Conceptual Design of an ALICE Tier-2 Centre

Integrated into a Multi-Purpose Computing Facility

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe - Universitat

in Frankfurt am Main

von
Mykhaylo Zynovyev
aus

Kiew, Ukraine

Frankfurt (2012)

(D 30)

vom Fachbereich Informatik und Mathematik der

Johann Wolfgang Goethe - Universitat als Dissertation angenommen.

Dekan: Prof. Dr. Tobias Weth

Gutachter: Prof. Dr. Volker Lindenstruth
Prof. Dr. Udo Kebschull

Datum der Disputation: 29.06.2012

Abstract

This thesis discusses the issues and challenges associated with the
design and operation of a data analysis facility for a high-energy physics
experiment at a multi-purpose computing centre. At the spotlight is a
Tier-2 centre of the distributed computing model of the ALICE experiment
at the Large Hadron Collider at CERN in Geneva, Switzerland. The design
steps, examined in the thesis, include analysis and optimization of the I/O
access patterns of the user workload, integration of the storage resources,
and development of the techniques for effective system administration and
operation of the facility in a shared computing environment. A number
of I/O access performance issues on multiple levels of the I/O subsystem,
introduced by utilization of hard disks for data storage, have been
addressed by the means of exhaustive benchmarking and thorough
analysis of the I/O of the user applications in the ALICE software
framework. Defining the set of requirements to the storage system,
describing the potential performance bottlenecks and single points of
failure and examining possible ways to avoid them allows one to develop
guidelines for selecting the way how to integrate the storage resources.
The solution, how to preserve a specific software stack for the experiment
in a shared environment, is presented along with its effects on the user
workload performance. The proposal for a flexible model to deploy and
operate the ALICE Tier-2 infrastructure and applications in a virtual
environment through adoption of the cloud computing technology and the
‘Infrastructure as Code’ concept completes the thesis. Scientific software
applications can be efficiently computed in a virtual environment, and
there is an urgent need to adapt the infrastructure for effective usage of
cloud resources.

Table of Contents

0 Introduction

1 Data Analysis on Direct-Attached Storage
1.1 Benchmarking Issues.o
1.2 A Storage System Basedon RAID
1.3 I/O Access of the ALICE AnalysisTasks
1.3.1 The ALICE Data Files
1.4 Analysis Tasks and Trains
1.5 Evaluating Read Performance on the Application Level
1.6 Evaluating Read Performance on the Level of the I/O Subsystem. . . .
1.7 Optimizing Read Performance
1.7.1 Test Environment.o
1.7.2 TTreeCache e
1.7.3 Prefetching. e
1.7.4 Merging the Data Files.
1.7.5 Tuning of the I/O Subsystem
1.7.6 Migrating to the Solid-State Drives
1.8 ConclusionofPart1 Lo

2 Integration of Storage Resources

2.1 Requirements.o e
2.2 Classifying the Available Solutions.

2.2.1 Definitions e

2.2.2SAN File Systems oo

2.2.3Aspectsof NAS
2.3 Metadata Management in Cluster File Systems
2.4 Bringing the Workload tothe Data.
2.5 Utilizing Direct-Attached Storage with PROOF
2.6 A PROOF System Setup Options
2.7 Comparative Testing Results.
2.8 Conclusion of Part 2. A Decision TakenatGSI.

3 From Virtual Machines to ‘Infrastructure as Code’

3.1 Cloud Computing in a Scientific Research Environment.
3.1.1 Different Ways to Use Virtualization at a Computer Cluster.
3.1.2 Analysis of Virtualization Implications for Infrastructure Availability
3.1.3 Analysis of the IaaS Benefits in a Scientific Environment
3.1.4 SCLab. Implementation of an IaaS Cloud Prototype.

3.2 Efficient Computing Infrastructure Management
3.2.1 System Administration. A Key Obstacle for Infrastructure Scalability

53
55
57

62
62

Conceptual Design of an ALICE Tier-2 Centre

3.2.2 Automation of Provisioning L.
3.2.3 Automation of Maintenance
3.2.4 Solution. Adopting ‘Infrastructureas Code’
3.2.5 Virtual Clusterson Demand
3.3 Virtualization Performance for ALICE Analysis
3.4 Practical Results for Scientif c Computing.
3.4.1 APROOF Benchmark at LOEWE-CSC
3.5 Outlook. The Case for ‘Infrastructure as Code’

4 Summary
Zusammenfassung
Acknowledgements
List of Figures
List of Tables
List of Acronyms

References

101
103
105

VI

0 Introduction

While there are many things to take care of when designing and
operating a data analysis facility, the key point is to ensure that all present
resources are fully utilized in an efficient way, without sacrificing system
manageability for the sake of performance optimization. A failure to
optimize both performance and manageability of the facility can lead to
unjustified money expenses, misuse of manpower, and most important, loss
of valuable time. To prevent this, a thorough analysis of user workload
and requirements, hardware and software capabilities, and administration
and operation techniques is needed. Extensive testing and prototyping
is needed to guarantee fruitful results. The shared nature of a multi-
purpose computing facility and abundance of available remote computing
resources puts additional stress on the flexibility and portability
characteristics of the infrastructure.

This thesis has several research objectives:

m evaluation and improvement of the I/O (Input/Output) access
performance of the ALICE (A Large Ion Collider Experiment) [ALICE]
analysis jobs,

m efficient integration of the ALICE Tier-2 storage resources,

m migration of scientific computing applications to a virtual
environment,

m efficient management of the scientific computing infrastructure in a
cloud.

The main results of the research include the techniques for I/O access
optimization of the ALICE analysis jobs, the guidelines for the ALICE
storage resources integration, and an application of the ‘Infrastructure as
Code’ approach to the deployment and operation of scientific software,
which allows to migrate the workload between the computing resources
of different administrative domains. The latter technique takes the full
advantage of the cloud computing technology, which is essential to keep
the infrastructure flexible, manageable, and up-to-date, and comes from
the commercial world of Web services. Transference of proven successful
system administration techniques from the commercial computing to
scientific computing environment is the key feature of the last part of the
thesis. The following practical results have been obtained:

Conceptual Design of an ALICE Tier-2 Centre

m the improvement of the I/O access performance of the ALICE analysis
jobs, which has a direct effect on the time spent on analysis and an
indirect effect on the provisioning costs;

m the technique to easily deploy and dispose virtual clusters per user
on demand, which allows the user to preserve his custom software
environment;

m a virtual grid site on the prototype private cloud which processes jobs
for the ALICE experiment;

m the radiation simulation data for the “Safety and Radiation
Protection” department at FAIR (Facility for Antiproton and Ion
Research) [FAIR] on the private cloud testbed and on the community
cloud of Frankfurt Cloud Initiative [FCI];

m a testbed for a PROOF analysis cluster of a record scale;

m a testbed for transition to a virtual environment for the HPC (High-
Performance Computing) department at GSI Helmholtz Centre for
Heavy Ion Research [GSI].

The scientific software applications can be efficiently computed in
a virtual environment, and there is an urgent need to adapt the
infrastructure for effective usage of cloud resources.

The research has been carried out at the Scientific Computing
department of the GSI, situated in Darmstadt, Germany. GSI is home to
a large, in many aspects worldwide unique accelerator facility for heavy-
ion beams and its main activities include plasma physics, atomic physics,
nuclear physics, material research, biophysics, and cancer therapy.

Currently, while preparing and regularly enhancing its computing
infrastructure for the FAIR project, GSI operates a high-end multi-purpose
computing farm. It is shared by multiple physics working groups and
most extensively contributes to the ALICE experiment of the LHC (Large
Hadron Collider) project [LHC], as an ALICE Tier-2 centre.

The LHC is the world’s largest and highest-energy particle accelerator
operated by CERN, the European Organization for Nuclear Research
[CERN], in Geneva, Switzerland. ALICE is one of the four large
experiments at the LHC, where particle beams are collided, and is set
to study the physics of strongly interacting matter at extreme energy
densities. The ALICE collaboration numbers more than 1000 members
from 115 institutes from 33 countries. GSI, which is among these
institutes, plays a significant role in this collaboration, both in detector
construction, and analysis of the experimental data.

Introduction

The data generated by ALICE describe either real events produced
by the experiment or events simulated with Monte Carlo (MC) methods
[Kalos]. In both cases, the data are stored in ROOT [Brun] files of various
sizes with an internal structure of a tree, which holds various relevant
physics information for each event. An event is a snapshot of the particle
interactions recorded with the detectors during a beam collision. ROOT is
an object-oriented software framework developed at CERN, implemented
in C++, and used in a major share of the tasks related to processing the
physics data within the High-Energy Physics (HEP) community. Thus, data
consist of persistent ROOT objects and may be manipulated exclusively
with ROOT based libraries. This is a reason why the I/O issues during data
processing with ROOT are at the focus of this thesis.

Petabytes of data are produced by ALICE every year. They are
distributed for processing or storage among the computing centres which
form together the ALICE grid [ALICE Computing]. There are four tiers
in the ALICE grid. The main tasks of the single Tier-0 centre, which is
located at CERN, include storage of a master copy of raw data and event
reconstruction. The Tier-1 centres keep copies of raw data, share the task
of event reconstruction with the Tier-0 centre, and perform scheduled data
analysis. The Tier-2 centres provide an infrastructure for running Monte
Carlo simulation of p+p (proton) and Pb+Pb (lead ion) collisions and end-
user analysis of simulated and real experiment data. These tasks can run
as jobs submitted to the grid, local batch jobs, or interactive computing
processes. The capacity of a Tier-2 varies from one centre to the other.
Currently, the Tier-2 centre in GSI provides the global ALICE community
with 5700 HEP-SPEC [Merino] of CPU (Central Processing Unit) power
and 440 TB of storage [WLCG]. The resources, which are used by the
national ALICE physicists and are not accessible over the grid to the global
community, constitute the additional tier, the Tier-3.

Thus, the computing tasks performed at a Tier-2 are mostly of 2 kinds:
simulation, and analysis. The simulation tasks are characterized by being
CPU bound and having a large memory footprint. Therefore, their
performance depends mostly on the CPU and memory capabilities of the
computer hardware.

The analysis tasks are calculations performed on the sets of input data,
which are the ESD (Event Summary Data) files [Offline Bible]. These ESD
files are usually chained together, providing a continuous list of events.
The analysis code is designed in the following way: after a data file is
opened, and a tree structure of the contents is initialized, each event entry
is read and analyzed in turns. Event by event data are read, calculations
are carried out, and results are accumulated in a way that, for example, a

Conceptual Design of an ALICE Tier-2 Centre

histogram is filled. After all event entries have been processed, the output
AOD (Analysis Object Data) file is generated. In case separate analysis
tasks have to be performed on the same set of data, these tasks are
chained in what is called an “analysis train” and processed together after
each event entry is read, so that data are read only once. This trick helps
to shift the analysis performance from being I/O bound in the direction of
being CPU bound, although the problem of the data transfer bottleneck
still has to be addressed.

The causes leading to an insufficient data transfer rate can be divided
into network related and disk related. The network related causes are
those which originate in network misconfiguration and end up overloading
network interfaces and increasing network latency. The disk related
causes may originate from a non-optimal disk configuration and bad access
patterns in the system where every I/O request counts.

Basically, the access to data can be organized at a data analysis facility
in two ways. Computing resources can retrieve data from storage
resources over the network or from direct-attached storage. The former
is considered the easier one to set up and maintain, because computing
and storage resources are decoupled. Performance of such a system would
depend on how well the capabilities of each of the three elements: CPU,
network, and storage, match each other. The latter option is generally
regarded as the one that could provide the best possible performance,
because of at least a principal absence of the network-related issues
between CPUs and storage.

Other interesting topics, beyond the scope of the thesis, include the
integration of a Tier-2 centre into the global ALICE grid, distributed
architecture of its AliEn grid middleware [Saiz], wide area network
connectivity of an ALICE Tier-2 centre, and the migration of data within
the ALICE tier computing model.

This thesis provides the answers to questions which are of specific
interest to those who provide the resources for an ALICE Tier-2 centre,
and those who use them for data analysis. But at the same time, some of
the topics discussed below, such as cloud computing and infrastructure
management, may be relevant also to those who provide any computing
infrastructure, especially in a shared environment, and those users, who
would like to run their trivial parallel HPC applications in an efficient way
on any shared resources available.

1 Data Analysis on Direct-Attached
Storage

In order to have an efficient data analysis process, data to be processed
must be efficiently read from a storage system, where it must be efficiently
stored. Efficiently means that performance should meet users’
requirements, preferably be optimal for installed hardware, and not
jeopardize system’s reliability and availability. The amount of data to store
and the rate of requests to process it dictate that currently hard disk
storage is the only suitable and affordable storage technology for an ALICE
Tier-2 centre.

Two approaches for organizing storage mentioned in the introduction
are examined. In the case, when the part of the system serving data does
not itself run the calculations, it can be optimized specifically for storage.
This implies that the storage system would be comprised of the file servers,
designed for fast parallel access by multiple clients. In the case when
computing nodes access data from local disks, the hardware should be
capable of both performing intensive calculations and sustaining the data
transfer.

1.1 Benchmarking Issues

While benchmarking the hard disk storage, one has to keep in mind
the following issues. The performance parameters of the CPUs, memory,
and all other computer components, which are involved in running a
benchmarking test affect the overall performance of the disk storage
system [Kozierok]. To be able to compare two sets of hardware the tests
have to run multiple times under identical conditions. The results of the
tests need to be averaged over multiple runs to provide greater precision.
In some cases the worst performance results have to be analyzed and
compared to understand the worst-case scenarios. Certainly, the
benchmarking tests which are based on user applications are the ones that
will show the performance of the system in practical use, but a comparison
with the synthetic tests’ results is often necessary too [Traeger]. It helps
to understand whether the limitations in performance come from the
hardware, the application, or the data files.

The amount of free space on the disks can also affect positioning and
transfer performance. Positioning is the process of setting the hard disk

5

Conceptual Design of an ALICE Tier-2 Centre

head to the place on the hard disk where the data are to be written or read.
Transfer is the process of transporting data to or from the hard disk platter
after the head is positioned and starting to write or read. When the disks
are almost full, the number of positioning operations may increase due to
a number of data blocks, and possible data fragmentation. Besides, the
transfer performance may suffer because of greater utilization of the inner
tracks of the disks with fewer sectors than the outer ones and so sustain a
lower transfer rate. So, to ensure fair comparison between different disks,
the data for the benchmarking tests has to be put on the empty disks.

For the data analysis facility, where large amounts of data are orders
of magnitude more often read than written, read performance is the main
target of the benchmarking tests. Each read operation on a disk storage
system goes through several stages. First, the data are retrieved from the
tracks on the hard disk platters. The part of the data, which has been
recently accessed, is retrieved from the cache residing on the disk’s logic
board. Then, the data are transferred to the RAID (Redundant Array of
Inexpensive/Independent Disks) controller, and a part of it is stored in
turn in its cache. Finally, the data are communicated via main memory
(RAM) to CPU. Main memory can in turn have a considerable page cache
configured, which would make another place where the recently accessed
data can be stored. During reads, all of these caches pursue the same
goal of improving performance by intercepting repeated requests for the
same data, and thus saving the time needed to access the hardware on
the lower level. This caching can seriously affect the results of repeated
benchmarking tests which involve reading same data. While for the first
test run data would be read from a disk, for the second one it would be
read already from a cache. Additionally, if for example the data set has
been copied in the OS (Operating System) to a particular destination right
before a test on this data set is started, there is a good chance that the
data are in cache. To assure that the data to be read is not stored in cache,
one can clear it, or fill it with any other data before each test run.

1.2 A Storage System Based on RAID

Many factors are affecting a storage system’s performance, reliability,
and data availability. To begin with, there are hardware factors. De facto
standard for large-scale hard disk storage is the RAID technology. The idea
behind it is to store data on multiple hard disks running in parallel. Various
RAID configurations, called ‘levels’, differ in performance, reliability,
storage efficiency, and costs characteristics. Improvement in any of them

6

Data Analysis on Direct-Attached Storage

goes at the expense of all other. So, requirements for all of these
characteristics have to be considered in order to choose the most suitable
level for a particular storage system. The I/O access patterns of the
applications which are going to use RAID storage have to be taken into
account too. Reliability in case of a RAID usually implies fault-tolerance,
the ability to withstand the loss of at least one disk.

If both performance and reliability are equally important, and there is
no place or money for too many redundant disks, one of the most suitable
RAID levels is RAID 5. The disks in a RAID 5 are striped, which means
they are split into units (stripe units) of a certain size, called stripe size,
which can be specified during installation. Striping improves performance
because the I/O requests for data in stripe units on different disks can
be processed in parallel. More disks used in parallel result in a better
transfer performance. However, for a single read request spanning data
on more than one disk positioning has to be done on each of the disks,
although in parallel. For the small read requests the positioning takes
the larger part of the total time of the read operation than the transfer.
For numerous random small read requests positioning drags overall read
performance down significantly. Thus, to optimize performance, stripe size
should be defined empirically with regard to the application’s I/O access
patterns. Generally, the optimal stripe size should be larger than the
system’s average request size, so that the requested data can be found
inside a single stripe unit and be processed by one disk [Watts]. The
average request size can be calculated from the values of the average
requests per second and the bytes per second.

A RAID 5 is tolerant to the loss of one disk. For every write operation to
the RAID 5 the controller calculates parity information which is distributed
among all participating disks. In the event when one disk is faulty this
information can then be used for rebuilding the failed drive while it is
either repaired or substituted. Certainly, parity calculation badly affects
write performance, but for the system where data are written once, and
read multiple times, this drawback is not that significant. The array
capacity equals to (Size of the Smallest Disk) * (Number of Disks - 1).
For full disk capacity utilization, all disks have to be of the same size. Hot
sparing of disks and an automatic rebuild allow good data availability. The
Dual parity of a RAID 6 gives time to rebuild the array without the data
being at risk if a single additional drive fails before the rebuild is complete.

In the case when performance is much more important than storage
reliability a RAID 0 and a variation of the JBOD (“Just a Bunch Of Disks”)
configuration may be considered. When a RAID 0 is used, a file is striped
across the disks, but no parity information is calculated and recorded. The

Conceptual Design of an ALICE Tier-2 Centre

I/O performance is at its best, but the failure of one disk results in the loss
of data in the whole array. The JBOD configuration is usually understood
as just a concatenation of the hard disks into a single array without any
striping or replication mechanisms. A variation of JBOD is when each hard
disk is mounted in an OS independently. In this case it is the responsibility
of the software to manage the I/O requests that way, as to ensure parallel
utilization of the available disks. The benefit of the improved performance
only comes when disks are accessed simultaneously. Data availability is
slightly better for such JBOD configuration than it is for a RAID 0 because
with a loss of one disk the data on remaining disks can still be accessed.

Another decision that has to be taken in addition to choosing a RAID
level is where to store the OS. One possibility is to store it on the same
array as the data. In this case the I/O requests by the OS or service
applications for various modules or libraries to load can interfere with the
I/0O requests for the data for processing. To separate these I/O requests the
OS can be installed either on a single disk which is not a part of the RAID,
or on another RAID to ensure fault-tolerance. To install an OS on a RAID
1 requires a minimum of two disks, with one of them serving as a mirror.
Obviously this separation comes at the expense of the storage efficiency,
since disks would be exclusively used for the OS, and would not store user
data.

In addition to specifying the stripe size for a RAID there are other
possibilities to tune the I/O subsystem (Figure 1.1) [Ciliendo] [Domingo].
The read-ahead property determines how many bytes adjacent to the
ones requested by the application the RAID controller will transfer into
its cache. In the case of the sequential reads increasing the read-ahead
value improves the read performance. However, for random read requests,
this does not help because a cache hit is unlikely. Whether read-ahead is
switched off automatically in case of a non-sequential access has to be
clarified. The queue depth property indicates the maximum number of the
outstanding I/O requests a controller can schedule for processing. The
outstanding requests in the queue can be reorganized according to which
disk is responding, and combined before being issued. This improves
throughput but also increases latency. The read-ahead and queue depth
properties can be specified on different layers of the I/O subsystem.

The way the I/O requests are scheduled depends on the type of
scheduler used by the operating system. Linux supports CFQ (Complete
Fair Queuing), NOOP (No Operation Performed), Anticipatory, and
Deadline algorithms. One can tune aforementioned properties on the level
of the OS kernel.

Data Analysis on Direct-Attached Storage

Furthermore, one can tune the file system [Jones] parameters. Block
size is the minimal number of bytes the file system can write or read from
a disk for a single request. Theoretically, it can be expected that a system
handling many small requests gains performance from a smaller block
size, a system handling larger requests - from a larger block size. The
maximum file system block size is the page size of the kernel. Default value
for the block size in Linux is 4096 bytes. Block and stripe sizes should not

be confused.

The file systems like ext3 and XFS can be aligned in accordance to the
RAID stripe size setting. For ext3 the needed parameter is stride, for XFS

- sunit and swidth.

Virtual File System

!

File System

v

Block Layer

'

Device Driver

|
11/0 subsystem of an 0S

,,,

RAID
Controller

N

Disk |Disk| Disk |Disk

I
! hardware

. Number of read requests
' Randomness of read requests

' Stripe alignment
' Block size

I
.\ Requests queue depth
! Read-ahead

' 1/0 scheduler

|
| Requests queue depth
. Read-ahead

i RAID level
, Stripe size

' Number of disks

Figure 1.1 There is a multitude of characteristics on each layer of the I/O
subsystem which might affect the performance.

Conceptual Design of an ALICE Tier-2 Centre

1.3 1I/0 Access of the ALICE Analysis Tasks

The overall performance of the storage system is greatly influenced
by the I/O access patterns. Sequential I/O access of the large data files
performs well with one setting of system’s configuration parameters,
random I/O access of small data blocks with another. Therefore, in order
to configure the system properly the I/O access patterns of the user
applications have to be examined [Wang]. Random I/O access will in any
way lose to sequential I/O access in performance due to additional
positioning time involved. So, it should be worth considering to modify the
I/O access patterns where possible to avoid or reduce random access.

1.3.1 The ALICE Data Files

The analysis tasks run by the physicists of the ALICE experiment in
GSI are using AliRoot, an ALICE-specific framework based on ROOT, for
processing their ESD files [Offline Bible]. Those files are created after raw
data, either recorded by the experiment, or simulated, is passed through
the stage of event reconstruction.

An average data set contains around 100 000 of the ESD files, each
of them holding information about 100 events and being in a span from
2 to 8 MB in size. An ESD file contains a list of events in the format of
a ROOQT tree. The logical format of a ROOT tree is made up of branches
[ROOT]. Each branch constitutes a homogeneous list of objects describing
a particular property of each event. A branch can be split into sub-
branches for each data member in the object. A typical ESD tree for the
ALICE analysis tasks is comprised on average of more than 400 branches.

The nature of the analysis tasks implies that all events in an ESD file
and all the files in a data set need to be processed. Therefore, branches are
processed entirely, the only thing that can vary for different tasks is the
number of branches processed, since not every analysis task requires all
information regarding the event. In order to access a particular property of
every event, an application does not have to read all event information and
can read only the corresponding branch. Splitting the branch increases
granularity of information, which helps to pin-point the particular event
properties. The user himself is able to activate and deactivate specific
branches for reading.

On disk a tree is laid out as a list of baskets. Basket is a memory buffer
that serves as a unit of the I/O requests for a ROOT tree. It is filled with the
objects of a single particular tree branch. In case of the ALICE ESD files a

10

Data Analysis on Direct-Attached Storage

basket holds the objects that constitute event property information from a
specific branch.

The number of baskets used to represent a particular branch on disk
depends on the chosen basket size and the size of all the objects in the
branch. Although the event information objects within a particular branch
are homogeneous, for each event they can substantially differ in size. This
leads to the fact that the same-sized baskets can store a varied number of
the events’ objects. The default basket size is 32000 bytes. If the basket
size is not large enough to hold objects of one event, the tree will expand
the basket to be able to hold that one event. It is done to avoid excess
memory allocation operations necessary when one event is spread over
several baskets. The baskets are filled until one of the following three
situations happens:

m there is not enough space (predictable in case of the objects of a fixed
size),

m the space remaining is less than the size of the last event filled,

m the last event has overfilled the requested basket size.

Baskets then can be compressed according to the chosen compression
level before being written to the disk. It has to be mentioned that for a tree
in a particular file some branches, and thus their baskets, can be stored in
a different file making use of the Friends feature of the tree [ROOT user’s
guide].

1.4 Analysis Tasks and Trains

The tasks which are used to analyze ESD files, are based on the AliRoot
Analysis framework [Offline Bible]. Written in C++ with the use of the
AliRoot and ROOT libraries a task consists of at least the following 5
functional blocks:

m Basic constructor. In this block the types of the input and of the
output of the task are specified (e.g. data files, and histogram
respectively). It is invoked once at the start of the analysis process.

m ConnectlnputData. The input objects (e.g. a tree, event object) are
initialized in this function. Invoked once per analysis process.

m CreateOutputObjects. The output objects that will be written in the
file (e.g. histogram) are created in this function. Invoked once per
analysis process.

11

Conceptual Design of an ALICE Tier-2 Centre

m Exec. The analysis code which is run for every event is implemented
here. Invoked once per processed event.

m Terminate. This function is invoked at the end of the analysis process
and is used for processing the output (e.g. draw histograms).

The input of an analysis task, usually, is a chain of ESD files. A chain is a
list of ROOT files containing the same tree. In order to identify the branch
structure of the tree in the chain, a special event handler is invoked, which
sets the correct branch addresses. It can be used to deactivate certain
branches of the tree, so that unnecessary branches are not read. For some
analysis tasks there are several additional files which have to be accessed.

