
P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
3
5

Effective theory for QCD at finite temperature and
density from strong coupling expansion

Michael Fromm, Jens Langelage, Stefano Lottini, Owe Philip sen ∗

Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt,
60438 Frankfurt am Main, Germany
E-mail:
fromm,langelage,lottini,philipsen@th.physik.uni-frankfurt.de

QCD at finite temperature and denisty remains intractable byMonte Carlo simulations for quark
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1. Introduction

QCD at finite temperature and baryon density remains a challenge on the lattice since direct
Monte Carlo simulations are prohibited by the sign problem,i.e. a complex fermion determinant,
for non-vanishing quark chemical potentialµ . Existing workarounds based on reweighting, Taylor
expansions inµ/T or simulations at imaginary chemical potential followed byanalytic contin-
uation all introduce additional systematic errors and require µ/T <∼1 in order to be valid. For
an elementary introduction, see [1]. As a consequence, the QCD phase diagram remains largely
unknown.

In this situation it is attractive or even mandatory to thinkabout effective theories which should
simplify computational problems while maintaining control over systematic errors. An example is
dimensional reduction at finite temperature [2]. The approach relies on a sufficient scale separation
gT ≪ πT between hard and soft modes in the thermal theory. The formerthen get integrated out
perturbatively to produce a 3d effective theory for the softmodes, which can be readily simulated
on the lattice. Effective theories of the electroweak sector of the Standard Model made the correct
predictions for the electroweak phase diagram [3], which were confirmed by 4d lattice simulations
[4]. The same approach applied to Yang-Mills theory is unable to describe the deconfinement tran-
sition, since the perturbative step explicitly breaks the centre symmetry of Yang-Mills theory [5].
Alternatively, there are efforts to write down the most general centre-symmetric 3d effective action
for the soft modes [6], and fix the couplings my perturbative or even non-perturbative matching
calculations [7]. However, forSU(3) this remains a difficult task due to the number of matching
coefficients.

In this contribution we summarise a recent solution to this problem by means of strong cou-
pling expansions on the lattice. Here we describe how to derive a centre-symmetric 3d effective
theory for thermal Yang-Mills theory and simulate it on the lattice. After successful completion of
this step we include heavy quarks and compute the deconfinement transition as a function of quark
mass and chemical potential.

2. Yang-Mills theory

2.1 General strategy

Consider the partition function of a(3+ 1)-dimensional lattice gauge field theory at finite

temperature
(

T = 1
aNτ

)

with gauge groupSU(N) and Wilson’s gauge action

Z =

∫

[dU0] [dUi ]exp

[

β
2N ∑

p

(

tr Up + tr U†
p

)

]

, β =
2N
g2 . (2.1)

Finite temperature and the bosonic nature of the degrees of freedom imply the use of periodic
boundary conditions in the time direction. Finer lattices correspond to largerNτ for fixed physics.
We now integrate out the spatial degrees of freedom and get schematically [8]

Z =

∫

[dU0]exp[−Seff] ;

−Seff = ln
∫

[dUi ]exp

[

β
2N ∑

p

(

tr Up+ tr U†
p

)

]

≡ λ1S1 + λ2S2 + . . . . (2.2)
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Figure 1: First graph with a nontrivial contribution after spatial integration for a lattice with temporal extent
Nτ = 4. Four plaquettes in the fundamental representation lead to an interaction term involving two adjacent
fundamental Polyakov loopsLi andL j .

We expand aroundβ = 0 and arrange the effective couplingsλn = λn(β ,Nτ) in increasing order
in β of their leading terms. Thus, theλn become less important the highern. As we shall see, the
interaction termsSn depend only on Polyakov loops

L j ≡ tr Wj ≡ tr
Nτ

∏
τ=1

U0(~x j ,τ) . (2.3)

With sufficiently accurate knowledge of the relationsλn(β ,Nτ), we are able to convert the cou-
plings of the three-dimensional theory to those of the full theory. Determining the critical parame-
tersλn,c of the effective theory then gives a whole array of criticalβc(Nτ) for - in principle - allNτ .
In the following we calculate strong coupling, i.e. smallβ , expansions of the leadingλn.

