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Perturbation theory for non-abelian gauge theories at finite temperature is plagued by infrared
divergences which are caused by magnetic soft modes ∼ g2T , corresponding to gluon fields of
a 3d Yang-Mills theory. While the divergences can be regulated by a dynamically generated
magnetic mass on that scale, the gauge coupling drops out of the effective expansion parameter
requiring summation of all loop orders for the calculation of observables. Some gauge invariant
possibilities to implement such infrared-safe resummations are reviewed. We use a scheme based
on the non-linear sigma model to estimate some of the contributions ∼ g6 of the soft magnetic
modes to the QCD pressure through two loops. The NLO contribution amounts to ∼ 10% of the
LO, suggestive of a reasonable convergence of the series.
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Figure 1: Feynman diagram contributing to the pressure.

1. Introduction

Perturbation theory for static quantities of non-abelian gauge theories at finite temperature
(T) features three scales: πT associated with the non-zero Matsubara modes that arise due to the
compactness of the Euclidean time direction, and gT,g2T , where g is the gauge coupling, which
are associated with the screening of colour-electric and magnetic fields, respectively. A prohibitive
obstacle for the evaluation of perturbative series are the well-known infrared divergences due to
the magnetic modes. For example, the thermodynamic pressure corresponds to all vacuum loop
diagrams evaluated with finite temperature Feynman rules, and one (l +1)-loop example is shown
in Fig. 1. The Matsubara sum also contains a bosonic zero mode, and its contribution to the pressure
is, parametrically,

∼ g2l
(

T
∫

d3 p
)l+1

p2l(p2 +m2)−3l ∼ g6T 4(g2T/m)l−3for l > 3, (1.1)

where we have introduced a mass as infrared regulator in the propagators. Clearly, for m→ 0
the contribution diverges. One may argue that the full theory dynamically generates a magnetic
mass scale, m = const.g2T , to regulate this divergence. After all, we know that non-perturbatively
the theory is finite. However, in that case we see that the coupling constant drops out of the
expansion parameter and all higher loop orders contribute to the order g6 in the pressure. This is the
Linde-problem [1], which occurs sooner or later in any perturbatively computed observable, e.g. in
the Debye mass already at NLO, no matter how weak the coupling. Thus, at finite temperature,
perturbation theory is only well-defined to some observable-dependent low order. Note that this
IR-problem in the zero-mode sector is equivalent to the one in 3d Yang-Mills theory.

In this contribution we reconsider a resummation method for 3d Yang-Mills theory, viz. the
finite T zero mode sector, which has been developed a while ago [2,3]. In view of current and future
heavy ion collision experiments there is an urgent need for non-perturbative theoretical predictions.
On the other hand, straightforward Monte Carlo simulations of lattice QCD do not work for finite
baryon densities or dynamical problems involving real time (for a recent review, see e.g. [4]),
motivating also analytical attempts. As the simplest observable to test our resummation scheme,
we therefore consider the contribution of the infrared sector represented by the 3d Yang-Mills
theory to the thermodynamic pressure of the QCD plasma. Of course, the equation of state can
be computed without major problems on the lattice, at least for a temperature range T <∼5Tc. The
idea here is to try and develop resummation schemes, test them against the pressure and in case of
satisfactory results apply them to other quantities. In the thermal context, resummation schemes
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have already been successfully employed in scalar theories through four-loop level [5], but it is
not straightforward to generalise these methods to gauge theories. Recently a scheme based on
Hard Thermal Loop terms was attempted for non-abelian gauge theory, though not including the
magnetic modes [6]. We therefore briefly review the contribution of the 3d gauge theory to 4d
thermodynamics, before presenting our resummation scheme and evaluating it through two-loop
order.

2. High T effective theory from dimensional reduction

At sufficiently high temperatures, the previously mentioned scales get separated hierarchi-
cally, g2T � gT � πT . This suggests to successively integrate out those scales, which has been
done systematically at the two-loop level. Here we follow [7], to which we refer for details and
references.