The tasks developed to run on the same data set can be combined into a
single process of an analysis train. The AliAnalysisManager object collects
the tasks, defines the input containers, and ensures execution of each task.
In this case, for every event, an Exec block of each task controlled by the
manager is executed sequentially before the next event can be processed.
Thus, instead of multiple tasks issuing duplicate read requests for the
same data separately, the manager of the analysis train issues a single
request servicing all the tasks.

Users, the ALICE physicists, are free to fill each block of the task with
their code. The train does not protect from any superfluous actions of the
user code inside the tasks.

1.5 Evaluating Read Performance on the
Application Level

To understand the layout of the trees on a disk, and to be able to
analyze the factors affecting analysis read performance, a ROOT code has
been developed. It produces a list of baskets of every branch in a tree in
the order of their appearance on the disk with the following information:

m their size before and after compression,

m the number of events stored,

m compression factor,

m the name of the branch they belong to.

This information (Table 1.1) helps to understand which parts of a ROOT
file a process is targeting for each analysis scenario. It may be useful in
order to understand whether seeking on disk is imminent. Particularly, it
leads to an assumption that data read because of a read-ahead operation

12

Data Analysis on Direct-Attached Storage

is unlikely to be requested for analysis, where only few of a total number
of branches are required, and baskets of those branches are non-adjacent
on disk. However, when a train of tasks is reading all event information
from every branch, and thus the whole file is needed, increasing read-
ahead should improve the read performance. In the same case, it also
makes sense to prefetch the data file with a tree into memory before
the tree is accessed by an analysis process. Thus, multiple requests for
branch baskets will be issued to the RAM rather than to the disk, which
should result in a speed-up. Access to disk, in case of prefetching, will
be sequential, in contrast to access from ROOT, which is unlikely to be
sequential for the ALICE ESD files, where object data for a particular event
is scattered across the file.

Size (B) | Compression Basket User content | Basket size (B)
Address on disk factor Branch name Number / Total Events size (B) in memory

917428 21200 1.37 Tracks.flp #0/7 16 28866 29018
1725394 21555 1.37 Tracks.flp #1/7 11 29312 29444
2736920 23958 1.37 Tracks.flp #2/7 15 32566 32714
3245382 19589 1.36 Tracks.flp #3/7 6 26612 26724
4074341 20799 1.37 Tracks.flp #4/7 12 28306 28442
5424231 28846 1.37 Tracks.flp #5 /7 19 39400 39564
6803933 20922 1.37 Tracks.flp #6/7 21 28578 28750
220 2624 187.36 AliES DFMD.fMultiplicity.fData #0 / 100 1 491521 491632
1318938 4596 106.97 AliES DFMD.fMultiplicity.fData #20 / 100 1 491521 491632
6799579 3285 149.66 AliES DFMD.fMultiplicity.fData #99 / 100 1 491521 491632
52366 497 49.67 AliES DFMD.fEta.fData #0 /50 2 24578 24684
2735995 925 26.69 AliES DFMD.fEta.fData #20 / 50 2 24578 24684
6802864 1069 23.09 AliES DFMD.fEta.fData #49 / 50 2 24578 24684
3602099 3339 9.35 AlESDRun.fTriggerClasses #0/2 53 30899 31214
6939656 3000 9.23 AlESDRun.fTriggerClasses #1/2 47 27401 27692

[6938090 [120 | 4.14 | AlESDRun.TObject.funiguelD | #0 /1 [100 T 400 [497 |

Table 1.1 An example of the heterogeneous nature of branches and their

baskets intertwined in a file on a disk for a ROOT tree with
100 events. The branches have different numbers of baskets,
different sizes of baskets, different compression factors.

To find out a pattern of the I/O requests of an analysis task, an AliRoot
code has been developed, which produces statistics on how many read
requests (calls) have been made per event, and how many bytes have been
read as a result of these requests. In ROOT, the number of read calls is
the number of the times the POSIX (Portable Operating System Interface
for Unix) function read() has been called. This number defines how many
requests have been issued by an application to the I/O subsystem of
the OS. A distribution of the sizes of read requests for an exemplary
AliESDs.root with 675 baskets is shown at the Figure 1.2. Almost 50% of
read requests sizes are smaller than 512 bytes in size.

13

Conceptual Design of an ALICE Tier-2 Centre

180
160
140
120
100
80
60
40
20

number of occurences
12101 JO %

@ © ~ < @
I Ire} — N <
— a 0 o =3

=t I

size, B

4096
8192
20480
24576
32768

Figure 1.2 A histogram of the sizes of read requests for an exemplary
AliESDs.root with 675 baskets. Almost 50% of the total are less
than 0.5 KB in size. 24% are between 4 and 8 KB in size.

As seen in the Table 1.1, basket properties differ substantially from
branch to branch of a typical ALICE ESD file. The size of a compressed
basket on disk varies from 100 bytes up to 32000 bytes in an exemplary
file, being on average around 3 KB. This, in turn, defines the size of a
corresponding read request.

The way how well different user objects inside a basket can be
compressed affects the uniformity of baskets’ size on disk for compressed
ESD files. When no compression is used the size of baskets on disk may be
more homogeneous. However, the more uniform access comes at the price
of inflated storage requirements needed for keeping uncompressed data.
It is unfeasible to fill the baskets with data until the compressed size would
reach a needed threshold, because substantial computing resources are
required to check the size of the compressed basket for every user object
to be added.

Let us examine the access pattern of an analysis task processing a
typical ESD file of around 2 MB. Before every ESD file in a chain is
processed 4 read calls are issued to the file for initialization. An event tree
inside the file is comprised of 499 branches, with 484 of those resident in
the file and stored in 675 baskets. Among those 15 missing from the file, 6
are in another “friend” file and 9 are in memory. Figure 1.3a shows that all
484 first baskets of each activated branch have been requested from the
disk to read the first event. The baskets that are holding only one event
have been requested for every single event. The baskets that are holding
two events have been requested every second event.

14

Data Analysis on Direct-Attached Storage

E i
[™\484 [™\440
102 102
o o
E S
o (&}
=] =]
[+ [+
@ @
S 10 + N S w0 *
> 10 N R
3 * + + 2 o + + +
£ + £ + +
2 - + + 2 +
R T s P
i++++H++++*+H R +++ +++++* +++ +++*+++++ + 1 w " T N
A R B SRS S S E o v 0
20 0 &0 80 100 120 20 0 60 80 100 120
a) event number b) event number
1 3 3
120012 120012
1000 [— 1000 [—
800 [— 800 [—
" C
L .
ool B
© 600 [— 2 600 [
n - n -
Q L Q L
S S
o o
400 — 400 —
200 — 200 —
- - - -
\ AR R Lol oae w1 W e w®l
20 a0 80 100 120 20 0 60 80 100 120
c) event number d) event number
Figure 1.3 An analysis task processing 100 events in an AliESDs.root file.

Read calls and bytes read for each processed event. a) Read
calls, all branches activated. 484 requests for the first event. b)
Read calls, 44 branches deactivated. Deactivation of particular
branches significantly alters the requests pattern. c) Bytes
read, all branches activated. d) Bytes read, 44 branches
deactivated. Most of the data per file is read for the first event.

The majority of the branches, being stored in only several baskets
each, need an equally low number of requests to be read completely.
Baskets of those branches are requested at larger intervals. Requests for
these baskets are visible on the Figure 1.3b, where the branches with 50
baskets, holding 2 events each, and 100 baskets, holding 1 event each, are
deactivated and not read. That is a real example of how ALICE physicists
are running their analysis.

Figures 1.3c and 1.3d show the amount of bytes read in each of
the two scenarios, with and without disabled branches. For an analysis
scenario, where all branches are read and requests are issued only to an
AliESDs.root file (Figure 1.3a), the number of read requests equals the
number of baskets.

15

Conceptual Design of an ALICE Tier-2 Centre

Single Task Train
File Name File Size (B)
Read Calls Bytes Read Read Calls Bytes Read
AliESDs.root 2 866 469 483 1377 525 483 1377525
galice.root 6 058 811 101 683 172 101 683 172
Kinematics.root 6 150 493 403 320 596 7708 7 407 476
TrackRefs.root 5728 700 403 199 110 2069 6 722 433
Table 1.2 Statistics for requested files per single AliESDs.root file

processed with an analysis task and with an analysis train.
Requests to the ESD file are greatly outnumbered by the
requests to Kinematics.root and TrackRefs.root. The fact, that
bytes read values for these files are larger than the respective
file sizes, shows that some data are read more than once.

For the analysis train where additional Monte Carlo information is
queried for each event from three other files the average request size
is less than 2000 bytes. In addition to calls to AliESDs.root seen on
Figure 1.3 there are numerous requests to galice.root, Kinematics.root,
and TrackRefs.root (Figure 1.4(a,b), Table 1.2). The exact numbers also
depend on the tasks themselves. Unlike for the ESD data, the same MC
data can be read more than once during the analysis runtime. Table 1.2
shows that the number of bytes read from Kinematics.root during the train
analysis is larger than the number of bytes that make up the file. One has
to note that these numbers of bytes correspond to compressed files.

-

S
>
I

number of read calls
-
=)
I

10°

T T T TTHT

TR

bytes read

o

-

Figure 1.4

4
K + + * 100 = L + kS X
* 3 SRR s S«
i + 3 B ey
| seeix X X ik R L x ﬁ%x
1 B R SRR IR e g &
B X I N TR Sl B
20 40 60 80 100 120 0 20 40 60 80 100 120

event number

event number

b)

+ AlIESDs x galice Kinematics ' TrackRefs

An analysis train processing 100 events in an AliESDs.root
file. Auxiliary "MC" files are queried. a) Read calls. b) Bytes
read. The access pattern is dominated by the read calls to the
"MC" files, and not the ESD. Fluctuations may be attributed to
varying event properties.

16

Data Analysis on Direct-Attached Storage

1.6 Evaluating Read Performance on the Level
of the I/O Subsystem

The number of how many read requests have been issued eventually to
the block device as well as many other relevant disk activity parameters
can be monitored using the kernel file /proc/diskstats [iostat] and the iostat
tool.

The following parameters of disk activity are shown among others in
/proc/diskstats, all the values are accumulated since machine boot:

m the number of read requests completed,

m the number of read requests merged,

m the number of sectors read from a device,

m the number of milliseconds spent doing I/O.

Iostat provides the following I/O statistics on a per physical device

basis:

m the average requests queue length,

m the average request size in sectors,

m the average time for I/O requests issued to the device to be served
(this includes the time spent by the requests in queue and the time
spent servicing them),

m the number of megabytes read from the device per second,

m the number of read requests that have been issued to the device per
second,

m the number of read requests merged per second that have been
queued to the device.

The average request size to a block device also depends on how well
the requests from an application can be merged together. Requests to
adjacent sectors on disk which get into the outstanding I/O requests queue
are combined.

Table 1.3 shows the correspondence of the number and the size of the
requests from the application via the read() calls to the number and the
size of requests to the block device. One may observe that the average size
of ROOT read requests for the analysis with the MC queries is 1.9 smaller
than for the analysis without the MC queries. For the requests to the block
device the situation is opposite with the ratio of 2.3. This means that the
read() calls for the tiny MC data queries are merged into the larger queries

17

Conceptual Design of an ALICE Tier-2 Centre

to the block device even better than the read() calls for the ESD data.
It would also explain why a train (with more MC queries) has a larger
average block device request size than a task (with less MC queries).

Task Train (15 tasks) Train (23 tasks)
Size (KB) | Number | Size (KB) Number Size (KB) Number
ROOT read() calls
No MC queries 3 49 105 3 49 127 - -
MC queries 1.9 139 584 1.6 1074726 1.6 1074 636
Block device requests
No MC queries 74.5 3608 74.5 3607 - -
MC queries 24.3 26 077 172 10 005 171.6 10 044
Table 1.3 Average request sizes and numbers of requests inside the

application for tasks and trains, and the corresponding
parameters for requests issued to a block device. Fewer, and of
a larger size, requests are processed by a block device than are
issued by the application. 100 files, each with 100 events, are
analyzed. Eight tasks of the train cannot be run without "MC"
queries, hence no values.

The missing statistics for a train with 23 tasks and no MC queries come
from the fact, that only 15 out of 23 tasks of the current train can be
executed without MC data, and the 8 remaining tasks crash the train when
MC data are not available.

It is also worth to mention that tracing tools of varied complexity
are developed to monitor what exactly an application is doing [Roselli].
Strace [strace] is capable of showing all system calls generated by an
application. Dtrace [Cantrill], SystemTap [Prasad], and LTTng [Desnoyers]
aim to provide dynamic binary instrumentation to trace any part of the
system either in the kernel or the user space and process the tracing
results dynamically while the application continues to run. By inserting
markers inside the application code it is possible to enable logging for the
application events which are triggered during the application’s run.

18

Data Analysis on Direct-Attached Storage

1.7 Optimizing Read Performance

1.7.1 Test Environment

The tests are carried out on a 8 core Intel Xeon E5430 2.66 GHz with 8
GB of RAM. HP Smart Array P400 is used as a RAID controller. The Debian
4.0 OS [Debian] is stored on the array A, which is a RAID 1+0 (2 disks).
The analysis data are stored on an aligned XFS file system installed on the
array B, which is a RAID 5 of 932 GB (5 disks x 250 GB + 1 x 250 GB
spare disk) with 64 KB stripe size and the block device read-ahead of 4
MB. The disks, HP GJO250EAGSQ, have the speed of 5400 rpm. The array
B can sustain sequential read operation at around 90 MB/s, as measured
by hdparm [hdparm].

The jobs are the ALICE analysis train and task processes. To ensure
for each job in the tests that all data files are read from the disks, the
memory page cache is flushed between the test runs. Every job processes
its own data set of 1000 files and utilizes a single core. A file contains 100
events, the size of a file varies between 2.3 and 8 MB. Events describe p+p
collisions at 10 TeV.

The ALICE analysis train, used in the measurements and by the ALICE
physicists at the time of research conduction, consists of 23 user-written
tasks.

The used ROOT wversion is 5.23-02, and the AliRoot version is
v4-16-Rev-08. Unless noted otherwise.

1.7.2 TIreeCache

To optimize the processing performance of the ROOT trees across wide
area networks, the ROOT developers at CERN have introduced an ad hoc
algorithm. Its goal is to fetch branch baskets into the memory before the
analysis code requests them [Franco]. It became apparent that disk access
performance may benefit from this caching mechanism too. The algorithm
is implemented with a TTreeCache class in ROOT, and thus commonly
referred to by that name. There are two ways to make the TTreeCache
class know baskets of which branch to prefetch:

m to start the Learning Phase for a specified number of entries in a
tree during which information on what branches are accessed by the
analysis code is gathered,

19

Conceptual Design of an ALICE Tier-2 Centre

m explicitly specify which branches should be read.

Then, the TTreeCache class, aware of all the baskets needed from the
tree in the file, will sort and merge the disk access requests. The baskets
are requested in the order of their appearance on the disk and those
adjacent on the disk are fetched by a single request.

For example, let us examine how a chain of 3 files, each storing 100
entries, and holding a tree made of 440 branches, is processed with and
without TTreeCache in use. The first file contains 483 baskets, second -
508, and third - 469. Without TTreeCache in use 483+508+469=1460
requests are issued to read all the baskets of these files.

The following happens when TTreeCache is used. If all the branches
are required for every entry, the learning phase can be set to last only
for the first entry. It is clear that to process the first entry 440 requests
are issued to read the first baskets of each branch. Then, the learning
phase is stopped, and TTreeCache knows of all the branches in use.
Next, remaining 43 baskets of the first file are prefetched in 18 requests.
After the first file’s 100 entries are processed 508 baskets of the second
file are prefetched in 22 requests. The 469 baskets of the third file are
prefetched after 200 entries by 14 requests. In total, with TTreeCache in
use, 440+18+22+14=494 requests are issued instead of 1460. With every
next file in the chain the difference grows (Table 1.4).

TTreeCache enabled TTreeCache disabled
Read Calls to AlIESDs.root 2708 49 006
Bytes Read from AIlESDs.root 152 413 985 152 413 985
Table 1.4 Statistics for an analysis task processing a chain of 100 AliESDs

files, each with 100 events. TTreeCache significantly reduces
the number of read calls.

1.7.3 Prefetching

If all of the branches of an ESD tree are activated and all the baskets
are going to be read, then the whole ESD file will be read from the RAID
and put into the RAM. The file can be placed into the OS page cache in
the RAM after a single read call. The data files are of such a size that they
can easily be stored in the RAM in full. This allows to substitute the read
requests to the disk with the read requests to the memory by invoking a
function that reads the file sequentially with larger blocks into the memory
before the file is accessed by the analysis process. Even if not all of the

20

Data Analysis on Direct-Attached Storage

branches in a tree are required it may still be worthwhile. A speed-up due
to the sequential read operation by a single read request can outweigh the
side effect of reading the whole file.

A C++ code which implements reading of a file into the memory buffer
is placed into the Notify() function of the AliRoot Analysis Framework for
a test. It is invoked before a new file with a tree is opened. The file is
read into the memory buffer with a single read request, and thus is placed
into the page cache of the OS. The buffer is then freed and analysis code
accesses the file from the page cache. This approach of prefetching the file
results in redundant memory allocations, and the way to reduce them has
to be examined.

There are plenty of read requests issued per one ALiIESDs.root data file
to galice.root, and especially Kinematics.root and TrackRefs.root for an
analysis which needs Monte Carlo data (Table 1.2). Indeed, read requests
to these files greatly outnumber the read requests to AliESDs.root.
Therefore, optimization of the access to these files will affect the overall
data analysis speed the most. The proposed prefetching mechanism can be
applied to these files too.

The test results (Figure 1.5) show that prefetching and TTreeCache
optimization techniques both increase the throughput rate for parallel jobs
which access exclusively AiIESDs.root. However, since queries to auxiliary
MC data files dominate the I/O, optimizing access to AiIESDs.root is not
enough to improve the data throughput rate for jobs, where auxiliary
data are queried (Figure 1.6). TTreeCache is an optimization technique
implemented for accessing the ROOT trees only.

21

Conceptual Design of an ALICE Tier-2 Centre

18 [~

15 [~

MB/s

Figure 1.5

B no optimization
I TTreeCache enabled
[AliESDs.root prefetched

parallel jobs

A comparison of the aggregate throughput rates for parallel
jobs running a single analysis task. Only AliESDs.root is
accessed. Both optimization techniques improve the
performance, by factors of ~1,5 for TTreeCache and ~2 for
prefetching, for eight parallel jobs.

MB/s
S

Figure 1.6

B no optimization [AlESDs.root prefetched
Il TTreeCache enabled [al1 4 ROOT files prefetched

4 5 6 7

8 10

parallel jobs

A comparison of the aggregate throughput rates for parallel
jobs running a single analysis task querying the Monte Carlo
data. ALiESDs.root, Kinematics.root, galice.root, TrackRefs.root
are read. To produce an impact, optimization must concern the
Kinematics and Trackrefs files.

22

Data Analysis on Direct-Attached Storage

All described optimization techniques have no effect on the train jobs
(Figure 1.7). This fact suggests that the analysis train of 23 tasks must be
CPU bound, i.e. the time for a computer to complete an analysis train job is
determined principally by the speed of the CPU. This is proven by the CPU
utilization measurement. For analysis train of 23 tasks, CPU has a load of
almost 100%, at 98% (Figure 1.8b). This allows the performance to stay on
the same level with the addition of about 5 parallel jobs (Figure 1.8a). It
goes down when the number of parallel jobs with concurrent disk access
approaches and exceeds the number of cores, when the additional system
overhead for context switching is introduced.

12
B o optimization
10 B TTreeCache enabled @ | - — = — = — — — — — - — -
] AliESDs.root prefetched
8 [a1 4 ROOT files prefetched | - - - - _ _ _ _ -
(7]
=1 ; - -
:
T _ B}
T mm ‘ ‘ _ N
, LI
1 2 3 4 5 6 7 8 10

parallel jobs

Figure 1.7 A comparison of the aggregate throughput rates for parallel
jobs running an analysis train querying the Monte Carlo data.
AliESDs.root, Kinematics.root, galice.root, TrackRefs.root are
read. Optimization of the read access does not affect the
performance of a CPU bound train.

On the other hand, the analysis task is I/O bound, i.e. the time for a
computer to complete an analysis task job is determined principally by the
period of time spent waiting for the I/O operations to be completed. With
the addition of parallel jobs accessing the same block device, performance
of a single job significantly decreases (Figure 1.8a).

23

Conceptual Design of an ALICE Tier-2 Centre

100

75

50

CPU tilization, %

25

1 2 3 4 5 6 7 8 10
a) parallel jobs b) parallel jobs
Figure 1.8 a) Variation of the data throughput rate of a single analysis

train job and a single task job with the addition of parallel
jobs on 8 cores. b) Variation of the CPU utilization of a single
analysis train job and a single task job with the addition of
parallel jobs on 8 cores. The tests prove analysis tasks to be I/O
bound, and analysis trains - CPU bound.

1.7.4 Merging the Data Files

Another way of optimizing I/O access is to merge the data files. As
a consequence, the number of data files is reduced, and their size is
increased. In turn it cuts down the time spent on initialization of the files,
and potentially larger blocks can be sequentially read from the disk. There
are 2 options how the merging of the ROOT files can be done: default
and ‘fast’. With the default option, source files’ baskets are unzipped, the
data objects are merged into new objects which are put into new baskets
written to the new file. For the ‘fast’ option, the source baskets are copied
to the new file without being unzipped. The ‘fast’ option supports 3 sorting
orders of the baskets in the file:

m by offset (default),
m by branch,
m by entry.

Sorting by offset means that the new baskets will be written to the new
file in the same order as they are placed in the source file. In the case when
sorting order ‘by branch’ is specified, all baskets of a single branch are
placed in the file together, one after another. This order particularly suits
the analysis scenario where only some of the tree’s branches in a file are
read. It allows the baskets of a single branch to be read without additional
positioning on the disk being done. When baskets are sorted by entry they
are written to a file exactly in the order they are going to be retrieved from

24

Data Analysis on Direct-Attached Storage

the disk. Similarly, no excess positioning is needed for the analysis where
all branches are read from the file.

Using less files for the same number of events improves performance
for the parallel jobs by a factor of 3 or higher (Figure 1.9). The fact,
that default merging, via unzipping procedure, results in a lower analysis
performance than the fast one, may be attributed to compression issues in
the software and needs further investigation.

£
m
=
parallel jobs

B 1000 original O 1 merged (fast) E 10 merged (fast, by entry)

[merged O 10 merged (fast) N merged (fast, by branch)

B 10 merged [1 merged (fast, by entry) B 10 merged (fast, by branch)

Figure 1.9 A comparison of the aggregate throughput rates for an analysis

of the merged and original files. Merging of the data files is an
efficient optimization technique. The analysis train of 15 tasks,
with only AliESDs.root being accessed. One job processes 100
000 events.

1.7.5 Tuning of the I/0O Subsystem

There is hardly a method other than empirical testing using a typical
predicted workload to find the values for tuning parameters of the I/O
subsystem that yield better performance. As it should be, the default
values from the vendors usually produce the best results for most of the
workloads.

At the level of the RAID controller, no difference in performance has

been noticed for the various values of the stripe size, and hardly any
difference between the RAID 5 of 5 disks and the RAID 6 of 6 disks.

25

Conceptual Design of an ALICE Tier-2 Centre

At the block level, an important setting is the read-ahead. Read-ahead
has to be definitely switched on as it gives a substantial performance
increase (Figure 1.10), although there is a slight variation in performance
for different values in the range from 64 KB to 16 MB. The size of the I/O
requests queue is optimal at the default value of 128.

14

B oxs
12 - I 128KB

U i -

MB/s

parallel jobs

Figure 1.10 The data throughput rate at different values of the block device
read-ahead. The analysis train with 15 tasks, with only
AliESDs.root being accessed. Read-ahead substantially
increases analysis performance for parallel jobs.

Whether the XFS file system has been aligned to the stripe sizes or not
has not affected the performance. The number of the allocation groups did
not have any large influence either.

1.7.6 Migrating to the Solid-State Drives

A solid-state drive (SSD) is one of the recent additions to the storage
hardware technology. Being based on the flash memory and hence lacking
any moving mechanical parts an SSD wastes no time on positioning and
provides persistent storage with fast random access. An SSD can handle a
much higher number of I/O operations per second than a hard disk drive
(HDD). The weak points of the SSDs in comparison to the HDDs are lower
capacity and higher cost per gigabyte. Whether these weak points would
be overcome in the near future is debated [Hetzler].

26

Data Analysis on Direct-Attached Storage

In general, there are two ways to make use of the SSDs in the large
data storage facilities. Either completely substitute HDDs with SSDs in
current storage configurations, or to set up an intermediate tier of the
SSDs between the RAM and the HDDs. While a complete migration to the
SSDs would hardly be cost-effective at the present moment in the high-
capacity storage facilities, there are some workloads which could benefit
from an SSD tier in between the RAM and the disk storage [Narayanan].
In the latter case, an SSD could be used for a write-ahead log and a cache
for read operations. Accessing data from the OS page cache in RAM is
still much faster than accessing it from the SSD cache, but RAM is not
persistent storage and costs significantly more per GB. So, for workloads
requiring fast random data access an SSD could hold data which is not
fitting into the OS page cache. A proper cache policy which results in
enough cache hits is needed for making the SSD tier worthwhile.

