both couplings are functions ohly. The results for both cases are shown
in Fig. 3. By plotting the family of curves corresponding t@igen N;, one sees that the latter
accumulate towards vanishing second couplingNasncreases, i.e. as the lattice gets finer. For
continuum physics they may be safely neglected.

Having established the critical couplings for our effeettheories we are now ready to map
them back to the original thermal Yang-Mills theories bydrting the couplings\ic(3,N;) —
B:(Ai,N¢). In Table 1 we collect the values for the critical gauge cmgd obtained in this way
and compare them to the values obtained from simulationkeofull 4d theory. The agreement
is remarkable in all cases and even better in the ca8J02?). Interestingly, there appears to be
a ‘region of best agreement’, with the deviation growinghbfmr small and largéN;. We ascribe
this to the fact that there are two competing systematia®res discussed earlier: the validity of
the strong coupling series for a given couplihgis better the smalleB and henceN;, whereas
the truncation of the next-to-nearest neighbour intepastigains validity with growing\N;. In
particular in the case @U(3), there appears to be a cancellation of the two kinds of sysies
rendering the effective description better for the origthaory on finer lattices.

The convergence properties of the strong coupling exparisiour “observable’3; are shown
in Fig. 4 (left) for the three highest orders calculatedsld(3). Even on fine lattices we observe
reasonable convergence, which encourages us to attemptiauton extrapolation. Supplying a
scale by using the non-perturbative beta funcagf) from [15], we convert the critical couplings
to temperatures and plot them in Fig. 4 (right). The erroslggve the difference between the two
highest orders of the strong coupling expansion. The origeedl; 2 ~ & scaling region is clearly
visible providing a continuum extrapolation within 10% of the known result. Note that all data
points stem from a single 3d simulation.
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3. QCD with heavy fermions

3.1 The hopping parameter expansion

Let us now summarise the inclusion of heavy fermions, detah be found in [16]. Heavy
fermions are conveniently introduced using the hoppingupa&ter expansion, which is described
in [10] at zero temperature and discussed in [17, 18] forditémperature. The quark part of the
action forNs mass-degenerate flavours with maddes= M can then be written

2 K 1
“S§=-Nie 3 FTHULL k=g A= 3 G (L)L, B)

with y_, = —y,. Thus each hop to a neighbouring lattice site gives a powtreofiopping param-
eterk. The quark chemical potentiai is introduced as usual by a factd#ge ") multiplying
link variables in positive (negative) time direction [19]he effective theory is obtained from the
full theory in the same way as for Yang-Mills,

Z = [ldUel[au] expl—S; — S = [ [dUo] expl—Su
~Sor = In [ [dUjexp-§ - Sy (3.2)

We are now faced with a double series expansian ) andk, i.e. the effective couplings depend
on both parameters ardi. Furthermore, quarks of finite mass lead to terms in the metibich
explicitly break theZ(3) symmetry present in the pure gauge case. We may arrangesthis a

—Seff:_i)\i(uvK7Nr)§_2Nf 2 [hi(U7K7H7Nr)§+ H(U7K7#7Nr)§T] : (3-3)

The A; are defined as the effective couplings of #18)-symmetric terms§’, whereas théy; mul-
tiply the asymmetric term§'. Consequently, only the latter apgedependent and we recover pure
gauge theory fok — 0, as in the full theory.

Similar to the case of pure gauge theory, graphs contriputinthe cluster expansion have
to wind around the lattice in the compactirection. Hence, the leading order contributions are
Polyakov loops, and we can read off the leading-order cogph; and hy:

S+ =-5 [(2Kea“)NrL(z)+ ke N L R)] — hy= 2k (3.4)
X

Note the minus sign which is due to the anti-periodic boupdamnditions for fermions. It is
possible to sum up the contributions of all generalised &aly loops oriented in positive time
direction,

2N;
exp{ 2Ny ZZ [ (2k )N T (W) ]}:Hdet[n(zxea“)'\'rw} . (3.5)
X n=1 X

using expTrirA = detA, and similarly for the conjugate loop. The three-dimenaiceffective
action to leading order in the hopping expansion correspdmthe static approximation and reads

Zeff = /[dUo] ( M [1+2/\1Re_rL,-D<|;| det[(1+ hl\/\&) <1+ leg)er) (3.6)

<ij>
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Figure 5: Schematic phase diagram fgr= 0. Left: Nature of the QCD thermal transition for different
guark masses. Middle: Expected phase diagram for the ®ieitteory corresponding tg = 0. Right:
Calculated phase diagram for= 0. Also the critical point is shown.