Since the calculations are quite similar for different numbers of colours, we now specialise
our derivation to the physically interesting case ofSU(3). For more details and the simpler case
of SU(2), see [9]. Using the character expansion as described e.g. in[10, 11], the effective action
according to Eq. (2.2) can be written as

−Seff = ln
∫

[dUi ]∏
p

[

1+ ∑
r 6=0

drar(β )χr (Up)

]

, (2.4)

where the sum extends over all irreducible representationsr with dimensiondr and characterχr .
The expansion coefficientsar(β ) are known as series forSU(3) or in closed form forSU(2) [10]
and in the following we useu ≡ af as expansion parameter instead ofβ for its better apparent
convergence. Our task is then to group together all graphs yielding the same interaction terms up
to some order inβ .

The leading order result of the effective action has first been calculated in [12] and corresponds
to a sequence ofNτ plaquettes that wind around the lattice in temporal direction, cf. Fig. 1.. Its
contribution is given by:

λ1S1 = uNτ ∑
<i j>

LiL j . (2.5)

Hence, to leading order the first coupling of the effective theory isλ1(u,Nτ) = uNτ . Corrections
consist of geometrical decorations containing additionalplaquettes, e.g. a cube sitting on top of the
previous graph, etc. Calculating seven non-trivial orders, we find for the leading coupling

λ1(Nτ ≥ 6,u) = uNτ exp
[

Nτ
(

4u4 +12u5−14u6−36u7

+
295
2

u8 +
1851
10

u9 +
1055797

5120
u10
)]

. (2.6)
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Figure 2: Left: Distribution ofL for small and largeλ1 on a lattice withNs = 6. Right: Expectation value
of |L|. The vertical line marks the infinite-volume transition.

For smallerNτ some lower coefficients change since some graphs do not fit into the lattice, detailed
expressions for those cases are given in [9]. Inspection of higher order terms shows that one can
arrange a subclass as

∑
<i j>

(

2λ1Re(LiL
∗
j )−

4λ 2
1

2
Re(LiL

∗
j )

2 + . . .

)

= ∑
<i j>

ln
(

1+2λ1Re(LiL
∗
j )
)

. (2.7)

In a similar fashion we have calculated the leading terms of some additional couplings. For the first
terms of the next-to-nearest neighbour couplingλ2(Nτ ,u) we find

λ2(Nτ ≥ 8,u) = u2Nτ
[

Nτ(Nτ −1)u2] , (2.8)

while the leading coupling of adjoint loops is (valid forNτ ≥ 2)

λa = vNτ

(

1+Nτ
3
2

u6

v
+ . . .

)

, v =
9
8

u2−
9
8

u3 +
81
32

u4 + . . . (2.9)

A further simplification is achieved by using the trace of thePolyakov loops for the path
integral measure as degrees of freedom (complex numbers instead of matrices), and rewrite the
one-coupling partition function as

Zeff =

∫

(

∏
i

dLi eVi

)

∏
<i j>

(1+2λ1ReLiL
∗
j ) , Vi =

1
2

ln
(

27−18|Li |
2 +8Re(L3

i )−|Li|
4
)

.

(2.10)
We thus have arrived at a simple, centre-symmetric theory ofcomplex scalars in three dimensions.

2.2 Numerical analysis of effective theories for hot Yang-Mills

The effective theory allows for straightforward Monte Carlo simulations using a standard
Metropolis update. Our first task is to establish the phase structure of the effective theory, where
we focus on the physically interesting case ofSU(3). Based on the globalZ(3) symmetry of the
model, one expects spontaneous breaking of that symmetry for some critical value of the coupling
λ1,c. Fig. 2 shows the behaviour of the field variableL as a function ofλ1. As expected from the 4d
parent theory, there is indeed a transition from a disordered or mixed phase, with values ofL scat-
tering about zero, to an ordered phase at large coupling where the threeZ(3)-phases are populated

4
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Figure 3: Critical line in the two-coupling space, determined fromχ(|L|). Dashed lines give the parameter
space representing a 4d theory with fixedNτ .

separately. In the thermodynamic limit, one of these vacua will be chosen and the symmetry is
broken spontaneously. Correspondingly, the expectation value of|L| rises abruptly at some critical
couplingλ1c, as shown in Fig. 2 (right). On a finite size lattice, the phasetransition is smoothed
out, non-analyticities are approached gradually with growing volume, as the figure illustrates.