In the first step, the hard non-zero Matsubara modes are integrated out, leading to so-called
EQCD as an effective theory for modes ∼ gT and softer,

pQCD(T ) = pE(T )+
T
V

ln
∫

DAa
kDAa

0 exp(−
∫

ddxLE)

LE =
1
2

TrF2
kl +Tr [Dk,A0]

2 +m2
eTrA2

0 +λ
(1)
E (TrA2

0)
2 +λ

(2)
E TrA4

0 + ... ,

where to leading order the parameters of the effective theory are pE ∼ T 4; m2
E ∼ g2T 2; g2

E ∼
g2T ; λ

(1)
E ∼ g4T ; λ

(2)
E ∼ g4T . Note that by performing the Matsubara sum the theory has

become effectively three-dimensional, and the electric gauge field component now represents an
adjoint scalar field. The dots represent higher dimension operators that are suppressed by inverse
powers of T . This effective theory still contains the two dynamically generated scales gT and g2T .
In a second step, the A0 field and all modes living on the scale gT can be integrated out as well.
This step already requires some resummation, but can still be performed as a series in the coupling,

T
V

ln
∫

DAa
kDAa

0 exp(−
∫

ddxLE) = pM(T )+
T
V

ln
∫

DAa
k exp(−

∫
ddxLM)

LM =
1
2

TrF2
kl + ... , (2.1)

with matching coefficients pM ∼ m3
ET and g2

M ∼ g2
E . This is an effective theory for the ultra-soft

modes ∼ g2T , its leading term being equivalent to 3d Yang-Mills theory.
At this stage we can evaluate the contributions to the pressure from the different momen-

tum scales separately and with appropriate methods. The contributions pE(T ) + pM(T ) can be
computed as a series in the coupling constant, whereas the contribution of pM(T ) is completely
non-perturbative. This is the part of the theory giving the g6 contribution to the pressure where the
Linde-problem surfaces, and for dimensional reasons one can give its dependence on the coupling
constant,

pG(T ) =
T
V

ln
∫

DAa
k exp(−SM)∼ T g6

pG(T )
T µ−2ε

= dAC3
A

g6
M

(4π)4

[
αG

(
1
ε

+8ln
µ̄

2mG

)
+βG +O(ε)

]
. (2.2)
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The coefficients αG,βG first receive contributions at the four-loop level. There are similar (and
more lengthy) expressions for pE(T ) + pM(T ), for the full result see [7]. It is well-known that
whatever renormalisation is necessary and sufficient in the vacuum will also be sufficient at finite
temperature. The epsilon poles appearing in the contributions of the different scales are due to the
break up of the momentum integration range, thus the sum of all divergences has to cancel in the
full pressure.

Here our interest is merely in the contribution from the 3d Yang-Mills part. Whereas αG is
known analytically [7], the infrared coefficient βG is receiving contributions from all loop levels
and needs to be evaluated non-perturbatively, e.g. by lattice simulations of the effective theory [8],
leading to a numerical value (with a certain error bar). In the following we discuss possibilities for
an analytical evaluation by resummation methods.

3. Resummation schemes: general idea

The general idea of a resummation is, at some given order in a perturbative scheme, to sum
up higher order contributions (infinitely many in our case) into the current one. In order to avoid
double counting, these contributions must then be left out at the order where they naturally occur.
In other words, the perturbative scheme gets reorganised in some systematic way. (For a discussion
of various schemes along those lines used in the context of thermal field theory, see [9]). This can
be formalised by rewriting the Lagrangian serving for the perturbative expansion as [10]

L =
1
`

[
LM(
√

`X)+Lφ (
√

`X)− `Lφ (
√

`X)
]

, (3.1)

where X stands for a generic field; LM is the theory under study, here taken as the 3d Yang-Mills
theory of Eq. (2.1); the modification Lφ contains fields of the original Lagrangian and possibly
auxiliary fields; and ` is a counting parameter introduced to systematise the resummed expansion,
which is now an expansion in powers of `. At the end of a calculation it is to be set to ` = 1, for
which the Lagrangian is identical to the original one and the theory is unchanged. However, during
a perturbative evaluation the contributions of Lφ are subtracted out one order higher than they are
added in, hence at any finite order of the expansion the result will differ from the unresummed one.
For example, the one-loop vacuum diagrams contributing to the pressure will be of order `0 while
two-loop contributions count as `1. In particular, if Lφ is chosen to represent a mass term for the
gluon, this will regulate the infrared divergences.

Simply adding and subtracting a mass term for the gluon will not be sufficient, however, as
we would obtain gauge-dependent and hence arbitrary results at every finite order in our resummed
scheme. The question then is how to resum in a gauge-invariant way. The answer is that we need to
resum such that we maintain the Slavnov-Taylor identities of our gauge theory. Clearly, this is not
just to make things pretty, but a necessity in order not to change the original theory in the process
of resumming.