Using some identities for determinants and reverting toetriaPolyakov loops again, this becomes
Qi(h,h) = [(1+hL + 2L +h®) (14 hLy + 2L + 18]

Zor = / [(dLi Q" (hh) | [ (1+2AReLLY). (3.7)
i <ij>
Going beyond the static approximation means to includesgatial hops, which get decorated
with plaquettes. Including all corrections up&u"«™), with n+m= 7, we obtain

1— uNrfl

hi(u,k,N; > 3) = (2ke®)Nr exp [BNTKZU <ﬁ

+ 4u4—8K2+8K2u+4K2u2—4K4>] . (3.8)

Additional couplings turn out to be suppressed comparekisaind we neglect them in the follow-
ing. Since we thus keep only one coupling of each sort, we thepndex “1” for the remainder.

Since the deconfinement transition at high temperaturegrepat smalh, we can recover an arbi-
trary number of flavours by using the approximation(diet hW)Nt ~ exp(N¢hL).

3.2 The deconfinement transition at zero baryon density

As a first application of the effective theory we investigtie deconfinement transition of
QCD with heavy quarks as a function of quark mass and chemdgahtial. We begin by consider-
ing the case of zero baryon density, shown schematicallygirg<left). In the pure gauge limit, the
deconfinement transition is of first order. Dynamical quakany fixed\s break the globaZ (3)
symmetry of the QCD action explicitly. As a consequence,pin@se transition weakens with de-
creasing quark masses until it vanishes at a critical p&iot still lighter quarks the deconfinement
transition is an analytic crossover. This behaviour is iitbd by the effective theory. For a given
Nt andu = 0, we haveh = h and the effective theory has two couplingg, h). The first-order
phase transition of the one-coupling theory extends to adider line with a weakening transition
ashincreases. Eventually the transition vanishes at a dripicit, as sketched in Fig. 5 (middle).
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Figure 6: Left: Determination of the critical point as the crossingtbé Binder cumulant on different
volumes. Right: Critical hopping parametey(N;) for Ny = 1.

In a slight sharpening of terminology, we now call the phasangary pseudo-critical and only
refer to the second order endpoint as “critical”.

The numerical analysis proceeds in the same fashion asilslsén the pure gauge section
with two couplings. The resulting phase boundary betweenotidered and disordered phase is
shown in Fig. 5 (right) and found to be linear in the small dowugph. In order to locate the critical
endpoint we study the scaling of the fourth order Binder clamiu

B4(Q) = ((Q—(Q)*")/((Q—(Q)»?, (3.9)

along the phase boundary in Fig. 6 (right). The crossingtgwinvides us with the critical coupling
h. and the value of the cumulant at the crossing point is cardistith the 3d Ising value, as
expected for a critical end point. We identify the criticalimt as

<)\C — 0.186747),he = 0.00073140)) . (3.10)

Using the analytic expressions for the couplings, theseegatan be converted into those of the
couplingsfc, K¢ In order to compare with previous work, we approximise’ T with the relation,
valid for heavy fermions to leading order in the hopping exgan [20],

h

exp< - ¥) ~ (3.11)

The results for alN; = 4 lattice are collected in Table 2 and once more in good ageaewith 4d
Monte Carlo simulations.

As in pure gauge theory, we may look at the continuum approée&h, obtained by inverting
Eq. (3.8), Fig. 6 (right). Also shown is the chiral criticabpping parameter, defined by the van-
ishing of the pion mass and evaluated for the critical gawggkngs,kch (U:(N;)). Since we are
expanding around infinite quark masses, self-consistesmyinesk. < Kcn. This suggests that our
expansion is trustworthy to abobd ~ 6.