While aforementioned issues slow the popularization of the SSDs
among the high-capacity data centres down, the SSDs are quickly cutting
into HDD share of the desktop PC (Personal Computer) and laptop markets
where capacity requirements are orders of magnitude lower. For running
the I/O bound ALICE analysis tasks on laptops or PCs migration to the
SSDs proves to be worthwhile, substantially increasing the data
throughput rate (Figure 1.11).

MB/s
S

1F---- - - — — P - - - -

parallel jobs

Figure 1.11 A comparison of a single HDD and a single SSD with regard to
the data throughput rate of the ALICE analysis tasks querying
the Monte Carlo data. SSD performance scales almost linearly
with addition of parallel /O bound jobs, while HDD
performance is saturated at less than 2 MB/s.

27

Conceptual Design of an ALICE Tier-2 Centre

The tested SSD is an Intel X25-E 2.5” SATA II SLC Enterprise Solid
State Disk SSDSA2SH032G1 with a capacity of 32 GB. The compared
HDD is an HP 3G SATA 5400 rpm 2.5” SFF Entry Hot Plug Hard Drive
GJO250EAGSQ with a capacity of 250 GB. The relatively small capacity of
the SSD is an obstacle for running a higher number of parallel jobs each
accessing an own data set. To decrease the sizes of the data sets is not an
option, because, for consistency, the tests need to be run over a significant
amount of time and be comparable with the HDD tests described above.

1.8 Conclusion of Part 1

Overall performance of the ALICE data analysis is directly affected by
the way how fast the read requests to data storage are processed, since
an analysis application cannot continue its run until its read request is
fulfilled. The capabilities and the proper configuration of the hardware,
and the I/O access patterns of the user applications play equally significant
roles.

The time it takes to fulfill the disk access request includes the time
spent on positioning and the data transfer. If hardware capabilities define
the time spent on the data transfer from the disk, the I/O subsystem
configuration of the OS and the I/O access patterns of the user application
determine the time spent on positioning to start the transfer. Thus, the
way to reach the best performance the hardware is capable of is to reduce
the number of the positioning operations. This ultimately means that the
number of requests for the disk access by the user application should be
kept as low as possible. As it has been presented by the example of the
AliRoot analysis tasks, this can be achieved either by sorting and merging
disk access requests or by prefetching the data required by the application
from the disk into the memory in an optimized way. The example of an
analysis train shows an elegant way to avoid duplicate read requests by
grouping the CPU workload of different tasks by the analysis data.

As a result, the direct cause of underutilization of hardware throughput
capability is a large number of small, possibly random, read requests for
the data on disks. The indirect causes leading to low I/O performance boil
down to the following:

m a large number of relatively small ESD files,

m a large number of branches in the ESD tree, and, consequently, a

large number of baskets inside the ESD files,

28

Data Analysis on Direct-Attached Storage

m numerous and superfluous queries to Kinematics.root,
TrackRefs.root.

The described work provides the first overview of the physical layout
of the ALICE data files and the I/O access patterns of the ALICE analysis
code. The analysis code inside tasks and trains is wuser-written.
Consequently, one cannot take for granted, that the code is going to be
efficient with regard to disk access. The presented attempts to optimize
performance concern the AliRoot analysis framework, in order to mitigate
the inefficiency on a general level.

The results of this research have been presented at the ALICE Offline
Week in October 2009, where the proposed optimization techniques have
been approved for implementation, too. For the ALICE Tier-2 at GSI, these
results have allowed to focus on analysis train as an effective way to
utilize the local computing resources for analysis. A designated ALICE
collaboration member collects the tasks from the ALICE physicists,
attaches them to the analysis train and submits the train for execution.

29

2 Integration of Storage Resources

High-performance Computing, serving as a background for the topic
of this thesis, implies heavy utilization of a large number of computing
resources for intensive calculations. In order to provide a solution for
advanced computing tasks that require large storage capacity and enough
CPU power to get the results of the calculations quickly enough,
computing resources have to be somehow integrated together. Integration
should make it possible for resources to be used in parallel for a single
purpose. Ideally, a result of such integration should be a set of resources
which has a total power of a sum of powers of its units. Provided there
is an interface, this set of resources can be regarded as a single virtual
resource. It should be possible to dedicate the full capacity of this virtual
resource equally easy to a single task or to a number of tasks running
simultaneously. Practical solutions for integration which are considered in
this chapter are limited to those available under a free software license.

2.1 Requirements

Thorough consideration of requirements for the desired computer
system is needed before different solutions for integration of resources
may be proposed and examined. The requirements for the distributed
storage system of the ALICE Tier-2 centre analysis cluster can be divided
into the following categories (based on [Oleynik]).

General:
The system must be available for Linux under a free software license.

The system must run on commodity hardware.
The system must be a general-purpose system.

Ll

The system must work over the Ethernet network.
Capacity:
1. The system must be able to grow indefinitely in data capacity with
the addition of scalable units.
Functionality, performance:

1. The aggregate data throughput rate must scale up when more
scalable units are added.

31

Conceptual Design of an ALICE Tier-2 Centre

2.

2.

3.

4.

. The system must support concurrent I/O access from hundreds to

thousands of clients in the computing cluster.

The system must support a workload with a mixture of reads and
writes, random reads, handle concurrent writes to a shared file.

The system must be able to queue the offered load before
performance degradation, without dropping requests or deadlocking.
The I/O operations should be spread across the storage units and the
underlying network infrastructure.

The system must not suffer from deadlocks, nor be significantly
impaired by hung or deadlocked clients.

The performance of the system should not degrade with time due to
data fragmentation.

The capability to control the number of WAN (Wide Area Network)
and LAN (Local Area Network) transfers independently is desired.
The capability to integrate direct-attached storage of the computing
nodes is desired.

Data integrity:
1.

The capability to scan the system for file corruption without
excessive impact on performance is desired.

The capability of the end-to-end integrity verification of the transfer
protocols is expected.

Usability, maintenance:

1.

It must be easy to add, remove and replace scalable units without
causing performance degradation and stopping the entire system.
Rolling upgrade feature is desired.

While some storage units may be offline, it must be possible to access
those files on the remaining online units.

The maintenance and administrative operations must be amenable
to invocation from remote systems. An application programming
interface (API) is desired.

The system must be POSIX-compliant.

Global namespace:

1.

The global namespace must be mountable and browsable on all
nodes.

32

Integration of Storage Resources

2. It must be possible to query namespace information from many
clients simultaneously without affecting primary data operations.

3. It must be possible to analyze usage patterns to identify abusive
users.

4. The global namespace must be scalable to support millions of files
with no degradation in system performance.

5. The global namespace must be scalable to support hundreds of client
operations per second.

6. It must be possible to recover the global namespace in the case of its
crash. Backup possibilities have to be provided.

7. High-availability is desirable.

8. Quotas per user group are required.

Tape integration:

1. It must be possible to integrate the system with a tape back-end.

2.2 Classifying the Available Solutions

2.2.1 Definitions

As a starting point, the solutions to organize distributed storage
systems are often divided into those based on the NAS (Network-Attached
Storage) concept, and those based on the SAN (Storage Area Network)
concept. Put simply, the NAS storage systems provide access to files on
remote file systems united under single namespace. On the other hand, a
typical SAN system allows its clients to enable file system access to remote
storage blocks as if they are local to the client.

Interpretation of the definitions of the different file system
architectures is generally confusing, and names are often misleading.
Hence, the following list of definitions is presented in advance.

1. Network file system - any file system operating over a network as a
NAS.

2. Distributed file system - any network file system which spans
multiple independent storage servers and delivers them as a single
storage unit.

33

Conceptual Design of an ALICE Tier-2 Centre

3. Cluster file system - any distributed file system which can provide
simultaneous I/O access to storage for nodes of a computer cluster.

4. Parallel file system - any distributed file system which can serve
different I/O requests in parallel.

5. SAN file system / shared disk file system - any file system operating
in a SAN.

Among other things, the POSIX norm defines a standard way for
applications to obtain the I/O services from the I/O subsystem. This makes
possible application portability [POSIX]. The POSIX semantics require
coherence. The results of concurrent write operations have to be handled
in such a way, that enables consequent read operations to reflect them.
It is very expensive with regard to performance to provide the POSIX
semantics for intensively shared files, since this requires a high amount
of instant metadata updates. Certain extensions to POSIX for high-
performance I/O are developed to address these issues and to relax some
requirements [Welch].

2.2.2 SAN File Systems

Let us first consider the SAN file systems (also called shared disk file
systems) used for the storage area networks [Tate]. A SAN is a specialized
network, and its primary purpose is the transfer of data between
computing nodes and storage. In a SAN, a storage device is not connected
to a particular server bus but attached directly to the network. Thus,
what a user can regard as a single block device on a local bus, in reality
are multiple storage units connected through a dedicated network. SAN
provides a network implementation of block storage protocols. Its main
design characteristic is that client nodes are the only active elements of
the system and are primarily responsible for the SAN file system operation.

The following properties of SAN may be regarded as advantageous:

m Storage is independent of applications and accessible through
multiple data paths;

m Storage is accessible as a block device;

m Storage processing is off-loaded from computing nodes and moved
onto a separate network resulting in higher application performance.

The following disadvantages are regarded as a trade-off:

34

Integration of Storage Resources

m Management (formatting, partitioning, growing) of SAN would have
to be done on client computing nodes;

m Gigabit Ethernet is the practical minimum;

m Major SAN protocols are not encrypted, hence security is an open

issue.

Briefly described below are the SAN file systems GFS2 [Whitehouse]
(developed by RedHat) and OCFS2 [Fasheh] (developed by Oracle). They
are provided under the GPL (GNU General Public License), are POSIX
compliant, and are both part of a Linux kernel. With their respective
implementations of the Distributed Lock Manager (DLM) both file systems
are able to provide simultaneous access to storage from multiple client
nodes. Hence, every client needs to know which other clients can access
the storage and keep locks on the resource.

The heartbeat technique is used by the clients to check each other’s
status and makes all clients periodically write into a special file in the
system. To preserve the file system consistency the SAN file system has to
isolate the client node which fails to produce the heartbeat. In this process,
called fencing, the network connections to a misbehaving node are broken
down, the misbehaving node is either shut down, restarted, or hung up in
a state of kernel-panic. In such a way, the other nodes will not be stuck
trying to access the resources for which the misbehaving node can have
locks.

When the client nodes crash while the SAN file system is mounted,
the file system journaling allows fast recovery. Recovery is done at the
client node itself. However, if a storage device loses power or is physically
disconnected, file system corruption may occur. Journaling cannot be used
to recover from the storage subsystem failures. When that type of
corruption occurs, one can recover the GFS2 file system by using the fsck
command after unmounting it on all client nodes [GFS2].

GFS2 supports a maximum size of 25 TB. That is, to access storage
capacity beyond 25 TB a client would need to mount more than one
instance of GFS2.

File data in OCFS2 is allocated in extents of clusters, which can be
from 4 KB to 1 MB in size. With the file addresses currently coded in 32
bits the limit for a file system size is 16 TB for 4 KB clusters, and 4 PB for
1 MB clusters [Mushran].

Once a GFS2 or an OCFS2 file system is created, its size cannot be
decreased. Both file systems support quotas and the POSIX access control
lists.

35

Conceptual Design of an ALICE Tier-2 Centre

2.2.3 Aspects of NAS

There are plenty of different solutions for managing the network-
attached storage. In contrast to SAN, the NAS solutions are operating on
the file level. Fundamentally, the file systems of a NAS are called network
file systems or distributed file systems. All of the solutions are variations
of either the client-server or peer-to-peer models.

While choosing a particular cluster file system for a high-performance
computing environment emphasis is put on two of the following features
which are not necessarily present in all NAS file systems:

m fault-tolerance,
m parallel data access,
m scalability.

Fault-tolerance can be achieved through data replication among
multiple file servers, and many file systems allow to specify the desired
number of replicas. It is desirable to keep data replicas on devices on
different RAID controllers, power circuits, network switches. Another way
to achieve fault-tolerance is to set up the failover pairs of servers, where
in case of a failure server’s load would be transferred transparently to its
mirror. However, a failover process sometimes takes longer than a simple
reboot which may be enough to bring the server back online.

Parallel data access becomes possible when file system clients are able
to perform a short query on a some kind of a metadata index to find
out where to locate the data. It allows them then to directly connect to
the server which stores the data for a lengthier transfer. Thus, multiple
clients are able to concurrently and independently transfer data to and
from multiple servers. Figure 2.1 illustrates that if the lookup queries 1
and 2 will be processed inevitably sequentially, transfer operations 3 and 4
can be processed in parallel.

®v~~~\\1\ 2 rlad @

-
-
~ -
S~ ot

= 4
Metadata index

3
<>
e

Figure 2.1 The origin of parallel access in the distributed file systems.

36

Integration of Storage Resources

Scalability as a property of the distributed file system indicates that
its capacity can be easily enlarged by adding new storage servers, and
I/O access performance will scale proportionally. Among the issues that
prevent distributed file systems to achieve scalability are provisioning of
global namespace, and metadata management.

2.3 Metadata Management in Cluster File
Systems

One of the crucial properties of a cluster file system is the way how the
metadata requests, essential to operation of any file system, are handled.
The metadata requests make up a large part of any user-driven workload,
and affect performance and manageability.

The file system metadata are organized in a kind of an index of entries
where each entry, called dentry, consists of a file’s pathname and a
corresponding inode number. The inode number points to an inode. In
ordinary local file systems inode is a data structure which holds the
information about the file like size, ownership, access permissions, and
pointers to the contents of the file on the storage device. Different cluster
file systems have different inode structures with different information
available. For many local file systems whenever any file in the system is
touched in any way its metadata have to be updated. For the cluster file
systems this POSIX requirement for updating access times is relaxed.

This index which holds metadata of all the files in the system serves as
a basis for providing a global namespace. A global namespace implements
a unified view of the contents of all resources in the file system. It allows
clients to see which files in which particular logical hierarchy are stored
in the system without exposing their physical location. As the contents of
a cluster file system grow, the index becomes larger, and its management
offers a performance challenge. A simple search for a file in a large index
introduces a latency.

With respect to the metadata management the cluster file systems
may be symmetric, where metadata are spread among the nodes, or
asymmetric with centralized metadata servers.

In an asymmetric system a stand-alone metadata server presents a
single point of failure and a limit to system’s scalability. Generally, the
hardware requirements for such a server are especially high with regard
to the I/O subsystem, and a failover pair is de facto a must. For cases
where a single metadata server introduces a performance bottleneck,

37

Conceptual Design of an ALICE Tier-2 Centre

several metadata servers can be clustered together. Availability of multiple
metadata servers enables parallel access to metadata, potentially relieves
the load of a single server, and increases the rate of processed queries.

Keeping metadata safe and consistent is critical, since corruption or
loss result in user data becoming unrecoverable. Journaling, the method
adapted from the local file systems, is often used to cure inconsistency.
In this method, pending updates are first written to a journal, a write-
ahead log which can be used as a reference to complete the I/O operations.
This allows a fast system recovery in case of a server crash before 1/0
completion. In cases where metadata are replicated, a difficult problem
of keeping multiple instances in sync arises. Special algorithms for
establishing the correct instance of metadata have to be in place.

At the example of GlusterFS [GlusterFS] one learns that it is possible
to avoid metadata management in the cluster file systems altogether. In
this case a cluster file system relies on a local file system at the servers,
which would manage the metadata on its own. Whenever a file is written
to a directory in GlusterFS, a hash number for the file is computed based
on its name. According to the hash number a file is placed on one of the
servers. Information to what servers the file can be dispatched is attached
to the file’s parent directory. Thus, to retrieve a file or its metadata you
have to recompute the hash.

Although this approach avoids the need to manage metadata centrally,
it introduces several limitations to GlusterFS. In the case when a certain
server for a given directory has crashed, it is not possible to write a file
whose hash number would map it to the affected server. Besides, the
request to show the contents of the global namespace with ‘s’ command
results in a broadcast of lookup queries to every server, which lead to a
significant network traffic as the number of servers increases.

The files written via the GlusterFS interface are placed on to the
local file systems of the storage servers in an ordinary way, without any
transformation. When a storage server is deattached from GlusterFS, it
is possible to easily access the files and recover the data via the local
file system interface. Although, one has to note that GlusterFS does not
support such scenarios where files are written through another interface
to the local file system of a GlusterFS server.

As previously mentioned, the SAN file systems manage files on the level
of blocks. On the other hand, the NAS open-source file systems such as
Lustre [Braam], MooseFS [MooseFS], Ceph [Weil], PVFS [Carns] manage
files as objects. When a file is written into such a cluster file system, it is
split into multiple objects of a specified size. Object-based storage provides
greater flexibility for achieving high performance and fault-tolerance for

38

Integration of Storage Resources

the cluster file systems. Objects of a single file can be spread across
multiple servers, and thus can be accessed in parallel with increased
cumulative throughput. Replication on the level of objects (for the sake of
fault-tolerance) contributes to economic utilization of resources.

Whereas in such systems like Lustre the metadata server provides
clients with list of objects’ locations for a particular file, in Ceph a client
is provided only with a cluster map, placement rules, and can compute
a location of the objects of a file with a globally recognized function.
This method avoids the need for maintenance of allocation tables and can
increase performance.

The objects are stored as ordinary files on the local file systems such as
ext3, which take care of allocating blocks to them on the storage devices.
Without the metadata which keeps information on which objects make up
the file, the objects are useless. So if the metadata server has crashed, it
is not possible to recover the data.

2.4 Bringing the Workload to the Data

In general, the NAS solutions are tailored for the kind of computer
cluster model, where the NAS clients reside on the farm of computing
nodes across the network from storage servers staging the data. In this
model data are moved to workload. However, even in such a model
computing nodes are often installed with RAID controllers and a number
of local disks. In this situation direct-attached storage remains mostly idle
if computing nodes access software and data from remote locations.

The question whether to invest in direct-attached storage (DAS) or not
often arises at the stage of cluster design, or at the stage of scaling the
capacity up. The relevance of this dilemma is also strengthened due to a
relatively low cost overhead for DAS in commodity computers. However,
besides economic incentive for a cheap storage capacity increase, DAS
gives a potential opportunity for jobs to perform read access on the local
disks, to avoid network transfer of data, and thus to bring workload
to data. Among the disadvantages of utilizing DAS is the management
overhead of such system and effects of the misbehaving software on data
availability.

Such highly scalable and fault-tolerant distributed file systems as
Hadoop’s HDFS [Borthakur] and CloudStore [CloudStore] are developed
to run on commodity hardware and have a capability for parallel
computation on local data. These systems are used for the “write once,

39

Conceptual Design of an ALICE Tier-2 Centre

read many” workloads and require applications to use the MapReduce
software framework [Dean] which makes use of data locality. Another
system, Sector/Sphere [Gu], uses the stream-processing paradigm,
adopted from the general-purpose GPU (Graphics Processing Unit)
programming models for similar workloads, and adapts it for wide-area
distributed computing. It is complicated to use such systems for ordinary
POSIX applications. It requires significant remodelling of application, but
there is an ongoing research in this field [Molina-Estolano].

For Lustre, there are certain impediments for running a client and the
object storage server on the same machine, because both processes are
competing for the virtual memory. If the client consumes all the memory
and then tries to write data to the file system, the object storage server
will need to allocate pages to receive data from the client but will not be
able to perform this operation due to low memory [Lustre manual]. This
situation leads to a deadlock.

It is possible to run a client and a server of GlusterFS on the same
machine. However, it is not possible for a client to know what data are
stored locally on the server, and the majority of I/O operations would
still go over the network. Hence, the only advantage of utilizing local
disks’ capacity of computing nodes would be tarnished by aforementioned
disadvantages. The same would apply to all NAS solutions which do not
expose any API for data locality to detect local files.

2.5 Utilizing Direct-Attached Storage with
PROOF

Several ad hoc tools for management of data comprised of the ROOT
files can be of particular benefit to the environment of the ALICE Tier-2
centre. One such tool, designed for parallel processing of the ROOT data,
is called PROOF (Parallel ROOT Facility) [Ganis]. Among its core
properties is the ability to take advantage of data locality.

PROOF has been developed to run ROOT analysis on large data
samples in an interactive mode with a real-time feedback and a fast
response time. A PROOF system consists of clients, worker, submaster,
and master nodes. To run an analysis in PROOF a client sends analysis
code and a list of data files to the master. It then distributes the task
of running the code among the submasters and they in turn distribute it
among workers according to a scheduling policy. The scheduling policy
ensures the following points:

40

Integration of Storage Resources

m workers process local data first,

m the workload is distributed in such a way that all the workers are
finished with processing approximately at the same time, regardless
of their hardware heterogeneity or difference in load,

m resources are shared by different user sessions.

After workers are done with running the analysis the results are sent
back to the submasters for merging. In turn, the merged results are sent
for subsequent merging to the master before the client receives a final
result. The submasters can control up to 64 workers each and form an
intermediate tier between the master and the workers to scale the system
up.

For its own infrastructure PROOF uses the Scalla toolkit [Scalla].
Scalla consists of tools to manage and access the ROOT files storage,
commonly referred to as the xrootd cluster. The xrootd cluster is a stand-
alone storage system, and is not necessarily used for running the PROOF
analysis. The general scheme of a PROOF system running on top of an
xrootd cluster is presented in the Figure 2.2.

Each node in an xrootd cluster runs both xrootd and cmsd daemons. An
xrootd daemon, a core element of Scalla, implements the xroot protocol,
which is a remote access protocol optimized specifically for the ROOT files.
A cmsd daemon indicates the server status and enables the clustering
of the data servers under the global namespace. Similar to the PROOF
hierarchy, there is a redirector/manager node governing the data servers.
Also similar to PROOF, intermediate redirectors/managers are used to
scale the system up. It is worth to mention, that the PROOF master does
not have to be run on the same node as the xrootd redirector/manager. The
following happens when a client accesses a file on an xrootd cluster:

1. the client asks the xrootd redirector for the file A;

2. the xrootd redirector asks cmsd manager to find the file A;

3. the cmsd manager queries all subordinate cmsd instances to find the
file A;

4. each cmsd instance queries xrootd instance attached on the same
node for the file A;

5. if the file A is found, its location is sent back to the cmsd manager;

6. the cmsd manager determines according to the policy the optimal
xrootd server and notifies the xrootd redirector;

7. the xrootd redirector instructs the client where to find the file A;

8. the client connects to the chosen xrootd server and accesses the file.

41

Conceptual Design of an ALICE Tier-2 Centre

client
xrootd redirector
cmsd manager
xrootd redirector
cmsd manager
a)
client
PROOF master
workers submaster
workers

b)

client

xrootd redirector

cmsd manager PROOF master

@ xrootd €— data lookup
W cmsd €— workload flow local data

44— data flow

—— communication

Figure 2.2 The PROOF and xrootd architectures: a) an xrootd cluster, b) a
PROOQOF system, c) PROOF running on top of an xrootd cluster.

42

Integration of Storage Resources

In addition to efficient access to ROOT files the xrootd cluster
advantages include scalability and fault-tolerance. A new redirector/
manager node can be set up on demand, or in case of a crash. There is
no file metadata store to grow. A crash of data server affects availability
only of its local files. On the downside, the basic setup of an xrootd cluster
lacks the POSIX interface, and critical data management abilities, e.g. file
deletion.

2.6 A PROOF System Setup Options

A setup of CAF (CERN Analysis Facility) has demonstrated a first
successful example of such PROOF system in operation [Grosse-
Oetringhaus]. The data for analysis is staged from the tape back-end in the
form of data sets by an ad hoc daemon on user request. Users are running
a handful of concurrent PROOF sessions. A garbage collector is running,
when disks are close to being completely full. It deletes data sets which
have not been recently accessed.

To make data management on an xrootd cluster flexible, the XrootdFS
[Yang] and XCFS [Peters][XCFS] file systems have been proposed. Both
make use of the Linux kernel module FUSE to provide a possibility to
mount an xrootd cluster as a file system. Although not all POSIX semantics
are implemented, it is possible to run critical ‘1s’ and ‘rm’ commands. This
gives an opportunity to avoid usage of the garbage collection mechanisms
when data have to be deleted. Both file systems retain an ability to perform
I/O access with the xroot protocol.

In XrootdFS, a dedicated daemon starts running a Composite Name
Space (CNS). It stores metadata of all files in the xrootd cluster on the
local file system. When changes occur on local data after xroot access, the
xrootd daemon on a data server sends the update information to the CNS
via a special plug-in. The CNS is updated after I/O accesses via FUSE too.
The CNS is coupled with a simple server inventory (SSI), which provides
an inventory for each data server. Both can be automatically recreated and
replicated [Hanushevsky].

XCFS, on the other hand, is intended to be a full-fledged cluster file
system, rich with features. It is possible to replicate data, to implement
quota and access policies, to enable strong authentication. Metadata are
stored on the metadata server which is the system’s single point of failure.
Similar to XrootdFS, the metadata server holds inventories of each data
server for consistency checks. It is worth to notice that it is not possible

43

Conceptual Design of an ALICE Tier-2 Centre

at the time of writing to attach XCFS to an already existing xrootd cluster.
The local file systems on the data servers have to be formatted in a specific
way.

A setup of GSIAF (GSI Analysis Facility) introduces a scenario where
PROOF runs on the computing nodes which at the same time have been
used by a distributed resource management system and have been
executing batch jobs [Schwarz]. The PROOF workers are assigned a lower
nice [nice] value than the batch jobs. If a PROOF session has been started
when computing nodes are running batch jobs, PROOF workers are
getting a higher priority for the CPU time.