4. The non-linear sigma model providing a gluon mass term

A well-known and time honoured way to introduce mass for gauge fields is by means of the
Higgs effect, i.e. gauged sigma models [11]. For example, in the SU(2)-Higgs model used in the
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electroweak theory, we have

Lσ = Tr(DiΦ)†(DiΦ)+ µ
2Tr(Φ†

Φ)+2λTr(Φ†
Φ)2 (4.1)

φ =
1
2
(σ + iτa

π
a) with T a =

τa

2
σ

2 = v2 +(πa)2 with < φ >= v .

The gauge field gets a mass m = gMv/2 through the expectation value of the scalar field.
However, in the current context we don’t want an additional physical scalar particle, so we

decouple the σ by sending µ,λ → ∞ while keeping v constant, which takes us to the non-linear
sigma model. Choosing a parametrisation by unitary matrices generalises to SU(N) and we have

Lφ = Tr [(Diφ)†Diφ ], φ(x) =
m
gM

exp(i
gM

m
π
′aT a), π

′a→ π
a +O(π3,π5, ...), (4.2)

with the usual covariant derivative Di = ∂i− igMAi. What is the meaning of the remaining scalar
degrees of freedom? This can be understood by considering the resummed partition function [10]

Z =
∫

DADφ ∆FP exp
[
−1

`
(SY M +Sφ − `Sφ +Sg f )

]
, (4.3)

with some gauge fixing that only depends on the gauge field, and the corresponding Faddeev-Popov
determinant ∆FP. We can now transform to unitary gauge by Ai→ AU

i with U = exp(iπaT a) and
integrate over the auxiliary field. Up to a delta-function this gives∫

Dφ ∆FP e−Sg f = 1 , (4.4)

such that we end up with

Z =
∫

DA exp
[
−1

`
(SY M−m2

∫
TrA2 + `m2

∫
TrA2)

]
, (4.5)

which is just pure gauge theory with a gauge invariantly resummed mass term. Unitary gauge
is not well suited for perturbative higher order calculations because of the bad UV-behaviour of
gauge field propagators. Hence we shall proceed in a slightly different way later on, but these
manipulations illustrate that the auxiliary field is merely a gauge degree of freedom and does not
add anything undesired to the theory.

Obviously, the choice of the resummation term Lφ above is not unique. There are other
choices compatible with gauge invariance that have been considered in the past, like Lφ = Fµ

1
D2 Fµ ,

with Fµ = εµαβ Fαβ [10]. This term does not require an auxiliary field, but at the price of being
non-local. Another non-local choice is based on the Chern-Simons eikonal and appears naturally
in the framework of Hard Thermal Loop resummations [12]. Yet another possibility to give mass
to the gauge field in a gauge invariant way is by the pinch technique [13]. Different gauge invariant
additions/subtractions correspond to different ways of resumming the theory, and it is difficult to
say a priori which ones are better or worse. Moreover, there is no small expansion parameter here.
Writing m = Cg2

M = Cg2T , the dimensionless expansion parameter (modulo factors of 1/(4π)) is

g2
M

m
=

g2
M

Cg2
M

, (4.6)
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ref. m/g2
M

1-loop gap eq. [12] 0.38
[2, 10] 0.28
[13] 0.25

2-loop gap eq. [14] 0.34
lattice Landau [15] 0.456(6)

Table 1: Comparison of magnetic mass values for the pole mass of transverse gluons in SU(2), m = Cg2
M ,

as obtained from gap equations and from gauge fixed lattice simulations.

where C is a numerical coefficient that will be discussed in the next section (see also Table 1). The
coupling constant drops out and we are effectively expanding in a dynamically generated number.
Thus, there is no limit of parameters (not even gM→ 0) in which the scheme is guaranteed to work.
The convergence properties are due to the dynamics of the theory and can only be seen empirically
by computing several orders of a given quantity.