In order to locate the critical coupling, we looked amongst others at peaks of the susceptibility

χ(|L|) = N3
s

〈(

|L|− 〈|L|〉
)2〉

, (2.11)

with |L| = |∑i Li| After identifying a pseudo-criticalλ1,c(Ns) for a number of finite systems, the
relationλ1c(Ns) = λ1c + bN−1/ν

s is used to extrapolate to the thermodynamic limit. The data are
compatible withν = 1/3 for theSU(3) first-order transitions and, in theSU(2) case, the 3d Ising
valueν = 0.63002. Note that due to having only a 3d scalar theory, even anintricate finite size
scaling analysis can be done in just a few days on a desktop PC.

Nτ λ1 (λ1,λ2) (λ1,λa) 4d YM

1 2.7828(4) – 2.529(6) 2.703(4)
2 5.1839(2) 5.0174(4) 5.003(5) 5.10(5)
3 5.8488(1) 5.7333(3) 5.780(2) 5.55(1)
4 6.09871(7) 6.0523(1) 6.0748(6) 5.6925(2)
6 6.32625(4) 6.32399(3) 6.3225(1) 5.8941(5)
8 6.43045(3) 6.43033(2) 6.42971(7) 6.001(25)
10 6.49010(2) 6.49008(2) 6.48991(6) 6.160(7)
12 6.52875(2) 6.52874(1) 6.52869(5) 6.268(12)
14 6.55584(2) 6.55583(1) 6.55580(4) 6.383(10)
16 6.57588(1) 6.57587(1) 6.57585(3) 6.45(5)

Table 1: Critical couplingsβc for SU(3) from different effective theories compared to simulationsof the 4d
theory [13, 14]. TheNτ = 1 Monte Carlo value is from our own simulation with standard Cabibbo-Marinari
plaquette update.
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Figure 4: Left: Critical coupling for theSU(3) pure gauge transition, calculated fromλ1c using the maps
Eq. 2.6. Right: Critical temperature for the pure gauge deconfinement transition, extracted from the 3d
effective theory, Eq. (2.10).

Next we investigated the influence of a second coupling on theeffective theory, i.e. the next-
to-nearest-neighbour couplingλ2 and the adjoint loop couplingλa. In these two-dimensional pa-
rameter spaces, there is a critical line separating the symmetric and the broken phases. However,
for a givenNτ , only a one-dimensional manifold in this space represents the image of the original
gauge theory, since both couplings are functions ofu only. The results for both cases are shown
in Fig. 3. By plotting the family of curves corresponding to agiven Nτ , one sees that the latter
accumulate towards vanishing second coupling asNτ increases, i.e. as the lattice gets finer. For
continuum physics they may be safely neglected.

Having established the critical couplings for our effective theories we are now ready to map
them back to the original thermal Yang-Mills theories by inverting the couplingsλic(β ,Nτ) →

βc(λi ,Nτ). In Table 1 we collect the values for the critical gauge couplings obtained in this way
and compare them to the values obtained from simulations of the full 4d theory. The agreement
is remarkable in all cases and even better in the case ofSU(2). Interestingly, there appears to be
a ‘region of best agreement’, with the deviation growing both for small and largeNτ . We ascribe
this to the fact that there are two competing systematic errors, as discussed earlier: the validity of
the strong coupling series for a given couplingλi is better the smallerβ and henceNτ , whereas
the truncation of the next-to-nearest neighbour interactions gains validity with growingNτ . In
particular in the case ofSU(3), there appears to be a cancellation of the two kinds of systematics,
rendering the effective description better for the original theory on finer lattices.