Both setups of CAF and GSIAF are so-called static PROOF systems.
Multiple user sessions are simultaneously coordinated by a single PROOF
master controlling a fixed number of workers. In contrast, a dynamic setup
is possible with the PoD (PROOF on Demand) toolkit which has been
developed at GSI [Malzacher].

PoD provides a capability to start and fully control one’s own PROOF
system with a desired number of workers. With the help of the batch
system the specified number of workers can be distributed among
computing nodes as regular batch jobs. After finishing the analysis, a user
can easily bring its PROOF system down. Besides flexibility, another main
advantage of using PoD instead of static PROOF is a complete decoupling
of user sessions, which improves system reliability.

Thus, it is feasible to unite the DAS of computing nodes into a single
storage pool of an xrootd cluster with a FUSE based file system on top.
It allows to populate the local disks with data and run PROOF analysis
processes on it. A PROOF cluster can be set up as a static system or a
dynamic one by using PoD. In order for PoD workers to get distributed to
the servers of an xrootd cluster and access data locally, a special batch
queue can be set up. PROOF would distribute the workload with respect
to data locality, and the xroot protocol would be used for accessing data.
Either XrootdFS or XCFS could be used to manage and, most importantly,
delete the data when it is not needed anymore.

2.7 Comparative Testing Results

The PROOF system has been used to assess and compare performance
of GlusterFS, Lustre, and xrootd, as storage solutions. The configured
PROOF cluster consists of 9 worker nodes with the tenth node playing
the role of a PROOF master. Four tested setups are presented in Figures

44

Integration of Storage Resources

2.3 and 2.4. Figure 2.3 shows the setups where data are accessed from a
single node. On the other hand, Figure 2.4 shows, how data are accessed
simultaneously from multiple PROOF worker nodes. PROOF uses the
ROOT version 521-01-alice and a generated data set of ROOT files of
an average 8.5 MB size with 5000 events, 20 branches, and without
compression. The tests are made with the ProofBench benchmark analysis.

‘ N

| ! |

| g I I

! I ! |

| | |

| I I GlusterFs ’

| PROOF cluster ! !

\ / ' PROOF cluster '

**************************** N o
<)

g00000000 @

PROOF cluster ,

.
......... . I
I.I | ! |
||||||| o/ &

I

) I

PROOF cluster
-

xrootd cluster
/

Figure 2.3 Storage test setups with a PROOF cluster. A single worker
reads from a) a remote Lustre, powered by 30 storage servers,
b) a direct-attached storage via xrootd, 'xrootd local', c) a
direct-attached storage via GlusterFS, d) a remote node via
xrootd, 'xrootd remote'.

GlusterFS (version 1.3.12) unifies the direct-attached storage of the
PROOF nodes, with the namespace stored on the PROOF master node.
The namespace in this version of GlusterFS is provided through the ‘unify’
translator, which makes sure that inode numbers are consistent across all
the nodes in the ‘unify’ group.

Xrootd is represented with two setups. The first one is where the
PROOF workers access direct-attached storage through xrootd, hence
‘xrootd local’. The second one is where the PROOF workers access a
remote xrootd cluster, ‘xrootd remote’, with the same hierarchy of 9 data
servers and a redirector.

Lustre (version 1.6) unifies capacity of 30 remote storage servers. This
setup, in contrary to the 3 others, does not allow to flush the page cache
on the servers between the test runs, and it is not known how the data
are distributed among the servers. Consequently, the results of the testing
should be viewed with a reservation, that Lustre has been used as a black
box, powered by 30 file servers.

45

Conceptual Design of an ALICE Tier-2 Centre

PROOF Data rates (MBJs)
Workers Total xrootd xrootd
Nz per node workers GlusterFS [local remote
1 1 1 3 3 3 3
1 8 8 22 22 25 23
Table 2.1 The aggregate data throughput rates for PROOF analysis

accessing data on a single node with a single worker and with
a number of workers equaling the number of cores. The results
show the same level of analysis performance for all four storage
solutions, while 'xrootd local' with its native support of the
ROOT trees proves to be slightly ahead.

For a single analysis PROOF process on a node, the results (Table
2.1) show no significant difference in performance between the setups.
Although, notably, being optimized for the ROOT trees, xrootd sustains
a slightly higher throughput rate when 8 workers on a node access the
data simultaneously. In the same setup, but with the PROOF processes just
reading the data from a single node (Table 2.2), for a single process, Lustre
loses 25% in comparison to the rest. For 8 processes, Lustre achieves
the best result with 50 MB/s. The result of xrootd for local access is
accountably higher than the one of ‘xrootd remote’ and slightly better than
the one of GlusterFS.

PROOF Data rates (MBI/s)
Workers Total xrootd xrootd
Nodes per node workers GlusterFS [local remote
1 1 1 12 9 12 12
1 8 8 30 50 31 26
Table 2.2 The aggregate data throughput rates for PROOF accessing data

on a single node with a single worker and with a number
of workers equaling the number of cores. No analysis is
performed by the benchmark, the data are just read. Read
performance of Lustre scales up significantly better with the
addition of jobs due to its aggregation of a three times higher
number of storage servers than other solutions.

For multiple analysis PROOF processes accessing data simultaneously
from all worker nodes (Figure 2.4, Table 2.3), ‘xrootd local’ provides by far
the best throughput rate, significantly surpassing result of another local
solution, GlusterFS. Lustre matches the result of ‘xrootd remote’ at 190
MB/s. The ‘xrootd local’ setup proves to be the most productive again for
the similar setup with PROOF processes just reading the data at 107 MB/s
(Table 2.4). The ‘xrootd remote’ setup sustains the higher throughput than

46

Integration of Storage Resources

the ‘local’ GlusterFS solution when there is a single process per node.
With total 72 workers, ‘xrootd remote’ fails to surpass the local GlusterFS.
Lustre’s performance scales well, being higher than ‘xrootd local’ by 55%.

S b | _
i @ i i s|l 8] 18]l |8]] |s]] |8]] |8[] |s]] |8 MI
I | I
I | I

\ PROOF cluster, N PROOF cluster ,

a)

b)

=1 61 61 61 61 61 61 61 6 T ;
slf lslf [l ot |slf [elf [oh [slf el [M}
|

|
|

PROOF cluster

s ~
~ -

Figure 2.4 Storage test setups with a PROOF cluster. Multiple workers
read simultaneously from a) a remote Lustre, powered by 30
storage servers, b) a direct-attached storage via xrootd, 'xrootd
local', c) a direct-attached storage via GlusterFS, d) a remote
node via xrootd, 'xrootd remote'.

PROOF Data rates (MBI/s)
Workers Total xrootd xrootd
Nodes per node workers GlusterFS local remote
9 1 9 27 28 27
9 8 72 172 220 187
Table 2.3 The aggregate data throughput rates for PROOF analysis

accessing data simultaneously on multiple nodes with a single
worker and with a number of workers equaling the number
of cores. Local xrootd access for 72 workers significantly
surpasses in analysis performance other data access solutions
with remote Lustre access matching the result of remote
xrootd.

47

Conceptual Design of an ALICE Tier-2 Centre

PROOF Data rates (MBJs)
Workers Total xrootd xrootd
Nodes per node workers GlusterFS [local remote
9 1 9 89 72 107 103
9 8 72 219 421 271 216
Table 2.4 The aggregate data throughput rates for PROOF accessing data

simultaneously on multiple nodes with a single worker and
with a number of workers equaling the number of cores. No
analysis is performed by the benchmark, the data are just read.
Local xrootd access shows stronger read performance than
other solutions. Only remote Lustre for 8 workers per node
surpasses it, due to its aggregation of a three times higher
number of storage servers and resulting enhanced performance
scalability.

To summarize, the results conclude that, from the performance
perspective, xrootd is the best solution for ROOT analysis and is
specifically optimized for it. GlusterFS provides a reasonable performance
for a direct-attached storage access. On the downside, a GlusterFS setup
faces a significant management overhead trying to ensure that a process
accesses data from the direct-attached storage. GlusterFS does not
support this scenario. Finally, Lustre scales well and provides a generic
cluster file system functionality.

2.8 Conclusion of Part 2. A Decision Taken at
GSI

In a shared environment of a research facility with many supported
experiments there is an incentive to consolidate all storage resources
into a single file system. The obvious reason for this is that in case of
fluctuating needs, and without implemented quotas, a single experiment
can use more than its share of the total storage capacity. But, there
is another reason that makes integration worthwhile to all user parties
- increased data throughput through parallel access due to wider file
distribution between file servers.

There are plenty of options on how to organize file storage at an
ALICE Tier-2 Centre. To make a choice, compile the list of requirements
similar to the one presented above, in the chapter’s introduction. Those
solutions which meet the requirements should be carefully scrutinized
with an emphasis on adoption history inside and outside of the community.

48

Integration of Storage Resources

The systems which make it to the shortlist need to go through an intense
testing phase. There is a fair chance of making a good decision. The
importance of the initial decision is emphasized by the virtual impossibility
of data migration for file systems of petabyte scale in a production
environment.

At GSI, the choice has been made in favour of Lustre. Selecting the
cluster file system functionality is necessary for feeding data to user
analysis jobs processed in parallel at a computer cluster of several
thousands cores (currently ca. 4000). With the first production version
appearing in 2003, Lustre has since been popularized and installed at
several of each year’s TOP 10 supercomputers (TOP500 list) most of which
are used for research. The high-energy physics community has picked up
the trend quickly, and Lustre has been discussed as a possible storage
solution at each Computing in High-Energy Physics (CHEP) conference
since 2004 and HEPiX meeting since 2005 [HEPiX] with all LHC
experiments finding application for it [Carvajal][Wu]. Lustre is being the
only open-source free cluster file system being under constant evaluation
of the HEPiX Storage Working Group [Maslennikov].

A need for a general-purpose cluster file system with flexible data
management capabilities, and immaturity of present POSIX interfaces are
the main reasons why it has been decided not to put all storage resources
into an xrootd cluster. Still, Scalla’s xrootd can be used for the WAN access
to the ROOQOT files over a grid, and for a scratch space without long term
management needs for analysis with PROOF.

A list of features, which includes the full POSIX compliance, scalability
due to the absence of the metadata management overhead, and relatively
easy deployment, have led to evaluation of GlusterFS. The biggest reason
for considering and testing GlusterFS has been its potential to consolidate
direct-attached storage of the commodity hardware. It has been of a
particular interest to check whether it would have been possible to pair
it with Scalla and make it provide a POSIX interface to an xrootd cluster.
It has not been known, at the time, whether the HEP community has an
experience with GlusterFS in this or any other regard.

Unfortunately, later, it has been determined that the GlusterFS client
does not account changes to the local file system if they are implemented
not through its own POSIX interface but with the xroot protocol. At this
time, immaturity and its failure to provide a desired solution for
integration of direct-attached storage of the cluster nodes have been the
main arguments against the introduction of GlusterFS in GSI.

The tests results, described above and presented at the ALICE/FAIR
disk storage workshop in 2009 [Zynovyev], have demonstrated how the

49

Conceptual Design of an ALICE Tier-2 Centre

GlusterFS performance and the performance of Scalla are comparable to
the Lustre performance on small scale installations. At the same time,
the tests of an incomparably larger Lustre installation have produced
highly satisfactory results. It has not been possible to reach performance
saturation peak for the data throughput while the whole cluster has been
busy with analysis jobs [Masciocchi]. This has paved the way for the final
decision to stay with Lustre for the first years of the ALICE data-taking.

Because of the dedication of the GSI HPC group and the information
exchange with the Lustre support team, the current installation of Lustre
at GSI in its 4th year has a gross capacity of ca. 2 PB with a scheduled
upgrade to 3.5 PB. It serves ca. 4000 computer cluster cores and stores
ca. 100 million files. With the largest single production Lustre installation
being approximately 26,000 nodes, and storage capacity of over 10 PB
[Lustre size], there is some room to grow for Lustre at GSI.

Unfortunately, since Lustre is an object-based file system, its single
metadata server (MDS) is the system’s single point of failure and presents
a performance bottleneck. Although, being long time on the roadmap,
support of the clustered metadata is not implemented yet. To make it fault-
tolerant, the MDS is set up in a high-availability pair configuration with a
third server being on a cold standby. A single way to mitigate performance
bottleneck is to enhance the MDS with more resources and GSI is planning
to buy itself out of problems with an 48 core MDS with 128 GB RAM.

The clustered metadata and its inclusion in the Linux kernel under the
LGPL (GNU Lesser General Public License) make the Ceph file system
a valid alternative but no production Ceph systems are known at the
moment, and its readiness is in question [Maltzahn].

The problems with Lustre include its relatively difficult diagnostics
process, susceptibility of MDS to bugs which leads to frequent (for some
versions) downtimes of the whole system, its clients operating in the
kernel space of computing nodes and thus affecting nodes’ availability.
Besides, Lustre is very much dependent on stability of the underlying
network. Not to mention, that frequent failures of the cheap storage
hardware is the biggest reason for data unavailability in case of switched-
off replication.

50

3 From Virtual Machines to
‘Infrastructure as Code’

Although the problems of the I/O access and storage with regards to
the ALICE Tier-2 requirements have been examined above, it is rather
clear, that most of the publicly funded scientific computing centres like
GSI are serving more than one scientific experiment. Different scientific
experiments have different requirements to computing, both to hardware
and software. The ability to sustain operation of a heterogeneous
environment and scale up should be envisaged in the computing centre’s
architecture.

While the main goal of the infrastructure providers is to meet the
requirements of all their users, the main goal of the users (scientific
experiments) is to get their respective tasks accomplished (get results of
computations). The infrastructure providers are interested in having the
solution to satisfy the users as straightforward as possible. In turn, in most
of the cases, the users are interested in accomplishing their tasks as fast
as possible in a reliable way at a minimum cost.

Sharing the resources can lead to the mutual benefit relationship
among the users. In case one of the users frees her share of resources,
these resources can be utilized by another user. Through careful planning
and negotiations users have a possibility to increase their resource
capacity to satisfy peak demands by utilizing the resources originally
provided by somebody else for different purposes.

The infrastructure providers should see their own incentive in fostering
resource sharing among the users. For the users to be able to utilize
each other’s resources, their applications’ requirements to the centrally
provided infrastructure should converge. This in turn would lead to
reduction in requirements to meet for the infrastructure providers and
hence a more straightforward approach to administration of the resources.

Unfortunately, it is impossible to rely on the users settling on a single
flavour of an operating system due to various reasons, epitomized by
incompatible package dependencies. The concept of hardware
virtualization is used to address this issue.

Hardware virtualization is a process of creating a simulated computer
environment by host software for its guest software. One can distinguish
paravirtualization, where guest software has to be modified to be aware of
being in a virtual environment, and full virtualization, which allows guest
software to be run without modifications and to be unaware of being in

51

Conceptual Design of an ALICE Tier-2 Centre

a virtual environment. Modern x86 hardware comes with architectural
support for virtualization, hardware-assisted virtualization, effectively
reducing performance overhead.

Host software manages guest software with the help of a Virtual
Machine Monitor (VMM), also called hypervisor, which supervises access
of guest software to CPU, RAM, and I/O devices. All unprivileged
instructions can be executed natively on hardware without intervention of
a VMM. However, all privileged instructions of the guest software generate
a trap into the VMM. The VMM then takes care that those instructions are
handled correctly and in a safe way for the system’s integrity. Those CPU
intensive workloads that seldom use privileged instructions benefit from
virtualization the most, while performance of I/O intensive workloads can
suffer from overhead introduced by the VMM. However, the virtualization
I/0 overhead problem can be solved too [Liu].

3.1 Cloud Computing in a Scientific Research
Environment

With decreasing performance overhead hardware virtualization has
become broadly adopted as a helpful tool. It allows multiple users to exist
on common hardware without knowing and hopefully without impacting
each other [Abbott]. This has paved the way to a new trend in distributed
computing, namely cloud computing.

Cloud computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service
provider interaction [Mell]. The all-encompassing term of cloud computing
leads often to confusion and it is very important to specify which of three
service models is meant: SaaS (Software as a Service), PaaS (Platform as
a Service), or laaS (Infrastructure as a Service). The definitions of these
three service models, as well as five essential characteristics of cloud
computing, and four deployment models are formulated very well in [Mell].

Due to the heterogeneous nature of legacy scientific applications and
their requirements to the OS, IaaS proves to be the most suitable cloud
computing model to the environment of an academic research centre.
Also from [Mell], in the IaaS model the capability provided to the user
is to provision processing, storage, networks, and other fundamental
computing resources where the consumer is able to deploy and run

52

From Virtual Machines to ‘Infrastructure as Code’

arbitrary software, which can include operating systems and applications.
The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed
applications, and possibly limited control of select networking components
(e.g. host firewalls).

The first IaaS providers have been those commercial companies which
operated large capacity computing centres to meet their companies’ peak
demands to computing and that could lease a part of their infrastructure
to tenants for certain period between the peaks. Later it became profitable
to scale up the infrastructure exclusively for leasing. Most of the pioneers
of cloud-computing saw a unique possibility to drive down the costs for
computing by avoiding the necessity to buy, install, operate, upgrade, and
scale their own computing infrastructure.

Although the difference between scientific and commercial
communities is substantial and is out of scope of this thesis, technically the
IaaS model can suit them both.

3.1.1 Different Ways to Use Virtualization at a
Computer Cluster

The advantages and disadvantages of adopting virtualization and an
IaaS cloud model laid out below mostly concern batch and interactive
processing. Whereas service hosting, although very important topic even
in scientific environment, is out of the scope of this thesis.

If a computing facility, like an ALICE Tier-2 centre or a FAIR Tier-0
centre, is going to run applications inside virtual machines (VMs), there
are several models to consider:

m with shared virtual machines,

m with private virtual machines controlled by a distributed resource

management system (DRMS),

m an laaS cloud,

m a hybrid model in which there are sets of physical resources reserved

for distinct workflow models.

In the model with shared virtual machines one or a set of virtual
machines are started on each physical host by system administrators.
It can be done with the help of virtualization API and configuration
management software (CMS) or with specialized cloud managing software.
Once started, VMs are accessed and loaded by users, and stay online up
to the moment when they crash or are shut down deliberately. Nothing

53

Conceptual Design of an ALICE Tier-2 Centre

changes for users in the way they run applications. System administrators
can install a homogeneous software stack across all physical hosts in
a computing farm. Homogeneity leads to easier operation of the
infrastructure. The basic software stack needs at least the following:

an operating system,

a monitoring system,

configuration management software,

a virtual machine monitor,

a virtualization API.

A set of virtual batch nodes with DRMS inside can be maintained
alongside a set of interactive virtual nodes. Users submit batch job
requests to a DRMS master service which may or may not be virtual and
have no perception of running jobs in a virtual environment. Whether to
run multi-core or single-core virtual nodes must be decided with respect to
applications’ requirements.

There are two potential shortcomings for users in the model with
shared VMs:

m loss of native hardware performance, which can either be negligible
or intolerable depending on the job workload;

m potential inability to use hardware accelerators or any other
hardware devices, which VMMs do not support [Lagar-Cavilla].

On the other hand, the advantage for users is higher availability of
resources that is the consequence of a shorter mean time to repair (MTTR)
virtual infrastructure and potentially longer mean time to failure (MTTF)
compared to a bare metal infrastructure.

The disadvantage of setting up an infrastructure with shared virtual
machines compared to a conventional “bare metal” setup for system
administrators is that virtual machines have to be provisioned, monitored,
and maintained in addition to the physical hosts.

Another workflow model which takes advantage of virtualization is the
one where a DRMS starts a VM for a scheduled batch job. A job description
file would contain a requirement for a particular VM configuration and the
DRMS would schedule the job for execution onto the worker node where
such a VM could be started. The DRMS then starts the VM, executes a job
inside the VM, and upon job completion and output transfer shuts the VM
down.

The advantage of this workflow model in comparison to the one with
a conventional DRMS and no virtualization lies in the ability to sandbox

54

From Virtual Machines to ‘Infrastructure as Code’

user jobs in a custom environment. In comparison to the model with
shared VMs, this one does not require VM maintenance on the same
level, since a VM would be short-lived and disposable upon job completion
and possesses greater scheduling capabilities of existing DRMS. On the
downside, the need to start a VM results in a delay prior to job’s execution.

3.1.2 Analysis of Virtualization Implications for
Infrastructure Availability

Availability is a degree to which a system or a component is operational
and accessible when it is required for use [Availability]. The way to
measure availability which is presented below is taken from the very
illuminating [Debois]. Availability is influenced by four major parameters
(Figure 3.1):

m Mean Time to Diagnose (MTTD) - the average time it takes to

diagnose the problem,

m Mean Time to Repair (MTTR) - the average time it takes to fix the

problem,

m Mean Time to Failure (MTTF) - the average time there is correct

behaviour,

m Mean Time Between Failures (MTBF) - the average time between

different failures of the service.

MTBF

A
A 4

MTTF MTTD | MTTR MTTF

l »

A
\ 4
A
A 4
A
A 4

Correct behavior | Diagnose| Repair | Correct behavior Time

First Begin End Second
Failure Repair Repair Failure
Figure 3.1 The parameters which influence availability.

Consequently, availability can be expressed as A = MTTF / MTBF =
MTTF / (MTTF + MTTD + MTTR). On the other hand, availability can be
calculated in terms of 9s as shown in Table 3.1.

55

Conceptual Design of an ALICE Tier-2 Centre

Availability Downtime
90% (one 9) 36.5 days/year
99% (two 9s) 3.65 days/year

99.9% (three 9s) 8.76 hours/year
99.99% (four 9s) 52 minutes/year
99.999% (five 9s) 5 minutes/year

99.9999% (six9s) | 31 seconds/year

Table 3.1 Availability in 9s.

To keep availability of a computing farm close to 1, or 100%, is
obviously in the interests of users and is the duty of system administrators.
Availability of a computing farm can be attributed to the service level
objectives (SLO) such as CPU capacity (for example in HEP-SPEC), access
and bandwidth (Mb/s) to the network storage system.

MTTR and MTTF are those parts of the equation which can be affected
by virtualization. In case user batch jobs are distributed between the
virtual machines, the users cannot crash with their processes the physical
host. User batch jobs spawning child processes, which the DRMS can fail
to control, or any kernel space code which can freeze the system, like
in case of synchronous read requests without time-out to an unavailable
file system, are not a threat to the physical host, but only to the virtual
machine. When a virtual machine crashes or malfunctions, there is no
need to repair it. It can be quickly deleted and re-provisioned. In another
case, where there is a problem with a physical host (not related to the
user workload) and the host has to be taken down for maintenance, virtual
machines running on it can be migrated to a different physical host. In
case of live migration, the VM does not even have to be shut down, if there
is a storage system in place which is shared among the physical hosts.
To summarize, the following features of virtualization technology lead to a
shorter MTTR:

m easy and fast deletion and re-provisioning of a VM,
m migration of a VM.

Live migration capability results in a longer MTTF for virtual
infrastructure too, since VMs can stay online, even when a part of the
physical infrastructure goes down. If there are several VMs on a single
physical host, one crashed VM will not affect the other ones running on
the same host if they are not interdependent on the application level.

56

From Virtual Machines to ‘Infrastructure as Code’

Because of clear resource boundaries (CPU, RAM, network I/O) there
is no interference between user processes on different VMs. Even if
configuration management software (discussed below) takes good care of
keeping a VM clean, there is still a probability that with time the OS will
get clogged with old obsolete software, configuration files, log messages,
and remnants of user applications. This can lead to a system crash over
time. There is little overhead in recycling an old or used VM, deleting the
instance and starting a fresh one, once regular recycling procedure is set
up. To summarize, the following properties of the virtualization technology
lead to a longer MTTF:

m clear resource boundaries between VMs,
m live migration of a VM,
m easy recycling of a VM.

3.1.3 Analysis of the IaaS Benefits in a Scientific
Environment

Another option to set up a computing infrastructure on virtual
machines is to build a private IaaS cloud. On the contrary to public
clouds, such as famous commercial Amazon Elastic Compute Cloud (EC2)
or Rackspace, a private laaS cloud is used only within a single
organizational unit like a scientific research centre. Somewhere between
public and private clouds there are also so-called community clouds shared
by several organizations serving a community and closed for public access,
such as IBM’s Research RC2 [Ryul].

For an IaaS cloud system administrators need to deploy the same basic
software stack as for the infrastructure with shared virtual machines.
But in TaaS cloud model system administrators do not provision VMs
for users in advance, users deploy their own private VMs through the
cloud interface on demand. In addition to those mentioned above for the
model with shared virtual machines, the disadvantages of the private IaaS
cloud model for users include the necessity to learn how to provision and
maintain VMs themselves.

On the other hand, users would be able to enjoy some outstanding
advantages:
m no issues with software platform compatibility for applications,
m freedom to have a personalized environment with all requirements
met,
m total control of the execution environment,

57

Conceptual Design of an ALICE Tier-2 Centre

m easy recovering (if there is a problem - just restart),
m dynamic scaling of infrastructure depending on the workload,
m easy migration between different IaaS cloud providers.

Certainly, user’s ability to start VMs on demand requires regulation.
A pricing model has to be implemented to motivate users to release
resources which they do not utilize. To do such accounting in a private
cloud no real money should be involved. With introduction of a billable
unit like “instance-hour consumed” and accompanying rates users may be
charged per time their particularly configured VM instance is occupying
the resources. The rates would differ for the number of CPUs or RAM
capacity per instance. In public clouds a similar model allows users to be
charged in real money only for the resources they use.