5. Self-consistency and the magnetic mass

A priori the coefficient C for the infrared cut-off is not determined. Since it gets subtracted
out again at higher orders in the resummation scheme it could, e.g., be treated as a variational
parameter with some freedom to optimise the expansion. On the other hand, the resummation
scheme of choice can be used to compute any observable, in particular one might consider the self-
energy of the gluon. Defining the “magnetic mass” to be the pole mass of the transverse part of the
full gluon propagator, we obtain a gap equation for m,

Dtrans(p2) =
1

p2 +m2−Πtrans(p2)
∼ 1

p2 +m2 for p2 =−m2

Πtrans(p2 =−m2)
(

1+
∂Πtrans

∂ p2 (p2 =−m2)
)

= 0

Note that the pole of the transverse self energy is gauge-invariant order by order, i.e. this definition
of m is gauge invariant. Results for the solution of the gap equation using various resummation
schemes and gauge fixed lattice propagators are summarised in Table 1. Expectedly there is some
scatter in the values, but it is not much more than the two-loop correction computed with the scheme
based on the non-linear sigma model [14], which amounts to about 15%. This suggests that the
schemes might possibly lead to a reasonable convergence.

There is also an evaluation of the magnetic mass in a gauge invariant lattice calculation, based
on the following observable [16]

〈(DiFi j)a(x)UAd
ab (x,y)(DkFlm)b(y)〉

〈(Fi j)a(x)UAd
ab (x,y)(Flm)b(y)〉

∼ exp[−(3m−2m)|x− y|] , (5.1)

where UAd
ab (x,y) is a Wilson line in the adjoint representation. In perturbation theory, the correlator

in the numerator is at large distances dominated by three-gluon exchange, whereas the denominator
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Figure 2: Lowest masses from the exponential fall-off of the field strength correlators in Eq. (5.1). Both
masses are diverging at the same rate, but the difference can be extrapolated to the continuum.

is dominated by two-gluon exchange, hence the ratio should fall off with one gluonic pole mass.
In a non-perturbative reasoning these correspond to gluelump correlators, i.e. glue with certain
quantum numbers bound to a static adjoint source. The ratio of these correlators measures the
smallest excitation energy with the quantum numbers of a gluon. Note that, due to the diverging
self energy of the adjoint Wilson lines, neither gluelump correlator has a continuum limit, but the
ratio does and the energy difference is finite. The resulting continuum extrapolation is shown in
Fig. 2, and gives m = 0.36(2)g2

M.

Finally, the mass parameter in the gluon propagator is not a physical observable and not the
goal of our investigation, but merely a quantity that appears as a regulator for our resummation
scheme. The test of the latter is in computing a physical observable. In the context of thermal field
theory, this has been done by using the linear sigma model as a dimensionally reduced version of
the electroweak theory in order to calculate the electroweak phase transition as a function of the
Higgs mass. Standard perturbation theory to leading order predicts a first order phase transition
for all Higgs masses, and cannot be extended beyond LO because of the massless W-bosons in
the symmetric phase. Using the resummation similar to the one described here, the critical Higgs
mass for which the electroweak phase transition disappears and turns into a smooth crossover was
predicted [2, 17] and is within 10% of the corresponding lattice results [18, 19].

6. Application to the pressure

Let us now apply the screened perturbation theory based on the non-linear sigma-model to the
calculation of the pressure of the soft magnetic field modes, Eq. (2.2). In the framework of the
resummation outlined above, the Lagrangian in the exponent of the first line is supplemented by
the sigma-model term, the counter term as well as gauge fixing and ghost terms. How many powers
of the auxiliary fields πa(x) are needed depends on the order of the calculation. At the two loop
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level, or to order `1, a four-point vertex is the highest that is needed, and we have

Leff =
1
4
(
∂iAa

j −∂ jAa
i
)2 +

1
2ξ

(∂iAa
i )

2 +
1
2

m2Aa
i Aa

i

+
1
2

(∂iπ
a)2 +

1
2

ξ m2
π

a
π

a +(∂i(ca)∗)∂ica +ξ m2ca*ca

+gM
√

` f abcAb
i Ac

j∂iAa
j +

1
4

g2
M` f abe f cdeAa

i Ab
jA

c
i Ad

j

+
1
2

gM
√

` f abc (∂iπ
a)Ab

i π
c +gM

√
` f abc(∂i(ca)∗)Ab

i cc− 1
2

gM
√

`ξ m f abc
π

acb(cc)∗

+
1
8

g2
M`

m2

(
2
N

δ
ab

δ
cd +dabedcde

)
π

a
π

c(∂iπ
b)∂iπ

d

− 1
8

g2
M`ξ

(
2
N

δ
ab

δ
cd +dabedcde− f abe f cde

)
(ca)∗πb

π
ccd

− 1
2

m2`Aa
i Aa

i −
1
2

ξ m2`π
a
π

a−ξ m2`ca*ca. (6.1)

Note the additional Feynman rules that result from this effective Lagrangian. Besides the vertices
for the auxiliary fields and their interactions with gluons, ghosts and themselves, there are also
two-point vertices associated with the counter terms, cf. Fig. 3 (left), since they are treated as
interactions. Through order `1, i.e. two loops, we then have to compute the diagrams in Fig. 3
(right).