The convergence properties of the strong coupling expansion in our “observable”βc are shown
in Fig. 4 (left) for the three highest orders calculated inSU(3). Even on fine lattices we observe
reasonable convergence, which encourages us to attempt a continuum extrapolation. Supplying a
scale by using the non-perturbative beta functiona(β ) from [15], we convert the critical couplings
to temperatures and plot them in Fig. 4 (right). The error bars give the difference between the two
highest orders of the strong coupling expansion. The onset of theN−2

τ ∼ a2 scaling region is clearly
visible providing a continuum extrapolation within∼ 10% of the known result. Note that all data
points stem from a single 3d simulation.
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3. QCD with heavy fermions

3.1 The hopping parameter expansion

Let us now summarise the inclusion of heavy fermions, details can be found in [16]. Heavy
fermions are conveniently introduced using the hopping parameter expansion, which is described
in [10] at zero temperature and discussed in [17, 18] for finite temperature. The quark part of the
action forNf mass-degenerate flavours with massesM f = M can then be written

−Sq = −Nf

∞

∑
l=1

κ l

l
TrH[U ]l , κ =

1
2aM+8

, H[U ]y,x ≡ ∑
±ν

δy,x+ν̂ (1+ γν)Uν(x) , (3.1)

with γ−ν = −γν . Thus each hop to a neighbouring lattice site gives a power ofthe hopping param-
eterκ . The quark chemical potentialµ is introduced as usual by a factor eaµ (e−aµ ) multiplying
link variables in positive (negative) time direction [19].The effective theory is obtained from the
full theory in the same way as for Yang-Mills,

Z =
∫

[dU0][dUi ]exp[−Sg−Sq] =
∫

[dU0]exp[−Seff] ,

−Seff = ln
∫

[dUi ]exp[−Sg−Sq] . (3.2)

We are now faced with a double series expansion inu(β ) andκ , i.e. the effective couplings depend
on both parameters andNτ . Furthermore, quarks of finite mass lead to terms in the action which
explicitly break theZ(3) symmetry present in the pure gauge case. We may arrange this as

−Seff =
∞

∑
i=1

λi(u,κ ,Nτ)S
s
i −2Nf

∞

∑
i=1

[

hi(u,κ ,µ ,Nτ )S
a
i + h̄i(u,κ ,µ ,Nτ)S

a,†
i

]

. (3.3)

Theλi are defined as the effective couplings of theZ(3)-symmetric termsSs
i , whereas thehi mul-

tiply the asymmetric termsSa
i . Consequently, only the latter areµ-dependent and we recover pure

gauge theory forκ → 0, as in the full theory.
Similar to the case of pure gauge theory, graphs contributing to the cluster expansion have

to wind around the lattice in the compactτ-direction. Hence, the leading order contributions are
Polyakov loops, and we can read off the leading-order couplingsh1 andh̄1:

h1Sa
1 + h̄1Sa,†

1 = −∑
~x

[

(2κeaµ)Nτ L(~x)+ (2κe−aµ)Nτ L∗(~x)
]

→ h1 = (2κeaµ)Nτ . (3.4)

Note the minus sign which is due to the anti-periodic boundary conditions for fermions. It is
possible to sum up the contributions of all generalised Polyakov loops oriented in positive time
direction,

exp

{

−2Nf ∑
~x

∞

∑
n=1

[

(−1)n

n
(2κeaµ)nNτ Tr (Wn)

]}

=∏
~x

det
[

1+(2κeaµ)NτW
]2Nf

, (3.5)

using expTr lnA ≡ detA, and similarly for the conjugate loop. The three-dimensional effective
action to leading order in the hopping expansion corresponds to the static approximation and reads

Zeff =
∫

[dU0]

(

∏
<i j>

[

1+2λ1ReL∗
i L j

]

)(

∏
~x

det
[(

1+h1W~x

)(

1+ h̄1W
†

~x

)]2Nf

)

. (3.6)

7



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
3
5

Finite density QCD effective theory Owe Philipsen

phys.
point

0
0

N  = 2

N  = 3

N  = 1

f

f

f

m s

s
m

Gauge

 m   , mu

1st

2nd order
O(4) ?