Although to set up a private IaaS cloud takes a tremendous effort, once
it is in place system administrators have a much more stable environment,
prone to automation and efficient maintenance without the complexity
of a conventional infrastructure on “bare-metal” machines which cracks
under user software. In an IaaS cloud, maintaining the software stack
within running virtual machines is largely a user’s responsibility. System
administrators can prepackage a VM image for users according to their
custom requirements, make sure a VM instance is started, runs, and gets
its share of resources. Once a VM instance falls into the user’s hands,
the user is free to install and run her own software, and the system
administrator is no longer responsible to keep the software stack alive.
If a VM crashes due to user actions, the user is free to delete or re-
provision this VM according to a charging policy, and no other users are
affected. Adoption of the IaaS cloud model gives infrastructure providers
the following advantages:

no interference between users, clear resource boundaries,
no necessity of a shared software platform for all users,
users cannot crash the physical host,

user’s infrastructure is not in the scope of the system administrators’
responsibilities,

it is possible to migrate a VM with no interruption in service,

m infrastructure is flexible enough to be easier adopted by users,

m higher number of users results in higher utilization and therefore
cost efficiency,

m easier to keep pace with technological developments (easier to test

and adopt new things).

58

From Virtual Machines to ‘Infrastructure as Code’

3.1.4 SCLab. Implementation of an IaaS Cloud
Prototype

Two aims have been pursued with the design and construction of an
IaaS cloud prototype at GSI, called SCLab (Scientific Computing Lab):

m evaluation of free, open-source cloud technologies for production
environment,

m creation of a cloud testbed with the purpose of studying how to use
virtual machines to run applications.

To integrate SCLab prototype into the existing computing
infrastructure at GSI, the decision has been taken to use preferably
existing components and to introduce as few ad hoc changes as possible.
Due to existing procedures for provisioning new servers, provisioning and
maintenance efforts for physical hosts have been reduced to minimum.

KVM (Kernel-based Virtual Machine) [KVM] has been chosen as the
VMM software for the SCLab physical hosts, because of its inclusion into
the Linux kernel. This allowed to stay with the Debian OS, the default
Linux flavour at GSI, and its Lenny version. The physical hosts have been
centrally provisioned and maintained as all other servers in the computing
farm of GSI.

KVM is a full virtualization solution distributed with Linux kernel since
2.6.20 release. For a long time, full virtualization solutions have been
used to trade performance for compatibility. And although KVM had been
losing out in performance to its famous paravirtualization counterpart
Xen before, it has recently caught up [Deshane][Chierici], not least due
to introduction of virtio, a Linux-internal API for virtual device drivers
[Russel]. Virtio makes it possible for specific I/O drivers to be aware of
running in a virtualized guest environment as in paravirtualization, and
thus allows for efficient cooperation with VMM, which leads to a better
performance.

For VM management the choice has been made in favor of
OpenNebula, the open-source toolkit for cloud computing [Sotomayor].
OpenNebula is a virtual infrastructure manager that orchestrates storage,
network, and virtualization technologies for deployment of any type of IaaS
cloud. Eucalyptus [Nurmi] and Nimbus [Foster], which provide similar
functionality, have been evaluated too, but at that time their respective
versions have been using Xen as VMM technology and have been
considerably harder to deploy in the given environment due to networking
features. Feature-sets and design concepts behind all three toolkits have

59

Conceptual Design of an ALICE Tier-2 Centre

been thoroughly compared in [Sempolinski]. The result of the comparison
proves that the decision to stay with network-agnostic OpenNebula for its
customization abilities in the SCLab environment has been made correctly.
A recent addition to these tools, Openstack [Openstack], looks promising
and its evaluation is planned.

The interaction between OpenNebula and KVM on the physical hosts
is done with the help of libvirt [libvirt], which plays the role of a common
interface to different VMMs. Although it provides abstraction for all of the
main VM operations, it fails to do so for some of the specific hypervisor
features, like snapshots in KVM.

The architecture of the SCLab cloud built with OpenNebula is shown in
the Figure 3.2. To provision VMs through the OpenNebula interface users
log into the front-end node which plays the role of a cloud controller. It
is possible to enhance OpenNebula with standard interfaces like the one
of EC2 [EC2] or OCCI (Open Cloud Computing Interface) [OCCI], which
can be called remotely. Before submitting a request for VM provisioning,
all configurable VM parameters have to be specified in a configuration file.

Parameters are divided into the following groups:
m capacity (amount of RAM, etc.),
m OS and boot options (boot device type, etc.),
m disks (image source, etc.),
m network (name of the network, etc.),
m [/O devices (VNC (Virtual Network Computing) port, etc.),
m context (files to include in a context device, etc.),
m placement (scheduling preferences, etc.),
[

raw (arguments to pass to VMM, etc.).

After a request is submitted, a VM template disk image has to be
transferred from an image repository to a particular physical host.
OpenNebula aims to be agnostic to transfer mechanisms and it is possible
to set up an own one, in addition to existing shared (network file system)
and non-shared (secure shell) options.

60

From Virtual Machines to ‘Infrastructure as Code’

Subnetwork

@CC

O e | | 1 o

Cloud
Controllr M v e o [I I
= / Nl &
rimar
image. [| \IIVM o o] /&
Repository Koy
N
Physical Hosts
Figure 3.2 The basic private cloud architecture of SCLab. Virtual machines

are colored to show heterogeneity. Physical elements are
monochrome. A backup image repository is local to cloud
controller. HV stands for hypervisor. DNS stands for Domain
Name Server.

An image repository for SCLab is stored on a Lustre file system, which
is shared between physical hosts and administered by another department
in GSI. If it is online, the OpenNebula process copies it on the physical
host to a particular local directory, but in case Lustre is not reachable, disk
images are transferred from a backup repository at the cloud controller
with the scp command. This improves SCLab availability.

The physical hosts and a shared file system are not the only things
administered by another department that have been used for SCLab.
The underlying network, which imposes constraints on the IaaS cloud
architecture, is administered by another department too. An advantage
of OpenNebula is that it does not rely on any particular network
configuration, leaves the freedom of choice to system administrators, and
provides the infrastructure to dynamically create new virtual LANs for
VMs on the same physical network.

To be part of the GSI LAN and at the same time to avoid traffic
interference with the external network, SCLab with its physical hosts
and virtual machines has been moved to a dedicated class C subnet
(for 256 IPv4 addresses). For such a static, relatively small scale cloud
testbed, setup of a DHCP (Dynamic Host Configuration Protocol) server
could be avoided. Instead of asking DHCP, VMs are assigned automatically
generated IP (Internet Protocol) addresses through conversion at boot

61

Conceptual Design of an ALICE Tier-2 Centre

time of the last 4 pairs of hexadecimal characters of the MAC (Media
Access Control) address to the 4 numbers of the IP address. Accordingly,
02:FF:0a:0a:06:32 is converted to 10.10.6.50 . The prefix 02:FF is reserved
for VMs to distinguish them from physical devices. To be able to connect
by hostnames to VMs from the GSI LAN, a DNS server for SCLab has been
set up, and the DNS server for GSI has been modified to recognize it.

3.2 Efficient Computing Infrastructure
Management

3.2.1 System Administration. A Key Obstacle for
Infrastructure Scalability

Scalability, with regard to a computing infrastructure, can be either
vertical or horizontal. Vertical scalability implies increase in resource
capacity of a single infrastructure unit such as a computing server. On the
other hand, horizontal scalability implies increase in the number of units
comprising the infrastructure.

The precision of the highly complex ALICE analysis is limited by the
amount of produced data, which can be physically stored, and the power
of available computing resources to process it. In addition, the demands of
the ALICE computing tasks are growing with the size of data produced by
the experiment. Vertical scalability can not meet them because of the Von
Neumann bottleneck, costs, and vague estimations for eventual capacity
requirements. Thus, horizontal scalability with commodity hardware is
inevitable.

The efficient scalability rate of the infrastructure can be defined by
the scalability rate of its weakest link. With horizontal scalability being an
issue every so often at an ALICE Tier-2 centre, the weakest link happens
to be the manpower for system administration. If resource provisioning
and maintenance require manual interaction of system administrators,
then provisioning of new resources and maintenance of a scaled-up
infrastructure require additional labour. It is hard to hire the costly highly
skilled workforce on demand, on a short notice in a publicly funded sector.
In addition, the increase in number of system administrators alone may not
solve the problem of managing an evergrowing computing infrastructure.
Rather, due to shared responsibilities, different skills and other workforce
management issues, it may contribute to the complexity of the task. The

62

From Virtual Machines to ‘Infrastructure as Code’

problem of system administration can be mitigated by introducing those
system administration techniques which foster automation, portability, and
knowledge transfer. The more stages of the infrastructure life-cycle are
optimized and automated, the less pressure is exerted on the manpower
supply. Consequently, the system administration techniques are crucial to
infrastructure scalability. Automation of system administration tasks is one
of the key processes to make it possible.

3.2.2 Automation of Provisioning

The first step towards automation of resources provisioning in a
conventional computing infrastructure is the introduction of a network
boot, for example via PXE (Pre-boot eXecution Environment) [PXE]. In a
typical network boot, the computing node’s network card broadcasts a
DHCP request indicating that it is a PXE client; the DHCP server responds
with IP information as well as the name and location of a network boot
program to download via TFTP (Trivial File Transfer Protocol) [Sollins].
A network boot program, like FAI (Fully Automatic Installation) [Lange],
would then install an OS with specified packages onto direct-attached
storage.

In an IaaS cloud, automatic provisioning of resources is one of the
design cornerstones. Arbitrary number of VMs can be started
automatically from just a copy of a VM disk image with a pre-installed OS.

3.2.3 Automation of Maintenance

There comes a time when a fully functional computing infrastructure
stops working properly. Something in the system breaks, and the clock
for the MTTR is started. The system administrator becomes aware of the
problem either after being contacted by a user, by looking at the related
monitoring information, or by being alerted with an automatically sent
message from the system itself. Although the third option may not be more
complete than the first two, it is certainly the most reliable and prompt,
since there is no human involvement.

Once notified, the system administrator diagnoses the problem. In case
of a recurring or a well documented problem, it is very likely that there
exists a script or a list of commands to execute. If the problem is new, it is
very likely that such a script will be created to solve it. With time, the need
to maintain scripts in an organized way becomes apparent. Using a version
control system to keep track of changes to the code is necessary. In order

63

Conceptual Design of an ALICE Tier-2 Centre

for somebody to be able to reuse the script, it has to be well documented
and written in a common language. For a better flexibility, and to facilitate
sharing, a script must have a very precise indivisible purpose and be able
to run across platforms. The time spent on finding correct commands or
a script, writing a correct script, or adapting somebody else’s script may
result in an unnecessary delay to recovery.

The more steps on the road to recovery are automated, the shorter will
be the MTTR. Automation saves time, increases infrastructure availability.
It also allows to cope with infrastructure growth.

To be able to write a programming code in the form of a script or
an application, which controls an infrastructure component or retrieves
information from it, the component must have an API. Ideally, an API
must be language-independent, so that it can be called from different
programming languages, and accessible over the network, so that it can
be called remotely, as a service.

As an example, one of the essential infrastructure components is a
monitoring system, which gathers all kinds of relevant static and dynamic
metrics of infrastructure components both on the system and application
levels. It has to provide a network-accessible API, which can be remotely
called for retrieval of a particular metric value. This would allow to write a
code, which can detect and react on the change of the system state.

In a service-oriented architecture (SOA) (Figure 3.3), with the loosely
coupled, abstract, reusable, autonomous, stateless, discoverable,
composable services, one requires only orchestration to produce a new
application, and, similarly, build an infrastructure.

Grid Computing

Element
Job Grid Stora
ge
Scheduler Element
NAT
Object Device
Configuration Store
Management DNS
_Monitorin
Cloud >
Controller
Figure 3.3 An example of a service-oriented architecture (SOA) with the

loosely coupled, abstract, reusable, autonomous, stateless,
discoverable and composable services. All the services require
a remotely accessible API.

64

From Virtual Machines to ‘Infrastructure as Code’

The desire for automation of provisioning and maintenance of an
infrastructure and applications in a highly scalable network environment
of an TaaS cloud and experience of SOA have led to the birth of the
Infrastructure as Code (IaC) concept [Jacob]. IaC implies the breakdown
of an infrastructure into modular network-accessible services for an easy
and flexible integration into a functional, fully-automated system. With IaC,
computing infrastructure is built by means of writing programming code.
The “Holy Grail” of IaC is the reconstruction of a complete computing
infrastructure from a source code repository and “bare metal” resources.

3.2.4 Solution. Adopting ‘Infrastructure as Code’

For higher degrees of flexibility, portability, scalability, recoverability,
and transparency, it is necessary to automate as many stages of a
computing infrastructure as possible. To address these issues in a
scientific environment, the IaC concept from the commercial sector of Web
operations is introduced.

Before turning to a solution of how IaC may be implemented in a
scientific computing environment, it should be made clear that IaC is a
general concept for infrastructure management and is not bound to any
particular tools.

Unfortunately, not every infrastructure component, which has to be
maintained, has an API. Besides, automation code is not that much of
a help for continuous infrastructure operation and maintenance if it is
scattered and has to be executed manually by system administrators.
High reliability and availability are impossible without regular, organized
maintenance checks. These issues are addressed by configuration
management tools.

Configuration management, with regard to computing infrastructure,
is a process of supervision of infrastructure components’ compliance with
the assigned policy according to a specified protocol. Policy is a
specification of what a component should do, and protocol is
implementation of how it should be done. A basic architecture of a
configuration management tool is presented in the Figure 3.4.

65

Conceptual Design of an ALICE Tier-2 Centre

Repository

:’-Ec;n_fi_g_u_rz;’aarr‘. Translation agent |

i specification ‘l

B

:- Profile | {~ Profile _‘} _ Profile |
| Deployment agent | | Deployment agent | | Deployment agent |
Managed device Managed device Managed device

Figure 3.4 A basic architecture of a configuration management tool.

Starting with Cfengine [Burgess], most of the popular configuration
management tools support a declarative syntax, abstract definitions,
idempotence, and convergence. With a declarative syntax, for a policy
to be executed, it is enough to specify its name, if its implementation
is supported by the software. Definitions of policies are abstract and
implementation details are hidden. Through idempotence configuration
management tools take action only upon those resources which are not yet
properly configured. Configuration can be gradual with each step bringing
the resource closer to the state specified by the policy due to the intrinsic
convergence.

The design principles and a comparison framework for the popular
modern configuration management tools is presented in [Delaet]. Since
for adopting [aC every infrastructure component should be a network-
accessible service, a configuration management tool should also be
modular, cooperative, composable, flexible, extensible, and repeatable.

Chef [Chef] is one of the configuration management tools which has
been designed to meet all of these criteria. Its cooperative and composable
origin and its reliance on general purpose Ruby programming language
with a minimal custom DSL (Domain-Specific Language) distinguish it
from the rest of configuration management tools. Chef, as a tool,
epitomizes the IaC approach.

Using Ruby to write programs for infrastructure management, it is
possible to interact with Chef as with any other Ruby library. Its rich
network-accessible API makes it a suitable service for IaC. On the other
hand, the fact that Chef uses Ruby, a popular open-source language, means
that any kind of configuration management task can be expressed in code
on any resources, as long as they support Ruby.

66

From Virtual Machines to ‘Infrastructure as Code’

In order to configure with Chef some aspect of the system, a user
writes recipes. Recipes are Chef’s fundamental configuration units. A Chef
recipe is a Ruby DSL file that contains a list of resources, each of which
represents a fraction of the system state which has to be implemented.
Implementation is done by the providers, the OS specific abstractions of
system commands and API calls. The most popular providers for variety
of tasks are included into the Chef distributions, but ad hoc ones may be
developed by the users themselves.

Cookbooks are the Chef’s fundamental units of distribution and are
nothing more than collections of recipes, which are needed for
configuration of a particular part of the system. Shown below are some
recipes for the installation of ROOT. The Chef recipes for AliRoot cover
similar installation steps and include a recipe for installing ROOT, which is
to be run in advance. The way, how a particular installation recipe can be
selected for a specific OS platform, is visible at the Listing 3.1.

case nodel:platform]
when "debian"
include recipe 'root::install'
include recipe 'root::config'
when "scientific"
include recipe 'root::binary install'
else
exit 1
end

Listing 3.1 A top-level Chef recipe for the installation of ROOT.

The Listing 3.2 shows how the compilation of ROOT has to be carried
out. The selection of the dependency packages for a particular OS is done
in the beginning. After a specified ROOT version is checked out of the
Subversion repository, the code is built in the Bash shell with standard
tools.

67

Conceptual Design of an ALICE Tier-2 Centre

case nodel:platform]
when 'debian'
[
'g++',
'make’,
'xorg-dev',
'gfortran’,
'libxml2-dev’,
'libgl1-mesa-dev',
'libglul-mesa-dev',
'subversion'
].each do |p]|
package p do
action :install
end
end
else
exit 1
end

script 'build' do

interpreter 'bash'

cwd "/tmp/#{node[:root tag]}"

code <<-EOH
./configure --prefix=/opt/root/#{node[:root tagl} \
--with-pythia6-uscore=SINGLE --etcdir=/opt/root/# {node[:root tagl} \
--with-f77=gfortran
make > build.log 2>&1

EOH

action :nothing

not_if do File.exists?("/tmp/# {node[:root tagl}/build.log") end

end

subversion "ROOT" do
repository "http://root.cern.ch/svn/root/tags/#{node[:root tag]}"

revision "HEAD"
destination "/tmp/# {node[:root_tag]}"

action :checkout
notifies :run, resources(:script => "build"), :immediately
not_if do File.exists?("/opt/root/# {node[:root tagl}/bin/root") end

end

Listing 3.2 A Chef recipe for compilation of the ROOT software.

The recipe at the Listing 3.3 documents how the ROOT program is
installed into a specified directory, which is created beforehand, and how
the logging files of all the installation steps are saved, before the

temporary installation directory is deleted.

68

From Virtual Machines to ‘Infrastructure as Code’

include recipe 'root::compile’

directory "/opt/root/#{node[:root tag]}" do
owner 'root'
group 'root’
mode "0755"
recursive true
subscribes :create, resources(:script => "build"), :immediately
not if "test -d /opt/root/#{node[:root tagl}"
end

script "install" do
interpreter "bash"
user 'root’
cwd "/tmp/#{node[:root tag]}"
code "make install > install.log"
subscribes :run, resources(:directory => \
"/opt/root/#{node[:root tagl}"), :immediately
only if do File.exists?("/tmp/# {node[:root tagl}/Makefile") &&
File.exists?("/tmp/#{node[:root_tag]}/build.log")
end
end

script 'save logs' do
interpreter "bash"
user 'root’
cwd "/tmp/#{node[:root tag]}"
code "cp *.log config.status /opt/root/#{node[:root tagl]}"
subscribes :run, resources(:script => "install"), :immediately
only if do
File.exists?("/tmp/#{node[:root_tag]}/build.log") and
File.exists?("/tmp/#{node[:root_tag]}/install.log") and
File.exists?("/tmp/# {node[:root _tag]}/config.log") and
File.exists?("/tmp/#{node[:root_tag]}/config.status")
end
end

directory "/tmp/# {node[:root tagl}" do

recursive true

subscribes :delete, resources(:script => 'save logs'), :immediately
end

Listing 3.3 A Chef recipe for the installation of ROOT at the dedicated

location.

The following code snippet at the Listing 3.4 shows how to invoke Ruby
code from a recipe. Using Ruby, a general-purpose programming language,
it is possible to build any kind of functionality into the recipes. In this case,
the ROOT environment variables settings are placed to the dedicated OS

file.

Conceptual Design of an ALICE Tier-2 Centre

ruby block "append rootvariables to /etc/profile" do
block do
open("/etc/profile","a") do |f|
f.puts "export ROOTSYS=/opt/root/#{node[:root _tag]}"
f.puts "export LD LIBRARY PATH=$ROOTSYS/lib/root"
f.puts "export PATH=$PATH:$ROOTSYS/bin"
f.puts "export INCLUDE PATH=$ROOTSYS/include/root"
end
end
action :create
only if do
open("/etc/profile") { |f| f.read.scan("export ROOTSYS=") }.empty?
end
end

Listing 3.4 A Chef recipe code for configuring the ROOT environment
variables.

Among other features, Chef facilitates the use of the distributed
version control system git [git] for managing the source code of the
repository and cookbooks. This allows to develop and exchange cookbooks
in a flexible way. While general-interest cookbooks may be uploaded to
the Opscode (Chef support company) website [Opscode] for a free user
download, cookbooks, which contain information specific to a particular
organizational unit, may be stored in the internal network for internal
access.

The Chef clients are the deployment agents of Chef and run on the
managed devices. They pull the configuration specifications from the
central Chef server, which also stores the cookbooks and collects
infrastructure’s metadata. The Chef clients can query the Chef server
for the metadata, taking advantage of its search abilities, to dynamically
integrate infrastructure parts. Pulling a configuration specification from a
single server at regular intervals will eventually introduce a performance
bottleneck at a large-scaled infrastructure, that is why Chef supports
generation of random intervals for the Chef client pull mechanism.

A key capability of Chef is its powerful command line interface, called
knife. Knife can be used remotely for virtually any Chef-related task,
such as device configuration specification, infrastructure metadata query,
bootstrapping target devices (installing Chef), and even provisioning of
new virtual machines. It can be used to run any shell command on the
Chef-managed device, and thus, effectively, substitutes such tools as
Capistrano [Capistrano], which are used for executing commands in
parallel via SSH (secure shell) on multiple remote machines. This
functionality allows knife to be used for enforcing Chef action on demand
without the need to wait for the next pull of the Chef client.

70

From Virtual Machines to ‘Infrastructure as Code’

3.2.5 Virtual Clusters on Demand

Once multiple VMs are running on an IaaS cloud, the next step is to
use them for parallel processing. For this purpose, the workload must be
somehow distributed among the VMs, which would play the role of worker
nodes. In case of ALICE computing jobs, this may be done either with
PoD for PROOF workload or with a conventional DRMS for analysis or
simulation batch jobs.

The steps, which a user has to take on a VM after it is scheduled
and before it is ready to process the user workload, may be different
for distinct workflows of private and public clouds. The difference comes
from the way, how the VM image can be contextualized for use in the
virtual environment. Contextualization is the name for a process of VM
preparation, since its goal is to make the VM aware of its deployment
context [Bradshaw]. Contextualization may be performed to various extent
at any of the three stages:

1. The offline stage. Advance contextualization of a VM image.

2. The deployment stage. Contextualization performed by the cloud
middleware at the VM boot time.

3. The online stage. Contextualization of a running VM instance.

If a user gets an opportunity to submit a VM based on her custom
built VM image, then contextualization may be performed to some extent
at the offline stage by a user herself. In this case, a user may preinstall
the required software stack and create an own user account or store
his credentials. If a user does not get this opportunity, he must rely on
contextualization at the online stage.

A VM must be identified in the infrastructure network with an IP
address for a user to get network access. How to set up a network
interface of the VM depends on the cloud network configuration. If there
is no DHCP available in the IaaS environment, then the VM image has
to be edited with a static IP configuration or, like described for SCLab
above, with a mechanism for IP address generation. Since such network
information should be out of the user’s scope of knowledge, this kind of
contextualizaton has to be performed by system administrators in advance.
This is not so flexible as when a DHCP server is operating. In case of
a functioning DHCP, IP assignment is done at the online stage of
contextualization.

If a user would like to start a VM based on an image provided by
an infrastructure provider, then contextualization performed by the cloud

71

Conceptual Design of an ALICE Tier-2 Centre

middleware at the deployment stage may be used for enabling user access
to the VM, for example by generating or by placing provided SSH keys or
certificates for the root account.

Implementation of contextualization at the deployment stage may be
different from one cloud middleware to another, and may be completely
transparent for the user. In case of OpenNebula, it requires the VM image
to be modified in order for a VM to call a particular process that looks for
information provided during deployment on the specified mounted device.

Since various cloud toolkits have different capabilities and various IaaS
cloud providers have different image management policies, a user only
gets full freedom for contextualization at the online stage, when a VM is
running and accessible. This freedom is guaranteed on any laaS cloud.
That is why, when a cloud provider may be changed, it is of greater
importance to be able to flexibly contextualize already running VMs with
basic configuration. The IaC concept allows to automate this way of
contextualization. It must be mentioned though that having as much of the
required software preinstalled in the VM image as possible saves time.

To set up parallel processing for the ALICE analysis and simulation
jobs with a DRMS, once user VMs are running and accessible, further
contextualization is required. At this online stage VMs have to be
assembled into a properly configured, functioning DRMS.

As in [Keahey], Torque [Staples] is used for this purpose. The Torque
system is comprised of clients, worker nodes, and a server. For the
proposed scenario, only the server and the worker nodes run on the VMs
in the cloud and a client interface is installed on the server by default. The
Torque configuration file for the server has to include the hostnames of
the worker nodes. Configuration files of the worker nodes have to point
to the hostname of the Torque server. Torque also requires ‘password-less’
authentication between the nodes for the user who submits the jobs. This
is achieved by distributing the user’s public key among the nodes.