3.3 The deconfinement transition at finite baryon density

For u # 0, we haveh £ h and need to consider the full parameter space of the eftetttaory,

(A,h,h). The diagram in Fig. 5 (middle) turns three-dimensionathwisurface of first order phase
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Ni | Mc/T | ke(N; =4) || ke(4), Ref. [21] | kc(4), Ref. [22]
1 | 7.22(5)] 0.0822(11)| 0.0783(4) ~0.08

2 | 7.91(5)| 0.0691( 9)| 0.0658(3) -

3 | 8.32(5)| 0.0625( 9)| 0.0595(3) -

Table 2: Location of the critical point fou = 0 andN; = 4. The first two columns are our results the last

two from the literature.
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Figure 7: Left: Transition IinesApc(ﬁ,u/T) for several values oft/T between 0 (top) and.3 (bottom).
Right: Critical linehc(u/T); the curves are fits to cosh(u/T) behaviour and the largg-asymptotic limit.

transitions terminating in a critical line. Since we areenested in the change of the critical quark
mass with chemical potential, it is convenient to introdtlee parameter

h=he /T (= (2k)™ to leading order irx) (3.12)

and to present our data in the parameter s;()zl(;ﬁ, u/T).

For ﬁ;«é h the effective theory has a sign problem, just as the origimabry. However, the
sign problem is very mild and can be overcome by using the tosdaf the fermion determinant
in the path integral measure while reweighting in its phdgereover, the sign problem can be
solved by going to a flux representation of the partition fiorg which can then be simulated by
a worm algorithm. Details and a comparison of entirely aigigeeesults can be found in [16]. The
numerical analysis then proceeds in complete analogy tediedensity case. The pseudo-critical
Iines)\pc(ﬁ) for various choices oft /T are shown in Fig. 7 (left). As in the zero density case, we
observe perfectly linear behaviour due to the smallness éfgain the critical point on each line
is found by identifying where the Binder cumulant takes iiical value. The corresponding line
of critical endpoints is shown in Fig. 7 (right).

Asymptotically large chemical potentials in the originattice QCD are described by the limit
K — 0,1 — oo with ke/T = const. (3.13)

In the effective theory this corresponds (al,,h,ﬁ: 0). The critical point in this case is easily
found by the same techniques,

(Ae,he) o = (0.1866§2),0.001422)) . (3.14)

10
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Using the leading order expression for Eq. (3.4), this gives thé = O-critical curveﬁc(u/T)
which is also plotted in Fig. 7. Already fqu/T > 1.5 the data are accurately described by the
asymptotic density limit. Similarly, the linearity of thehase boundary\(ﬁ) and the neaiu-
independence of the endpoiky, Egs. (3.10, 3.14), imply that, ~ cosh(u/T) [16]. We thus
have obtained a numerical as well as simple parametric igésor of the Nt = 1 deconfinement
critical line for all real chemical potentials!

4. Conclusions

We have presented a proposal for a two-stage treatment of QiDite temperature and
bayon density. The first step consists of an analytic deéonatf a 3d effective action by means
of a combined strong coupling and hopping parameter expansihe effective theory depends
on Polyakov loops only, its couplings are power series ofldktece gauge coupling and hopping
parameter and can be improved order by order. The secondtetsists of a non-perturbative
Monte Carlo simulation of the effective theory. For t88(2) and SU(3) pure gauge theory, the
order of the deconfinement transition is correctly prediciad a continuum extrapolation of the
critical temperature is feasible, within about 10% of the@kn answer. For heavy fermions the
current effective theory is good to abdit ~ 6, a continuum extrapolation is not yet feasible. On
the other hand, the effective theory allows for a solutionhef sign problem and thus provides a
description of the deconfinement transition for all cherpedentials. This provides some hope for
an eventual treatment of physical QCD, but it remains a ehglhg task to extend this approach
to light quarks.
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