Figure 3: Left: New counterterms induced by the effective Lagrangian Eq. (6.1). Right: Feynman diagrams
for the contribution of magnetic QCD to the pressure at order `.

Our calculation is performed in a general Rξ -gauge. This is an excellent way of checking the
calculation – the pressure as a physical quantity has to be independent of the gauge parameter ξ .
For intermediate checks, it is also useful to observe that the set of diagrams has three obviously
gauge invariant subsets. The one-loop diagrams from the first line, and the two-loop diagrams just
correspond to an unresummed non-linear sigma model which must be gauge invariant order by
order. Correspondingly, the counter term diagrams in the last line are also a gauge invariant subset.
According to the reshuffling of the expansion, they appear only at order ` although they technically
are one loop diagrams.
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The results for these three sets of diagrams for SU(N) are (using g2
M = g2T , cf. Section 2)

pG,`0(T ) = C3(N2−1)
g6

6π
T 4

pG,ct(T ) = −`C3(N2−1)
g6

4π
T 4

pG,`1

µ−2εT 4 = `C2N(N2−1)
g6

(4π)2

[
−21

64

(
1
ε

+4ln
µ̄

2Cg2T

)
+

3
16
− 21

32
− 21

16
ln

2
3

+O(ε)
]

.(6.2)

Because of the resummation, we are now getting a contribution of order g6 already to leading order
in this scheme, whereas in unresummed perturbation theory this would occur at four loops. We
then extract the following coefficients (with numerical values for ` = 1, N = 2),

αG = −21
4

C2

N2 π
2` =−1.015582

βG,`0 =
128

3
C3

N3 π
3 = 3.630132

βG,ct = −64`
C3

N3 π
3 =−5.445198

βG,`1 = −
(

15
2

+21ln
2
3

)
`

C2

N2 π
2 = 0.196301 (6.3)

In order to evaluate these contributions, a number for C had to be specified. To be fully self-
consistent, we have taken this to be the magnetic mass evaluated in the same resummation scheme
for the case of SU(2), i.e. C ≈ 0.28 [2]. We now have two consecutive orders for β and may
get a first glimpse of the convergence properties. While the resummed perturbation is organised
in orders of `, a convergence check by comparing different orders in ` would not seem to make
much sense. By construction, the counter term diagrams get subtracted one order in ` higher
than the other diagrams with the same number of loops and the same integral structure. Hence,
when asking for the convergence properties, it would seem natural to proceed loopwise. Thus, in
Eq. (6.3) the contribution of all one loop diagrams is βG,`0 +βG,ct =−1.81, while the genuine two-
loop contribution is βG,`1 , which is about 10% correction. We would expect the counter terms with
two loops, entering at l2-level, to be of the same order of magnitude as the two-loop contributions
evaluated here. Thus, comparing the one-loop and two-loop results appears to be promising in
terms of convergence. We are presently performing the three-loop computation in order to check
this behaviour.

Another interesting observation is the fact that if we take C to be the coefficient of the magnetic
mass, evaluated in the same resummation scheme, then C∼N. Thus, N drops out of the expressions
in Eq. (6.3) and βG becomes N-independent, as expected on general grounds [7].

7. Conclusions

We discussed the possibility to gauge-invariantly resum the 3d Yang-Mills theory such as
to self-consistently include a dynamically generated pole mass for the gluons, which serves as a
regulator for infrared divergences. In such a scheme a perturbative expansion to arbitrary orders
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is possible. However, the dimensionless expansion parameter is a dynamically generated number,
hence there is no parametric limit in which convergence of the series is guaranteed. Rather, the
convergence properties can only be inspected after the calculation of several orders. We have
applied a resummation scheme based on the non-linear sigma-model to evaluate the contribution
of the soft magnetic gluons to the pressure of the QCD plasma. Comparison between one- and
two-loop contributions suggests that there is hope for a reasonable convergence of the series.
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