In addition, each of the worker nodes needs access to configured ROOT
and AliRoot installations. A concept of CernVM [Buncic][CernVM] has
introduced a VM image specifically designed for the LHC experiments,
which stores only references to scientific software and downloads and
caches a particular library from the central repositories only when it is
called. The usage of CernVM allows to have compact size images, and does
not require to maintain the image and the software stack, since it is done
centrally at CERN. But in case of any other VM image, AliRoot has to be
explicitly installed inside the VM or available on a mounted shared file
system. At the same time a shared file system, like Lustre, may also be a
source of data for analysis jobs.

72

From Virtual Machines to ‘Infrastructure as Code’

The proposed architecture of a virtual cluster is presented in the
Figure 3.5. Its implementation is done with Chef because of its IaC
compliance. If there is a possibility to start VMs based on custom
preconfigured VM images, these images could include installed AliRoot,
the Lustre client, Chef software, and a configuration file for the Chef
client with a desired role. But, if there is no such possibility, and one has
to use generic, ‘naked’” VM images, the Chef software can be remotely
bootstrapped, i.e. installed and configured, in the VMs with the knife
command.

Cloud

= IDRMS master|
| CMS server | = e [r——

VM FEREESEE v
Sl==l==l==l==

application

|__worker |

client | /shared
VM

(__) CMS - Configuration Management System
() DRMS - Distributed Resource Management System

(__) shared storage

Figure 3.5 An architecture of a virtual cluster. There are three distinct VM
roles: a CMS server, a DRMS master, and a worker node.

The Chef client should run on every submitted VM, and one VM must
be reserved for the Chef server. To be able to connect to the Chef server
to pull configuration information, the Chef client must be configured with
a correct Chef server address. Placing of a correct server address to
the right configuration file is done with knife at the online stage of
contextualization.

In order to configure an AliRoot cluster with Chef, a Chef node for a
Torque server VM needs a role, and a Chef node for a Torque worker needs

73

Conceptual Design of an ALICE Tier-2 Centre

a role. Roles define functionality for each of the nodes through recipes
and attributes. It may be that one role, such as, e.g. aliroot worker node
(Listing 3.5), is enough to set for a node, but it can be combined with other
roles or specific recipes as well. The aliroot worker node role specifies
cookbooks needed for the worker nodes and which include recipes for
configuring a Torque worker, a Lustre client, and AliRoot. An
aliroot torque server role can be composed similarly, but should have a
recipe for a Torque server applied instead.

{
"name": "aliroot worker node",
"chef type": "role",
"json_class": "Chef::Role",
"description": "The base role for a worker node with AliRoot",
"override attributes": {
+
"default attributes": {
"users": {{"id": "alivo000", "account" : { "uid" : "20000", "gid" : "20000"}},
{"id": "alivo001", "account" : { "uid" : "20001", "gid" : "20000"}}},
"root_tag": "v5-23-02",
"aliroot tag": "v4-16-Rev-08"
+
"run_list": ["role[torque worker]","recipe[aliroot]",
"role[ganglia agent]","recipe[lustre::mount prod system]"]

Listing 3.5 A Chef role for a Torque worker node with AliRoot.

The recipe for setting up a Torque worker includes the code shown
on Listing 3.6. So, when a Chef client applies the recipe at the worker
node, it sends the query to the Chef server asking for a name of the node
which has the “torque server” role applied. Upon getting an answer, it
puts the name inside the configuration file. Similarly, the Chef client on the
Torque server asks the Chef server for the names of the nodes which have
the “torque worker” role applied (Listing 3.7). The Torque server process
and the Torque worker processes are restarted only if the contents of
configuration files have changed. Once the processes are restarted, Torque
is ready for job scheduling.

74

From Virtual Machines to ‘Infrastructure as Code’

server name = search(:node, 'role:torque server')[0].name
log "Query index for TORQUE master: #{server name}"
deploy the configuration files defining the TORQUE server
template '/var/spool/torque/server name' do

source 'conf/server name.erb'

mode '0644'

variables :server => server name

notifies :restart, resources(:service => "pbs mom")
end

Listing 3.6 A Chef recipe code snippet for setting a correct Torque server
name.

workers = Array.new
search(:node, 'role:torque_worker') do |worker|
workers << worker.name
end
log "Query index for TORQUE workers: #{workers.join(',")}"
template '/var/spool/torque/server priv/nodes' do
source "conf/server priv/nodes.erb"
mode '0644'
variables :workers => workers
notifies :restart, resources(:service => 'pbs_server')
end

Listing 3.7 A Chef recipe code snippet for populating the Torque server
nodes list.

Besides configuration management system such as Chef, another
necessary component for operating a virtual cluster is a monitoring
system. Ganglia [Massie] has been chosen for the described example of a
virtual cluster. With its master-clients hierarchy it is configured similarly to
Torque. The role ‘aliroot worker node’ may then be combined with a role
like ‘ganglia_agent’, and ‘aliroot torque server’ with ‘ganglia collector’.

So once all VMs, a Chef server VM and Chef clients VMs, are running,
the Ruby code shown on Listing 3.8 can be executed on the Chef server to
configure a private virtual cluster.

apply a role to a torque server node
system('knife node run list add torque server.domain "role[aliroot torque server]"')

apply a role to torque worker nodes
data = "knife search node "name:worker*" -i’
data.scan(/~\S+$/).each do |k|

“knife node run list add #{k} "role[aliroot worker node]""
end

run chef clients on all aliroot nodes to apply the configuration
system('knife ssh "role:aliroot*" "sudo chef-client"')

Listing 3.8 A Ruby code snippet for configuring a virtual cluster.

75

Conceptual Design of an ALICE Tier-2 Centre

3.3 Virtualization Performance for ALICE
Analysis

Extensive benchmarking has been carried out to establish the
performance overhead caused by virtualization for the ALICE analysis
jobs. Using KVM and virtio, the same analysis train and task jobs as in
Part I of the thesis have been processed inside virtual machines. Besides,
the benchmarking tests aim to answer an interesting question, whether to
process jobs in parallel inside a single multi-core VM or to process jobs in
separate, running in parallel, single-core VMs.

In these tests the data for analysis have been stored on the Lustre
file system and accessed over the network, as in the case with analysis
jobs processed at GSI. This allowed to disregard KVM performance of I/O
access to direct-attached storage. Although the VM’s hard disk is stored
on a host in a file, no intensive disk access has been monitored on the
host for any of the tests described below. Since the AliRoot processes
are not parallel, one CPU core is enough for a single analysis job. Two
GB are empirically identified to be enough for the RAM requirement of a
VM which processes an analysis job. The host has an Intel Xeon L5506
2.13GHz CPU with 8 cores and 24 GB of RAM, 1 Gbps full-duplex Ethernet,
and the Debian 5 OS with the 2.6.26-2-amd64 kernel, KVM-72. The guests
use Debian 5.0.4 with the same kernel version.

Figures 3.6, 3.7, 3.8, 3.9 reflect the results obtained while
benchmarking the following four test setups:

1. Eight VMs with one core and 2 GB of RAM each execute in parallel a
single job each, on the same given physical host,

2. Eight jobs are executed in parallel in a single 8-core VM with 8 GB of
RAM,

3. Eight jobs are executed in parallel in a single 8-core VM with 16 GB
of RAM,

4. Eight jobs are natively executed in parallel on the given 8-core
physical host.

Figures 3.6 and 3.7 show performance and virtualization overhead
for the ALICE analysis jobs, CPU bound trains and I/O bound tasks
respectively. Figures 3.8 and 3.9 are there to crosscheck the results of the
ALICE jobs on other similar workloads. Figures 3.6b, 3.7b, 3.8b, 3.9b show
the overhead of virtualization in percentage to native performance on the
physical host.

76

From Virtual Machines to ‘Infrastructure as Code’

MB/s

a)

I 8 VMs (1 core/2 GB) B 1VM(8cores /16 GB)

1 VM (8 cores / 8 GB) I host (8 cores / 24 GB)
Figure 3.6 a) An average data throughput rate per a train job with 98%
CPU utilization varies for different VM configurations. b)
Performance overhead of virtualization relative to performance
on a physical host is limited to 13% for train jobs each running

in its own 1-core VM.

1.4 60
1.2 50 b- - - - _
1 -
40 - - - - -
« 08f
a R 30 ---- -
= o6l
20 - --- -
0.4
0.2 10 F==--- T
0 0 -
a) b)
I 8 VMs (1 core/2GB) B 1VM(8cores /16 GB)
1 VM (8 cores /8 GB) I host (8 cores /24 GB)
Figure 3.7 a) The difference in average data throughput rate between 1/0

bound task jobs running in separate 1-core VMs and natively
on a physical host is negligible. b) Performance overhead of
virtualization relative to performance on a physical host is an
order of magnitude higher for task jobs running together in
multi-core VMs than in separate VMs.

The HEP-SPEC benchmarking suite has been used to provide a
reference for the virtualization overhead values for CPU bound workloads,
with 100% CPU utilization. HEP-SPEC is used to evaluate performance

77

Conceptual Design of an ALICE Tier-2 Centre

of the computing resources of ALICE in particular, and the HEP sector
in general. Its 06 version contains all of the C++ benchmarks from the
industry-standardized SPEC CPU2006 suite [SPEC]. The exact version
used in this thesis is HEP-SPECO06 v1.2. As seen in the Figure 3.8, the KVM
hypervisor handles CPU bound workloads equally well for different VM
configurations and keeps the overhead at around 16%. On the other hand,
the results of running a custom C++ code which reads ESD files from
the remote Lustre file system directly into RAM and spends no CPU time
in user mode, 0% CPU utilization, provide a reference for the I/O bound
workloads (Figure 3.9).

100 20

HEP-SPEC06

a)

I 8 VMs (1core/2GB) I 1VM (8 cores /16 GB)
1 VM (8 cores / 8 GB) I host (8 cores / 24 GB)

Figure 3.8 a) The KVM hypervisor handles CPU bound workloads, with
100% CPU utilization, equally well for different VM
configurations. b) The virtualization overhead values are
practically equal for all three setups for a CPU bound HEP-
SPEC benchmark.

It is important to mention that CPU bound workloads, such as the
HEP-SPEC benchmark and the ALICE analysis train, may include intensive
memory management activities, which can induce performance overhead.
The virtual memory addresses within the guest OS need to be translated
to the specified physical addresses of the host. Besides, the hypervisor
must track the changes to the page tables of the VM and control which
memory the VM tries to access. These functions may be implemented
in software of the hypevisor, with shadow page tables, or in hardware,
with Extended Page Tables (EPT) for Intel and with Nested Page Tables
(NPT) for AMD processors [Fisher-Ogden]. Consequently, performance of
memory management activities inside VMs depends on the hypervisor
implementation and virtualization support in hardware.

78

From Virtual Machines to ‘Infrastructure as Code’

The results of synthetic benchmarks, such as SysBench [SysBench],
which allow to fully load the CPU for large number calculations without
significant memory utilization, show almost no performance overhead for
purely CPU bound workloads. The fact that the overhead value is
considerably lower for such number-crunching benchmarks than for the
CPU bound workload of the HEP-SPEC benchmark is attributed to the
difference in memory utilization.

80

70 - - - - - - -2 - - -

60 |- - - -

50 - - - -

R40F----

MB/s

30 |- - - -

20 |- ---

10 - - - -

0
a) b)
I 8 VMs (1 core/2GB) M 1VM(8cores /16 GB)
1 VM (8 cores /8 GB) I host (8 cores / 24 GB)

Figure 3.9 a) The data throughput rates for jobs which are purely 1I/O
bound with infinitesimal CPU utilization confirm the results for
the data analysis tasks in the Figure 3.7. b) A large overhead
for multi-core VMs shows inadequate handling of parallel I/O
inside multi-core VMs for the KVM hypevisor.

The conclusions based on the benchmarking results for the given
hardware and software versions are summarized in the following
paragraphs.

The lowest virtualization overhead for a CPU bound train is just around
13% (Figure 3.6b). Encapsulating jobs in separate single-core VMs
avoiding parallel processing inside the multi-core VMs leads to a faster
analysis train and task processing. When comparing the overhead values
for the analysis jobs (Figure 3.6b) to the values for a CPU bound HEP-
SPEC benchmark (Figure 3.8b), it becomes apparent that the virtualization
overhead is affected by the workload’s I/O utilization. For multi-core VMs,
the overhead value increases when I/O activities are introduced into the
workload. At the same time, for eight separate single-core VMs, the
overhead decreases. This trend continues when the workload becomes
even more I/O intensive in the case of analysis tasks (Figure 3.7b) and I/O
bound workloads (Figure 3.9b).

79

Conceptual Design of an ALICE Tier-2 Centre

Virtualization overhead becomes almost negligible, less than 4%, for
I/0O bound tasks in separate VMs (Figure 3.7b), whereas the overhead for
parallel task processing in multi-core VMs increases more than twofold
in comparison to train jobs. The results are confirmed with I/O bound
workloads (Figure 3.9). This serves as a demonstration of good handling
of the network by the network bridge on the host, good network I/O
performance of the KVM hypervisor with the virtio driver for a single-core
VM, and poor parallel I/O access within a multi-core VM.

As expected, those operations inside guests which require a trap into
the hypervisor slow down the VM performance, increasing virtualization
overhead. Changes to memory mapping, adjustment of page tables, cost
additional CPU cycles. When more of these operations are required for
multi-core VMs, the results of the corresponding benchmarking tests
worsen. Memory intensive applications suffer from this the most.
Optimization of virtualization support in memory management is a way to
address this problem.

3.4 Practical Results for Scientific Computing

To prove the efficiency of the IaC concept, the accumulated techniques
have been verified at four different cloud testbeds (Table 3.2). While
SCLab and the derived LOEWE-CSC testbed, described below, are similar
in architecture and usage aspects and differ only in scale, the other two
testbeds have significantly distinctive characteristics.

A virtual cluster of the proposed architecture and assembly process has
been deployed at the community cloud of the Frankfurt Cloud Initiative.
The so-called Frankfurt Cloud uses VMWare ESX [VMWare] as a VMM,
and CloudController [Incontinuum] and VMWare vSphere as cloud
middleware, which are all proprietary products. The virtual cluster has
been used for the FLUKA [Ferrari] simulation jobs for the “Radiation and
Safety” department at FAIR. The FLUKA jobs require Scientific Linux as an
OS, which is not provided at GSI, and are perfectly suitable for offloading
to external clouds because of their high CPU and negligible I/O utilization.

80

From Virtual Machines to ‘Infrastructure as Code’

SCLab Frankfurt Cloud | LOEWE-CSC [Amazon EC2
laas cloud
type private community private public
Hypervisor KVM VMware ESX KVM Xen
technology
Cloud Incontinuum
. OpenNebula | Cloud Controller, | OpenNebula EC2
middleware
VMware vSphere
Size of the
__ deployed 120 20 1000 3
infrastructure
in VMs
API + - + +
VM image
management | absolute restricted absolute absolute
control
Network
connectivity restricted restricted restricted absolute
control
radiation
Practical [an ALICE grid simulation for PROOF proof of
outcome site FAIR, nuclear benchmark concept
structure P
calculations

Table 3.2 The four testbeds, where the efficiency of the proposed IaC

techniques has been verified.

The public Amazon EC2 cloud provides a paid service and grants
the user absolute control of his virtual infrastructure. It is particularly
important to note the availability of a flexible firewall configuration
mechanism, which allows to open at a VM only necessary network ports.
In contrast, at the Frankfurt Cloud, this functionality is hidden from a user,
and one has to ask the responsible system administrator for changes. The
absence of an API in general singles out the Frankfurt Cloud, where the
VM image management capabilities are also restricted for common users
and available only for system administrators, whom one would have to
notify every time a change is needed.

The described approach to assembly of the virtual clusters has been
used to set up at SCLab an AliEn grid site for ALICE. It has been used by
the worldwide ALICE community since October 2010 (Figure 3.10), and
its operation has been carried out according to the IaC principles. The
number of VMs comprising its virtual cluster varies, since SCLab has been
serving VMs to multiple users. New Torque worker nodes are created, and
failed or old ones are deleted, while the rest of the virtual cluster continues
to compute grid jobs. The Torque worker nodes run Scientific Linux 5 [SL],
which is the main supported OS for the AliEn grid middleware. This allows
to avoid potential dependency problems which are encountered every so
often during AliEn installation on the versions of the Debian OS in GSI.

81

Conceptual Design of an ALICE Tier-2 Centre

GSI-SCLAB (34 currently running jobs / max 229) i | _Map | satelite [Hybrid
ey e MR G T

70

w

2 60

2 50

£ a0

c

£ 20

2 2
10

0
11121517 19/21/23 2527 29 1 3| 5
Nov 2010 Dac 2010

& GSI-SCLAB

Birmingham @ NIKHEIw & WUT
RAL@

-+

@ KPI

Prague-CREAM
®Erapue BITP@ @ KNU

Gs1® @ GSI-SCLAB Cyfronet

@ FZK »
Kaosice
® Strasbourg_IRES @ Bradiélava

GRIF_IRFU®
GRIF_IPNO®

Subatech CERN . ® KFK1

Clermont & e“’m:"lm @ Trieste
CCINZP3 ¥
N AFQ"‘"“‘“’

Grenoble @ Bologna

1s5@ @ NIHAM

o
& 4 i Imay 10 TerraMetrics - Tes of Use

Q Running jobs O Running jobs but ne ML info O Site service problem(s) prevents job execution ' No jobs match the site resources . ML service down & no running jobs Find your location

Figure 3.10 A virtual cluster at SCLab being in production for the ALICE
grid.

For testing purposes, such virtual cluster has been successfully
deployed at the Amazon EC2 with the publicly available OS images of
Scientific Linux 5 and Debian 6. First, a Scientific Linux VM has been
provisioned in the US region of the cloud, since a base OS image is
available only there. Then, the bootstrapped version of the image has been
saved to Amazon S3, Amazon’s storage cloud. Subsequently, a VM could be
started from this image in the European region of EC2.

The Chef server which has been used to configure the VMs with AliEn
and Torque has been hosted by Opscode. This allowed to avoid installation
of a Chef Server at the commercial cloud. Opscode provides for free a
hosted Chef Server for infrastructures of less than 5 nodes.

The presented approach for building virtual clusters on demand, in
contrast to the one described in [Keahey] and tuned to the grid
environment, allows for utilization of any IaaS cloud, even those without
contextualization services, and allows to dynamically change context.
Besides, for the use case of the AliEn grid site, in contrast to
[Harutyunyan], it allows to use any OS inside generic VM images, which
supports Ruby, to use VMs without any preinstalled software on top, and to
have total control over their configuration. The presented approach can be
used for any workload capable of running in an IaaS environment. For the
ALICE computing, it allows to process analysis or simulation tasks without
any connection to the grid.

82

From Virtual Machines to ‘Infrastructure as Code’

To complete the picture, it is worth mentioning that for an interactive
parallel ALICE analysis with PoD no DRMS like Torque is needed. Using
the SSH plug-in, PoD is capable of using any resources which run SSH.
Certainly, the VMs must have the same software stack installed as on
the PoD client. This can be implemented with Chef as described above.
So, once VMs are running and remotely accessible by a user, no further
contextualization is needed, since no configuration or awareness of any
other dynamically addressed system component in the network is required
for any particular VM. All what is left to a PoD user, before he can run his
analysis in parallel, is to specify in the PoD client a list of hostnames or IP
addresses of the running VMs. An opportunity to test this approach on a
large scale has occurred during the deployment of a private cloud at the
LOEWE-CSC supercomputer [CSC] for the Frankfurt Cloud project.

3.4.1 A PROOF Benchmark at LOEWE-CSC

The Frankfurt Cloud project has set the utilization of a subset of the
LOEWE-CSC supercomputer resources as one of its goals. One of the
transparent ways to accomplish it is to deploy on a part of the LOEWE-
CSC resources a private cloud. The envisioned architecture is presented
in the Figure 3.11. Abidance of the IaC principles during the deployment
of SCLab and the resulting codebase have allowed to apply the SCLab
architecture to a part of LOEWE-CSC.

Fifty out of 800 physical nodes, which make up the supercomputer,
have been configured as hypervisors, using KVM. As a result, the private
cloud at LOEWE-CSC could draw from the power of more than 1000
CPU cores. By practicing IaC, it is especially convenient to transfer the
knowledge and deploy a private cloud similar to SCLab on available
resources. Using VMs and isolating the infrastructure within a dedicated
VLAN and subnet, it is possible to set up the OpenNebula software for VM
orchestration at LOEWE-CSC just by deploying a Chef cookbook as it has
been written and used for SCLab at GSI.

83

Conceptual Design of an ALICE Tier-2 Centre

Frankfurt Cloud

o\-
e o I I |
P2 Lo 0 e o o
€ o® o/ R o
/

[[oo I

//[rv|rv]rv]pv]pv] v Hv v VRV 7
V. _—___—
LOEWE - CSC

Figure 3.11 The envisioned architecture of the Frankfurt Cloud,
incorporating a private cloud of LOEWE-CSC. Virtual machines
are colored to show heterogeneity. Both cloud controllers (CC)
could possibly schedule VMs between the domains. Crossed
links are explicitly disabled. HV stands for hypervisor.

This infrastructure provides a unique opportunity to demonstrate the
ability of PoD and its SSH plug-in to roll out a PROOF cluster on a large
number of CPU cores at a cloud and the feasibility of a PROOF analysis
with several hundreds of workers and a single master. The corresponding
tests have set a record for a number of workers in a PROOF cluster. PoD
has been used to deploy a cluster with 975 workers, which proves to be
a limit for the ROOT version 5.30, since no test has succeeded to surpass
this number.

The benchmarking results demonstrate that the scaling of the analysis
rate is hampered at the level of 350 worker nodes (Figure 3.12a), and the
efficiency of a cluster with more nodes and a single master goes down. The
uneven distribution of the processed events among the workers (Figure
3.12b) indicates that the PROOF Packetizer may be at fault. The Packetizer
is a PROOF module which schedules the workload between the worker
nodes depending on the location of the data. Since some of the workers
have received the load too late and have been idle until then, the single-
threaded Packetizer might have failed to distribute the workload evenly

84

From Virtual Machines to ‘Infrastructure as Code’

in time. The PROOF and PoD developers, to whom the results have been
reported, are set to eventually pinpoint the cause of this behaviour and get
rid of a performance bottleneck.

x106

80

T
|
-

|
-

x103

70 . 180

160

60 140

120

|
-

100

events / second
events

80
60

|
40
20 :j

i
0
b) workers 975

20

10

F\\\‘\\\\|\I\\‘I\I\|\\\l
[|

2
L |

0 200 400 600 800 1000
a) active workers

Figure 3.12 An outcome of the PROOF benchmark on a record 975-node
PROOF cluster run with PoD on a private cloud at LOEWE-CSC.
a) Event analysis rate. Efficiency threshold lies at the level of
350 workers. b) Uneven number of processed events among
the workers shows that the single-threaded Packetizer fails to
distribute the workload among all the workers in time.

To summarize, the unique results of the PROOF benchmark on a cluster
of such a size have been instrumental in driving the improvement of
the PROOF software for a distributed interactive ROOT analysis. This
demonstrates a synergy of the technologies described in this thesis and
serves as another example of the benefits of the IaC practice and the
application of cloud computing technology in a scientific research
environment.

85

Conceptual Design of an ALICE Tier-2 Centre

3.5 Outlook. The Case for ‘Infrastructure as
Code’

The greatest advantages of virtualization of computer resources in a
scientific environment are the ability it gives users to run custom software
stacks in a shared infrastructure, and the ability it gives system
administrators to introduce homogeneity to infrastructure software
installed on “bare metal” machines and hence operate infrastructure
efficiently with higher availability.

Although it remains to be experienced at scale and measured, it is
expected that a higher availability of computing resources outweighs the
performance penalty of virtualization which for ALICE analysis train jobs
amounts to 13% overhead.

An IaaS cloud is the most flexible of all architectures for managing
multiple virtual machines. To utilize its flexibility in full and to automate
deployment and operation of virtual machines, the IaC concept is
proposed.

The benefits of IaC adoption, for both infrastructure providers and
users, include easier infrastructure/applications management, faster
recovery, higher reliability and availability, easier knowledge exchange,
and portability.

Easier management is a result of automating all necessary stages of
infrastructure and applications life-cycles with code and encapsulating the
resulting code for every purpose into clearly defined units. Once a user
specifies which infrastructure component to deploy, this component can
be automatically bootstrapped into a correct running state. The codebase
dedicated to a specific component must include programming code for at
least installation, configuration, and launching on specified platforms. The
same goes for user applications.

Faster recovery also stems from automation. If it is possible to query
monitoring information for the state of an infrastructure, once a failure is
detected, a program can react to it. This benefit of IaC becomes even more
significant and precious when an infrastructure runs on virtual instead of
physical machines. Virtual machines are easily disposable. So, in case of a
failure and in case the dedicated codebase includes all the necessary code
for bootstrapping a complete, functioning infrastructure component on top
of a given VM image, it is easier just to recycle a VM by deleting it and
then installing a new one from scratch.

86

From Virtual Machines to ‘Infrastructure as Code’

Another side effect of IaC is a higher reliability of the infrastructure. As
with faster recovery, if a program can regularly query the infrastructure
state, it can recognize a premise for a failure, and take necessary actions
to avoid it. Fast automatic recovery and higher reliability lead to a higher
availability of the whole infrastructure.

The lack of documentation is often a critical problem for maintenance
and operation of an infrastructure and applications. The result of not
knowing what to do, and being unable to reach the right person for
help is a delay during MTTR or any stage of the infrastructure life-cycle,
starting with deployment. A written programming code and, as a good
form, comments provided along make up the first source of documentation.
Ability to write a generic code for a precise purpose that can be used
in other environments, across platforms, by somebody else raises code’s
value and fosters knowledge exchange and active collaboration in the
community.