2nd order
Z(2)

2nd order
Z(2)

crossover

1st

 d 

tric

∞

∞
Pure

c
λ,c

h
II

ordered (deconfined)

disordered (confined)

h

λ0

λ

crossover

I

 0.1855

 0.186

 0.1865

 0.187

 0.1875

 0.188

 0  0.0003  0.0006  0.0009  0.0012

λ

h

λpc(h)
Linear fit

Critical point

Figure 5: Schematic phase diagram forµ = 0. Left: Nature of the QCD thermal transition for different
quark masses. Middle: Expected phase diagram for the effective theory corresponding toµ = 0. Right:
Calculated phase diagram forµ = 0. Also the critical point is shown.

Using some identities for determinants and reverting to traced Polyakov loops again, this becomes

Qi(h, h̄) =
[

(1+hLi +h2L∗
i +h3)(1+ h̄L∗i + h̄2Li + h̄3)

]2
,

Zeff =
∫

(

∏
i

dLi eVi Q
Nf
i (h, h̄)

)

∏
<i j>

(1+2λReLiL
∗
j ) . (3.7)

Going beyond the static approximation means to include alsospatial hops, which get decorated
with plaquettes. Including all corrections up toO(unκm), with n+m= 7, we obtain

h1(u,κ ,Nτ ≥ 3) = (2κeaµ )Nτ exp

[

6Nτ κ2u

(

1−uNτ−1

1−u

+ 4u4−8κ2+8κ2u+4κ2u2−4κ4
)]

. (3.8)

Additional couplings turn out to be suppressed compared to this and we neglect them in the follow-
ing. Since we thus keep only one coupling of each sort, we dropthe index “1” for the remainder.
Since the deconfinement transition at high temperature happens at smallh, we can recover an arbi-
trary number of flavours by using the approximation det(1+hW)Nf ≈ exp(Nf hL).

3.2 The deconfinement transition at zero baryon density

As a first application of the effective theory we investigatethe deconfinement transition of
QCD with heavy quarks as a function of quark mass and chemicalpotential. We begin by consider-
ing the case of zero baryon density, shown schematically in Fig. 5 (left). In the pure gauge limit, the
deconfinement transition is of first order. Dynamical quarksat any fixedNf break the globalZ(3)

symmetry of the QCD action explicitly. As a consequence, thephase transition weakens with de-
creasing quark masses until it vanishes at a critical point.For still lighter quarks the deconfinement
transition is an analytic crossover. This behaviour is inherited by the effective theory. For a given
Nf andµ = 0, we haveh = h̄ and the effective theory has two couplings,(λ ,h). The first-order
phase transition of the one-coupling theory extends to a first-order line with a weakening transition
ash increases. Eventually the transition vanishes at a critical point, as sketched in Fig. 5 (middle).

8
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In a slight sharpening of terminology, we now call the phase boundary pseudo-critical and only
refer to the second order endpoint as “critical”.

The numerical analysis proceeds in the same fashion as described in the pure gauge section
with two couplings. The resulting phase boundary between the ordered and disordered phase is
shown in Fig. 5 (right) and found to be linear in the small coupling h. In order to locate the critical
endpoint we study the scaling of the fourth order Binder cumulant

B4(Q) ≡ 〈(Q−〈Q〉)4〉/〈(Q−〈Q〉)2〉2, (3.9)

along the phase boundary in Fig. 6 (right). The crossing point provides us with the critical coupling
hc and the value of the cumulant at the crossing point is consistent with the 3d Ising value, as
expected for a critical end point. We identify the critical point as

(

λc = 0.18672(7),hc = 0.000731(40)
)

. (3.10)

Using the analytic expressions for the couplings, these values can be converted into those of the
couplingsβc,κc. In order to compare with previous work, we approximateMc/T with the relation,
valid for heavy fermions to leading order in the hopping expansion [20],

exp
(

−
M
T

)

≃
h

Nf
. (3.11)

The results for anNτ = 4 lattice are collected in Table 2 and once more in good agreement with 4d
Monte Carlo simulations.

