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We report progress in our exploration of the finite-temperature phase structure of two-flavour lat-

tice QCD with twisted-mass Wilson fermions and a tree-levelSymanzik-improved gauge action

for a temporal lattice sizeNτ = 8. Extending our investigations to a wider region of parameter

space we gain a global view of the rich phase structure. We identify the finite temperature tran-

sition/crossover for a non-vanishing twisted-mass parameter in the neighbourhood of the zero-

temperature critical line at sufficiently highβ . Our findings are consistent with Creutz’s conjec-

ture of a conical shape of the finite temperature transition surface. Comparing with NLO lattice

χPT we achieve an improved understanding of this shape.
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Finite-temperature phase structure of QCD with twisted-mass Wilson fermions Ernst-Michael Ilgenfritz

1. Introduction

The goal of the tmfT collaboration [1] is to explore the applicability of the 2-flavour Wilson-
twisted-mass (Wtm) fermion formulation set-up as described in Ref. [2] for investigations of lat-
tice thermodynamics. We refer to [2] for the definition of theWtm action and its parameters
κ and µ . The staggered-fermion formulation is computationally inexpensive [3], however con-
ceptually controversial [4]. On the other hand, the non-perturbatively improved Wilson fermion
formulation requires the calculation of the improvement coefficients and furthermore needs oper-
ator improvement. Thus, the Wtm formulation, nowadays combined with a tree-level Symanzik-
improved gauge action [5], appears as an appealing alternative for finite temperature lattice sim-
ulations, whose potential should be explored. It offers automaticO(a)− improvement by tuning
the bare, untwisted quark mass only. This makes high-statistics simulations for thermodynamical
problems affordable with pseudoscalar masses as low asmπ & 300MeV [6].

As a necessary preparatory step we characterise the phase structure of the model by locating
the transition/crossover lines and surfaces in theβ − κ − µ−coupling space. In contrast to our
report at Lattice 2007 [7], we now find clear evidence for the Aoki phase atβ ≤ 3, lower than
searched for previously, and a first order phase transition surface in an intermediateβ region be-
ginning with β ≈ 3.4, consistent with earlier findings. For larger couplings 3.6 ≤ β ≤ 3.8, we
observe a thermal transition atκT(T 6= 0) nearκc(T = 0), which emanates from the first order like
structure at smallerβ -values. With growingβ , it splits up to become a succession of two tran-
sitions confinement→deconfinement→confinement in theκ-direction. The confinement aspect of
these transitions is exhibited by the Polyakov loop and its susceptibility, the chiral aspect by the
pion norm (the integrated pseudoscalar correlator) and thescalar and pseudoscalar condensates.

Our ultimate goal is to investigate the finite temperature transition (or crossover) at maximal
twist and physically relevant pion masses. The most obviousprocedure of directly scanning the
transition at maximal twist has proven the hardest to tackle, since its precise location is yet un-
known. Still, our efforts so far gave us more detailed insights than reported in [7] into the phase
structure at non-vanishing twist parameterµ for a larger range ofβ -values. Our findings are qual-
itatively consistent with predictions fromχPT and continuum symmetry arguments [8].

2. Preview of the phase structure

There are three sources for our expectations concerning thephase structure of 2-flavour Wtm
LQCD at finite temperature: (i) The phase structure at zero temperature was predicted using
χPT [9, 10, 11] and subsequently verified numerically [12]; the parameter space atT = 0 was
shown to contain a phase of broken parity-flavour symmetry (Aoki-scenario) in theβ −κ−plane
at strong coupling [13] (for Wilson gauge action) and a first order phase transition surface in the
β −µ−plane (the first order scenario of Sharpe and Singleton) adjacent to the former and extending
into the weak coupling region. Both scenarios crucially depend on the choice of fermion and gauge
action [14]. (ii) The general properties of the phase structure for (non-) perturbatively improved
Wilson fermions, as established by e.g. the CP-PACS [15] andDIK [16] collaborations, should be
found in theβ −κ−plane at weaker coupling, too. (iii) Based on the argument that in the continuum
theory the physical transition temperature cannot depend on the twist angle, Creutz [8] conjectured
the finite temperature phase transition/crossover surfaceto be closed and form a cone (cf. the right
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panel of Fig. 1) around the critical lineκc(β ) for a range ofβ -values somewhere between the Aoki
phase and the deconfinement transition in the quenched limit(βdec≈ 4.5 atκ = 0). The location
of the tip of this cone and the detailed shape of its surface are subject to lattice artifacts, as may be
the nature of the transition for different twist angles.
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Figure 1: Left: Map of our simulations performed atµ < 0.007.Right: Emerging phase structure; regions
identified by tmfT measurements are marked by magenta symbols.