The portability of code makes it possible to reprovision infrastructure
at the desired scale on any IaaS cloud resources. This allows to use
different cloud infrastructure providers to meet peak demands, to ensure
reliability, and to avoid lock-in. A change to the code can be avoided at all
if migration is carried out to cloud with the same interface.

87

4 Summary

ALICE is a massively complex high-energy physics experiment with
unprecedented demands for computing power and data storage. The data
produced by the experiment is distributed through a dedicated grid and
processed, as well as stored, all over the world. More than hundred
scientific institutions with various computing infrastructures form this
heterogeneous international collaboration. Usually, a multi-purpose
commodity computer cluster at a scientific research facility taking part in
the ALICE grid must serve the users beyond the ALICE community as well.
The shared environment imposes restrictions on the ALICE computing
infrastructure with its own ad hoc software and distinct requirements.
From this perspective, this thesis reflects the bottom-up steps, which
should be taken to prepare the ALICE Tier-2 centre’s infrastructure for a
shared computing environment and maintain its efficiency.

As a first step, it is crucial to understand the nature of the workload,
in the case of an ALICE Tier-2 centre, how do analysis jobs utilize the
resources. The answer to this question helps to design the infrastructure in
a way as to avoid resource contention or underutilization. Initial tests have
demonstrated that the level of disk I/O bandwidth utilization for analysis
jobs is far lower than what can be sustained by hardware. It has been
established that the reason behind this lies in the disk I/O access patterns.
The methods to improve the data throughput for analysis jobs have been
at the focus of the followed research. The results of the tests, presented
in detail in the thesis, conclude that merging the I/O access requests
and prefetching data from disk to memory are effective ways to address
this problem. Increasing the data files in size improves the performance
by a factor of up to 3. After those results and suggested solutions for
improvement had been presented at the ALICE Offline Week meeting in
October 2009, proposed changes have been implemented in later releases
of the analysis code. Besides, this work provides the first picture of how
exactly the ALICE analysis jobs access the data at the byte level.

The integration of storage resources is the next step up, and storage
issues are addressed in Part 2. A list of requirements compiled for this
thesis provides a framework for choosing a particular integration solution,
and for an ALICE Tier-2 centre that is a cluster file system. To avoid
performance bottlenecks or a single point of failure, a cluster file system
has to either support clustering of metadata servers, like Ceph, or not
to manage metadata at all, like GlusterFS. The management overhead is
too much of a burden for the efficient utilization of the direct-attached

89

Conceptual Design of an ALICE Tier-2 Centre

storage in a cluster, if a system design does not foresee a mechanism
to bring the workload to the data as in systems like Hadoop. PROOF
addresses this problem for the ROOT analysis. The presented benchmarks
have demonstrated that Scalla is a robust toolkit for efficient access to
the ROOT files, but the immaturity of its POSIX interface and issues with
file deletion make Lustre, a full-fledged cluster file system with a POSIX
interface and fast network operation, preferable to use for diverse data
processing tasks.

Conflicting user requirements and incompatible software package
dependencies make it impossible to preserve a custom software
environment for each user in a shared computing infrastructure. To solve
this problem, it becomes necessary to turn to the hardware virtualization
technology, which allows for flexible software migration between various
hardware infrastructures even across administrative domains.
Additionally, virtualization allows for an easier recovery and, thus, a higher
availability of a computing infrastructure. Although the benefits come at
a cost of a performance overhead, the tests have shown that the ALICE
analysis jobs, which fetch data over the network, have it at an acceptable
level of 4% for the tasks and 13% for the trains. The presented
measurements prove that for a KVM hypervisor a single-core job per
single-core VM is a more efficient configuration for parallel I/O intensive
processing than multiple single-core jobs per single multi-core VM. With
these results laying the foundation, it is possible to take the next step up
the infrastructure issues ladder and examine the ways how to set up a
large shared virtual infrastructure.

For infrastructures with more than a handful of virtual machines,
it becomes crucial to implement efficient VM orchestration techniques.
Cloud computing, and particularly its Infrastructure-as-a-Service (IaaS)
model, provide an opportunity to do this. An IaaS cloud model, applied
in this thesis to a commodity computer cluster hosting an ALICE Tier-2
centre, enables a user-driven on-demand instantiation of virtual machines
for running applications sandboxed in a custom user environment. In
this model, system administrators operate an infrastructure which runs
a homogeneous software stack capable of scheduling and running VMs,
and provide users with the VM management utilities. A prototype of an
IaaS cloud has been successfully implemented with the OpenNebula cloud
toolkit at GSI.

To efficiently handle the increasing complexity of an evergrowing
computing infrastructure, it is necessary to automate as many system
administration tasks as possible. This thesis introduces the ‘Infrastructure
as Code’ concept (IaC) from the commercial world of Web operations

90

Summary

to the scientific computing environment to achieve a higher degree of
automation. The ambitious idea behind the IaC concept proposes to
describe an infrastructure and its applications, including all matters of
installation and maintenance, in code, preferably written in a common
programming language. An efficient method of assembling virtual clusters
for the ALICE analysis according to the IaC principles is demonstrated in
this thesis. This work, for the first time, has allowed to process real ALICE
grid jobs in a production mode with a completely virtual cluster deployed
at an IaaS cloud prototype. It has been presented at the Large Installation
System Administration conference in San Jose (USA) in 2010. The power
of IaC is demonstrated, again, with a smooth deployment of a private
cloud prototype at the LOEWE-CSC supercomputer, which has paved the
way for a unique PROOF benchmark. The results of benchmarking a
record-breaking 975-node PROOF cluster, deployed exclusively on virtual
machines with PROOF-on-Demand (PoD), have highlighted the issues with
PROOF workload distribution on a large scale and provided developers
with necessary input information for further PROOF optimization.

“Conceptual Design of an ALICE Tier-2 Centre Integrated into a Multi-
Purpose Computing Facility” is a broad topic, since the internal
organization of a multi-purpose commodity computing facility poses
countless research challenges from the lowest to the highest level.
Ranging from efficient methods to improve disk access performance of the
ALICE analysis tasks to manageable solutions for data storage integration,
a number of important challenges are addressed in this thesis. The
measured virtualization performance opens new grounds for the ALICE
analysis. The IaC techniques presented in this thesis can be used to deploy
virtual clusters for batch processing on demand at any IaaS cloud, as has
been proven by the examples of private clouds at GSI and LOEWE-CSC,
the Frankfurt Cloud, and the public Amazon EC2 cloud.

91

Zusammenfassung

ALICE ist ein komplexes Hochenergiephysik-Experiment mit bisher
einzigartigen Anforderungen an Rechenleistung und Datenspeicher. Die
Daten dieses Experiments werden weltweit auf ein spezielles Grid verteilt,
verarbeitet und gespeichert. Mehr als hundert wissenschaftliche Institute
mit verschiedenen Computing-Infrastrukturen nehmen an dieser
heterogenen, internationalen Zusammenarbeit teil. Normalerweise
bedient ein Mehrzweck-Computer-Cluster an einem wissenschaftlichen
Forschungszentrum viele Benutzergruppen. Diese gemeinsame Umgebung
stellt oft Einschrankungen an die ALICE-Computing-Infrastruktur dar, die
eigene ad-hoc-Software und spezielle Anforderungen benotigt. Diese
Dissertation beschaftigt sich mit der Planung einer effizienten ALICE-
Tier-2-Infrastruktur in einer nicht dedizierten Computing-Umgebung.

Der erste Schritt besteht darin, die Nutzung von Rechenressourcen
durch Analysejobs in einem ALICE Tier-2 Zentrum genau zu untersuchen.
Ausgehend von den Ergebnissen kann die Rechnerinfrastruktur
entsprechend (gestaltet werden, um Ressourcenengpasse und
nichtgenutzte Kapazitaten zu vermeiden. Erste Tests haben gezeigt, dass
die tatsachlich durch Analysejobs genutzte Festplattenzugriffsbandbreite
viel niedriger ist als die technisch mogliche Obergrenze der Hardware.
Es hat sich herausgestellt, dass der Grund dafur ein ungunstiges
Festplattenzugriffsmuster war. Ziel der darauffolgenden Forschung war
die Verbesserung des Datendurchsatzes fiur Analysejobs. Die Ergebnisse
von Tests, die ausfuhrlich in dieser Arbeit beschrieben sind, zeigen, dass
die Bindelung von Zugriffen und das Zwischenspeichern von
Festplattendaten im Arbeitsspeicher am effektivsten ist. Eine Erhohung
der DateigrofSe verbessert die Leistung um einen Faktor von bis zu drei.
Die Ergebnisse und Losungsvorschlage wurden auf der ALICE Offline
Week im Oktober 2009 vorgestellt und in spatere Versionen der
Analysesoftware iibernommen. Uberdies erhielt man das erste Mal ein
Bild davon, wie genau ALICE Analysejobs Byte fiir Byte auf ihre Daten
zugreifen.

Der nachste Schritt, welcher in Teil 2 beschrieben wird, ist die
Integration von Speicherressourcen. Um die Auswahl eines Cluster-
Dateisystem fiir das ALICE Tier-2 Zentrum zu ermoglichen wurde zunachst
ein Anforderungsliste erstellt. Folgende Schlussfolgerungen wurden aus
der Arbeit mit Dateisystemen gezogen. Um Performance-Engpasse oder
einen “Single Point of Failure” zu vermeiden, muss das Cluster-
Dateisystem entweder verteilte Metadatenserver (Ceph) unterstitzen oder

93

Conceptual Design of an ALICE Tier-2 Centre

gar ganz auf zentrale Metadatenverwaltung verzichten (GlusterFS). Der
Mehraufwand an Verwaltung von Direct-Attached Storage in einem
Cluster ist zu hoch, wenn es nicht moglich ist, die Analyse-Software in
Datennahe auszufuhren, etwa in Systemen wie Hadoop. PROOF lost dieses
Problem fur die ROOT-Analyse. Die vorgestellten Benchmarks haben
gezeigt, dass Scalla ein robustes Toolkit ist um effizienten Zugriff auf
ROOT-Dateien bereitzustellen. Dennoch kann Scalla aufgrund seiner
unausgereiften POSIX-Schnittstelle und wegen Problemen beim Loschen
von Dateien nicht mit Lustre mithalten. Seine POSIX-Schnittstelle und
die Netzwerk-Performance gehoren zu den Starken von Lustre, und seine
Anpassungsfahigkeiten machen Lustre zur sichersten Option fur ein
Cluster-Dateisystem.

Widerspruchliche Anforderungen der Nutzer und inkompatible
Software Paket-Abhangigkeiten machen es unmoglich, eine eigene
Software-Umgebung fiur jeden Benutzer in einer gemeinsam genutzten
Computing-Infrastruktur zu erhalten. Um dieses Problem zu losen, wird
es notwendig sein, auf die Hardware-Virtualisierungs-Technologie
umzusteigen, die eine flexible Software-Migration zwischen verschiedenen
Hardware-Infrastrukturen auch uber administrative Domanen hinweg
erlaubt. Hinzu kommt, dass Virtualisierung einen einfacheren und
schnelleren Wiederherstellungsprozess ermoglicht und somit die
Verfugbarkeit einer virtuellen Rechnerinfrastruktur im Vergleich zu einer
nativen erhoht. Allerdings werden die genannten Vorteile mit einem
Performance-Verlust erkauft. Die Tests haben gezeigt, dass sich ALICE-
Analysejobs, die Daten uber das Netzwerk holen, auf einem akzeptablen
Niveau von 4% Performance-Verlust fir die Task-Jobs und 13% fur die
Train-Jobs bewegen. Die vorgestellten Messungen zeigen, dass fir einen
KVM-Hypervisor ein Single-Core-Job pro Single-Core-VM fur parallele 1/O-
intensive Verarbeitung eine effizientere Konfiguration ist als mehrere
Single-Core-Jobs fur eine einzige Multi-Core-VM. Mit diesem Ergebnis als
Grundlage war es nun moglich, einen Schritt im Infrastrukturdesign weiter
zu gehen und Wege zu finden, wie man eine grofSe, gemeinsam genutzte
virtuelle Infrastruktur aufbauen kann.

Fur Infrastrukturen mit mehr als einer Hand voll virtueller Maschinen
ist es von entscheidender Bedeutung Methoden fur eine effiziente VM
Orchestrierung zu implementieren. Cloud Computing und insbesondere
das Infrastructure-as-a-Service (IaaS) Modell losen dieses Problem. Das
IaaS Cloud-Modell, angewandt auf ein ALICE Tier-2 Zentrum, bedeutet
eine benutzer- und bedarfsgetriebene Instanziierung von virtuellen
Maschinen (VM), um Applikationen abgeschlossen in einer speziellen
Benutzerumgebung zu Dbetreiben. In diesem Modell stellen

94

Zusammenfassung

Systemadministratoren eine Reihe von Softwarediensten zur Erstellung
und Einteilung von VMs zur Verfugung und bieten den Nutzern die
Instrumente zum Management ihrer VMs an. Es wurde ein Prototyp des
IaaS Cloud-Modells in der GSI implementiert.

Um effizient die zunehmende Komplexitat der standig wachsenden
Computing-Infrastruktur betreiben zu konnen, ist es notwendig, moglichst
viele Aufgaben der Systemadministration zu automatisieren. Diese Arbeit
nutzt das “Infrastructure-as-Code”-Konzept (IaC) aus der Welt des Web-
Operating in der wissenschaftlichen Computing-Umgebung, um einen
hoheren Grad an Automatisierung zu erreichen. Die treibende Idee hinter
diesem Konzept besteht in einer vollstandigen Beschreibung sowohl der
Infrastruktur und der Applikation, als auch der Installation und Wartung
in Programmcode, moglichst in einer einheitlichen Sprache. Ein effizientes
Verfahren zum Aufbau eines virtuellen Clusters fur die ALICE-Analyse
nach IaC-Grundsatzen wird in dieser Arbeit demonstriert. Es wurde bei
der Large Installation System Administration Konferenz im Jahr 2010 in
San Jose (USA) vorgestellt. Diese Arbeit hat es das erste Mal ermoglicht,
echte ALICE Grid Jobs produktiv auf einem vollvirtualisierten Cluster, der
in einer Prototyp-laaS-Cloud eingerichtet wurde, zu rechnen. Die Macht
des IaC-Konzepts wird aufSlerdem mit dem erfolgreichen Einsatz eines
Private-Cloud-Prototyps auf dem LOEWE-CSC nachgewiesen, der den Weg
fur einen in seiner Grolse einzigartigen Benchmark geebnet hat. Die
Ergebnisse des Benchmarks, erstellt auf einem 975-Knoten-PROOF-
Cluster, ausschliefSlich auf virtuellen Maschinen mit PROOF-on-Demand
(POD), haben die Probleme mit der PROOF Lastverteilung im grofSen
Malsstab beleuchtet und haben den Entwicklern den notwendigen Input
fur die weitere Optimierung zur Verfugung gestellt.

“Conceptual Design of an ALICE Tier-2 Centre Integrated into a Multi-
Purpose Computing Facility” ist ein weitlaufiges Thema, denn aus der
inneren Struktur einer Mehrzweck-Rechnerinfrastruktur ergeben sich auf
allen Ebenen viele technische Fragen. Die Themen erstrecken sich von
effizienten Methoden, um die Leistung des Festplattenzugriffs der ALICE-
Analyse Jobs zu verbessern, bis hin zu handfesten Losungen fur die
Datenspeicherung. In dieser Arbeit werden in diesem Zusammenhang eine
Reihe schwieriger Herausforderungen gelost. Die gemessene Leistung
der Virtualisierung eroffnet neue Wege fur die ALICE-Analyse. Die IaC-
Methoden, die virtuelle Cluster fiur die Stapelverarbeitung auf Abruf
bereitstellen und die in dieser Arbeit vorgestellt sind, konnen bei jeder
IaaS Cloud genutzt werden. Das Konzept hat sich in privaten Clouds an
der GSI und dem LOEWE-CSC, der Frankfurt Cloud, und der offentlichen
Amazon EC2 Cloud bewahrt.

95

Acknowledgements

Foremost, I would like to thank my Mom and Dad for their care and
wisdom, always when it matters most.

Second, I would like to thank Victor Penso for being such an influential
IT guru and a helpful and serious colleague.

My gratitude goes to Dr. Peter Malzacher for continuous support
during my PhD studies and his wise advices.

Prof. Dr. Volker Lindenstruth has given me this opportunity to
challenge myself, and I am grateful to him for it.

Dennis Klein and Bastian Neuburger have helped me on numerous
occasions and have shown me that IT is a source of fun and a passion.
Dr. Kilian Schwarz had played a crucial role in bringing me for my PhD
studies to GSI and has been supportive ever since. My direct colleagues at
the “Grid Group” of GSI, such as Almudena Montiel, Anna Kreshuk, Anar
Manafov, and Carsten Preuss, have always been ready to help. Thanks to
the rest of the GSI IT too.

Dr. Silvia Masciocchi has graciously given a tour of the ALICE train.

Dr. Jan de Cuveland and Dr. Timm M. Steinbeck have provided me with
precious comments on the thesis.

I would like to admit the essential role of the Bogolyubov Institute for
Theoretical Physics in Kiev, whose scientists have introduced me to the
world of ALICE, grid computing, and high-energy physics in general.

A thank you goes also to all my friends here and there.

Among other sources, I have drawn inspiration from the talents of U2
and Prof. Dr. Richard Dawkins.

Finally, this thesis would not be possible without those, who develop
free and open-source software, and those, who use and promote it, sharing
their experience on the Web, - thank you so much.

97

List of Figures

1.1 The path of an I/O request 9
1.2 A histogram of the sizes of read requests for an exemplary AliESDs.root 14
1.3 An analysis task processing 100 events in an AliESDs.root file. Read calls and bytes read...... 15
1.4 An analysis train processing 100 events in an AliESDs.root file. Read calls and bytes read......c... 16
1.5 The data throughput rates of the optimized parallel analysis tasks with only ESD queried...... 22
1.6 The data throughput rates of the optimized parallel analysis tasks querying auxiliary data............ 22
1.7 The data throughput rates of the optimized parallel analysis trains querying auxiliary data........ 23

1.8 Variation of the CPU utilization and the data throughput rate of analysis train and task jobs........ 24

1.9 The data throughput rates for the merged and original files 25
1.10 The data throughput rates at different values of the block device read-ahead 26
1.11 The data throughput rates of the ALICE analysis tasks with an HDD and an SSD......cm 27
2.1 The origin of parallel access in the distributed file systems. 36
2.2 The PROOF and xrootd architectures 42
2.3 Storage test setups with PROOF where data are accessed from a single node. 45
2.4 Storage test setups with PROOF where data are accessed from multiple nodes. ... 47
3.1 The parameters which influence availability. 55
3.2 The basic private cloud architecture of SCLab 61
3.3 An example of a service-oriented architecture 64
3.4 A basic architecture of a configuration management tool. 66
3.5 An architecture of a virtual cluster. 73
3.6 An overhead of virtualization for an ALICE train job. 77
3.7 An overhead of virtualization for an ALICE task job. 77
3.8 An overhead of virtualization for a HEP-SPEC benchmark 78
3.9 An overhead of virtualization for an I/O bound workload 79
3.10 A virtual cluster at SCLab in production for the ALICE grid 82

3.11 The envisioned architecture of the Frankfurt Cloud, incorporating resources of LOEWE-CSC.....84
3.12 The results of a record, 975-node PROOF cluster test 85

99

List of Tables

1.1 The heterogeneous nature of the branches of an ALICE ROOT tree. 13
1.2 Statistics for the requested files per single AiESDs.root 16
1.3 Statistics for the requests to the Virtual File System and to a block device 18
1.4 Statistics for an analysis task with the enabled TTreeCache 20
2.1 The data throughput rates for PROOF workers analyzing data from a single node......oerec 46
2.2 The data throughput rates for PROOF workers reading data from a single node. ... 46
2.3 The data throughput rates for PROOF workers analyzing data from multiple nodes..

2.4 The data throughput rates for PROOF workers reading data from multiple nodes...........rnn 48
3.1 Availability in 9s 56
3.2 A comparison of the four cloud testbeds. 81

101

List of Acronyms

ALICE A Large Ion Collider Experiment
AliEn ALICE Environment

AOD Analysis Object Data

API Application Programming Interface
CAF CERN Analysis Facility

CERN European Organization for Nuclear Research in Geneva, Switzerland
CernVM CERN Virtual Machine

CFQ Complete Fair Queuing

CHEP Computing in High-Energy Physics
CMS Configuration Management Software
CNS Composite Name Space

CPU Central Processing Unit

DAS Direct-Attached Storage

DHCP Dynamic Host Configuration Protocol
DLM Distributed Lock Manager

DNS Domain Name System

DRMS Distributed Resource Management System
DSL Domain-Specific Language

EC2 Amazon Elastic Compute Cloud

ESD Event Summary Data

FAI Fully Automatic Installation

FAIR Facility for Antiproton and Ion Research
FLUKA Fluktuirende Kaskade

FUSE Filesystem in Userspace

GFS2 Global File System 2

GPL GNU General Public License

GPU Graphics Processing Unit

GSI GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany
GSIAF GSI Analysis Facility

HDD Hard Disk Drive

HDFS Hadoop Distributed File System
HEP High-Energy Physics

HPC High-Performance Computing

I/0O Input/Output

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IBM International Business Machines

IP Internet Protocol

IPv4 Internet Protocol version 4

IT Information Technology

JBOD Just a Bunch Of Disks

KVM Kernel-based Virtual Machine

LAN Local Area Network

LGPL GNU Lesser General Public License
LHC Large Hadron Collider

MAC Media Access Control

MC Monte Carlo

MDS Metadata Server

MTBF Mean Time Between Failures
MTTD Mean Time To Diagnose

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NAS Network-Attached Storage

103

Conceptual Design of an ALICE Tier-2 Centre

NAT Network Address Translation

NOOP No Operation Performed

OCCI Open Cloud Computing Interface

OCFS2 Oracle Cluster File System 2

OS Operating System

PC Personal Computer

PoD PROOF on Demand

POSIX Portable Operating System Interface for Unix
PROOF Parallel ROOT Facility

PVFS Parallel Virtual File System

PXE Pre-boot eXecution Environment

RAID Redundant Array of Inexpensive/Independent Disks
RAM Random-Access Memory

RC2 IBM Research Compute Cloud

SAN Storage Area Network

SCLab Scientific Computing Lab

SLO Service Level Objectives

SOA Service-Oriented Architecture

SPEC Standard Performance Evaluation Corporation
SSD Solid-State Drive

SSH Secure Shell

SSI Simple Server Inventory

TFTP Trivial File Transfer Protocol

VM Virtual Machine

VMM Virtual Machine Monitor

VNC Virtual Network Computing

WAN Wide Area Network

XCFS Xrootd Cluster File System

104

References

[Abbott]: Abbott M.L, Fisher M.T., “The Art of Scalability”. p. 433. Pearson Education. 2010.
[ALICE]: http://aliceinfo.cern.ch, last visited on 17.04.2011.

[ALICE Computing]: “ALICE Technical Design Report: Computing”, ALICE TDR 012 (15 June 2005),
CERN-LHCC-2005-018.

[Availability]: “IEEE Std 610.12-1990".

[Borthakur]: Borthakur D., “The Hadoop Distributed File System: Architecture and Design”,
http://hadoop.apache.org/common/docs/r0.16.4/hdfs design.html, last visited on 17.04.2011.

[Braam]: Braam PJ., “The Lustre storage architecture”, Cluster File Systems, Inc., August 2004.
http://www.lustre.org/documentation.html, last visited on 17.04.2011.

[Bradshawl]: Bradshaw R., Desai N., Freeman T., and Keahey K., “A Scalable Approach to Deploying
and Managing Virtual Appliances”, In TeraGrid 2007 Conference. 2007. Madison, WI.

[Brun]: Brun R., Rademakers F., “ROOT - An Object Oriented Data Analysis Framework”, Proceedings
ATHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
http://root.cern.ch, last visited on 17.04.2011.

[Buncic]: Buncic P. et al., “CernVM - a virtual appliance for LHC applications”. Proceedings of the
XII. International Workshop on Advanced Computing and Analysis Techniques in Physics Research
(ACAT08), Geneva, 2008.

[Burgess]: Burgess M., “A Site Configuration Engine”, USENIX Computing Systems, Vol. 8, Num. 2,
pp.- 309-337, 1995.

[Cantrill]: Cantrill B.M., Shapiro M.W., Leventhal A.H., “Dynamic instrumentation of production
systems”, Proceedings of USENIX '04, 2004.

[Capistranol]: http://www.capify.org, last visited on 17.04.2011.

[Carns]: Carns PH., Ligon III W.B., Ross R.B., Thakur R., “PVFS : A parallel file system for linux
clusters”, In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317-327,. Atlanta,
GA, October 2000. USENIX Association.

[Carvajal]: Carvajal J.M.C., Schwemmer R., Garnier]J.-C., Neufeld N., “A high-performance storage
system for the LHCDb experiment”, Proceedings of the Real Time Conference, 2009. RT ‘09. 16th IEEE-
NPSS.

[CernVM]: http://cernvm.cern.ch, last visited on 17.04.2011.
[Chef]: http://www.opscode.com/chef, last visited on 17.04.2011.

[Chiericil: Chierici A., Veraldi R., “A quantitative comparison between xen and kvm”, Journal of
Physics: Conference Series, 2010.