As in pure gauge theory, we may look at the continuum approachof κc, obtained by inverting
Eq. (3.8), Fig. 6 (right). Also shown is the chiral critical hopping parameter, defined by the van-
ishing of the pion mass and evaluated for the critical gauge couplings,κch(uc(Nτ)). Since we are
expanding around infinite quark masses, self-consistency requiresκc ≪ κch. This suggests that our
expansion is trustworthy to aboutNτ ∼ 6.

3.3 The deconfinement transition at finite baryon density

For µ 6= 0, we haveh 6= h̄ and need to consider the full parameter space of the effective theory,
(λ ,h, h̄). The diagram in Fig. 5 (middle) turns three-dimensional, with a surface of first order phase

9
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Nf Mc/T κc(Nτ = 4) κc(4), Ref. [21] κc(4), Ref. [22]

1 7.22(5) 0.0822(11) 0.0783(4) ∼ 0.08
2 7.91(5) 0.0691( 9) 0.0658(3) –
3 8.32(5) 0.0625( 9) 0.0595(3) –

Table 2: Location of the critical point forµ = 0 andNτ = 4. The first two columns are our results the last
two from the literature.
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transitions terminating in a critical line. Since we are interested in the change of the critical quark
mass with chemical potential, it is convenient to introducethe parameter

h̃≡ he−µ/T (= (2κ)Nτ to leading order inκ
)

(3.12)

and to present our data in the parameter space(λ , h̃,µ/T).
For h̄ 6= h the effective theory has a sign problem, just as the originaltheory. However, the

sign problem is very mild and can be overcome by using the modulus of the fermion determinant
in the path integral measure while reweighting in its phase.Moreover, the sign problem can be
solved by going to a flux representation of the partition function, which can then be simulated by
a worm algorithm. Details and a comparison of entirely agreeing results can be found in [16]. The
numerical analysis then proceeds in complete analogy to thezero density case. The pseudo-critical
linesλpc(h̃) for various choices ofµ/T are shown in Fig. 7 (left). As in the zero density case, we
observe perfectly linear behaviour due to the smallness ofh̃. Again the critical point on each line
is found by identifying where the Binder cumulant takes its critical value. The corresponding line
of critical endpoints is shown in Fig. 7 (right).

Asymptotically large chemical potentials in the original lattice QCD are described by the limit

κ → 0,µ → ∞ with κeµ/T = const. (3.13)

In the effective theory this corresponds to,(λ ,h, h̄ = 0). The critical point in this case is easily
found by the same techniques,

(λc,hc)|h̄=0 = (0.18668(2),0.00142(2)) . (3.14)
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)-space, forNf = 2 andNτ = 6. Above the surface the theory is deconfined. The critical

line (dashed) separates the cross-over (light) and the first-order surface (dark).

Using the leading order expression forh, Eq. (3.4), this gives thēh = 0-critical curveh̃c(µ/T)

which is also plotted in Fig. 7. Already forµ/T >∼1.5 the data are accurately described by the
asymptotic density limit. Similarly, the linearity of the phase boundaryλ(h̃) and the nearµ-
independence of the endpointλc, Eqs. (3.10, 3.14), imply that̃hc ∼ cosh−1(µ/T) [16]. We thus
have obtained a numerical as well as simple parametric description of theNf = 1 deconfinement
critical line for all real chemical potentials!

4. Conclusions

We have presented a proposal for a two-stage treatment of QCDat finite temperature and
bayon density. The first step consists of an analytic derivation of a 3d effective action by means
of a combined strong coupling and hopping parameter expansion. The effective theory depends
on Polyakov loops only, its couplings are power series of thelattice gauge coupling and hopping
parameter and can be improved order by order. The second stepconsists of a non-perturbative
Monte Carlo simulation of the effective theory. For theSU(2) andSU(3) pure gauge theory, the
order of the deconfinement transition is correctly predicted and a continuum extrapolation of the
critical temperature is feasible, within about 10% of the known answer. For heavy fermions the
current effective theory is good to aboutNτ ∼ 6, a continuum extrapolation is not yet feasible. On
the other hand, the effective theory allows for a solution ofthe sign problem and thus provides a
description of the deconfinement transition for all chemical potentials. This provides some hope for
an eventual treatment of physical QCD, but it remains a challenging task to extend this approach
to light quarks.
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