3. Simulation results

The simulations were mainly performed on lattices of spatial sizeNσ = 16 andNτ = 8. The
algorithm in use is described in Ref. [17]. An overview of theregions covered by our simulation
is presented in the left panel of Fig. 1. It contains all transition and crossover points that we found
in our simulations and is supplemented by data describing the T = 0 critical line κc(β ≥ 3.75)
provided by the ETM collaboration.

After the unsuccessful search reported in [7], we have checked the existence of the Aoki phase
at the three valuesβ ∈ {1.8, 3.0, 3.4}. The necessary and sufficient condition for spontaneous
symmetry breaking reads

lim
h→0

lim
Nσ→∞

〈ψ̄ iγ5τ3ψ〉Nσ ,h 6= 0. (3.1)

Figure 2 shows the Fisher plots [13] of the order parameter〈ψ̄ iγ5τ3ψ〉 as a function ofh/〈ψ̄ iγ5τ3ψ〉,
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Figure 2: Fisher plots for the order parameter〈ψ̄ iγ5τ3ψ〉 describing its limit forh= 2κµ → 0; left: β = 1.8,
right: β = 3.0 .

with h = 2κµ , for β = 1.8 and 3.0. The condensate has a finite limit forh → 0 (a positive in-
tercept ath = 0) for suitableκ values. For the smallest valueβ = 1.8, the left panel of Fig. 2
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gives convincing evidence for the onset of spontaneous symmetry breaking somewhere in the range
0.24> κ > 0.23. The right panel strongly indicates that atβ = 3.0 the symmetry-broken phase –
if it exists at all – is realized only in the interval 0.203< κ < 0.204. A volume extrapolation would
be welcome but is unavailable at thisβ−value. This marks the lower boundaryκ lower

c (β ) of the
Aoki phase. We have not systematically searched for its upper boundaryκupper

c (β ).
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Figure 3: Signals of metastability atβ = 3.4 and 3.45. The two-state signalleft: in the pseudoscalar
condensate,right: in the real part of the Polyakov loop.

At β = 3.4 we reinforce our preliminary results published in Ref. [7]that, instead of an Aoki
phase, there are strong metastabilities when simulating atfinite twist µ ≈ 0.0068. This confirms
the first-order Sharpe-Singleton scenario, and representsa remnant of the phase structure atT = 0
(on symmetric lattices). This is shown forβ = 3.4 and 3.45 in Fig. 3 for the order parameter (left)
and the Polyakov loop (right). The behaviour of the latter atthis transition cannot be interpreted as
thermal. Also the average plaquette (as checked atβ = 3.4 andκ = 0.1827) is running in separate,
metastable histories starting from hotter/colder neighbouring states.

In the range 3.4≤ β ≤ 3.65 between strong and weak coupling, simulating atµ = 0.0068, we
see a finite temperature transition, located atκT ≫ κc(β ), i.e. far above the chiral line forT = 0.
The transition is inherited from the first doubler structureexisting at higherκ . The corresponding
κT(β ,µ) evolves rapidly withβ , moving closer towards the critical lineκc(β ) with increasingβ
(cf. Fig. 1). The transition is possibly of first order as indicated by histograms of the Polyakov loop
atβ = 3.6 in the interval 0.18< κ < 0.24: they show a relatively flat but clear double peak structure
at κ = 0.22. On 323×8 lattices simulated at the sameβ −κ −µ−point one observes long-living
metastability in the Polyakov loop. Also at higherβ = 3.75 this thermal transition continues to
exist, still separated from the unfolding thermal transition surface aroundκc(β ). Finally, it appears
to join the latter in the neighbourhood ofβ = 4.0. Before this joining happens, Fig. 4 shows the
characteristic behaviour of the Polyakov loop and its susceptibility measured atβ = 3.75 with
µ = 0.005 over an interval 0.16< κ ≤ 0.21 that is covering both transition regions. The two peaks
are clearly visible, but the lower susceptibility peak is not yet well resolved on the coarseκ scale
of Fig. 4.

