1	Supplementary Material
2	Comparison of the Chemical Evolution and
3	Characteristics of 495 Biomass Burning Plumes
4	Intercepted by the NASA DC-8 Aircraft during the
5	ARCTAS/CARB-2008 Field Campaign
6	
7	A. Hecobian ¹ , Z. Liu ¹ , C.J. Hennigan ^{1#} , L. G. Huey ¹ , J.L. Jimenez ² , M.J.
8	Cubison ² , S. Vay ³ , G. Diskin ³ , G. Sachse ³ , A. Wisthaler ⁴ , T. Mikoviny ⁴ , A.
9	Weinheimer ⁵ , D. Knapp ⁵ , P.O. Wennberg ⁶ , A. Kürten ⁷ , J.D. Crounse ⁶ , J. St
10	Clair ⁶ , Y. Wang ¹ , W.H. Brune ⁸ and R.J. Weber ¹
11 12 13	[1]{School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA}
14 15	[2]{Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA}
16	[3]{NASA/Langley Research Center, Hampton, VA, USA}
17 18	[4] {Institute for Ion Physics and Applied Physics, Innsbruck University, Innsbruck, Austria}
19	[5]{National Center for Atmospheric Research, Boulder, CO, USA}
20 21	[6]{Atmospheric Chemistry and Environmental Engineering, California Institute of Technology, Pasadena, CA, USA}
22 23	[7]{Institute for Atmospheric and Environmental Sciences, Johann Wolfgang Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany}
24 25	[8]{Department of Meteorology, Pennsylvania State University, University Park, PA, USA}
26 27	[#]{Now at Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA}
28 29	Correspondence to: Arsineh Hecobian (arsineh@gatech.edu); Rodney Weber (rodney.weber@eas.gatech.edu)
30	

31	To further investigate the oxidation environment in the boreal fire plumes, we ran
32	a box model simulation for the 1 July 2008 fire plume. This specific plume was chosen
33	as it has more data, over the observed time range, than the others. The box model was
34	based on a 3-D photochemical transport model (REAM) (Choi et al., 2008; Zhao et al.,
35	2009) with updated VOC chemistry by (Carter, 2009). Measured photolysis reaction
36	rates (J-values) were used whenever possible; other photolysis reaction rates were scaled
37	by the ratio of observed to simulated J values of NO_2 . Observations of O_3 , PANs, CO,
38	VOCs, NO, NO ₂ , OH, HO ₂ , H ₂ O ₂ , alcohols and organic acids, as well as meteorological
39	parameters such as water vapor and temperature, were used to constrain the model with a
40	5-minute time step. The time evolution of chemical species of interest was simulated.
41	Dilution was not considered.

42 Two sets of model runs were conducted. We first constrained the model with all 43 available measurements to determine the chemical production and loss rates for O_x ($O_x =$ 44 $O_3 + NO_2 + NO_3 + PAN + PPN + PMN + HNO_4 + N_2O_5 + HNO_3$). In the second set, we 45 simulated O_3 and PAN concentrations to compare with the observed values.

46

47 1 Model results

48 Production and loss rates of O_3 and PAN are diagnosed from the fully constrained 49 model run and shown in Figs. 1S and 2S, respectively. The lifetime of PAN, which is a 50 function of temperature, is also shown. We show the comparisons of observed and 51 simulated O_3 and PAN in Figs. 3S and 4S, respectively.

52 The model simulates a net O_3 production in the first 3 hours. The rate of ~ 1 53 ppbv/hr gives an increase of ~ 3 ppbv over this period, which is relatively small 54 compared to the O_3 mixing ratio of > 30 ppbv. During this period, NO_x mixing ratio drops from > 500 pptv to < 100 pptv. Simulated HO₂ is in the range of 10-25 pptv in agreement with the observations (Fig. 5S), simulated OH is in the range of $2 - 6 \times 10^{6}$ molecules cm⁻³.