[Ciliendo]: Ciliendo E., Kunimasa T.,, Braswell B., “Linux Performance and Tuning Guidelines”,
http://www.redbooks.ibm.com/abstracts/redp4285.html, last visited on 17.04.2011.

[CloudStorel]: http://kosmosfs.sourceforge.net, last visited on 17.04.2011.
[CSCI: http://compeng.uni-frankfurt.de/index.php?id=86, last visited on 17.10.2011

[Dean]: Dean J., Ghemawat S., “Mapreduce: simplified data processing on large clusters”, Commun.
ACM, 51(1):107-113, 2008.

[Debian]: http://www.debian.org, last visited on 13.05.2011.

[Debois]: Debois P, “Monitoring”, Allspaw J., Robbins J., “Web operations. Keeping the Data on Time”,
Chapter 6, p. 82-85, O’Reilly Media 2010.

105

Conceptual Design of an ALICE Tier-2 Centre

[Delaet]: Delaet T., Joosen W., Vanbrabant B., “A survey of system configuration tools”, In Proceedings
of the 24th Large Installations Systems Administration (LISA) conference, San Jose, CA, USA, 11/2010
2010. Usenix Association.

[Deshane]: Deshane T., Shepherd Z., Matthews J.,, Ben-Yehuda M., Shah A., Rao B. “Quantitative
comparison of xen and kvm” Proceedings of the Xen Summit, Boston, MA, USA,June 2008, pp. 1-2.
USENIX Association, June 2008.

[Desnoyers]: Desnoyers M., Dagenais M.R., “The LTTng tracer: A low impact performance and
behavior monitor for GNU/Linux”, Proceedings of the Ottawa Linux Symposium 2006, 2006.

[Domingo]: Domingo D., “Red Hat Enterprise Linux 5 10 Tuning Guide”,
https://www.redhatrenewals.com/docs/wp/performancetuning/iotuning/index.html, last visited on
17.04.2011.

[EC2]: http://docs.amazonwebservices.com/AWSEC?2/latest/APIReference, last visited on 17.04.2011.
[FAIR]: http://www.gsi.de/fair, last visited on 17.04.2011.

[Fasheh]: Fasheh M., “OCFS2: The Oracle Clustered File System, Version 2”, Proceedings of the 2006
Linux Symposium, pp. 289-302., 2006.

[FCII: http://www.frankfurt-cloud.com, last visited on 17.04.2011.

[Ferraril: Ferrari A., Fasso A., Ranft]J.,, Sala PR., “FLUKA: a multi-particle transport code”,
CERN-2005-10 (2005), INFN/TC _05/11, SLAC-R-773.

[Fisher-Ogden]: Fisher-Ogden], “Hardware Support for Efficient Virtualization”, PhD thesis,
University of California, San Diego 2006.

[Foster]: Keahey K., Foster 1., Freeman T., and Zhang X., “Virtual Workspaces: Achieving Quality of
Service and Quality of Life in the Grid. Scientific Programming Journal, vol 13, No. 4, 2005, Special
Issue: Dynamic Grids and Worldwide Computing, pp. 265-276.

[Franco]: Brun R., Franco L., Rademakers F., “Efficient Access to Remote Data in High Energy
Physics”, http://indico.cern.ch/contributionDisplay.py?contribld=284 &sessionld=31&confld=3580,
last visited on 17.04.2011.

[Ganis]: Ganis G., Iwaszkiewicz J., Rademakers F., “Data Analysis with PROOF”, Proceedings of ACAT
2008 Conference. PoS(ACAT08)007.

[GFS2]: “Red Hat Global File System 2. Edition 7.” http://linux.web.cern.ch/linux/scientific5/docs/rhel/
Global File System 2/ch-overview-GFS2.html, last visited on 17.04.2011.

[git]: http://git-scm.com, last visited on 17.04.2011.

[GlusterFS]: “Gluster File System Architecture” Whitepaper, 2009, http://www.gluster.com/products/
gluster-file-system-architecture-white-paper, last visited on 17.04.2011.

[Grosse-Oetringhaus]: Grosse-Oetringhaus]J.F., “The CERN Analysis Facility — A PROOF Cluster for
Day-one Physics Analysis”, J. Phys.: Conf. Ser. 119:072017 (2008).

[GSI]: http://www.gsi.de, last visited on 17.04.2011.

[Gul: Gu Y., Grossman R.L., “Sector and Sphere: the design and implementation of a high-performance
data cloud”, Phil. Trans. R. Soc. A 367(1897): 2429-45, 2009.

[Hanushevsky]: “Scalla/xrootd 2009 Developments, presentation by Andrew Hanushevsky at CERN”,
2009, http://xrootd.slac.stanford.edu, last visited on 17.04.2011.

[Harutyunyan]: Harutyunyan A., Buncic P,, Freeman T., Keahey K., “Dynamic Virtual AliEn Grid Sites
on Nimbus with CernVM”, Journal of Physics: Conference Series, Volume 219, Issue 7, pp. 072036
(2010).

[hdparm]: http://hdparm.sourceforge.net, last visited on 17.04.2011.

[HEPiX]: “HEPiX Storage Presentations 2005”, w3.hepix.org/storage/hepix.php?y=2005, last visited
on 27.11.2010.

106

References

[Hetzler]: Hetzler S.R., “The storage chasm: Implications for the future of HDD and solid state
storage”, December 2008, http://www.idema.org, http://www.caiss.org/docs/DinnerSeminar/
TheStorageChasm20090205.pdf, last visited on 17.04.2011.

[Incontinuum]: http://www.incontinuum.com, last visited on 17.04.2011.
[iostat]: http://www.kernel.org/doc/Documentation/iostats.txt, last visited on 17.04.2011.

[Jacobl]: Jacob A., “Infrastructure as Code”, Allspaw.]J., Robbins J., “Web operations. Keeping the Data
on Time”, Chapter 5., p. 65-80. O’Reilly Media 2010.

[Jones]: Jones M.T.,, “Anatomy of the Linux File System. A layered structure-based review.”, IBM
DeveloperWorks, 30 October 2007. http://www.ibm.com/developerworks/linux/library/l-linux-
filesystem/?S TACT=105AGX03&S CMP=ART, last visited on 17.04.2011.

[Kalos]: Kalos M., Whitlock M., “Monte Carlo Methods” 2nd edn. Wiley VCH, Weinheim, 2008.

[Keahey]: Keahey K., Freeman T., “Contextualization: Providing one-click virtual clusters”, In eScience
2008, 2008.

[Kozierok]: Kozierok C.M., “Hard Disk Drives”, The PC Guide, 2004, http://www.pcguide.com/ref/hdd/
index.htm, last visited on 17.04.2011.

[KVM]: http://www.linux-kvm.org, last visited on 17.04.2011.

[Lagar-Cavilla]: Lagar-Cavilla H. A., Tolia N., Satyanarayanan M., De Lara E., “Vmm-independent
graphics acceleration”, In proceedings of VEE (2007), pp. 33-43.

[Lange]: Lange T, “Fully automatic installation of debian gnu/linux”, Nov 2001, Linux Kongress,
http://fai-project.org, last visited on 17.04.2011.

[libvirt]: http://libvirt.org, last visited on 17.04.2011.

[Liu]: Liu J., Huang W.,, Abali B., Panda D., “High Performance VMM-Bypass I/O in Virtual Machines”,
Proceedings of the USENIX 2006 Annual Technical Conference, 2006.

[Lustre manual]: http://wiki.lustre.org/manual/LustreManual20 HTML/SettingUpLustreSystem.html,
last visited on 14.04.2011.

[Lustre size]: http://wiki.lustre.org/index.php/FAQ - Sizing, last visited on 27.11.2010.

[Maltzahn]: Maltzahn et al., “Ceph as a scalable alternative to the Hadoop Distributed File System”,
USENIX ;login magazine, vol. 35, no. 4 , August 2010.

[Malzacher]: Malzacher P., Manafov A., “PROOF on Demand”, 2010 Journal of Physics: Conf. Ser. 219
072009.

[Masciocchi]: Masciocchi S., “Performance Tests on the GSI Batch Farm + Lustre”, 2009.
https://indico.gsi.de/getFile.py/access?contribld=10 &resld=0&materialld=slides&confld=450, last
vistited on 27.11.2010.

[Maslennikov]l: Maslennikov A., “Progress report 4.2010. HEPiX Storage Working Group”,
http://indico.cern.ch/getFile.py/access?contribld=11
&sessionld=3&resld=1&materialld=slides&confld=92498, last vistited on 17.04.2011.

[Massie]: Massie M.L., Chun B.N., and Culler D.E., “The ganglia distributed monitoring system:
design, implementation, and experience.” Parallel Computing, 30(7), July 2004.

[Mell]: Mell P, Grance T. “The NIST Definition of Cloud Computing”, Version 15, 10-7-09.
http://csrc.nist.gov/groups/SNS/cloud-computing, last visited on 17.04.2011.

[Merino]: Merino G. et al.,, “Transition to a new CPU benchmarking unit for the WLCG”,
http://indico.cern.ch/getFile.py/
access?contribld=3&sessionld=0&resId=0&materialld=0&confld=49388, last visited on 20.05.2011.

[Molina-Estolano]: Molina-Estolano E., Maltzahn C., Brandt S., Gokhale M., May J., Bent J., “Mixing
Hadoop and HPC Workloads on Parallel Filesystems”, Proceedings of 4th Petascale Data Storage
Workshop, Supercomputing ‘09.

[MooseFS]: http://www.moosefs.com, last visited on 17.04.2011.

107

Conceptual Design of an ALICE Tier-2 Centre

[Mushran]: Mushran S., “OCFS2. A Cluster File System for Linux. User’s Guide for Release 1.4”,
http://oss.oracle.com/projects/ocfs2/documentation, last visited on 17.04.2011.

[Narayanan]: Narayanan D., Thereska E., Donnely A., Elnikety S., Rowstron A., “Migrating server
storage to SSDs: analysis of tradeoffs”, Proceedings of the 4th ACM European conference on Computer
systems EuroSys’09, 2009.

[nice]: http://pubs.opengroup.org/onlinepubs/009695399/utilities/nice.html, last visited on
17.04.2011.

[Nurmi]: Nurmi D., Wolski R., Grzegorczyk C., Obertelli G., Soman S., Youseff L., Zagorodnov D.,
“The Eucalyptus Open-Source Cloud-Computing System”, Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, p.124-131, May 18-21, 2009.

[OCCI]: http://www.occi-wg.org, last visited on 17.04.2011.

[Offline Bible]: http://aliweb.cern.ch/secure/Offline/sites/aliweb.cern.ch.Offline/files/uploads/
OfflineBible.pdf, last visited on 17.04.2011.

[Oleynik]: Oleynik G., “Storage system evaluation criteria”, http://cd-docdb.fnal.gov/cgi-bin/
ShowDocument?docid=2576, last visited on 17.04.2011.

[Openstack]: http://www.openstack.org, last visited on 17.04.2011.
[Opscodel: http://www.opscode.com, last visited on 17.04.2011.

[Peters]: Peters A.]., “XCFS - An Analysis Disk Pool & Filesystem Based On FUSE And Xroot Protocol”,
Proceedings of ACAT 2008 Conference. PoOS(ACAT08)041.

[POSIX]: “Portable Operating System Interface (POSIX) — Part 1: System Application Program
Interface (API)”, ISO/IEC 9945-1, 1996.

[Prasad]: Prasad V., Cohen W,, Eigler F.C., Hunt M., Keniston J., Chen B., “Locating system problems
using dynamic instrumentation”, Ottawa Linux Symposium 2005, 2005.

[PXE]: “Preboot Execution Environment (PXE) Specification”, Intel, 1999 ftp://download.intel.com/
design/archives/wfm/downloads/pxespec.pdf, last visited on 17.04.2011.

[ROOT user’s guide]: http://root.cern.ch/drupal/content/users-guide, last visited on 17.04.2011.

[Roselli]: Roselli D., Lorch J., and Anderson T., “A comparison of file system workloads”, In Proceedings
of the 2000 USENIX Annual Technical Conference, pages 41-54, San Diego, CA, June 2000. USENIX
Association.

[Russel]: Russel R., “virtio: Towards a De-Facto Standard For Virtual I/0 Devices”, SIGOPS Oper. Syst.
Rev., Vol. 42, No. 5. (July 2008), pp. 95-103.

[Ryu]: Ryu K.D. et al., “RC2 - A Living Lab for Cloud Computing”, Proceedings of LISA'10, USENIX.
2010.

[Saiz]: Saiz P. et al., “AliEn - ALICE Environment on the Grid”, Nucl. Instrum. Methods A502 (2003)
437-440; http://alien.cern.ch, last visited on 13.05.2011.

[Scalla]: “Scalla/xrootd. Presentation by Andrew Hanushevsky at OSG Storage Forum”, 2009.
http://xrootd.slac.stanford.edu, last visited on 17.04.2011.

[Schwarz]: Schwarz K., “GSIAF, CAF experience at GSI”, PROOF 2007 Workshop CERN,
http://indico.cern.ch/materialDisplay.py?contribId=19
&sessionld=5&materialld=slides&confld=23243, last visited on 17.04.2011.

[Sempolinskil: Sempolinski P, Thain D., “A Comparison and Critique of Eucalyptus, OpenNebula and
Nimbus”, IEEE International Conference on Cloud Computing Technology and Science, November,
2010.

[SL]: https://www.scientificlinux.org, last visited on 13.05.2011.

[Sollins]: Sollins K.R., “The TFTP Protocol (Revision 2)”, July 1992, IETF. RFC 1350.
http://tools.ietf.org/html/rfc1350, last visited on 17.04.2011.

108

References

[Sotomayor]: Sotomayor B., Montero R.S., Llorente I.M., Foster I., “Virtual Infrastructure
Management in Private and Hybrid Clouds”, IEEE Internet Computing, vol. 13, no. 5, pp. 14-22, Sep./
Oct. 2009.

[SPEC]: http://www.spec.org/cpu2006, last visited on 10.02.2012.

[Staples]: Staples G., “TORQUE resource manager”, SC ‘06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, ISBN 0-7695-2700-0.

[strace]: http://www.linuxmanpages.com/manl/strace.l.php, last visited on 17.04.2011.
[SysBench]: http://sysbench.sourceforge.net, last visited on 17.04.2011.

[Tate]l: Tate J., Lucchese F., Moore R., “Introduction to Storage Area Networks”, 2006,
http://www.redbooks.ibm.com/abstracts/sg245470.html, last visited on 17.04.2011.

[Traeger]: Traeger A., Zadok E., Joukov N., and Wright C. P, “A nine year study of file system and
storage benchmarking”, ACM Trans. Storage 4, 2, Article 5 (May 2008), 56 pages. DOI = 10.1145/
1367829.1367831.

[VMWarel: http://www.vmware.com/support/pubs/vs pages/vsp _pubs esx41 vc41l.html, last visited on
17.04.2011.

[Wang]: Wang F,, Xin Q., Hong B., Brandt S.A., Miller E.L., Long D.D.E., and McLarty T.T., “File system
workload analysis for large scale scientific computing applications”, In Proceedings of the 21st IEEE /
12th NASA Goddard Conference on Mass Storage Systems and Technologies, pages 139-152, College
Park, MD, April 2004.

[Watts]: Watts D. et al, “Tuning IBM System x Servers for Performance”,
http://www.redbooks.ibm.com/abstracts/sg245287.html, last visited on 17.04.2011.

[Weil]: Weil S., Brandt S.A., Miller E.L.,, Long D.D.E., Maltzahn C., “Ceph: A Scalable, High-
Performance Distributed File System”, Proceedings of the 7th Conference on Operating Systems
Design and Implementation (OSDI ‘06), November 2006.

[Welch]: Welch B., “POSIX IO extensions for HPC”, In Proceedings of the 4th USENIX Conference
on File and Storage Technologies (FAST), December 2005. www.pdl.cmu.edu/posix, last visited on
17.04.2011.

[Whitehouse]: Whitehouse S., “The GFS2 Filesystem”, Proceedings of the Linux Symposium. Ottawa.
2007.

[WLCG]: http://Icg.web.cern.ch/LCG/resources.htm, last visited on 20.05.2011.

[Wul: Wu Y. et al., “Utilizing Lustre file system with dCache for CMS analysis”, 2010 J. Phys.: Conf. Ser.
219 062068.

[XCFS]: https://svaweb.cern.ch/trac/CERNXROOT/wiki, last visited on 17.04.2011.

[Yangl: Yang W., “Introduction to XrootdFS”, http://wt2.slac.stanford.edu/xrootdfs/xrootdfs.html, last
visited on 17.04.2011.

[Zynovyev]l: Zynovyev M. “GlusterFS benchmarks”, 2009, https://indico.gsi.de/getFile.py/
access?contribld=6 &resld=0&materialld=slides&confld=450, last visited on 27.11.2010.

109

Curriculum
Vitae

Personal information

First name / Surname
Also known as

Place and date of birth
Nationality
Gender

Place of residence

Occupational field

Work experience

Dates

Occupation or position held
Main activities and
responsibilities

Name and address of
employer

Dates

Occupation or position held
Main activities and
responsibilities

Name and address of
employer

Dates

Occupation or position held
Main activities and
responsibilities

Name and address of
employer

Dates

Occupation or position held
Main activities and
responsibilities

Name and address of
employer

Dates
Occupation or position held

Mykhaylo Zynovyev
Misha, Mike, or Michael

Kiev, Ukraine, 24/06/1984
Ukraine
male

Frankfurt am Main, Germany

Computer Science / IT Engineering

April 2007 - July 2012

PhD student

postgraduate research on data analysis and design of a Tier-2 centre
for the ALICE experiment at LHC

GSI Helmholtz Centre for Heavy lon Research, Planckstr. 1, 64291
Darmstadt, Germany

2005 - March 2007
IT-engineer
administration of grid-sites (AliEn and ARC middleware)

Bogolyubov Institute for Theoretical Physics, National Academy of
Sciences of Ukraine, Metrologicheskaya street 14-B, 03143 Kiev,
Ukraine

May 2005 - June 2006

programmer

development of a C language compiler with eMAC support for the
Freescale Coldfire microprocessor

Freescale Embedded Systems Lab, Information Software Systems Ltd,
Bozhenko Str. 15, Kiev, Ukraine

January 2004 - April 2005

programmer

analysis of C language compilers and implementation of optimization
techniques using MAC/eMAC units for the Freescale Coldfire
microprocessor

Freescale Embedded Systems Lab, National Technical University of
Ukraine "Kiev Polytechnic Institute", Prospect Peremohy 37, 03056
Kiev, Ukraine

November 2002 - December 2004
programmer

Main activities and
responsibilities
Name and address of
employer

Education

Dates
Title of qualification sought

Name of organisation
providing education

Dates
Title of qualification sought

Name of organisation
providing education

Dates
Title of qualification awarded

Thesis title

Name of organisation
providing education

Dates

Title of qualification awarded
Name of organisation
providing education

Training

Dates
Description

Principal
subjects/occupational
skills covered

Name of organisation
providing training

Dates

Description

Principal
subjects/occupational
skills covered

Name of organisation
providing training

Dates

Description

Principal
subjects/occupational
skills covered

Name of organisation
providing training

development of a wrapper for handling exceptions of a FPU of a
MPC5xx microcontroller, and benchmarking

Motorola Embedded Systems Lab, National Technical University of
Ukraine "Kiev Polytechnic Institute", Prospect Peremohy 37, 03056
Kiev, Ukraine

2011 - 2012

doctorate studies in Computer Science under supervision of Prof. Dr.
Volker Lindenstruth

the Faculty of Computer Science and Mathematics, the Goethe
University Frankfurt, Frankfurt am Main, Germany

2008 - 2011

doctorate studies in Computer Science under supervision of Prof. Dr.
Volker Lindenstruth

the Faculty of Mathematics and Computer Science, Ruprecht-Karls
University of Heidelberg, Heidelberg, Germany

2004 - 2006

MSc in Computer Engineering, specialization in Computer Systems
and Networks

The Means of Job Management in a Distributed Computing
Environment

the Department of Specialized Computer Systems, the Faculty of
Applied Mathematics, National Technical University of Ukraine "Kiev
Polytechnic Institute", Kiev, Ukraine

2000 - 2004

BSc in Computer Engineering

the Department of Specialized Computer Systems, the Faculty of
Applied Mathematics, National Technical University of Ukraine "Kiev
Polytechnic Institute", Kiev, Ukraine

7-12 November 2010

training at LISA '10: 24™ Large Installation System Administration
Conference, San Jose, USA
networking, Linux security and administration, storage

USENIX: The Advanced Computing Systems Association, Berkeley,
USA

20-31 August 2007
the CERN School of Computing, Dubrovnik, Croatia
grid technologies, software technologies, physics computing

CERN, the European Organization for Nuclear Research, in
collaboration with the University of Split, Croatia

September 2006
training at ALICE in CERN, Geneva, Switzerland
administration of the AliEn grid middleware

the Offline group, the ALICE experiment at CERN, European
Organisation for Nuclear Research, Geneva, Switzerland

Dates
Description

Principal
subjects/occupational
skills covered

Name of organisation
providing training

Dates

Description

Principal
subjects/occupational
skills covered

Name of organisation
providing training

Dates

Description

Principal
subjects/occupational
skills covered

Name of organisation
providing training

Fellowships

Name (period)
Name (period)

Name (period)
Name (period)

Conferences

Dates, location

Name of the attended
conference
Contribution

Dates, location

Name of the attended
conference
Contribution

Dates, location
Name of the attended
conference

Dates, location

Name of the attended
conference

Publications

Title
List of authors

Periodical title and date of

publication

27 February - 3 March 2006

International School "Grid Administration and Experiment Data
Processing in ALICE", Dubna, Russia

administration of the glLite grid middleware

JINR, the Joint Institute For Nuclear Research, Dubna, Russia

July, August 2005
the CERN summer student program
benchmarking in Linux, Tcl programming

the DAQ group, the ALICE experiment at CERN, European
Organisation for Nuclear Research, Geneva, Switzerland

September 2004
training at INFN
LabVIEW programming, controlling thermal infra-red video camera

the ITS group, the ALICE experiment, INFN Sezione di Torino, Torino,
Italy

Helmholtz Graduate School for Hadron and lon Research "HGS-HIRe
for FAIR" (2009 - 2012)

GSI Helmholtz Centre for Heavy lon Research (2007 - 2008, 2012)
Freescale Inc. (2004 - 2006)

Motorola Inc. (2002 - 2004)

2-6 May 2011, Darmstadt, Germany
HEPiX Spring 2011

Talk “Adopting 'Infrastructure as Code' to Run HEP Applications”

7-12 November 2010, San Jose, USA
LISA '10: 24" Large Installation System Administration Conference

Poster “Adopting 'Infrastructure as Code' in GSI”

21-22 June 2010, Geneva, Switzerland
2nd Workshop on Adapting Applications and Computing Services to
Multi-core and Virtualization

13-18 October 2006, Sinaia, Romania
International ICFA Workshop on Grid Activities within Large Scale
International Collaborations

“Utilization of LOEWE-CSC within the Frankfurt Cloud”
M. Zynovyev, D. Klein, A. Manafov, V. Penso
GSI Scientific Report 2011, GSI Report 2012-01

Title

List of authors
Periodical title and date of
publication

Title
List of authors

Periodical title and date of
publication

Title
List of authors

Periodical title and date of
publication

Title
List of authors

Periodical title and date of
publication

Title
List of authors

Periodical title and date of
publication

Title
List of authors

Periodical title and date of
publication

Languages

Mother tongue

Other languages
Self-assessment
European level (*)

English
Ukrainian

German

“Radiation Simulation and Nuclear Structure Calculation at Frankfurt
Cloud”

D. Klein, P. Malzacher, V. Penso, M. Zynovyev

GSI Scientific Report 2010, GSI Report 2011-01

“Cluster-Virtualization at GSI”
D. Klein, P. Malzacher, V. Penso, M. Zynovyev
GSI Scientific Report 2010, GSI Report 2011-01

“Grid Activities at GSI”

M. Al-Turany, M. Dahlinger, S. Daraszewicz, P. Malzacher, A.Manafov,
A. Montiel Gonzalez, V. Penso, C. Preuss, K. Schwarz, F. Uhlig,

M. Zynovyev

GSI Scientific Report 2009, GSI Report 2010-01

“Grid Activities at GSI”

M. Al-Turany, A. Kreshuk, P. Malzacher, A. Manafov, V. Penso,
C. Preuss, K. Schwarz, F. Uhlig, M. Zynovyev
GSI Scientific Report 2008, GSI Report 2009-01

“Grid Activities at GSI”

K. Schwarz, P. Malzacher, A. Manafov, V. Penso, C. Preuss,
M. Zynovyev, A. Kreshuk
GSI Scientific Report 2007, GSI Report 2008-01

“Ukrainian Grid Infrastructure: Practical Experience”
M. Zynovyev, S. Svistunov, O. Sudakov, Y. Boyko
Proceedings of 4th IEEE Workshop on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, 2007.
IDAACS 2007

listed as co-author on multiple papers of the ALICE Collaboration
(2009-2012)
http://aliweb.cern.ch/Documents/generalpublications

Russian
Understanding Speaking Writing
Listening Reading Spoken Spoken
interaction production
Proficient Proficient Proficient Proficient Proficient
cl User cl User cl User 1 User €2 User
Proficient Proficient Independent Proficient Proficient
2 User 2 User B2 User c1 User 1 User
Independent Independent Independent Independent Basic
B1 User Bl User B1 User Bl User A2 User

(*) Common European Framework of Reference for Languages