It is our goal to work at maximal twist, thus ultimately we need to resolve the lower peak in
Fig. 4. The position and nature of the first (i.e. lower in κ) finite temperature transition/crossover,
when studied atµ 6= 0, changes considerably between the metastability region described by Fig. 3
and the scaling region. Midway between the two, atβ = 3.65, one sees the Polyakov loop entering
and then leaving again a narrow deconfining region inκ (cf. the left panel of Fig. 5). Approaching
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Figure 4: Left: real part of the Polyakov loop,right: its susceptibility as functions ofκ for β = 3.75 and
µ = 0.005. The dashed line marksκc(β = 3.75,T = 0).

the physically relevant scaling region,β & 3.75, the peak structure grows even clearer. The narrow
peak (supposed to contain the deconfined phase) moves gradually further to lowerκ with rising
β = 3.75, 3.775 andβ = 3.8 (cf. the right panel of Fig. 5).
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Figure 5: The real part of the Polyakov loop as function ofκ ; left: for β = 3.65 with µ = 0.0068,right:
for β = 3.75, 3.775 and 3.8 (all with µ = 0.005).

With a large computational effort the rise and decline of thePolyakov loop begins to be re-
flected also in the corresponding susceptibility. The Polyakov loop susceptibility gradually de-
velops a double peak which is already clearly visible atβ = 3.8 (cf. the left panel of Fig. 6).
Remarkably, the lower−κ peak is accompanied by a peak of the pion norm (presented in the right
panel of Fig. 6) emphasizing the entrance into the deconfining and chiral-symmetry restored phase.
So far, within the presently available statistics, we couldnot detect a significant similar chiral signal
marking the exit.

4. The cone signal and comparison with lattice χPT

We interpret the structured signal in the Polyakov loop nearκc outlined in the preceding section
as a numerical indication for passing through a confinement→deconfinement crossover approach-
ing κc from small positive quark mass, followed by a deconfinement→confinement crossover at
small negative quark mass. This picture is qualitatively consistent with the conical structure pre-
dicted by Creutz (see also Fig. 1). The thermal transition takes place at a given value of the quark
mass which is determined by the parametersκ andµ . At tree level the according relation reads:

m2
q = µ2 +

1
4

(

1
κ
−

1
κc

)2

. (4.1)
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Figure 6: Left: the susceptibility of the Polyakov loop,right: the pion norm as functions ofκ for β = 3.75,
3.775 and 3.8 (all atµ = 0.005).

Using lattice chiral perturbation theory (LχPT), one obtains the following modification of (4.1) in
NLO (cf. [18]):

m2
q =

(

1

Z2
P

µ2 +
1

Z2
S

1
4

(

1
κ
−

1
κc

)2
)

(1+K cosω)2 . (4.2)

From the zero temperature simulations of the ETM collaboration we know thatκc(β = 3.75) =

0.1660(1), ZS≈ 0.6 andZP ≈ 0.3. K is an unknownO(a) coefficient that is introduced by LχPT.
The twist angleω is defined by tanω = µ/(0.5(1/κ −1/κc)).

In Fig. 7 the thermal transition points that we have found atβ = 3.75 for µ = 0.005 and
0.007 are compared with the two relations above. In principle,K andmq can be determined from
a fit. However, given the rather large uncertainties ofZP and ZS and also the small number of
available data points, we are only able to check whether the formulae are capable of describing the
data. For the tree level formula this is not the case (in the plot: mq = 0.01,κc = 0.1660), due to the
κ ↔ (2/κc−1/κ)-symmetry of equation (4.1). However, choosingmq = 0.028,K = 0.5, ZS= 0.6,
ZP = 0.3 andκc = 0.1660 the NLO formula (4.2) is consistent with the data points.
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Figure 7: Thermal transition points found atβ = 3.75 with κc = 0.1660 compared to tree level (mq = 0.01,
green) and LχPT (mq = 0.028,K = 0.5, ZS = 0.6, ZP = 0.3, blue) curves.

5. Summary and outlook

We investigated the global phase structure of 2-flavour Wilson-twisted-mass LQCD with a
tree-level Symanzik-improved gauge action. Our simulation results support the existence of an
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Aoki phase (atβ . 3.0) as well as the first-order Sharpe-Singleton-scenario at finite twist (for
β ≈ 3.4). Moreover, we find indications of a conical structure of the finite-temperature crossover
surface in a boundedβ−interval, 3.65≤ β ≤ 3.8, with µ = 0.005 and 0.007. Our next steps will
be the localization of additional finite temperature crossover points to refine the LχPT−prediction
of the transition line and to bound the valueµT for the thermal crossover at maximal twist within
a narrow interval. Depending on the findings of this investigation, a subsequent simulation at
maximal twist to detectµT numerically will follow.
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