The simulated lifetime of PAN is several hours because of relatively high temperature in the boundary layer. At the later stage, the plume rises to an altitude of 5 km and the lifetime of PAN is much longer because of lower temperatures. Initially NO_x is converted to PAN in the plume at a rate of ~80 pptv/h in the first 3 hours. Relative to the average PAN mixing ratio of 400 pptv, this production is significant. As the plume ages and NO_x mixing ratio decreases to ~50 pptv, PAN is lost, providing a NO_x source.

64 Simulated O_3 mixing ratio in the plume increases slightly. The relative increase is 65 larger for simulated PAN in the first 3 hours. The observed variation of PAN (relative to 66 mean values) is much larger than that of O_3 . The model fails to capture the observed 67 variation. The heterogeneity of PAN observations in the fresh plume may reflect in part 68 the large variations of NO_x or VOCs emissions in the fire.

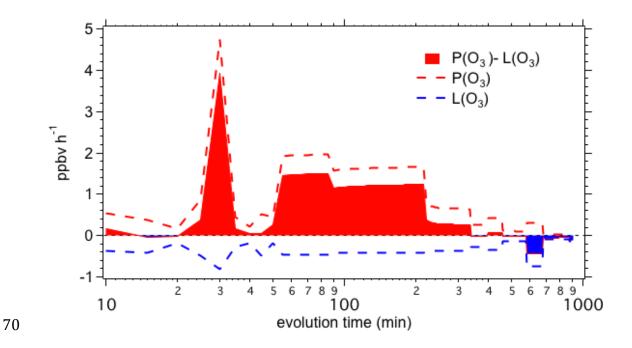
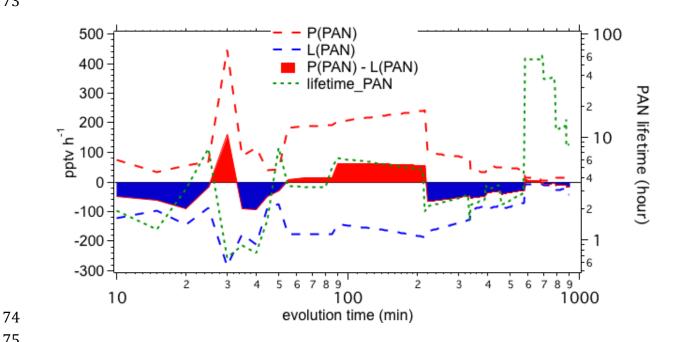
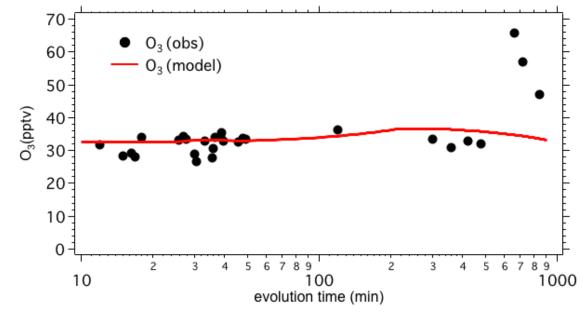
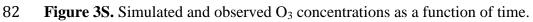


Figure 1S. Simulated O₃ production and loss rates and net formation rate as a function of time.

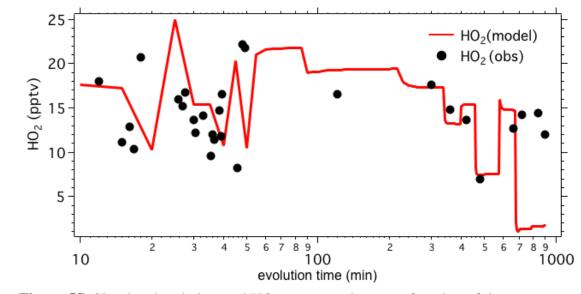

Figure 2S. Simulated PAN production and loss rates and net formation rate. The estimated lifetime of PAN is also shown.

Figure 5S. Simulated and observed HO₂ concentrations as a function of time.